JP2001219078A - Method for catalyst regeneration - Google Patents

Method for catalyst regeneration

Info

Publication number
JP2001219078A
JP2001219078A JP2000031022A JP2000031022A JP2001219078A JP 2001219078 A JP2001219078 A JP 2001219078A JP 2000031022 A JP2000031022 A JP 2000031022A JP 2000031022 A JP2000031022 A JP 2000031022A JP 2001219078 A JP2001219078 A JP 2001219078A
Authority
JP
Japan
Prior art keywords
catalyst
volume
regeneration
regenerating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000031022A
Other languages
Japanese (ja)
Other versions
JP3785296B2 (en
Inventor
Katsunori Miyoshi
勝則 三好
Yasuhiko Kizu
保彦 木津
Nobuyuki Masaki
信之 正木
Noboru Sugishima
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000031022A priority Critical patent/JP3785296B2/en
Publication of JP2001219078A publication Critical patent/JP2001219078A/en
Application granted granted Critical
Publication of JP3785296B2 publication Critical patent/JP3785296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently regenerate a catalyst, which is contaminated by a poisonous material in exhaust gas and the activity of which is deteriorated, without causing physical damage such as the sintering of a catalytic component. SOLUTION: The catalyst, which is contaminated by the poisonous material in exhaust gas and the activity of which is deteriorated, is regenerated by heating in the presence of a regenerating gas at 350-450 deg.C in a circulation system or at 400-500 deg.C in a non-circulation system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒の再生方法に
関する。さらに詳しくは、排ガス中に含まれる被毒物質
により被毒を受け活性劣化した触媒を再生する方法に関
する。
[0001] The present invention relates to a method for regenerating a catalyst. More specifically, the present invention relates to a method for regenerating a catalyst that has been poisoned by a poisoning substance contained in exhaust gas and has deteriorated in activity.

【0002】[0002]

【従来の技術】一般に、ゴミ焼却炉等からの燃焼排ガス
は、電気集塵機やバグフィルター、セラミックフィルタ
ー等の除塵装置で除塵された後、排ガス中に含まれる窒
素酸化物および/またはダイオキシン類等の有機ハロゲ
ン化合物等の有害物質に対して、150〜350℃程度
の比較的低温度領域にて触媒を用いた排ガス処理が行わ
れている。このような触媒としては、チタン酸化物およ
び/またはシリコン酸化物と、バナジウム、タングステ
ンおよびモリブデンからなる群より選ばれる少なくとも
1種類の金属の酸化物とを含有するものが好適に用いら
れている。
2. Description of the Related Art In general, combustion exhaust gas from a garbage incinerator or the like is dust-removed by a dust removing device such as an electric dust collector, a bag filter, a ceramic filter, and the like, and then nitrogen oxides and / or dioxins contained in the exhaust gas. Exhaust gas treatment using a catalyst is performed on harmful substances such as organic halogen compounds in a relatively low temperature range of about 150 to 350 ° C. As such a catalyst, a catalyst containing a titanium oxide and / or a silicon oxide and an oxide of at least one metal selected from the group consisting of vanadium, tungsten and molybdenum is preferably used.

【0003】ゴミ焼却炉からの燃焼排ガスには、アンモ
ニアガスと、二酸化硫黄、三酸化硫黄および酸性硫安等
の硫黄化合物、カリウム、ナトリウム等のアルカリ金属
化合物、カルシウム、マグネシウム等のアルカリ土類化
合物、水銀、リン、ヒ素、鉛、アンチモン等の金属化合
物などの被毒物質が少量ながら含まれており、150〜
350℃程度の比較的低温度で上記の触媒を使用する
と、特に硫黄化合物により五酸化バナジウムが硫酸塩に
変化し、また触媒の表面に酸性硫酸アンモニウムや硫酸
アンモニウムの蓄積が生じ、触媒の細孔を閉塞するため
経時的に性能劣化を起こす。
[0003] Combustion exhaust gas from a garbage incinerator includes ammonia gas, sulfur compounds such as sulfur dioxide, sulfur trioxide and ammonium acid sulfate, alkali metal compounds such as potassium and sodium, and alkaline earth compounds such as calcium and magnesium. Poisonous substances such as metal compounds such as mercury, phosphorus, arsenic, lead and antimony are contained in a small amount.
When the above catalyst is used at a relatively low temperature of about 350 ° C., vanadium pentoxide is converted into a sulfate, particularly by a sulfur compound, and acidic ammonium sulfate or ammonium sulfate is accumulated on the surface of the catalyst, thereby closing the pores of the catalyst. As a result, the performance deteriorates with time.

【0004】このような排ガス中に含まれる被毒物質に
より被毒を受け活性劣化した触媒を再生する方法として
は、(1)触媒を水または添加剤入りの水によって洗浄
再生する方法、(2)装置から触媒を取り出し、加熱炉
で高温再生する方法、等が知られている。ところが、こ
れらの再生方法はそれぞれ次のような問題点があった。
(1)の洗浄再生方法では、水および添加剤による触媒
成分の流出、廃水処理の困難さに加えて、再生効率が低
いという欠点を有する。(2)の加熱炉で高温再生する
方法では、温度が低すぎると再生効率が低下し、温度が
高すぎると、触媒成分のシンタリングや、触媒組成とし
て含有している硫黄分までもが除去され、物理的なダメ
ージを受けるという欠点を有する。
[0004] As a method for regenerating a catalyst which has been poisoned and degraded in activity by poisoning substances contained in exhaust gas, (1) a method of washing and regenerating the catalyst with water or water containing an additive, (2) A method of removing a catalyst from an apparatus and regenerating at a high temperature in a heating furnace is known. However, each of these reproducing methods has the following problems.
The washing and regenerating method (1) has disadvantages in that the regenerating efficiency is low in addition to the outflow of the catalyst component due to water and additives and the difficulty in treating wastewater. In the method (2) of regenerating at a high temperature in a heating furnace, if the temperature is too low, the regeneration efficiency is reduced, and if the temperature is too high, sintering of the catalyst components and even removal of sulfur contained in the catalyst composition are removed. And suffers physical damage.

【0005】再生効率が低い触媒を用いて、再度ゴミ焼
却炉等の窒素酸化物および/またはダイオキシン類等の
有機ハロゲン化合物等の有害物質に対して、排ガス処理
を行うと、ある程度短期間に活性が劣化するため好まし
くない。
When harmful substances such as nitrogen oxides and / or organic halogen compounds such as dioxins in waste incinerators and the like are again subjected to exhaust gas treatment using a catalyst having a low regeneration efficiency, the activity is reduced to a certain extent in a short time. Deteriorates, which is not preferable.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術のうち(2)の加熱炉で高温再生する方法について、
さらに改良を加えることによって触媒成分のシンタリン
グ等の物理的なダメージを生じさせず、効率良く、排ガ
ス中の被毒物質により被毒を受け活性劣化した触媒を再
生することを課題とする。
SUMMARY OF THE INVENTION The present invention relates to (2) a method for regenerating at a high temperature in a heating furnace according to the prior art.
It is another object of the present invention to efficiently regenerate a catalyst that has been poisoned by a poisoning substance in exhaust gas and has deteriorated in activity without causing physical damage such as sintering of a catalyst component by further improvement.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明者らは、排ガス中の被毒物質、特に硫黄化合
物により被毒を受け活性劣化した触媒の、再生時の温
度、再生する触媒重量に対する再生ガスの流量、再生す
る触媒に使用する再生ガスの組成等の種々の条件につい
て、鋭意検討を行った。その結果、これらの中でも特に
再生時の温度を最適な範囲とすることが重要であること
を見出し、本発明を完成させた。さらに、再生する触媒
重量に対する再生ガスの流量および再生ガスの組成につ
いても最適な条件を選択することで、触媒成分のシンタ
リング等の物理的なダメージを生じさせず、効率良く、
経済的に触媒を再生することができることを見出した。
In order to solve the above-mentioned problems, the present inventors regenerate the temperature of a catalyst poisoned by a poisoning substance, particularly a sulfur compound, in an exhaust gas and degraded in activity. Various conditions such as the flow rate of the regeneration gas with respect to the weight of the catalyst, the composition of the regeneration gas used for the catalyst to be regenerated, and the like were studied. As a result, it has been found that it is particularly important to set the temperature during reproduction to an optimum range among them, and the present invention has been completed. Furthermore, by selecting optimal conditions for the flow rate of the regeneration gas and the composition of the regeneration gas with respect to the weight of the catalyst to be regenerated, physical damage such as sintering of the catalyst component does not occur, and the efficiency is improved.
It has been found that the catalyst can be regenerated economically.

【0008】すなわち、本発明の触媒の再生方法は、排
ガス中の被毒物質により被毒を受け活性劣化した触媒を
再生する方法であって、流通系においては350〜45
0℃において、非流通系においては400〜500℃に
おいて、再生ガスの存在下に加熱することを特徴とす
る。
That is, the catalyst regeneration method of the present invention is a method for regenerating a catalyst that has been poisoned by a poisoning substance in exhaust gas and has degraded its activity.
It is characterized by heating at 0 ° C. and at 400 to 500 ° C. in the non-flow system in the presence of a regeneration gas.

【0009】[0009]

【発明の実施の形態】本発明の触媒の再生方法では、加
熱温度が重要である。流通系においては350〜450
℃であり、370〜420℃が好ましい。非流通系にお
いては400〜500℃であり、430〜480℃が好
ましい。前記範囲よりも加熱温度が低いと再生効率が低
く、前記範囲よりも加熱温度が高くなると、触媒組成と
して含有している硫黄分までもが除去され、性能の回復
が悪くなるため好ましくない。また、経済的にもコスト
が高くなり好ましくない。特に、非流通系で再生する場
合には、物理的ダメージを生じやすい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the catalyst regeneration method of the present invention, the heating temperature is important. 350-450 in distribution system
° C, preferably from 370 to 420 ° C. In a non-flow system, the temperature is 400 to 500 ° C, preferably 430 to 480 ° C. When the heating temperature is lower than the above range, the regeneration efficiency is low, and when the heating temperature is higher than the above range, even the sulfur content contained as the catalyst composition is removed, and the recovery of the performance is unfavorably deteriorated. In addition, the cost is also high economically, which is not preferable. In particular, in the case of non-distribution reproduction, physical damage is likely to occur.

【0010】再生する触媒1kgに対する再生ガスの流
量は、0.5〜30m3 /h(Normal)の範囲に調整す
ることが重要であり、好ましくは1.0〜20m3 /h
(Normal)の範囲である。前記範囲よりも再生ガスの流
量が少ないと再生効率が低く、前記範囲よりも再生ガス
の流量が多くなると、触媒組成として含有している硫黄
分までもが除去され、性能の回復が悪くなるため好まし
くない。また、触媒での圧力損失も大きくなり、高い能
力の吸気ブロアや排気ブロア等が必要となったり、エネ
ルギー消費も多くなるため好ましくない。再生ガスの組
成としては、O2 が好ましくは5容量%以上、より好ま
しくは7容量%以上21容量%以下、H2 Oが好ましく
は40容量%以下、硫黄酸化物が好ましくは5000容
量ppm以下、より好ましくは3000容量ppm以
下、NH3 が好ましくは5000容量ppm以下、より
好ましくは3000容量ppm以下、ダストが好ましく
は0.1g/m3 (Normal)以下であることが好適であ
る。これらの範囲を外れると、再生効率は低くなる。特
に、ダストが0.1g/m3 (Normal)よりも多いと、
ダスト成分による触媒の性能劣化も生じ、再生効率が低
くなる。非流通系で再生を行う場合には、触媒に付着し
た硫黄化合物が分解し、アンモニアガスと二酸化硫黄や
三酸化硫黄等の硫黄酸化物が生成するため、吸気ブロア
または排気ブロアを設置し系内のガスを排気し、系内に
外気を取り入れ、前記したガス組成となるように調整す
る。
It is important that the flow rate of the regenerating gas per 1 kg of the regenerated catalyst is adjusted to a range of 0.5 to 30 m 3 / h (Normal), preferably 1.0 to 20 m 3 / h.
(Normal). When the flow rate of the regeneration gas is lower than the above range, the regeneration efficiency is low, and when the flow rate of the regeneration gas is higher than the above range, even the sulfur content contained as the catalyst composition is removed, and the performance recovery is deteriorated. Not preferred. In addition, the pressure loss in the catalyst increases, and a high-capacity intake blower and exhaust blower are required, and energy consumption increases, which is not preferable. As the composition of the regeneration gas, O 2 is preferably 5% by volume or more, more preferably 7% by volume or more and 21% by volume or less, H 2 O is preferably 40% by volume or less, and sulfur oxide is preferably 5000% by volume or less. It is more preferable that the content is 3000 volume ppm or less, NH 3 is preferably 5000 volume ppm or less, more preferably 3000 volume ppm or less, and dust is preferably 0.1 g / m 3 (Normal) or less. Outside these ranges, the regeneration efficiency will be low. In particular, when the dust is more than 0.1 g / m 3 (Normal),
The performance of the catalyst also deteriorates due to the dust component, and the regeneration efficiency decreases. When performing regeneration in a non-flow system, sulfur compounds attached to the catalyst are decomposed, and ammonia gas and sulfur oxides such as sulfur dioxide and sulfur trioxide are generated. Is exhausted, outside air is taken into the system, and the gas composition is adjusted to the above-mentioned gas composition.

【0011】本発明において流通系とは、反応器等の触
媒に直接強制的にガスを流通させる場合を指す。一方、
非流通系とは、触媒に直接強制的にガスを流通させない
場合を指す。非流通系の代表例として循環炉やマッフル
炉が挙げられる。非流通系における再生ガスの流量と
は、循環炉の場合は循環しているガス量を指し、マッフ
ル炉の場合は吸気ブロアまたは排気ブロアの流量を指
す。流通系で再生を行う場合、現地の焼却設備に再生シ
ステムを組み込んでも良いし、既存の高温排ガスを伴う
設備(例えば、発電設備の排ガス、ボイラ排ガス、焼却
炉排ガス、焼成炉排ガス等)に再生装置を設置しても良
い。触媒が被毒物質により活性劣化した場合に、これら
の排ガスを導入して再生を行う。流通系で再生を行う利
点として、熱源が有効利用できるため、加熱に要するコ
ストが安いことが上げられる。
In the present invention, the term "flow system" refers to a case where a gas is forcibly passed directly through a catalyst such as a reactor. on the other hand,
The non-flow system refers to a case where the gas is not forced to flow directly through the catalyst. Typical examples of the non-flow system include a circulation furnace and a muffle furnace. The flow rate of the regeneration gas in the non-flow system refers to the amount of circulating gas in the case of a circulating furnace, and refers to the flow rate of an intake blower or an exhaust blower in the case of a muffle furnace. When performing regeneration in a distribution system, a regeneration system may be incorporated in the local incineration facility, or regenerated into existing equipment with high-temperature exhaust gas (for example, exhaust gas from power generation equipment, boiler exhaust gas, incinerator exhaust gas, firing furnace exhaust gas, etc.). An apparatus may be installed. When the catalyst is degraded in activity by the poisoning substance, regeneration is performed by introducing these exhaust gases. As an advantage of performing regeneration in a circulation system, the cost required for heating can be reduced because the heat source can be used effectively.

【0012】非流通系で再生を行う場合、循環炉やマッ
フル炉等の一般に触媒の焼成に用いられているような装
置を用いれば良い。非流通系で再生を行うと、流通系で
再生を行う場合よりも再生のための加熱温度が高く、再
生に要する時間も長くなるが、現有装置が使用可能であ
り、新たな設備投資が不要であるという利点を有する。
本発明により再生する触媒は、排ガス中の被毒物質、特
に硫黄化合物により被毒を受け活性劣化した触媒であれ
ば、特に限定されるものではなく、例えば、窒素酸化物
および/または有機ハロゲン化合物(ダイオキシン類
等)を含む排ガスの処理に使用される触媒が好ましいも
のとして挙げられる。特に、触媒が比較的低温度で使用
された場合には、経時的な性能劣化が著しいため、ゴミ
焼却炉の電気集塵機やバグフィルター、セラミックフィ
ルター等の除塵装置後流で、好ましくは、セラミックフ
ィルターおよび/またはバグフィルター後流で、温度3
50℃以下で、好ましくは150〜300℃で、窒素酸
化物および/または有機ハロゲン化合物を含有する排ガ
スの処理に使用される触媒が好適である。
In the case of performing regeneration in a non-flow system, an apparatus such as a circulation furnace or a muffle furnace generally used for calcining a catalyst may be used. When regeneration is performed in a non-distribution system, the heating temperature for regeneration is higher and the time required for regeneration is longer than when regeneration is performed in a distribution system, but existing equipment can be used and no new capital investment is required It has the advantage of being
The catalyst to be regenerated according to the present invention is not particularly limited, as long as it is poisoned by the poisoning substance in the exhaust gas, particularly a catalyst that has been degraded in activity by poisoning, for example, nitrogen oxides and / or organic halogen compounds. Catalysts used in the treatment of exhaust gases containing (such as dioxins) are preferred. In particular, when the catalyst is used at a relatively low temperature, the performance is significantly deteriorated with time, so that the dust collector is disposed downstream of an electric dust collector, a bag filter, a ceramic filter, or the like of a garbage incinerator, preferably a ceramic filter. And / or downstream of the bag filter at a temperature of 3
Catalysts used at temperatures below 50 ° C., preferably between 150 and 300 ° C., for the treatment of exhaust gases containing nitrogen oxides and / or organic halogen compounds are suitable.

【0013】本発明により再生する触媒の組成として
は、目的の排ガス処理に適した組成であればよい。例え
ば、窒素酸化物および/または有機ハロゲン化合物を含
有する排ガスの処理に使用される触媒であれば、チタン
酸化物および/またはシリコン酸化物と、バナジウム、
タングステンおよびモリブデンからなる群より選ばれる
少なくとも1種類の金属の酸化物とを含有することが好
ましい。本発明により再生する触媒の形状としては、粉
体を使用してもよい。また、板状、波板状、網状、ハニ
カム状、円柱状、円筒状等の形状の一体成形体でも良い
し、アルミナ、シリカ、コーディライト、チタニア、ス
テンレス金属等よりなる板状、波板状、網状、ハニカム
状、円柱状、円筒状等の形状の担体に担持して使用して
も良い。
The composition of the catalyst to be regenerated according to the present invention may be any composition suitable for the intended exhaust gas treatment. For example, if the catalyst is used for treating exhaust gas containing nitrogen oxides and / or organic halogen compounds, titanium oxide and / or silicon oxide, vanadium,
It is preferable to contain an oxide of at least one metal selected from the group consisting of tungsten and molybdenum. Powder may be used as the shape of the catalyst to be regenerated according to the present invention. In addition, a plate-like, corrugated plate-like, mesh-like, honeycomb-like, cylindrical, cylindrical, or other integrally formed body may be used, or a plate-like or corrugated plate made of alumina, silica, cordierite, titania, stainless metal, or the like. It may be used by being supported on a carrier having a shape such as a net, a honeycomb, a column, or a cylinder.

【0014】[0014]

【実施例】以下に実施例によりさらに詳細に本発明を説
明するが、本発明はこれに限定されるものではない。 [参考例1]排ガスに曝露される前の新品触媒(1)を
参考例1とする。この新品触媒(1)は、チタン酸化物
を70重量%、シリコン酸化物を9.5重量%、バナジ
ウム酸化物を10重量%、モリブデン酸化物を10重量
%、硫黄分を0.5重量%含有するハニカム状の触媒で
ある。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Reference Example 1 A new catalyst (1) before being exposed to exhaust gas is referred to as Reference Example 1. This new catalyst (1) contains 70% by weight of titanium oxide, 9.5% by weight of silicon oxide, 10% by weight of vanadium oxide, 10% by weight of molybdenum oxide, and 0.5% by weight of sulfur content. It is a honeycomb-shaped catalyst contained.

【0015】[参考例2]排ガスに曝露される前の新品
触媒(2)を参考例2とする。この新品触媒(2)は、
チタン酸化物を70重量%、シリコン酸化物を9.5重
量%、バナジウム酸化物を10重量%、タングステン酸
化物を10重量%、硫黄分を0.5重量%含有する粉体
状の触媒である。 [比較例1]参考例1の新品触媒(1)を、ゴミ焼却炉
のバグフィルター後流で、温度200℃で、硫黄酸化物
を20容量ppm、NH3 を80容量ppm、窒素酸化
物を100容量ppm、ダイオキシン類を2ng−TE
Q/m3 (Normal)、O2 を10容量%、H2 Oを15
容量%含有する排ガスの処理に使用した。この排ガス曝
露にて被毒物質により被毒を受け活性劣化した触媒
(1)を比較例1とする。
Reference Example 2 A new catalyst (2) before being exposed to exhaust gas is referred to as Reference Example 2. This new catalyst (2)
A powdery catalyst containing 70% by weight of titanium oxide, 9.5% by weight of silicon oxide, 10% by weight of vanadium oxide, 10% by weight of tungsten oxide and 0.5% by weight of sulfur. is there. [Comparative Example 1] The new catalyst (1) of Reference Example 1 was placed downstream of a bag filter of a garbage incinerator at a temperature of 200 ° C and 20 ppm by volume of sulfur oxides, 80 ppm by volume of NH 3 , and nitrogen oxides. 100 ppm by volume, 2 ng-TE of dioxins
Q / m 3 (Normal), O 2 10% by volume, H 2 O 15
It was used for treating exhaust gas containing volume%. The catalyst (1) which was poisoned by the poisoning substance by this exhaust gas exposure and degraded in activity was designated as Comparative Example 1.

【0016】[比較例2]参考例2の新品触媒(2)
を、ゴミ焼却炉のバグフィルター後流で、温度200℃
で、硫黄酸化物を20容量ppm、NH3 を80容量p
pm、窒素酸化物を100容量ppm、ダイオキシン類
を2ng−TEQ/m3 (Normal)、O2 を10容量
%、H2 Oを15容量%含有する排ガスの処理に使用し
た。この排ガス曝露にて被毒物質により被毒を受け活性
劣化した触媒(2)を比較例2とする。 [実施例1〜2]比較例1の排ガス曝露にて被毒物質に
より被毒を受け活性劣化した触媒(1)を、触媒1kg
あたりの再生ガスの流量は3.5m3 /h(Normal)の
条件下にて、温度350〜450℃の範囲で、流通系に
て、熱処理再生を10時間行った。なお、再生ガスの組
成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度
は3000容量ppm以下、H2 O濃度は5容量%以
下、ダスト濃度は0g/m3(Normal)であり、温度
は、実施例1:350℃、実施例2:450℃とした。
Comparative Example 2 New Catalyst of Reference Example 2 (2)
At a temperature of 200 ° C downstream of the bag filter of the garbage incinerator.
20 ppm by volume of sulfur oxide and 80 volumes by volume of NH 3
pm, 100 ppm by volume of nitrogen oxide, 2 ng-TEQ / m 3 (Normal) of dioxins, 10% by volume of O 2 , and 15% by volume of H 2 O for treating exhaust gas. The catalyst (2) which was poisoned by the poisoning substance by this exhaust gas exposure and degraded in activity was designated as Comparative Example 2. [Examples 1 and 2] 1 kg of the catalyst (1) which was poisoned by the poisoning substance and was degraded in activity by the exhaust gas exposure of Comparative Example 1
Under a condition of a flow rate of a regeneration gas of 3.5 m 3 / h (Normal), a heat treatment regeneration was carried out for 10 hours in a flow system at a temperature of 350 to 450 ° C. The composition of the regeneration gas is such that the oxygen concentration is 5% by volume, the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less, the H 2 O concentration is 5% by volume or less, and the dust concentration is 0 g / m 3 (Normal). The temperature was 350 ° C. in Example 1 and 450 ° C. in Example 2.

【0017】[実施例3〜5]比較例1の排ガス曝露に
て被毒物質により被毒を受け活性劣化した触媒(1)
を、触媒1kgあたりの再生ガスの流量は3.5m3
h(Normal)の条件下にて、温度400〜500℃の範
囲で、非流通系にて、熱処理再生を20時間行った。な
お、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化
物及びNH3 濃度は3000容量ppm以下、H2 O濃
度は5容量%以下、ダスト濃度は0g/m 3 (Normal)
であり、温度は、実施例3:400℃、実施例4:45
0℃、実施例5:500℃とした。
Examples 3 to 5 Exposure to exhaust gas of Comparative Example 1
Degraded by poisoning by poisonous substances (1)
And the flow rate of the regeneration gas per kg of the catalyst is 3.5 mThree/
h (Normal), the temperature range is 400-500 ° C.
, A heat treatment regeneration was performed for 20 hours in a non-flow system. What
The composition of the regeneration gas is as follows: oxygen concentration is 5% by volume, sulfur oxidation
And NHThreeThe concentration is 3000 ppm by volume or less, HTwoO concentration
Degree is 5% by volume or less, dust concentration is 0g / m Three(Normal)
And the temperature was as follows: Example 3: 400 ° C., Example 4: 45
0 ° C., Example 5: 500 ° C.

【0018】[実施例6〜7]比較例1の排ガス曝露に
て被毒物質により被毒を受け活性劣化した触媒(1)
を、触媒1kgあたりの再生ガスの流量は3.5m3
h(Normal)、温度350℃の条件下にて、酸素濃度3
〜7容量%の範囲で、流通系にて、熱処理再生を10時
間行った。なお、再生ガスの組成は、硫黄酸化物及びN
3 濃度は3000容量ppm以下、H2 O濃度は5容
量%以下、ダスト濃度は0g/m3 (Normal)であり、
酸素濃度は、実施例6:3容量%、実施例7:7容量%
とした。 [実施例8〜9]比較例1の排ガス曝露にて被毒物質に
より被毒を受け活性劣化した触媒(1)を、触媒1kg
あたりの再生ガスの流量は3.5m3 /h(Normal)、
温度450℃の条件下にて、酸素濃度3〜7容量%の範
囲で、非流通系にて、熱処理再生を20時間行った。な
お、再生ガスの組成は、硫黄酸化物及びNH3 濃度は3
000容量ppm以下、H2 O濃度は5容量%以下、ダ
スト濃度は0g/m3 (Normal)であり、酸素濃度は、
実施例8:3容量%、実施例9:7容量%とした。
[Examples 6 and 7] Catalyst (1) which was poisoned by the poisoning substance by exposure to exhaust gas of Comparative Example 1 and degraded in activity
And the flow rate of the regeneration gas per kg of the catalyst is 3.5 m 3 /
h (Normal), temperature of 350 ° C, oxygen concentration 3
The heat treatment was regenerated for 10 hours in a flow system in the range of 〜7% by volume. Note that the composition of the regeneration gas is sulfur oxide and N
The H 3 concentration is 3000 vol ppm or less, the H 2 O concentration is 5 vol% or less, the dust concentration is 0 g / m 3 (Normal),
Example 6: 3% by volume, Example 7: 7% by volume
And [Examples 8 to 9] 1 kg of the catalyst (1) which was poisoned by the poisoning substance and was deteriorated in activity by the exhaust gas exposure of Comparative Example 1
The flow rate of regeneration gas per unit is 3.5 m 3 / h (Normal),
At a temperature of 450 ° C., the heat treatment was regenerated for 20 hours in a non-flow system at an oxygen concentration of 3 to 7% by volume. The composition of the regeneration gas is such that the sulfur oxide and NH 3 concentration are 3
000 ppm by volume or less, H 2 O concentration is 5% by volume or less, dust concentration is 0 g / m 3 (Normal), and oxygen concentration is
Example 8: 3% by volume, Example 9: 7% by volume.

【0019】[実施例10〜11]比較例1の排ガス曝
露にて被毒物質により被毒を受け活性劣化した触媒
(1)を、温度350℃の条件下にて、触媒1kgあた
りの再生ガスの流量0.5〜37.5m3 /h(Norma
l)の範囲で、流通系にて、熱処理再生を10時間行っ
た。なお、再生ガスの組成は、酸素濃度は5容量%、硫
黄酸化物及びNH3 濃度は3000容量ppm以下、H
2 O濃度は5容量%以下、ダスト濃度は0g/m3(Nor
mal)であり、触媒1kgあたりの再生ガスの流量は、
実施例10:0.5m3 /h(Normal)、実施例11:
37.5m3 /h(Normal)とした。
[Examples 10 to 11] The catalyst (1), which was poisoned by the poisoning substance and exposed to degradation in the exhaust gas exposure of Comparative Example 1, was converted into a regenerated gas per kg of the catalyst at a temperature of 350 ° C. Flow rate of 0.5 to 37.5 m 3 / h (Norma
Within the range of l), the heat treatment was regenerated for 10 hours in a flow system. The composition of the regeneration gas is such that the oxygen concentration is 5% by volume, the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less,
The 2 O concentration is 5% by volume or less, and the dust concentration is 0 g / m 3 (Nor
mal), and the flow rate of regeneration gas per kg of catalyst is
Example 10: 0.5 m 3 / h (Normal), Example 11:
It was 37.5 m 3 / h (Normal).

【0020】[実施例12]比較例1の排ガス曝露にて
被毒物質により被毒を受け活性劣化した触媒(1)を、
触媒1kgあたりの再生ガスの流量は3.5m3 /h
(Normal)、温度は350℃の条件下にて、流通系に
て、熱処理再生を10時間行った。なお、再生ガスの組
成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度
は5000容量ppm以下、H2 O濃度は5容量%以
下、ダスト濃度は0g/m3 (Normal)であった。 [実施例13]比較例1の排ガス曝露にて被毒物質によ
り被毒を受け活性劣化した触媒(1)を、触媒1kgあ
たりの再生ガスの流量は3.5m3 /h(Normal)、温
度は450℃の条件下にて、非流通系にて、熱処理再生
を20時間行った。なお、再生ガスの組成は、酸素濃度
は5容量%、硫黄酸化物及びNH3 濃度は5000容量
ppm以下、H2 O濃度は5容量%以下、ダスト濃度は
0g/m3 (Normal)であった。
Example 12 The catalyst (1) which was poisoned by the poisoning substance by the exposure to the exhaust gas of Comparative Example 1 and had its activity degraded was
The flow rate of the regeneration gas per 1 kg of the catalyst is 3.5 m 3 / h
(Normal), the heat treatment was regenerated for 10 hours in a flow system under the condition of a temperature of 350 ° C. The composition of the regeneration gas was such that the oxygen concentration was 5% by volume, the sulfur oxide and NH 3 concentrations were 5000 ppm by volume or less, the H 2 O concentration was 5% by volume or less, and the dust concentration was 0 g / m 3 (Normal). Was. [Example 13] The catalyst (1) which was poisoned by the poisoning substance by the exposure to the exhaust gas of Comparative Example 1 and degraded in activity, the flow rate of the regeneration gas per kg of the catalyst was 3.5 m 3 / h (Normal), and the temperature was Was subjected to heat treatment regeneration for 20 hours in a non-flow system at 450 ° C. The composition of the regeneration gas was such that the oxygen concentration was 5% by volume, the sulfur oxide and NH 3 concentrations were 5000 ppm by volume or less, the H 2 O concentration was 5% by volume or less, and the dust concentration was 0 g / m 3 (Normal). Was.

【0021】[実施例14]比較例2の排ガス曝露にて
被毒物質により被毒を受け活性劣化した触媒(2)を、
触媒1kgあたりの再生ガスの流量は3.5m3 /h
(Normal)、温度は450℃の条件下にて、非流通系に
て、熱処理再生を20時間行った。なお、再生ガスの組
成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度
は3000容量ppm以下、H2 O濃度は5容量%以
下、ダスト濃度は0g/m3 (Normal)であった。 [比較例3〜4]比較例1の排ガス曝露にて被毒物質に
より被毒を受け活性劣化した触媒(1)を、触媒1kg
あたりの再生ガスの流量は3.5m3 /h(Normal)の
条件下にて、温度300℃および500℃で、流通系に
て、熱処理再生を10時間行った。なお、再生ガスの組
成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度
は3000容量ppm以下、H2 O濃度は5容量%以
下、ダスト濃度は0g/m3(Normal)であり、温度
は、比較例3:300℃、比較例4:500℃とした。
[Example 14] The catalyst (2) which was poisoned by the poisoning substance in the exhaust gas exposure of Comparative Example 2 and degraded in activity,
The flow rate of the regeneration gas per 1 kg of the catalyst is 3.5 m 3 / h
(Normal) The heat treatment and regeneration were performed in a non-flow system at a temperature of 450 ° C. for 20 hours. The composition of the regeneration gas was such that the oxygen concentration was 5% by volume, the sulfur oxide and NH 3 concentrations were 3000 ppm by volume or less, the H 2 O concentration was 5% by volume or less, and the dust concentration was 0 g / m 3 (Normal). Was. [Comparative Examples 3 and 4] 1 kg of the catalyst (1), which was poisoned by the poisoning substance and degraded in activity when exposed to the exhaust gas of Comparative Example 1,
Under a condition of a flow rate of the regeneration gas per unit area of 3.5 m 3 / h (Normal), heat treatment and regeneration were performed at 300 ° C. and 500 ° C. in a flowing system for 10 hours. The composition of the regeneration gas is such that the oxygen concentration is 5% by volume, the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less, the H 2 O concentration is 5% by volume or less, and the dust concentration is 0 g / m 3 (Normal). The temperature was set to 300 ° C. in Comparative Example 3: 500 ° C. in Comparative Example 4.

【0022】[比較例5〜6]比較例1の排ガス曝露に
て被毒物質により被毒を受け活性劣化した触媒(1)
を、触媒1kgあたりの再生ガスの流量は3.5m3
h(Normal)の条件下にて、温度350℃および550
℃で、非流通系にて、熱処理再生を20時間行った。な
お、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化
物及びNH3 濃度は3000容量ppm以下、H2 O濃
度は5容量%以下、ダスト濃度は0g/m 3 (Normal)
であり、温度は、比較例5:350℃、比較例6:55
0℃とした。
[Comparative Examples 5 to 6]
Degraded by poisoning by poisonous substances (1)
And the flow rate of the regeneration gas per kg of the catalyst is 3.5 mThree/
Under the condition of h (Normal), the temperature is 350 ° C. and 550
At 20 ° C., the heat treatment was regenerated for 20 hours in a non-flow system. What
The composition of the regeneration gas is as follows: oxygen concentration is 5% by volume, sulfur oxidation
And NHThreeThe concentration is 3000 ppm by volume or less, HTwoO concentration
Degree is 5% by volume or less, dust concentration is 0g / m Three(Normal)
Comparative Example 5: 350 ° C., Comparative Example 6: 55
0 ° C.

【0023】[試験例1]実施例1〜14にて熱処理再
生を行った触媒、参考例1〜2の新品触媒、及び比較例
1〜2の活性劣化した触媒、比較例3〜6にて熱処理再
生を行った触媒の各触媒の一部を切り出し、粉砕後圧縮
成形したものを分析サンプルとして、蛍光X線測定装置
にて各触媒中の硫黄分を定量した。以下の式にしたが
い、再生効率(%)を求めた。結果を表1に示す。 再生効率(%)={再生前の触媒中の硫黄分(重量%)
−再生後の触媒中の硫黄分(重量%)}/{再生後の触
媒中の硫黄分(重量%)−新品の触媒中の硫黄分(重量
%)}×100 [試験例2]実施例1〜12にて熱処理再生を行った触
媒、参考例1〜2の新品触媒、及び比較例1〜2の活性
劣化した触媒、比較例3〜6にて熱処理再生を行った触
媒の各触媒を、以下に示す反応条件にて試験し脱硝率を
求めた。結果を表1に示す。
Test Example 1 The catalysts subjected to heat treatment and regeneration in Examples 1 to 14, the new catalysts in Reference Examples 1 and 2, and the catalysts whose activity was deteriorated in Comparative Examples 1 and 2, and Comparative Examples 3 to 6 A part of each catalyst of the catalyst subjected to the heat treatment and regeneration was cut out, pulverized and compression molded as an analysis sample, and the sulfur content in each catalyst was quantified by a fluorescent X-ray measuring device. The regeneration efficiency (%) was determined according to the following equation. Table 1 shows the results. Regeneration efficiency (%) = {Sulfur content in catalyst before regeneration (% by weight)
-Sulfur content in catalyst after regeneration (% by weight) / {Sulfur content in catalyst after regeneration (% by weight)-Sulfur content in new catalyst (% by weight)} x 100 [Test Example 2] Catalysts subjected to heat treatment regeneration in 1-12, new catalysts of Reference Examples 1-2, and catalysts with degraded activity of Comparative Examples 1-2, and catalysts subjected to heat treatment regeneration in Comparative Examples 3-6 The test was performed under the following reaction conditions to determine the denitration rate. Table 1 shows the results.

【0024】 −試験条件− 空間速度 11,300h-1 ガス線速度 2.79m/s(Normal) ガス温度 200℃ NH3 /NOモル比 1.0 ガス組成 NO 200volppm(Dry) SO2 50volppm(Dry) O2 10vol%(Dry) H2 O 15vol% N2 バランスガス [試験例3]実施例1〜14にて熱処理再生を行った触
媒、参考例1〜2の新品触媒、及び比較例1〜2の活性
劣化した触媒、比較例3〜6にて熱処理再生を行った触
媒の各触媒の各触媒について、ダイオキシン類分解性能
確認のため、代替物質としてクロロトルエンを用いて、
以下に示す反応条件にて試験しクロロトルエン分解率を
求めた。結果を表1に示す。
—Test Conditions— Space velocity 11,300 h −1 Gas linear velocity 2.79 m / s (Normal) Gas temperature 200 ° C. NH 3 / NO molar ratio 1.0 Gas composition NO 200 vol ppm (Dry) SO 2 50 vol ppm (Dry) ) O 2 10vol% (Dry) H 2 O 15vol% N 2 balance gas test example 3 catalyst was heat-treated reproduced by examples 1 to 14, fresh catalyst of example 1-2, and Comparative examples 1 to For each of the two catalysts of which the activity was deteriorated and the catalysts which were subjected to heat treatment and regeneration in Comparative Examples 3 to 6, using chlorotoluene as an alternative substance to confirm the decomposition performance of dioxins,
Tests were performed under the following reaction conditions to determine the chlorotoluene decomposition rate. Table 1 shows the results.

【0025】 −試験条件− 空間速度 2,710h-1 ガス線速度 0.5m/s(Normal) ガス温度 200℃ ガス組成 クロロトルエン 30volppm(Dry) O2 10vol%(Dry) H2 O 15vol% N2 バランスガス [試験例4]実施例3及び比較例5にて熱処理再生を行
った触媒を、それぞれ、ガス温度200℃で、O2 濃度
が10容量%、H2 O濃度が15容量%、硫黄酸化物及
びNH3 濃度が500容量ppmである排ガス条件にて
曝露を行った。曝露後の触媒について、試験例2に示す
反応条件にて試験し、脱硝率を求めた。結果を表2に示
す。
—Test Conditions— Space velocity 2,710 h −1 Gas linear velocity 0.5 m / s (Normal) Gas temperature 200 ° C. Gas composition Chlorotoluene 30 vol ppm (Dry) O 2 10 vol% (Dry) H 2 O 15 vol% N 2 Balance gas [Test Example 4] The catalysts subjected to heat treatment and regeneration in Example 3 and Comparative Example 5 were subjected to a gas temperature of 200 ° C., an O 2 concentration of 10% by volume, an H 2 O concentration of 15% by volume, respectively. Exposure was performed under exhaust gas conditions in which the sulfur oxide and NH 3 concentrations were 500 ppm by volume. The catalyst after the exposure was tested under the reaction conditions shown in Test Example 2 to determine the denitration rate. Table 2 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明によると、触媒成分のシンタリン
グ等の物理的なダメージを生じさせず、効率良く、経済
的に触媒を再生することができる。
According to the present invention, the catalyst can be efficiently and economically regenerated without causing physical damage such as sintering of the catalyst component.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 正木 信之 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 杉島 昇 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 Fターム(参考) 4D048 AA06 AA11 BA06X BA07X BA23X BA26X BA27X BA41X BB01 BB02 BB03 BB05 BB07 BD01 BD02 CC39 CD05 4G069 AA10 BB04A BB04B BC50A BC50B BC54A BC54B BC59A BC59B BC60A BC60B BD05A CA04 CA08 CA10 CA13 CA19 DA06 EA01Y EA06 EA11 EA18 GA01 GA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Nobuyuki Masaki 992, Nishioki, Okihama-shi, Abashiri-ku, Himeji-shi, Hyogo Nippon Shokubai Co., Ltd. F-term in Nippon Shokubai (reference) 4D048 AA06 AA11 BA06X BA07X BA23X BA26X BA27X BA41X BB01 BB02 BB03 BB05 BB07 BD01 BD02 CC39 CD05 4G069 AA10 BB04A BB04B BC50A BC50B BC54A BC54B BC59A01 CA60 EA01 GA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の被毒物質により被毒を受け活
性劣化した触媒を再生する方法であって、流通系で35
0〜450℃において、再生ガスの存在下に加熱するこ
とを特徴とする触媒の再生方法。
1. A method for regenerating a catalyst which has been poisoned by a poisoning substance in an exhaust gas and has degraded its activity, comprising 35
A method for regenerating a catalyst, comprising heating at 0 to 450 ° C in the presence of a regeneration gas.
【請求項2】 排ガス中の被毒物質により被毒を受け活
性劣化した触媒を再生する方法であって、非流通系で4
00〜500℃において、再生ガスの存在下に加熱する
ことを特徴とする触媒の再生方法。
2. A method for regenerating a catalyst which has been poisoned by a poisoning substance in an exhaust gas and has degraded its activity.
A method for regenerating a catalyst, comprising heating at 00 to 500 ° C in the presence of a regeneration gas.
【請求項3】 再生する触媒1kgに対する再生ガスの
流量が0.5〜30m3 /h(Normal)の範囲である、
請求項1または2記載の触媒の再生方法。
3. A flow rate of the regeneration gas per 1 kg of the regenerated catalyst is in a range of 0.5 to 30 m 3 / h (Normal).
A method for regenerating a catalyst according to claim 1 or 2.
【請求項4】 前記再生ガスの組成において、(1) O2
が5容量%以上、(2) H2 Oが40容量%以下、(3) 硫
黄酸化物が5000容量ppm以下、(4) NH3 が50
00容量ppm以下、および、(5) ダストが0.1g/
3 (Normal)以下、のうちの少なくとも1つの条件を
満足する、請求項1から3のいずれかにに記載の触媒の
再生方法。
4. The composition of the regeneration gas, wherein (1) O 2
5% by volume or more, (2) 40% by volume or less of H 2 O, (3) 5000 ppm by volume or less of sulfur oxide, and (4) 50% by volume of NH 3
00 ppm by volume or less, and (5) 0.1 g /
4. The method for regenerating a catalyst according to claim 1, wherein at least one of the following conditions is satisfied: m 3 (Normal).
【請求項5】 再生する触媒が、チタン酸化物および/
またはシリコン酸化物と、バナジウム、タングステンお
よびモリブデンからなる群より選ばれる少なくとも1種
類の金属の酸化物とを含有する、請求項1から4のいず
れかに記載の触媒の再生方法。
5. The catalyst to be regenerated is titanium oxide and / or
The method for regenerating a catalyst according to any one of claims 1 to 4, further comprising a silicon oxide and an oxide of at least one metal selected from the group consisting of vanadium, tungsten, and molybdenum.
【請求項6】 再生する触媒が、ゴミ焼却炉の除塵装置
後流において、温度350℃以下で、窒素酸化物および
/または有機ハロゲン化合物を含有する排ガスの処理に
使用される触媒である、請求項1から5のいずれかに記
載の触媒の再生方法。
6. The catalyst to be regenerated is a catalyst that is used in the treatment of exhaust gas containing nitrogen oxides and / or organic halogen compounds at a temperature of 350 ° C. or lower in the downstream of a dust remover of a refuse incinerator. Item 6. A method for regenerating a catalyst according to any one of Items 1 to 5.
JP2000031022A 2000-02-08 2000-02-08 Catalyst regeneration method Expired - Lifetime JP3785296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000031022A JP3785296B2 (en) 2000-02-08 2000-02-08 Catalyst regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000031022A JP3785296B2 (en) 2000-02-08 2000-02-08 Catalyst regeneration method

Publications (2)

Publication Number Publication Date
JP2001219078A true JP2001219078A (en) 2001-08-14
JP3785296B2 JP3785296B2 (en) 2006-06-14

Family

ID=18555947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000031022A Expired - Lifetime JP3785296B2 (en) 2000-02-08 2000-02-08 Catalyst regeneration method

Country Status (1)

Country Link
JP (1) JP3785296B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073665A (en) * 2006-09-25 2008-04-03 Takuma Co Ltd Catalyst regeneration method and regeneration facility
JP2010058067A (en) * 2008-09-04 2010-03-18 Takuma Co Ltd Method for regenerating denitration catalyst, unit for regenerating denitration catalyst and apparatus for treating exhaust gas by using the unit
JP2014140824A (en) * 2013-01-25 2014-08-07 Hitachi Zosen Corp Sulfuric acid ammonium salt elimination method in exhaust gas treatment equipment and exhaust gas treatment equipment
KR101525302B1 (en) * 2013-05-29 2015-06-02 두산엔진주식회사 Selective catalytic reuction system and method of regenerating catalyst for selective catalytic reuction
JP2021534961A (en) * 2018-08-22 2021-12-16 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Offline catalytic regeneration of the selective catalytic reduction process and the inactivation catalyst of that process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073665A (en) * 2006-09-25 2008-04-03 Takuma Co Ltd Catalyst regeneration method and regeneration facility
JP2010058067A (en) * 2008-09-04 2010-03-18 Takuma Co Ltd Method for regenerating denitration catalyst, unit for regenerating denitration catalyst and apparatus for treating exhaust gas by using the unit
JP2014140824A (en) * 2013-01-25 2014-08-07 Hitachi Zosen Corp Sulfuric acid ammonium salt elimination method in exhaust gas treatment equipment and exhaust gas treatment equipment
KR101525302B1 (en) * 2013-05-29 2015-06-02 두산엔진주식회사 Selective catalytic reuction system and method of regenerating catalyst for selective catalytic reuction
JP2021534961A (en) * 2018-08-22 2021-12-16 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Offline catalytic regeneration of the selective catalytic reduction process and the inactivation catalyst of that process

Also Published As

Publication number Publication date
JP3785296B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
EP0787521B1 (en) Method and apparatus for treating combustion exhaust gases
JP3480596B2 (en) Dry desulfurization denitrification process
AU693966B2 (en) Regeneration of catalyst/absorber
JPH04503772A (en) Methods of reducing emissions of organic products of incomplete combustion
JP4113090B2 (en) Exhaust gas treatment method
KR20120030758A (en) Method of regenerating scr catalyst
JP2001219078A (en) Method for catalyst regeneration
JP3779889B2 (en) Catalyst regeneration method
JP2002316051A (en) Method and apparatus for regenerating denitration catalyst or dioxin decomposition catalyst
JP3150519B2 (en) Regeneration method of denitration catalyst
KR20210077018A (en) Method for treating exhaust gas
JP2002370014A (en) Exhaust gas treatment system
SK6612002A3 (en) Method for decomposing chlorine-containing organic compound in exhaust gas and catalyst for use in the method
KR100460665B1 (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
JP2002248322A (en) Waste gas treating method
JP2004195420A (en) Activation and regeneration method of catalyst
JPH10314548A (en) Ammonia treating device
JP2001187317A (en) Treating system for trash incinerator waste gas
JP3796214B2 (en) Method for regenerating degraded catalyst
JP2006346642A (en) Catalyst for decomposing ammonia and method for treating ammonia
JPH02268810A (en) Method for removing nitrogen oxide
JPS63319049A (en) Denitration catalyst
JPH11101526A (en) Ghp system with denitrating and deodorizing catalyst
JP2000102737A (en) Method for regenerating denitration catalyst
JPH10211427A (en) Nitrogen dioxide absorber, and method for removing nitrogen dioxide using this absorber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3785296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term