WO2016114214A1 - Fuel cell system, power generation method, and power generation device - Google Patents

Fuel cell system, power generation method, and power generation device Download PDF

Info

Publication number
WO2016114214A1
WO2016114214A1 PCT/JP2016/050358 JP2016050358W WO2016114214A1 WO 2016114214 A1 WO2016114214 A1 WO 2016114214A1 JP 2016050358 W JP2016050358 W JP 2016050358W WO 2016114214 A1 WO2016114214 A1 WO 2016114214A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
fuel cell
reformer
air
fuel
Prior art date
Application number
PCT/JP2016/050358
Other languages
French (fr)
Japanese (ja)
Inventor
久保 秀人
祥平 松本
堀内 俊孝
久和 進藤
Original Assignee
株式会社豊田自動織機
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015003899A external-priority patent/JP6439190B2/en
Priority claimed from JP2015007971A external-priority patent/JP2016134278A/en
Application filed by 株式会社豊田自動織機, 株式会社日本触媒 filed Critical 株式会社豊田自動織機
Publication of WO2016114214A1 publication Critical patent/WO2016114214A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a fuel cell system, a power generation method, and a power generation apparatus.
  • Patent Document 1 As a conventional fuel cell system, for example, a technique described in Patent Document 1 is known.
  • the fuel cell system described in Patent Document 1 includes a solid polymer fuel cell that generates power using a hydrogen-containing gas as a fuel gas, a reformer that generates ammonia by reforming ammonia, and a liquid state fuel cell system.
  • a storage tank for storing ammonia a pump provided between the storage tank and the reformer, for supplying liquid ammonia to the reformer, a pump for supplying air to the reformer, and air for the fuel cell
  • liquid ammonia is vaporized by a heat exchanger provided in the reformer.
  • power is supplied to the heater by the secondary battery, and heat exchange is performed between the liquid ammonia and the heat of the heater by the heat exchanger, thereby heating and vaporizing the liquid ammonia.
  • the heater and the secondary battery are used to vaporize ammonia, the system efficiency is poor.
  • An object of the present invention is to provide a fuel cell system, a power generation method, and a power generation apparatus that can improve system efficiency.
  • a fuel cell system includes a reformer that generates a fuel gas by introducing an oxidant gas to reform ammonia, and a fuel gas and an oxidant gas generated by the reformer.
  • a fuel cell that generates electricity using a fuel
  • an ammonia tank that stores ammonia in a liquid state
  • a pump that sends liquid ammonia stored in the ammonia tank toward the reformer
  • the vaporizer for vaporizing ammonia in a liquid state
  • the insufflator for sending the oxidant gas to the reformer and the fuel cell, and between the insufflator and the fuel cell to heat the oxidant gas
  • a heat exchanger that exchanges and preheats, a first exhaust gas supply unit that supplies exhaust gas discharged from the fuel cell to the vaporizer, and a second exhaust gas supply unit that supplies exhaust gas to the heat exchanger, , Liquid due to exhaust heat of exhaust gas
  • the state of the ammonia is vaporized, the heat exchanger is
  • the exhaust gas discharged from the fuel cell is supplied to the vaporizer by the first exhaust gas supply unit, and the liquid ammonia is vaporized by the exhaust heat of the exhaust gas in the vaporizer.
  • the exhaust gas discharged from the fuel cell is supplied to the heat exchanger by the second exhaust gas supply unit, and the oxidant gas is heat-exchanged by the exhaust heat of the exhaust gas and preheated in the heat exchanger.
  • the exhaust heat of exhaust gas is effectively used for the vaporization of ammonia and the heat exchange of the oxidant gas.
  • the system efficiency of a fuel cell system can be improved.
  • the oxidant gas is air, and further includes a control unit that controls the air-fuel ratio of the reformer.
  • the control unit sets the air-fuel ratio of the reformer during start-up operation to be higher than the air-fuel ratio of the reformer during normal operation. May be controlled to be higher.
  • the controller may perform control so that the air-fuel ratio of the reformer during start-up operation is 1.0 or more. In this case, the decomposition temperature of ammonia in the reformer becomes sufficiently high. As a result, it is possible to reliably warm the fuel cell early during start-up operation.
  • a valve that adjusts the flow rate of the air supplied from the insufflator to the reformer is disposed between the insufflator and the reformer, and the control unit controls the opening degree of the valve.
  • the air-fuel ratio of the reformer may be controlled. By using the valve for adjusting the air flow rate in this way, the air-fuel ratio of the reformer can be easily controlled.
  • the apparatus further includes a combustor that combusts the exhaust gas discharged from the fuel cell, the first exhaust gas supply unit supplies the exhaust gas burned by the combustor to the vaporizer, and the second exhaust gas supply unit is combusted by the combustor.
  • Exhaust gas may be supplied to the heat exchanger.
  • the temperature of the exhaust gas increases. Therefore, it is possible to effectively perform ammonia vaporization and heat exchange of the oxidant gas using exhaust heat of exhaust gas.
  • the power generation device generally includes a solid oxide fuel cell and a reactor including a gas line for storing the solid oxide fuel cell and supplying fuel gas and oxidant gas.
  • the solid oxide fuel cell is generally composed of a fuel electrode formed on one surface of a solid oxide electrolyte and an air electrode that is spaced apart from the fuel electrode.
  • air is supplied to the air electrode side and hydrogen is supplied to the fuel electrode side, and the following reaction proceeds at about 800 to 1000 ° C. on each electrode.
  • Air electrode O 2 + 4e ⁇ ⁇ 2O 2 ⁇
  • the oxygen ions generated at the air electrode move from the air electrode side to the fuel electrode side in the solid oxide electrolyte. At the same time, power generation is achieved by electrons flowing from the fuel electrode side to the air electrode side.
  • the solid oxide fuel cell cannot perform efficient power generation unless it is at a certain high temperature. Therefore, normally, the solid oxide fuel cell is heated with a heater or the like before power generation, and the power generation is started after the temperature of the solid oxide fuel cell is raised to about 600 to 1000 ° C. However, since the power generation cannot be started until the temperature of the solid oxide fuel cell is raised to about 600 to 1000 ° C., there is a problem that it takes time until the power generation is started after the apparatus is started.
  • the reformer uses a catalyst for ammonia decomposition to burn part of the ammonia with oxygen, and uses the heat of combustion to decompose the ammonia into hydrogen, and the fuel cell uses a plurality of ammonia decomposition devices.
  • the fuel cell is constituted by a solid oxide fuel cell that is operated using a hydrogen-containing gas generated by at least one of the devices as a fuel.
  • the ammonia decomposition apparatus is used after the first ammonia decomposition apparatus and the solid oxide fuel cell used to generate a hydrogen-containing gas until the solid oxide fuel cell reaches a predetermined temperature.
  • a second ammonia decomposition apparatus used as an apparatus for generating a hydrogen-containing gas may be included.
  • the ammonia decomposition catalysts provided in the first ammonia decomposition apparatus and the second ammonia decomposition apparatus may each contain at least one element selected from iron, cobalt, and nickel as a catalytic active component.
  • the content of the catalytically active component in the ammonia decomposition catalyst of the second ammonia decomposition apparatus may be higher than the content of the catalytically active component in the ammonia decomposition catalyst of the first ammonia decomposition apparatus.
  • a power generation method is a power generation method using the above-described fuel cell system, wherein the first ammonia decomposition apparatus has a mixed gas in which the volume ratio of oxygen to ammonia is 0.19 or more.
  • a first step of supplying hydrogen, a second step of switching the device for generating a hydrogen-containing gas from the first ammonia decomposition device to the second ammonia decomposition device, and a volume ratio of oxygen to ammonia in the second ammonia decomposition device And a third step of supplying a mixed gas having 0.17 or less, and the second step is performed when the solid oxide fuel cell reaches a predetermined temperature.
  • a power generation device includes a plurality of ammonia decomposition apparatuses that use an ammonia decomposition catalyst to burn a part of ammonia with oxygen and decompose the ammonia into hydrogen using the combustion heat; And a solid oxide fuel cell that is operated by using a hydrogen-containing gas generated by at least one of the ammonia decomposing apparatuses.
  • a power generation apparatus including a plurality of ammonia decomposition apparatuses is used, and an outlet gas of the ammonia decomposition apparatus (hydrogen-containing gas generated by decomposing ammonia) is used as a fuel gas. Also, power generation in the solid oxide fuel cell can be started in a short time.
  • a fuel cell system a power generation method, and a power generation apparatus that can improve system efficiency are provided.
  • FIG. 1 is a system configuration diagram showing a fuel cell system according to an embodiment.
  • a fuel cell system 1 of the present embodiment includes an ATR (Auto Thermal Reforming) type reformer 2 and a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell) 3.
  • ATR Auto Thermal Reforming
  • SOFC Solid Oxide Fuel Cell
  • the reformer 2 introduces air to reform ammonia (NH 3 ), thereby generating a fuel gas containing hydrogen.
  • the reformer 2 includes an NH 3 oxidation unit 2a and an NH 3 decomposition unit 2b arranged on the downstream side of the NH 3 oxidation unit 2a.
  • the NH 3 oxidation unit 2a generates heat by oxidizing ammonia.
  • the NH 3 decomposition unit 2b generates hydrogen by decomposing ammonia by heat generated in the NH 3 oxidation unit 2a.
  • the reforming unit 2 uses air as the oxidant gas, but any gas may be used as long as it oxidizes ammonia.
  • reformer 2 has a NH 3 oxidation unit 2a and NH 3 decomposition section 2b, when using the active catalyst in both the reaction of oxidation and decomposition of NH 3 is NH 3
  • An integrated reformer 2 having both functions of oxidizing and decomposing NH 3 may be used without separating the oxidizing unit and the NH 3 decomposing unit. In this case, since the oxidation reaction generally takes place earlier than the decomposition reaction, the same reaction as described above occurs.
  • the fuel cell 3 is connected to the reformer 2 via a fuel gas supply pipe 4.
  • the fuel cell 3 generates power using the fuel gas and air generated by the reformer 2.
  • the fuel cell 3 has a stack structure in which a plurality of single cells are stacked.
  • the single cell includes an anode (fuel electrode) 3a, a cathode (air electrode) 3b, and an electrolyte (not shown) disposed between the anode 3a and the cathode 3b.
  • the fuel gas supply pipe 4 is connected to the anode 3a. Fuel gas is introduced into the anode 3a. Air is introduced into the cathode 3b.
  • the electrolyte is made of a ceramic such as stabilized zirconia.
  • the fuel cell system 1 includes a liquid NH 3 tank 5, a pump 6, a vaporizer 7, an air blower 8, a heat exchanger 9, and a combustor 10.
  • the liquid NH 3 tank 5 is an ammonia tank that stores ammonia in a liquid state.
  • the liquid NH 3 tank 5 stores ammonia at, for example, room temperature (20 ° C. to 25 ° C.) and several atmospheres (8 atmospheres to 10 atmospheres). Since the liquid NH 3 tank 5 stores ammonia in a liquid state instead of a gas, the ammonia storage efficiency is good, and the operating time of the fuel cell system 1 can be extended. In addition, ammonia can be easily supplied to the liquid NH 3 tank 5.
  • the pump 6 is connected to the reformer 2 via an ammonia supply pipe 11.
  • the pump 6 sends out liquid ammonia (hereinafter, liquid ammonia) stored in the liquid NH 3 tank 5 toward the reformer 2.
  • the vaporizer 7 is disposed in the ammonia supply pipe 11. That is, the vaporizer 7 is disposed between the pump 6 and the reformer 2. The vaporizer 7 vaporizes liquid ammonia.
  • the air blower 8 is connected to the reformer 2 and the fuel cell 3 via air supply pipes 12 and 13. One end of the air supply pipe 13 is branched and connected to the air supply pipe 12, and the other end of the air supply pipe 13 is connected to the cathode 3 b of the fuel cell 3.
  • the air blower 8 is an air supply device that blows out air and sends it to the reformer 2 and the fuel cell 3.
  • the air supply pipe 12 is provided with a valve 14. That is, the valve 14 is disposed between the air blower 8 and the reformer 2.
  • the valve 14 is an electromagnetic flow rate adjusting valve that adjusts the flow rate of air supplied from the air blower 8 to the reformer 2.
  • the heat exchanger 9 is disposed in the air supply pipe 13. That is, the heat exchanger 9 is disposed between the air blower 8 and the fuel cell 3. The heat exchanger 9 preheats the air sent to the fuel cell 3 by exchanging heat.
  • the combustor 10 is connected to the anode 3 a and the cathode 3 b of the fuel cell 3 through the exhaust pipe 15.
  • a mixed gas of unreacted fuel gas discharged from the anode 3a and unreacted air discharged from the cathode 3b flows as exhaust gas (off gas).
  • the combustor 10 burns exhaust gas. Specifically, the combustor 10 burns unburned fuel gas remaining in the exhaust gas. When exhaust gas is burned by the combustor 10, the temperature of the exhaust gas rises.
  • the fuel cell system 1 includes an exhaust gas supply pipe 16 that constitutes a first exhaust gas supply unit that supplies exhaust gas burned by the combustor 10 to the carburetor 7, and the exhaust gas burned by the combustor 10 as a heat exchanger 9. And an exhaust gas supply pipe 17 constituting a second exhaust gas supply unit for supplying to the exhaust gas.
  • the vaporizer 7 vaporizes liquid ammonia by exhaust heat of the exhaust gas flowing through the exhaust gas supply pipe 16.
  • the exhaust gas flowing through the exhaust gas supply pipe 16 is released to the atmosphere.
  • the heat exchanger 9 preheats the heat by exchanging air with the exhaust heat of the exhaust gas flowing through the exhaust gas supply pipe 17.
  • the exhaust gas flowing through the exhaust gas supply pipe 17 is released to the atmosphere.
  • the fuel cell system 1 detects the temperature of the fuel cell 3 and the electric heater 18 for starting to heat the reformer 2 during the starting operation, the electric heater 19 for starting to heat the fuel cell 3 during the starting operation.
  • the temperature sensor 20 which performs and the control apparatus 21 (control part) are provided. The temperature sensor 20 detects, for example, the temperature near the outlet where unreacted fuel gas in the fuel cell 3 is discharged.
  • the control device 21 controls the entire system during operation of the fuel cell system 1. Specifically, the control device 21 controls the pump 6, the air blower 8, the valve 14, and the electric heaters 18 and 19 based on the detection value of the temperature sensor 20.
  • the remaining ammonia is decomposed by the heat generated in the NH 3 oxidation section 2a as shown in the following formula (endothermic reaction), and the fuel gas is rich in hydrogen. Is generated.
  • the fuel gas is supplied to the anode 3 a of the fuel cell 3 through the fuel gas supply pipe 4.
  • the temperature of the fuel gas at this time is about 600 ° C., for example.
  • air at room temperature is sent to the heat exchanger 9 through the air supply pipes 12 and 13 by the air blower 8.
  • air at normal temperature is heat-exchanged by the exhaust heat of the exhaust gas flowing through the exhaust gas supply pipe 17 and preheated.
  • the preheated air is supplied to the cathode 3 b of the fuel cell 3 through the air supply pipe 13. Note that the temperature of the air at this time is approximately the same as the temperature of the fuel gas, for example.
  • exhaust gas (off-gas) is discharged from the fuel cell 3.
  • the temperature of the exhaust gas at this time is, for example, about 700 ° C. to 800 ° C.
  • the exhaust gas is supplied to the combustor 10 through the exhaust pipe 15 and burned by the combustor 10.
  • the temperature of the exhaust gas after combustion is, for example, about 1000 ° C. to 1100 ° C.
  • the exhaust gas combusted in the combustor 10 is supplied to the vaporizer 7 through the exhaust gas supply pipe 16.
  • the exhaust heat of the exhaust gas is used for vaporizing liquid ammonia by the vaporizer 7.
  • the exhaust gas combusted by the combustor 10 is supplied to the heat exchanger 9 through the exhaust gas supply pipe 17.
  • the exhaust heat of the exhaust gas is used for heat exchange of air by the heat exchanger 9.
  • FIG. 2 is a flowchart showing the procedure of the control process executed by the control device 21 during the start-up operation of the fuel cell system 1.
  • a power switch (not shown) of the fuel cell system 1 is turned on, execution of this process is started.
  • the opening degree of the valve 14 is an opening degree that ensures the air-fuel ratio (A / F) of the reformer 2 during normal operation.
  • the air-fuel ratio of the reformer 2 is a ratio between the amount of air present in the reformer 2 and the amount of fuel gas.
  • the air-fuel ratio of the reformer 2 during normal operation is, for example, 0.75 (the amount of air is 75% with respect to the amount of fuel gas of 100%).
  • the normal operation is an operation performed when the temperature of the fuel cell 3 reaches the operating temperature (for example, about 700 ° C.).
  • the start-up operation is an operation that is performed before the temperature of the fuel cell 3 reaches the operating temperature.
  • control device 21 first controls the starting electric heaters 18 and 19 to be turned on (step S101). Then, the temperature of the reformer 2 rises and the temperature of the fuel cell 3 rises.
  • the control device 21 controls the pump 6 so that a small amount of liquid ammonia is sent out toward the reformer 2 by the pump 6 (step S102).
  • the supply pressure of the liquid ammonia decreases to, for example, normal pressure (atmospheric pressure). For this reason, even if liquid ammonia is in a normal temperature state, liquid ammonia is vaporized by the vaporizer 7. The vaporized ammonia is supplied to the reformer 2.
  • control device 21 controls the air blower 8 so that air is blown out by the air blower 8 (step S103). Then, air is supplied to the reformer 2 and the fuel cell 3.
  • control device 21 controls the air-fuel ratio of the reformer 2 to be higher than that during normal operation by controlling the opening of the valve 14 to be larger than that during normal operation (step S104). ). Specifically, the control device 21 performs control so that the air-fuel ratio of the reformer 2 is 1.0 or more (A / F ⁇ 1.0), for example. By increasing the air-fuel ratio of the reformer 2 in this way, the amount of air supplied to the reformer 2 becomes larger than during normal operation.
  • control device 21 acquires the detection value of the temperature sensor 20 (step S105). Then, the control device 21 determines whether or not the temperature of the fuel cell 3 has reached the operating temperature (step S106). When the temperature of the fuel cell 3 has not reached the operating temperature, step S105 is repeatedly executed.
  • control device 21 When the temperature of the fuel cell 3 reaches the operating temperature, the control device 21 performs control so that the electric heaters 18 and 19 for starting are turned off (step S107).
  • control device 21 controls the pump 6 so that a certain amount of liquid ammonia is sent out toward the reformer 2 by the pump 6 (step S108).
  • the amount of liquid ammonia sent out at this time is sufficiently larger than that during execution of the above-described procedure S102.
  • a certain amount of liquid ammonia is vaporized by the exhaust heat of the exhaust gas in the vaporizer 7.
  • control device 21 controls the opening degree of the valve 14 to return to the opening degree in the initial state (during normal operation), so that the air-fuel ratio of the reformer 2 is returned to the air-fuel ratio in the initial state.
  • Control step S109. As described above, the normal operation of the fuel cell system 1 described above is performed.
  • the exhaust gas discharged from the fuel cell 3 is supplied to the vaporizer 7 through the exhaust gas supply pipe 16. Then, the liquid ammonia sent out by the pump 6 is vaporized by the exhaust heat of the exhaust gas in the vaporizer 7.
  • the exhaust gas discharged from the fuel cell 3 is supplied to the heat exchanger 9 through the exhaust gas supply pipe 17.
  • the air sent by the air blower 8 is heat-exchanged by the exhaust heat of exhaust gas in the heat exchanger 9, and is preheated.
  • exhaust heat of exhaust gas is effectively used for vaporization of liquid ammonia and heat exchange of air. Therefore, an electric heater for vaporizing liquid ammonia, an electric heater for exchanging heat of air, and a power source for supplying electric power to these electric heaters are not required. Thereby, the system efficiency of the fuel cell system 1 can be improved.
  • the heat exchanger 9 preheats the air using the exhaust heat of the exhaust gas, there is a temperature difference between the fuel gas introduced into the anode 3a of the fuel cell 3 and the air introduced into the cathode 3b of the fuel cell 3. Get smaller. Therefore, since the temperature difference between the anode 3a and the cathode 3b becomes small, it becomes difficult for heat stress distribution to occur in the electrolyte (not shown) disposed between the anode 3a and the cathode 3b. As a result, the performance and reliability of the fuel cell 3 can be increased.
  • control device 21 controls the air-fuel ratio of the reformer 2 during the start-up operation to be higher than the air-fuel ratio of the reformer 2 during the normal operation. For this reason, at the start-up operation, the amount of air introduced into the reformer 2 is increased compared to the normal operation. Accordingly, since the decomposition temperature of ammonia in the reformer 2 is increased, the temperature of the fuel gas generated in the reformer 2 and introduced into the fuel cell 3 is increased. Thereby, the fuel cell 3 can be warmed up early at the time of starting operation.
  • control device 21 controls the air-fuel ratio of the reformer 2 to be 1.0 or more, so that the decomposition temperature of ammonia in the reformer 2 becomes sufficiently high. Accordingly, it is possible to reliably warm the fuel cell 3 early during the start-up operation.
  • control device 21 controls the opening degree of the valve 14 that adjusts the flow rate of the air supplied from the air blower 8 to the reformer 2. Thereby, the air-fuel ratio of the reformer 2 can be easily controlled.
  • the exhaust gas after being combusted by the combustor 10 is supplied to the vaporizer 7 and the heat exchanger 9.
  • the temperature of the exhaust gas increases. Therefore, the vaporization of liquid ammonia and the heat exchange of air using the exhaust heat of exhaust gas can be performed effectively.
  • the control device 21 controls the air-fuel ratio of the reformer 2 by controlling the opening of the valve 14 that adjusts the flow rate of air supplied from the air blower 8 to the reformer 2.
  • the form is not particularly limited.
  • the fuel cell system 1 may include two air blowers with different air blowing amounts per unit time. In such a configuration, the control device 21 operates an air blower with a large amount of blown out air during start-up operation, and operates an air blower with a small amount of blown out air during normal operation, so that the control device 21 operates during start-up operation and normal operation.
  • the air-fuel ratio of the reformer 2 is controlled. In this case, the valve 14 becomes unnecessary.
  • control device 21 controls the air-fuel ratio of the reformer 2 by controlling the flow rate of the air supplied to the reformer 2.
  • the control device 21 is not particularly limited to this configuration, and may control the air-fuel ratio of the reformer 2 by controlling the flow rate of ammonia supplied to the reformer 2.
  • a valve for adjusting the flow rate of ammonia supplied to the reformer 2 is disposed in the ammonia supply pipe 11.
  • control apparatus 21 is controlling so that the air fuel ratio of the reformer 2 at the time of starting operation is made higher than the air fuel ratio of the reformer 2 at the time of normal operation, especially the form It is not limited to.
  • the control device 21 may make the air-fuel ratio of the reformer 2 during start-up operation equal to the air-fuel ratio of the reformer 2 during normal operation. In this case, the control process executed by the control device 21 can be simplified.
  • the fuel cell system 1 includes the combustor 10 that combusts the exhaust gas discharged from the fuel cell 3.
  • the combustor 10 may be omitted if the exhaust heat of the exhaust gas immediately after being discharged from the fuel cell 3 can be used as it is for the vaporization of liquid ammonia and the heat exchange of air.
  • the configuration of the fuel cell system 1 can be simplified.
  • the control apparatus 21 determines whether it switches from starting operation to normal operation based on the detected value of the temperature sensor 20 which detects the temperature of the fuel cell 3, especially in that form. Is not limited.
  • the power generation amount of the fuel cell 3 increases as the temperature of the fuel cell 3 increases. Therefore, the fuel cell system 1 may include a sensor that detects the amount of power generated by the fuel cell 3 instead of the temperature sensor 20. In such a configuration, the control device 21 determines whether to switch from the startup operation to the normal operation based on the power generation amount of the fuel cell 3.
  • the reformer may be provided with a plurality of ammonia decomposing apparatuses that use a catalyst for decomposing ammonia to burn a part of ammonia with oxygen and decompose the ammonia into hydrogen using the heat of combustion.
  • the fuel cell may be constituted by a solid oxide fuel cell (hereinafter referred to as SOFC) that is operated using a hydrogen-containing gas generated by at least one of a plurality of ammonia decomposing apparatuses.
  • SOFC solid oxide fuel cell
  • the power generation apparatus of the present embodiment includes a plurality of ammonia decomposition apparatuses that use an ammonia decomposition catalyst to burn part of ammonia with oxygen and decompose the ammonia into hydrogen using the heat of combustion, and the plurality of ammonia decomposition apparatuses. And a solid oxide fuel cell operated using at least one hydrogen-containing gas produced as a fuel.
  • the ammonia decomposition apparatus In the ammonia decomposition apparatus, a combustion reaction (exothermic reaction) in which a part of ammonia is combusted with oxygen and a decomposition reaction (endothermic reaction) in which ammonia is decomposed into hydrogen using the combustion heat are performed. As long as there are two or more ammonia decomposition apparatuses, any number of ammonia decomposition apparatuses may be provided. However, in the ammonia decomposition apparatus, the first ammonia decomposition apparatus (hereinafter referred to as a temperature raising apparatus) used as an apparatus for generating a hydrogen-containing gas until the SOFC reaches a predetermined temperature, and the SOFC has reached the predetermined temperature. It is preferable to provide at least two ammonia decomposing apparatuses including a second ammonia decomposing apparatus (hereinafter referred to as “operating apparatus”) used as an apparatus for generating the hydrogen-containing gas later.
  • a temperature raising apparatus used as an apparatus for generating a hydrogen-containing gas
  • the temperature of the SOFC rises as the hydrogen-containing gas generated by the heating device continues to be supplied to the SOFC.
  • the SOFC may be further heated by a heater or the like.
  • the predetermined temperature may be any temperature that enables power generation using SOFC, and is, for example, 600 to 1000 ° C. If the SOFC has reached a predetermined temperature, power generation is started without switching from the temperature raising device to the driving device.
  • the ammonia decomposition catalyst is deactivated by making the ammonia decomposition apparatus used until the temperature of the SOFC cell rises to the operating temperature and the ammonia decomposition apparatus used when generating power with SOFC after the temperature increase as separate apparatuses. It is possible to prevent the power generation efficiency from being lowered.
  • Switching from the temperature raising device to the operation device may be performed at any time after the SOFC reaches a predetermined temperature. However, from the viewpoint of preventing the deactivation, it is preferable to switch quickly when the SOFC reaches a predetermined temperature.
  • the switching means between the temperature raising device and the operation device is not particularly limited, and can be performed using, for example, a manual valve, an automatic valve, or the like.
  • the temperature raising device is not limited to one, and a plurality of temperature raising devices of two or more may be used.
  • the driving device is not limited to one, and a plurality of driving devices of two or more may be used. Even when three or more ammonia decomposing apparatuses are provided, it is preferable to use a temperature raising apparatus as an apparatus for generating a hydrogen-containing gas until the SOFC reaches a predetermined temperature. In addition, after the SOFC reaches a predetermined temperature, it is preferable to use an operation device as a device for generating a hydrogen-containing gas. When a plurality of temperature raising devices are provided, the temperature may be switched from one temperature raising device to another temperature raising device until the SOFC reaches a predetermined temperature. In the case where the apparatus is provided, switching from one operating apparatus to another operating apparatus may be performed during power generation after the SOFC reaches a predetermined temperature.
  • a hydrogen-containing gas may be generated using a plurality of temperature raising devices at the same time until the SOFC reaches a predetermined temperature.
  • the hydrogen-containing gas may be generated using the operating device at the same time.
  • the temperature raising device is provided with an ammonia decomposition catalyst.
  • an ammonia decomposition catalyst By supplying a gas containing ammonia and oxygen to the temperature raising device, a part of the ammonia is burned with oxygen. By using the combustion heat, an autothermal reforming reaction that decomposes ammonia into hydrogen and nitrogen proceeds.
  • a pellet-shaped or ring-shaped catalyst can be filled and used, but a honeycomb-shaped catalyst is preferable from the viewpoint of low pressure loss.
  • the hydrogen-containing gas generated by the temperature raising device is used for raising the temperature of the SOFC. For this reason, it is preferable that the hydrogen-containing gas be at a relatively high temperature of 600 to 800.degree. Since the ammonia decomposition catalyst is easily deactivated when used under high temperature conditions, when the SOFC reaches a predetermined temperature, the device that generates the hydrogen-containing gas is switched from the temperature raising device to the operation device. Is preferred. By separating the ammonia decomposing apparatus used until the SOFC is heated to a predetermined temperature and the ammonia decomposing apparatus used for generating power with the SOFC after the temperature rising, the ammonia decomposing catalyst is deactivated and the power generation efficiency is lowered. Can be prevented.
  • the catalyst for decomposing ammonia mounted in the temperature raising device preferably contains a catalytically active component and a heat-resistant oxide.
  • a catalytically active component when the volume per unit mass of the catalytically active component is large, the catalytically active component alone may be used.
  • the catalytic active component having a small volume per unit mass of the catalytic active component is preferably used after being supported and / or diluted by a heat-resistant oxide. This is because the heat resistance of the catalyst component is expected to be improved by using it together with the heat resistant oxide, and the surface area involved in the activity of the catalyst component is expected to be increased by being dispersed on the heat resistant oxide.
  • the ammonia decomposition catalyst mounted on the temperature raising device contains at least one element selected from iron, cobalt, and nickel as a catalytically active component.
  • the content of the catalytically active component in the catalyst is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, and further preferably 20 to 60% by mass.
  • the content of the catalytically active component is less than 5% by mass, the amount of the catalytically active component is insufficient, and the amount of hydrogen supplied to the SOFC may be insufficient.
  • the amount is more than 80% by mass, the aggregation of the catalytically active component proceeds and the catalyst may be deteriorated.
  • a porous oxide generally used as a catalyst carrier can be used.
  • Alumina, silica titania, titania zirconia, or the like can be used, and the honeycomb can be coated with the remaining mass of the catalytically active component.
  • the catalyst preferably contains at least one metal selected from silver, copper, palladium and platinum as a promoter component.
  • the content of the promoter active component in the catalyst is preferably 0.1 to 5% by mass, more preferably 1 to 3% by mass.
  • the content of the promoter component is less than 0.1% by mass, there is a possibility that a sufficient function as a promoter cannot be achieved.
  • it exceeds 5% by mass the combustion activity of the catalyst may be excessively increased.
  • Catalyst preparation method A known method can be used to prepare the catalyst. For example, (1) the catalyst is prepared by immersing the honeycomb in a slurry obtained by wet pulverizing the catalyst component, removing excess slurry, and drying and firing. Method, (2) Immerse the honeycomb in a slurry obtained by wet-grinding a heat-resistant oxide, remove excess slurry, dry or fire, then immerse in an aqueous catalyst active component solution, remove excess liquid, (3) A sol-like material that is a heat-resistant oxide precursor, and in some cases, the honeycomb is immersed in a liquid material containing an aqueous liquid of a catalytically active component, and excess liquid material is removed, followed by drying and firing. This is a method for preparing a catalyst.
  • the drying temperature is preferably 50 to 300 ° C.
  • the firing temperature is preferably 300 to 700 ° C.
  • an aqueous slurry is prepared in which the number fraction of catalyst component particles having a secondary particle size of 10 ⁇ m or more is 10% or less, preferably 5% or less, more preferably 1% or less, It is preferable that the ceramic molded body is applied, dried and / or fired. If it exceeds 10%, the thickness of the catalyst component layer becomes thick, and the diffusion of gas to the entire catalyst component layer becomes slow, so that the entire catalyst component layer may not be used effectively, and sufficient catalytic activity may not be obtained. There is.
  • the arithmetic average diameter of the slurry is preferably 5 ⁇ m or less, preferably 4 ⁇ m or less, and more preferably 3 ⁇ m or less. If the thickness exceeds 5 ⁇ m, the thickness of the catalyst component layer becomes thick and gas diffusion to the entire catalyst component layer becomes slow, so that the entire catalyst component layer may not be used effectively, and sufficient catalytic activity may not be obtained. is there.
  • the particle size distribution of the slurry a method used for usual slurry particle size distribution measurement can be used.
  • the particle size distribution of the slurry can be measured using a particle size distribution measuring apparatus using a laser diffraction method. From the particle size distribution measurement result of the slurry, the number fraction with respect to the particle diameter in the catalyst component slurry and the arithmetic average diameter can be calculated.
  • the amount to be coated varies depending on the slurry composition, viscosity, and solid component concentration (solid component concentration with respect to the liquid amount). It is preferable to confirm that the thickness becomes.
  • the target thickness can be obtained by repeating the above preparation method a plurality of times.
  • the honeycomb formed body can be coated after adjusting to a slurry preferable for coating by adding a surfactant and adjusting pH.
  • the gas supplied to the apparatus
  • the gas preferably has a relatively high volume ratio of oxygen to ammonia (hereinafter referred to as oxygen / ammonia).
  • oxygen / ammonia is preferably 0.19 to 0.25, more preferably 0.195 to 0.23. If oxygen / ammonia is lower than 0.19, a high-temperature outlet gas cannot be obtained from the temperature-raising device, and the temperature rise of the SOFC may not be sufficiently promoted. Also, if oxygen / ammonia is higher than 0.25, the ammonia combustion reaction becomes excessive, and not only ammonia is consumed wastefully, but also the ammonia decomposition catalyst may be exposed to higher temperatures and deactivated. There is.
  • the operating device is provided with an ammonia decomposition catalyst.
  • the hydrogen-containing gas produced by the operating device is used for SOFC power generation. Therefore, the hydrogen-containing gas may be at a relatively low temperature of about 500 ° C. compared to the temperature raising device at the outlet of the operating device. Then, since the reaction temperature in the operating device is sufficient at a relatively low temperature of 500 to 600 ° C., the deactivation is moderate even if the ammonia decomposition catalyst used in the operating device is used for a long time.
  • ammonia decomposition catalyst As the ammonia decomposition catalyst mounted on the operation device, the same catalyst as the ammonia decomposition catalyst mounted on the temperature raising device may be used, but as described above, the gas temperature at the outlet of the operation device is Since it is preferably suppressed at a relatively low temperature, an ammonia decomposition catalyst having excellent decomposition activity at a relatively low temperature of about 500 to 600 ° C. is preferable.
  • the ammonia decomposition catalyst mounted on the operation apparatus also contains at least one element selected from iron, cobalt, and nickel as a catalytic active component.
  • the hydrogen-containing gas may be at a relatively low temperature at the outlet of the operating device, the ratio of ammonia used in the ammonia decomposition reaction (endothermic reaction) is relatively high (ammonia combustion reaction (exothermic reaction)).
  • the content of the catalytically active component in the ammonia decomposition catalyst of the operating device is It is preferable that the content of the catalytically active component in the ammonia decomposition catalyst is higher.
  • the temperature of the hydrogen-containing gas at the outlet of the operating device may be lower than the temperature of the hydrogen-containing gas at the outlet of the temperature raising device. Absent. Therefore, even if the content rate of the said catalyst active component is high, aggregation of a catalyst particle can be suppressed.
  • the content of the catalytically active component in the catalyst in the ammonia decomposition catalyst of the operating device is preferably 30 to 90% by mass, more preferably 45 to 85% by mass, and still more preferably 60 to 80% by mass.
  • the catalyst for decomposing ammonia mounted in the operation device contains, for example, an alkali metal or an alkaline earth metal as a promoter component. Since these metals improve the decomposition reaction activity of the catalyst, they are effective in increasing the amount of hydrogen generation and extending the life of the catalyst.
  • the content of the cocatalyst component is about 1 to 5% by mass of the entire catalyst. If it is too small, the effect of activating the decomposition reaction cannot be obtained, and if it is too large, the combustion activity may be reduced.
  • the ammonia decomposition catalyst mounted on the operation apparatus can be prepared in the same manner as the ammonia decomposition catalyst mounted on the temperature raising apparatus.
  • the hydrogen concentration at the outlet of the operating device is preferably relatively high. Therefore, it is preferable that the ratio of ammonia used for ammonia decomposition reaction (endothermic reaction) is relatively high (the ratio of ammonia used for ammonia combustion reaction (exothermic reaction) is relatively low). That is, it is preferable that the gas supplied to the operating device has a relatively low ratio of oxygen / ammonia. Specifically, oxygen / ammonia is preferably 0.08 to 0.17, more preferably 0.09 to 0.165. If the oxygen / ammonia is lower than 0.08, there is a risk that the amount of heat necessary for autothermal reforming cannot be obtained sufficiently. If the oxygen / ammonia is higher than 0.17, the combustion reaction of ammonia increases, resulting in SOFC. The ratio of hydrogen in the supplied hydrogen-containing gas decreases, and the ammonia decomposition catalyst may be deactivated.
  • ⁇ SOFC> The form of the SOFC used in the present invention will be described.
  • a SOFC cell has a solid oxide electrolyte and a fuel electrode on one surface of the electrolyte and an air electrode on the other surface.
  • the fuel electrode is a pole for reacting the fuel gas and oxygen ions generated at the air electrode and moving to the fuel electrode via the solid oxide electrolyte, and exhausts the fuel exhaust gas after the reaction.
  • a fuel electrode material usually used in SOFC used for fuel gas can be used, and it is generally formed by a fuel electrode catalyst and solid electrolyte particles.
  • the material of the fuel electrode electrode catalyst is not particularly limited in the practice of the present invention, and an electrode catalyst for a fuel electrode generally used in SOFC can be selected according to the fuel gas used. For this, a metal such as cobalt or nickel, or an alloy thereof is selected.
  • the solid electrolyte particles diffuse oxygen ions that have moved through the solid oxide electrolyte into the fuel electrode.
  • the material is not particularly limited, and for example, a material (described later) that can be used for a solid oxide electrolyte is used. If necessary, two or more kinds of solid electrolyte particles may be mixed and used.
  • Solid electrolyte particles having a specific surface area in the range of 1 to 20 m 2 / g are preferred for forming pores in the fuel electrode, and those in the range of 3 to 15 m 2 / g are particularly preferred.
  • the specific surface area is less than 1 m ⁇ 2> / g, large pores are likely to be locally formed in the fuel electrode, and the problem of non-uniform fuel gas flow tends to occur.
  • the specific surface area exceeds 20 m 2 / g, the sinterability increases, the amount of pores decreases, and the problem of insufficient fuel gas flow tends to occur.
  • the mixing ratio of the fuel electrode electrode catalyst and the solid electrolyte particles may be within the range normally used in SOFC.
  • the ratio of the fuel electrode electrode catalyst / solid electrolyte particles is 20/80 to 60/40 by mass ratio. Can be used.
  • the thickness of the fuel electrode can be changed in various ways, but is usually about 20 to 200 ⁇ m in the case of an electrolyte-supported cell (ESC), an air-electrode-supported cell (CSC) and a single chamber type, preferably About 30 to 120 ⁇ m.
  • the thickness is usually 200 to 2000 ⁇ m, preferably 300 to 1000 ⁇ m. If the fuel electrode is too thin, the original function of the fuel electrode cannot be obtained. On the other hand, if the fuel electrode is too thick, gas diffusion is insufficient and cell performance is degraded.
  • the fuel electrode may further contain a reforming catalyst in order to reduce unused fuel gas contained in the fuel exhaust gas.
  • a reforming catalyst in order to reduce unused fuel gas contained in the fuel exhaust gas.
  • a known catalyst can be used as the reforming catalyst.
  • the anode can be formed using any technique commonly used for forming thin films, films, and the like. For example, it can be easily formed by applying a paste containing an electrode material in a predetermined pattern on the surface of a solid oxide electrolyte that has already been formed, and baking it after drying. For the application of the paste, for example, a printing method such as a screen printing method can be advantageously used.
  • the firing temperature can be varied in a wide range depending on the characteristics of the material used, but is usually in the range of about 900 to 1500 ° C. Of course, other methods may be used if necessary.
  • Air electrode is an electrode into which oxygen or a gas containing oxygen is introduced in addition to air. In the electrode, oxygen becomes oxygen ions and moves to the fuel electrode via the solid oxide electrolyte.
  • an air electrode material usually used for SOFC can be used, and it is generally formed of an air electrode electrode catalyst and solid electrolyte particles.
  • the air electrode catalyst As the air electrode catalyst, a known one can be used. For example, an oxide having a manganese-based, ferrite-based, cobalt-based or nickel-based perovskite structure is preferable.
  • a group 2 of the periodic table such as strontium (Sr) is used.
  • lanthanum strontium manganite element is added (La X S r1-X MnO 3), lanthanum strontium cobaltite (La X Sr 1-X CoO 3), lanthanum strontium cobalt ferrite (La X Sr 1-X Co Y Fe 1 -Y O 3 ), lanthanum nickel ferrite (LaNi Y Fe 1 -Y O 3 ) and the like.
  • the solid electrolyte particles contained in the air electrode can be the same material as the solid electrolyte particles that can be used in the fuel electrode.
  • the thickness of the air electrode can be variously changed, but is usually about 20 to 200 ⁇ m, preferably about 30 to 120 ⁇ m. If the air electrode is too thin, the original function of the air electrode cannot be obtained, the air electrode reaction becomes insufficient, and the output decreases.
  • the air electrode can be formed by the same formation method as the fuel electrode.
  • the formation method of the fuel electrode and the air electrode may be the same or different.
  • SOFC solid oxide electrolytes As a material for the solid oxide electrolyte, those known as SOFC solid oxide electrolytes can be used.
  • SOFC solid oxide electrolytes For example, YSZ (yttria stabilized zirconia), ScSZ (scandia stabilized zirconia), and zirconia in addition to Ce.
  • Oxygen ion conductivity such as zirconia powder doped with Al, etc.
  • doped ceria powder such as SDC (Samaria doped ceria), GDC (gadria doped ceria), LSGM (lanthanum gallate) powder, bismuth oxide powder, etc. Ceramic materials can be used.
  • These solid oxide electrolytes may be used in combination of two or more if necessary.
  • the shape of the solid oxide electrolyte depends on the shape of the cell, but is not specified.
  • the shape of the cell generally includes a flat plate cell, a cylindrical cell, a segmented cell, etc., and the solid oxide electrolyte is directly formed according to each shape, or screen printing method, spin coating method on the support. It is formed using any technique conventionally used for forming a sheet, a thin film, a film, and the like. For example, when forming using a green sheet process, the solid oxide electrolyte material paste is applied in a predetermined pattern, dried to form a green sheet, and then the green sheet is fired at a high temperature to obtain a flat plate. Type solid oxide electrolyte can be formed easily.
  • a printing method such as a screen printing method can be advantageously used.
  • a solid oxide electrolyte material can be formed by printing a paste of a solid oxide electrolyte material in a predetermined pattern on one side of a flat temporary support, and drying and firing.
  • the firing temperature can be varied in a wide range depending on the characteristics of the solid oxide electrolyte material used, but is usually in the range of about 1200 to 1500 ° C.
  • the thickness of the solid oxide electrolyte is generally in the range of 5 to 500 ⁇ m. In the case of an electrolyte-supported cell (ESC), the thickness is 50 to 500 ⁇ m, preferably 100 to 400 ⁇ m.
  • the fuel electrode-supported cell (ASC) or air electrode In the case of a support type cell (CSC), the thickness is 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m.
  • the SOFC cell is formed on the surface opposite to the fuel electrode with the solid oxide electrolyte and the fuel electrode formed on one surface of the solid oxide electrolyte, for example, as in the conventional fuel cell. Configured as a cell including the air electrode formed.
  • the shape of the SOFC cell may be a generally used shape such as a flat plate cell, a cylindrical cell, or a segment cell.
  • ESC, ASC, and CSC are mentioned as a flat cell.
  • the fuel electrode and the air electrode be a two-chamber fuel cell in which a solid oxide electrolyte is sandwiched, but both the fuel electrode and the air electrode are formed on one surface of the solid oxide electrolyte.
  • the single-chamber fuel cell may be used. When configured as a single chamber type cell, it is configured as a cell in which one or more pairs of a fuel electrode and an air electrode are formed on at least one surface of the solid oxide electrolyte.
  • the cylindrical cell include a cylindrical vertical stripe cell and a cylindrical horizontal stripe cell, and a cylindrical flat plate cell can be included therein.
  • the SOFC can have various structures including structures known in publications and structures currently implemented.
  • the fuel electrode and the air electrode are formed to be porous so that the fuel gas can be sufficiently diffused therein and sufficient electric conductivity can be maintained.
  • the porosity can be changed in various ways, but is usually preferably about 10 to 60%.
  • an intermediate layer such as a barrier layer may be provided between the fuel electrode and / or the air electrode and the solid oxide electrolyte.
  • an outlet gas of an ammonia decomposing apparatus (a hydrogen-containing gas generated by decomposing ammonia) is used. Therefore, in addition to nitrogen and hydrogen generated by the ammonia decomposition reaction in the apparatus, the fuel gas may contain ammonia, water vapor, or the like remaining without reacting in the ammonia decomposition apparatus. Further, an inert gas such as a rare gas may be included to such an extent that the power generation efficiency does not decrease.
  • the oxidant gas is not particularly limited as long as it has an ability to oxidize fuel gas, but air or the like can be used in addition to a gas mainly containing oxygen.
  • Electric power can be generated by introducing fuel gas into the fuel electrode and introducing oxidant gas into the air electrode.
  • the power generation itself as a fuel cell proceeds at about 800 to 1000 ° C. on each electrode by the following reaction formula.
  • ⁇ Power generation method> An example of a power generation method using the fuel cell system and the power generation apparatus of the present embodiment will be described below. Here, it was provided with one device for temperature increase, one device for operation, and an SOFC operated with hydrogen-containing gas generated by either the temperature increase device or the operation device as fuel. Power generation is performed using a power generation device.
  • the power generation method includes a first step of supplying a gas mixture having a volume ratio of oxygen to ammonia (hereinafter referred to as oxygen / ammonia) of 0.19 or more to a temperature raising device, and raising the temperature of the device that generates a hydrogen-containing gas.
  • the second step of switching from the operating device to the operating device and the third step of supplying the operating device with a mixed gas having oxygen / ammonia of 0.17 or less are included. When the temperature of is reached.
  • ⁇ Ammonia decomposition device 1> (Preparation of ammonia decomposition catalyst A) Cobalt nitrate hexahydrate 131.0 g, manganese nitrate hexahydrate 34.1 g and silver nitrate 7.56 g were weighed and dissolved in 200 mL of pure water. Into the obtained metal nitrate solution, 51.6 g of ⁇ -alumina was added and heated to 100 ° C. in a water bath to evaporate to dryness. The obtained solid was calcined at 500 ° C. for 3 hours in an air atmosphere to obtain a catalyst component.
  • the ammonia decomposing apparatus 1 was prepared such that the volume of the ammonia decomposing catalyst A was 20 mL.
  • ⁇ Ammonia decomposition device 2> (Preparation of ammonia decomposition catalyst B) 291.0 g of cobalt nitrate hexahydrate, 43.4 g of cerium nitrate hexahydrate, and 49.3 g of zirconia sol (25 mass% concentration in terms of ZrO 2 ) suspension were weighed and dissolved in 1 L of pure water, A nitrate aqueous solution was prepared. 147.6 g of potassium hydroxide was dissolved in 2 L of pure water to prepare an aqueous potassium hydroxide solution. While stirring the potassium hydroxide aqueous solution, the metal nitrate aqueous solution was added dropwise.
  • the obtained suspension was subjected to suction filtration, and washed with pure water 5 times to obtain a precipitate.
  • the obtained precipitate was dried overnight at 120 ° C. and then calcined at 450 ° C. for 3 hours in an air atmosphere to obtain a catalyst component.
  • 100 g of catalyst component powder, 100 g of pure water, 5.0 g of cesium hydroxide, and 10 g of colloidal silica sol were mixed, and wet pulverized with a ball mill for 6 hours.
  • a hexagonal cell cordierite honeycomb molded body having 600 cells per square inch is coated with the obtained catalyst component slurry by a wash coat method, excess slurry is blown off by air blow, and the process is dried at 120 ° C. six times. Thereafter, firing was performed at 500 ° C. for 1 hour to obtain a honeycomb-shaped ammonia decomposition catalyst B coated with a catalyst component.
  • the amount of catalyst supported on the obtained ammonia decomposition catalyst B was 280 g per liter of the honeycomb formed body. Further, the catalytic active component content was 73%.
  • the ammonia decomposing apparatus 2 was prepared such that the volume of the ammonia decomposing catalyst B was 20 mL.
  • Example 1 (Ammonia decomposition reaction) Ammonia was supplied to the ammonia decomposition apparatus 1 at a flow rate of 3.32 L / min and air at a flow rate of 3.66 L / min. The supplied gas was heated to 200 ° C. with an electric heater to start an autothermal reforming reaction on the ammonia decomposition catalyst. At this time, oxygen / ammonia in the supply gas was 0.23. Further, the outlet gas (hydrogen-containing gas) of the ammonia decomposing apparatus 1 was a flow rate of 9.54 L / min and the temperature was 750 ° C.
  • the ammonia decomposition apparatus 1 was switched to the ammonia decomposition apparatus 2.
  • the supply gas was changed to a flow rate of 3.32 L / min for ammonia and a flow rate of 2.49 L / min for air.
  • oxygen / ammonia was 0.16.
  • the ammonia conversion rate by the decomposition catalyst reaction was 83%.
  • Example 2 Ammonia was supplied to the ammonia decomposition apparatus 2 at a flow rate of 3.32 L / min and air at a flow rate of 3.36 L / min.
  • the supplied gas was heated to 200 ° C. with an electric heater to start an autothermal reforming reaction on the ammonia decomposition catalyst. At this time, oxygen / ammonia in the supply gas was 0.21. Further, the outlet gas (hydrogen-containing gas) of the ammonia decomposing apparatus 2 had a flow rate of 9.28 L / min, and the temperature was 650 ° C.
  • the ammonia decomposition apparatus 2 was switched to the ammonia decomposition apparatus 2 ′.
  • the supply gas was changed to a flow rate of 3.32 L / min for ammonia and a flow rate of 2.49 L / min for air.
  • oxygen / ammonia was 0.16.
  • the ammonia conversion rate by the decomposition catalyst reaction was 83%.
  • Example 2 power generation was performed in the same manner as in Example 2 except that the ammonia decomposition apparatus 2 was continuously used even after the temperature of the SOFC cell was raised to the operating temperature (650 ° C.). The time required for raising the temperature from room temperature to the operating temperature of 650 ° C. was 10 minutes, and the ammonia conversion rate by the decomposition catalyst reaction was 78%.
  • Example 2 Power generation was performed in the same manner as in Example 2 except that air was supplied to the ammonia decomposition apparatus 2 at a flow rate of 2.49 L / min (oxygen / ammonia in the supply gas was 0.16). As a result, the flow rate of the outlet gas during the SOFC temperature increase was 8.06 L / min, and the temperature was 480 ° C. In addition, the time required for raising the temperature from room temperature to the operating temperature of 650 ° C. was 14 minutes.
  • the power generation device of the present invention is excellent in power generation efficiency and can start power generation with a solid oxide fuel cell in a short time, and thus can be operated at a low cost. Therefore, the fuel cell of the present invention can be advantageously used in various fields such as automobile power generation, commercial power generation, and household power generation. Further, by downsizing, for example, it can be advantageously used for driving LEDs, LCD displays, portable radios, portable information devices, and the like.
  • SYMBOLS 1 Fuel cell system, 2 ... Reformer, 3 ... Fuel cell, 5 ... Liquid NH3 tank (ammonia tank), 6 ... Pump, 7 ... Vaporizer, 8 ... Air blower (air supply device), 9 ... Heat exchange , 10 ... combustor, 16 ... exhaust gas supply pipe (first exhaust gas supply part), 17 ... exhaust gas supply pipe (second exhaust gas supply part), 21 ... control device (control part).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system 1 equipped with: a reformer 2 for generating a fuel gas by introducing air and reforming ammonia; a fuel cell 3 for generating power by using the air and the fuel gas; an ammonia tank 5 for storing the ammonia in a liquid state; a pump 6 for pumping the liquid ammonia toward the reformer 2; a vaporizer 7 for vaporizing the liquid ammonia and positioned between the pump 6 and the reformer 2; an air supply device 8 for sending air to the reformer 2 and the fuel cell 3; a heat exchanger 9 for preheating the air by performing a heat exchange, and positioned between the air supply device 8 and the fuel cell 3; a first exhaust gas supply unit 16 for supplying exhaust gas discharged by the fuel cell 3 to the vaporizer 7; and a second exhaust gas supply unit 17 for supplying exhaust gas to the heat exchanger 9. In addition, the vaporizer 7 vaporizes the liquid ammonia using the waste heat from the exhaust gas, and the heat exchanger 9 preheats the air by performing a heat exchange using the waste heat from the exhaust gas.

Description

燃料電池システム、発電方法、及び発電装置Fuel cell system, power generation method, and power generation apparatus
 本発明は、燃料電池システム、発電方法、及び発電装置に関する。 The present invention relates to a fuel cell system, a power generation method, and a power generation apparatus.
 従来の燃料電池システムとしては、例えば特許文献1に記載されている技術が知られている。特許文献1に記載の燃料電池システムは、水素含有ガスを燃料ガスとして用いて発電する固体高分子型の燃料電池と、アンモニアを改質して燃料ガスを発生する改質装置と、液体状態のアンモニアを貯留する貯留タンクと、貯留タンクと改質装置との間に設けられ、液体状態のアンモニアを改質装置に供給するポンプと、改質装置に空気を供給するポンプと、燃料電池に空気を供給するポンプとを備えている。 As a conventional fuel cell system, for example, a technique described in Patent Document 1 is known. The fuel cell system described in Patent Document 1 includes a solid polymer fuel cell that generates power using a hydrogen-containing gas as a fuel gas, a reformer that generates ammonia by reforming ammonia, and a liquid state fuel cell system. A storage tank for storing ammonia, a pump provided between the storage tank and the reformer, for supplying liquid ammonia to the reformer, a pump for supplying air to the reformer, and air for the fuel cell And a pump for supplying
特開2011-146174号公報JP2011-146174A
 上記従来技術においては、改質装置に設けられた熱交換器によって、液体状態のアンモニアを気化させている。具体的には、2次電池によりヒータに電力を供給し、熱交換器によって液体状態のアンモニアとヒータの熱との間で熱交換を行うことにより、液体状態のアンモニアを加熱して気化させる。このようにアンモニアを気化するのにヒータ及び2次電池を使用しているため、システム効率が悪い。 In the above prior art, liquid ammonia is vaporized by a heat exchanger provided in the reformer. Specifically, power is supplied to the heater by the secondary battery, and heat exchange is performed between the liquid ammonia and the heat of the heater by the heat exchanger, thereby heating and vaporizing the liquid ammonia. Thus, since the heater and the secondary battery are used to vaporize ammonia, the system efficiency is poor.
 本発明の目的は、システム効率を向上させることができる燃料電池システム、発電方法、及び発電装置を提供することである。 An object of the present invention is to provide a fuel cell system, a power generation method, and a power generation apparatus that can improve system efficiency.
 本発明の一側面に係る燃料電池システムは、酸化剤ガスを導入してアンモニアを改質することで燃料ガスを生成する改質器と、改質器により生成された燃料ガスと酸化剤ガスとを用いて発電を行う燃料電池と、アンモニアを液体状態で貯蔵するアンモニアタンクと、アンモニアタンクに貯蔵された液体状態のアンモニアを改質器に向けて送り出すポンプと、ポンプと改質器との間に配置され、液体状態のアンモニアを気化させる気化器と、改質器及び燃料電池に酸化剤ガスを送る送気器と、送気器と燃料電池との間に配置され、酸化剤ガスを熱交換して予熱する熱交換器と、燃料電池から排出された排ガスを気化器に供給する第1排ガス供給部と、排ガスを熱交換器に供給する第2排ガス供給部とを備え、気化器は、排ガスの排熱により液体状態のアンモニアを気化させ、熱交換器は、排ガスの排熱により酸化剤ガスを熱交換して予熱する。 A fuel cell system according to one aspect of the present invention includes a reformer that generates a fuel gas by introducing an oxidant gas to reform ammonia, and a fuel gas and an oxidant gas generated by the reformer. Between the pump and the reformer, a fuel cell that generates electricity using a fuel, an ammonia tank that stores ammonia in a liquid state, a pump that sends liquid ammonia stored in the ammonia tank toward the reformer, The vaporizer for vaporizing ammonia in a liquid state, the insufflator for sending the oxidant gas to the reformer and the fuel cell, and between the insufflator and the fuel cell to heat the oxidant gas A heat exchanger that exchanges and preheats, a first exhaust gas supply unit that supplies exhaust gas discharged from the fuel cell to the vaporizer, and a second exhaust gas supply unit that supplies exhaust gas to the heat exchanger, , Liquid due to exhaust heat of exhaust gas The state of the ammonia is vaporized, the heat exchanger is preheated oxidant gas heat exchanger by the exhaust gas waste heat.
 このように本発明の燃料電池システムにおいては、燃料電池から排出された排ガスが第1排ガス供給部により気化器に供給され、気化器において液体状態のアンモニアが排ガスの排熱により気化される。また、燃料電池から排出された排ガスが第2排ガス供給部により熱交換器に供給され、熱交換器において酸化剤ガスが排ガスの排熱により熱交換されて予熱される。このようにアンモニアの気化及び酸化剤ガスの熱交換に排ガスの排熱が有効利用される。これにより、燃料電池システムのシステム効率を向上させることができる。 Thus, in the fuel cell system of the present invention, the exhaust gas discharged from the fuel cell is supplied to the vaporizer by the first exhaust gas supply unit, and the liquid ammonia is vaporized by the exhaust heat of the exhaust gas in the vaporizer. Further, the exhaust gas discharged from the fuel cell is supplied to the heat exchanger by the second exhaust gas supply unit, and the oxidant gas is heat-exchanged by the exhaust heat of the exhaust gas and preheated in the heat exchanger. Thus, the exhaust heat of exhaust gas is effectively used for the vaporization of ammonia and the heat exchange of the oxidant gas. Thereby, the system efficiency of a fuel cell system can be improved.
 酸化剤ガスは空気であって、改質器の空燃比を制御する制御部を更に備え、制御部は、起動運転時における改質器の空燃比を通常運転時における改質器の空燃比よりも高くするように制御してもよい。このような構成では、起動運転時には、改質器に導入される空気量が通常運転時に比べて増加する。従って、改質器におけるアンモニアの分解温度が高くなるため、改質器で生成されて燃料電池に導入される燃料ガスの温度が高くなる。これにより、起動運転時に燃料電池を早期に暖気することができる。 The oxidant gas is air, and further includes a control unit that controls the air-fuel ratio of the reformer. The control unit sets the air-fuel ratio of the reformer during start-up operation to be higher than the air-fuel ratio of the reformer during normal operation. May be controlled to be higher. With such a configuration, the amount of air introduced into the reformer increases during start-up operation compared to during normal operation. Accordingly, since the decomposition temperature of ammonia in the reformer increases, the temperature of the fuel gas generated in the reformer and introduced into the fuel cell increases. Thereby, a fuel cell can be warmed up early at the time of start-up operation.
 制御部は、起動運転時における改質器の空燃比を1.0以上とするように制御してもよい。この場合には、改質器におけるアンモニアの分解温度が十分に高くなる。その結果、起動運転時における燃料電池の早期暖気を確実に行うことができる。 The controller may perform control so that the air-fuel ratio of the reformer during start-up operation is 1.0 or more. In this case, the decomposition temperature of ammonia in the reformer becomes sufficiently high. As a result, it is possible to reliably warm the fuel cell early during start-up operation.
 送気器と改質器との間には、送気器から改質器へ供給される空気の流量を調整するバルブが配置されており、制御部は、バルブの開度を制御することにより改質器の空燃比を制御してもよい。このように空気の流量を調整するバルブを使用することにより、改質器の空燃比を容易に制御することができる。 A valve that adjusts the flow rate of the air supplied from the insufflator to the reformer is disposed between the insufflator and the reformer, and the control unit controls the opening degree of the valve. The air-fuel ratio of the reformer may be controlled. By using the valve for adjusting the air flow rate in this way, the air-fuel ratio of the reformer can be easily controlled.
 燃料電池から排出された排ガスを燃焼する燃焼器を更に備え、第1排ガス供給部は、燃焼器により燃焼された排ガスを気化器に供給し、第2排ガス供給部は、燃焼器により燃焼された排ガスを熱交換器に供給してもよい。燃料電池から排出された排ガスが燃焼器により燃焼されると、排ガスの温度が高くなる。従って、排ガスの排熱を利用したアンモニアの気化及び酸化剤ガスの熱交換を効果的に行うことができる。 The apparatus further includes a combustor that combusts the exhaust gas discharged from the fuel cell, the first exhaust gas supply unit supplies the exhaust gas burned by the combustor to the vaporizer, and the second exhaust gas supply unit is combusted by the combustor. Exhaust gas may be supplied to the heat exchanger. When the exhaust gas discharged from the fuel cell is burned by the combustor, the temperature of the exhaust gas increases. Therefore, it is possible to effectively perform ammonia vaporization and heat exchange of the oxidant gas using exhaust heat of exhaust gas.
 ここで、発電装置として、一般に、固体酸化物形燃料電池セルと、固体酸化物形燃料電池セルを格納し燃料ガスおよび酸化剤ガスを供給するためのガスラインを備える反応器と、を備えたされたものが存在する(例えば、特開2013-211117号公報、特開2013-211118号公報)。上記固体酸化物形燃料電池セルは、一般に固体酸化物電解質の一面に形成された燃料極と、上記燃料極と離間して設置される空気極とから構成される。発電時には、空気極側には空気が、燃料極側には水素が供給され、各電極上において800~1000℃程度で以下の反応が進行する。
燃焼極:H + O2- → HO + 2e
空気極:O + 4e→ 2O2-
Here, the power generation device generally includes a solid oxide fuel cell and a reactor including a gas line for storing the solid oxide fuel cell and supplying fuel gas and oxidant gas. (For example, Japanese Patent Application Laid-Open Nos. 2013-2111117 and 2013-211118). The solid oxide fuel cell is generally composed of a fuel electrode formed on one surface of a solid oxide electrolyte and an air electrode that is spaced apart from the fuel electrode. During power generation, air is supplied to the air electrode side and hydrogen is supplied to the fuel electrode side, and the following reaction proceeds at about 800 to 1000 ° C. on each electrode.
Combustion electrode: H 2 + O 2− → H 2 O + 2e
Air electrode: O 2 + 4e → 2O 2−
 空気極で生成した酸素イオンは、固体酸化物電解質中を空気極側から燃料極側に移動する。同時に、電子が燃料極側から空気極側へ流れることで発電が達成される。 The oxygen ions generated at the air electrode move from the air electrode side to the fuel electrode side in the solid oxide electrolyte. At the same time, power generation is achieved by electrons flowing from the fuel electrode side to the air electrode side.
 固体酸化物形燃料電池はある程度高温でなければ効率的な発電を行うことができない。そこで、通常は発電前に固体酸化物形燃料電池をヒーターなどで加熱し、固体酸化物形燃料電池が600~1000℃程度まで昇温してから発電を開始する。しかし、固体酸化物形燃料電池を600~1000℃程度まで昇温するまでは発電を開始できないため、装置を起動してから発電を開始するまでに時間を要するという問題がある。 The solid oxide fuel cell cannot perform efficient power generation unless it is at a certain high temperature. Therefore, normally, the solid oxide fuel cell is heated with a heater or the like before power generation, and the power generation is started after the temperature of the solid oxide fuel cell is raised to about 600 to 1000 ° C. However, since the power generation cannot be started until the temperature of the solid oxide fuel cell is raised to about 600 to 1000 ° C., there is a problem that it takes time until the power generation is started after the apparatus is started.
 従って、従来よりも短時間で固体酸化物形燃料電池での発電を開始することが求められる。 Therefore, it is required to start power generation in a solid oxide fuel cell in a shorter time than conventional.
 そこで、改質器は、アンモニア分解用触媒によって、アンモニアの一部を酸素により燃焼させ、その燃焼熱を用いてアンモニアを水素に分解する複数のアンモニア分解装置と、燃料電池は、複数のアンモニア分解装置の少なくとも一つによって生成された水素含有ガスを燃料として運転される固体酸化物形燃料電池によって構成される。 Therefore, the reformer uses a catalyst for ammonia decomposition to burn part of the ammonia with oxygen, and uses the heat of combustion to decompose the ammonia into hydrogen, and the fuel cell uses a plurality of ammonia decomposition devices. The fuel cell is constituted by a solid oxide fuel cell that is operated using a hydrogen-containing gas generated by at least one of the devices as a fuel.
 アンモニア分解装置は、固体酸化物形燃料電池が所定の温度に到達するまで水素含有ガスを生成する装置として用いられる第一のアンモニア分解装置及び固体酸化物形燃料電池が所定の温度に到達した後に水素含有ガスを生成する装置として用いられる第二のアンモニア分解装置を含んでよい。 The ammonia decomposition apparatus is used after the first ammonia decomposition apparatus and the solid oxide fuel cell used to generate a hydrogen-containing gas until the solid oxide fuel cell reaches a predetermined temperature. A second ammonia decomposition apparatus used as an apparatus for generating a hydrogen-containing gas may be included.
 第一のアンモニア分解装置及び第二のアンモニア分解装置に設けられたアンモニア分解用触媒は、それぞれ、鉄、コバルト、及びニッケルから選ばれる少なくとも1種の元素を触媒活性成分として含んでなってよい。 The ammonia decomposition catalysts provided in the first ammonia decomposition apparatus and the second ammonia decomposition apparatus may each contain at least one element selected from iron, cobalt, and nickel as a catalytic active component.
 第二のアンモニア分解装置のアンモニア分解用触媒における触媒活性成分の含有率は、第一のアンモニア分解装置のアンモニア分解用触媒における上記触媒活性成分の含有率よりも高くてよい。 The content of the catalytically active component in the ammonia decomposition catalyst of the second ammonia decomposition apparatus may be higher than the content of the catalytically active component in the ammonia decomposition catalyst of the first ammonia decomposition apparatus.
 また、本発明の一側面に係る発電方法は、上述の燃料電池システムを用いた発電方法であって、第一のアンモニア分解装置に、アンモニアに対する酸素の体積比率が0.19以上である混合ガスを供給する第1工程と、水素含有ガスを生成する装置を第一のアンモニア分解装置から第二のアンモニア分解装置に切り替える第2工程と、第二のアンモニア分解装置に、アンモニアに対する酸素の体積比率が0.17以下である混合ガスを供給する第3工程とを含み、第2工程は、固体酸化物形燃料電池が所定の温度に到達したときに行われる。 A power generation method according to one aspect of the present invention is a power generation method using the above-described fuel cell system, wherein the first ammonia decomposition apparatus has a mixed gas in which the volume ratio of oxygen to ammonia is 0.19 or more. A first step of supplying hydrogen, a second step of switching the device for generating a hydrogen-containing gas from the first ammonia decomposition device to the second ammonia decomposition device, and a volume ratio of oxygen to ammonia in the second ammonia decomposition device And a third step of supplying a mixed gas having 0.17 or less, and the second step is performed when the solid oxide fuel cell reaches a predetermined temperature.
 また、本発明の一側面に係る発電装置は、アンモニア分解用触媒によって、アンモニアの一部を酸素により燃焼させ、その燃焼熱を用いてアンモニアを水素に分解する複数のアンモニア分解装置と、複数のアンモニア分解装置の少なくとも一つによって生成された水素含有ガスを燃料として運転される固体酸化物形燃料電池とを備える。 A power generation device according to one aspect of the present invention includes a plurality of ammonia decomposition apparatuses that use an ammonia decomposition catalyst to burn a part of ammonia with oxygen and decompose the ammonia into hydrogen using the combustion heat; And a solid oxide fuel cell that is operated by using a hydrogen-containing gas generated by at least one of the ammonia decomposing apparatuses.
 上述の発電装置によれば、複数のアンモニア分解装置を備えた発電装置とし、燃料ガスとしてアンモニア分解装置の出口ガス(アンモニアを分解することによって生成された水素含有ガス)を用いることによって、従来よりも短時間で固体酸化物形燃料電池での発電を開始することができる。 According to the above-described power generation apparatus, a power generation apparatus including a plurality of ammonia decomposition apparatuses is used, and an outlet gas of the ammonia decomposition apparatus (hydrogen-containing gas generated by decomposing ammonia) is used as a fuel gas. Also, power generation in the solid oxide fuel cell can be started in a short time.
 本発明によれば、システム効率を向上させることができる燃料電池システム、発電方法、及び発電装置が提供される。 According to the present invention, a fuel cell system, a power generation method, and a power generation apparatus that can improve system efficiency are provided.
一実施形態に係る燃料電池システムを示すシステム構成図である。It is a system configuration figure showing a fuel cell system concerning one embodiment. 燃料電池システムの起動運転時に、制御装置により実行される制御処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the control processing performed by a control apparatus at the time of starting operation of a fuel cell system.
 以下、図面を参照して本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、一実施形態に係る燃料電池システムを示すシステム構成図である。図1において、本実施形態の燃料電池システム1は、ATR(Auto Thermal Reforming)型の改質器2と、固体酸化物形の燃料電池(SOFC:Solid Oxide Fuel Cell)3とを備えている。 FIG. 1 is a system configuration diagram showing a fuel cell system according to an embodiment. In FIG. 1, a fuel cell system 1 of the present embodiment includes an ATR (Auto Thermal Reforming) type reformer 2 and a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell) 3.
 改質器2は、空気を導入してアンモニア(NH)を改質することで、水素を含有する燃料ガスを生成する。改質器2は、NH酸化部2aと、このNH酸化部2aの下流側に配置されたNH分解部2bとを有している。NH酸化部2aは、アンモニアを酸化させることで、熱を発生させる。NH分解部2bは、NH酸化部2aで発生した熱によって、アンモニアを分解して水素を生成する。なお、改質部2は、酸化剤ガスとして空気を用いているが、アンモニアを酸化させるものであればどのようなガスを用いてもよい。 The reformer 2 introduces air to reform ammonia (NH 3 ), thereby generating a fuel gas containing hydrogen. The reformer 2 includes an NH 3 oxidation unit 2a and an NH 3 decomposition unit 2b arranged on the downstream side of the NH 3 oxidation unit 2a. The NH 3 oxidation unit 2a generates heat by oxidizing ammonia. The NH 3 decomposition unit 2b generates hydrogen by decomposing ammonia by heat generated in the NH 3 oxidation unit 2a. The reforming unit 2 uses air as the oxidant gas, but any gas may be used as long as it oxidizes ammonia.
 なお、ここでは、改質器2がNH酸化部2a及びNH分解部2bを有しているしかし、NHの酸化及び分解の両反応に活性な触媒を使用する場合には、NH酸化部とNH分解部とを分けずに、NHの酸化及び分解の両機能を有する一体型の改質器2を使用してもよい。この場合には、一般的に酸化反応が分解反応よりも早く起きるため、上記の同様の反応が生じる。 Here, however reformer 2 has a NH 3 oxidation unit 2a and NH 3 decomposition section 2b, when using the active catalyst in both the reaction of oxidation and decomposition of NH 3 is NH 3 An integrated reformer 2 having both functions of oxidizing and decomposing NH 3 may be used without separating the oxidizing unit and the NH 3 decomposing unit. In this case, since the oxidation reaction generally takes place earlier than the decomposition reaction, the same reaction as described above occurs.
 燃料電池3は、燃料ガス供給管4を介して改質器2と接続されている。燃料電池3は、改質器2により生成された燃料ガスと空気とを用いて発電を行う。燃料電池3は、複数の単セルが積層されてなるスタック構造を有している。単セルは、アノード(燃料極)3aと、カソード(空気極)3bと、アノード3aとカソード3bとの間に配置された電解質(図示せず)とを有している。燃料ガス供給管4は、アノード3aと接続されている。アノード3aには、燃料ガスが導入される。カソード3bには、空気が導入される。電解質は、安定化ジルコニア等のセラミックからなっている。 The fuel cell 3 is connected to the reformer 2 via a fuel gas supply pipe 4. The fuel cell 3 generates power using the fuel gas and air generated by the reformer 2. The fuel cell 3 has a stack structure in which a plurality of single cells are stacked. The single cell includes an anode (fuel electrode) 3a, a cathode (air electrode) 3b, and an electrolyte (not shown) disposed between the anode 3a and the cathode 3b. The fuel gas supply pipe 4 is connected to the anode 3a. Fuel gas is introduced into the anode 3a. Air is introduced into the cathode 3b. The electrolyte is made of a ceramic such as stabilized zirconia.
 また、燃料電池システム1は、液体NHタンク5と、ポンプ6と、気化器7と、空気ブロア8と、熱交換器9と、燃焼器10とを備えている。 The fuel cell system 1 includes a liquid NH 3 tank 5, a pump 6, a vaporizer 7, an air blower 8, a heat exchanger 9, and a combustor 10.
 液体NHタンク5は、アンモニアを液体状態で貯蔵するアンモニアタンクである。液体NHタンク5は、例えば常温(20℃~25℃)且つ数気圧(8気圧~10気圧)でアンモニアを貯蔵する。液体NHタンク5はアンモニアを気体ではなく液体状態で貯蔵するので、アンモニアの貯蔵効率が良く、燃料電池システム1の稼働時間を長くすることができる。また、液体NHタンク5へのアンモニアの補充を容易に行うことができる。 The liquid NH 3 tank 5 is an ammonia tank that stores ammonia in a liquid state. The liquid NH 3 tank 5 stores ammonia at, for example, room temperature (20 ° C. to 25 ° C.) and several atmospheres (8 atmospheres to 10 atmospheres). Since the liquid NH 3 tank 5 stores ammonia in a liquid state instead of a gas, the ammonia storage efficiency is good, and the operating time of the fuel cell system 1 can be extended. In addition, ammonia can be easily supplied to the liquid NH 3 tank 5.
 ポンプ6は、アンモニア供給管11を介して改質器2と接続されている。ポンプ6は、液体NHタンク5に貯蔵された液体状態のアンモニア(以下、液体アンモニア)を改質器2に向けて送り出す。 The pump 6 is connected to the reformer 2 via an ammonia supply pipe 11. The pump 6 sends out liquid ammonia (hereinafter, liquid ammonia) stored in the liquid NH 3 tank 5 toward the reformer 2.
 気化器7は、アンモニア供給管11に配設されている。つまり、気化器7は、ポンプ6と改質器2との間に配置されている。気化器7は、液体アンモニアを気化させる。 The vaporizer 7 is disposed in the ammonia supply pipe 11. That is, the vaporizer 7 is disposed between the pump 6 and the reformer 2. The vaporizer 7 vaporizes liquid ammonia.
 空気ブロア8は、空気供給管12,13を介して改質器2及び燃料電池3と接続されている。空気供給管13の一端部は、空気供給管12に分岐接続され、空気供給管13の他端部は、燃料電池3のカソード3bと接続されている。空気ブロア8は、空気を吹き出して改質器2及び燃料電池3に送る送気器である。 The air blower 8 is connected to the reformer 2 and the fuel cell 3 via air supply pipes 12 and 13. One end of the air supply pipe 13 is branched and connected to the air supply pipe 12, and the other end of the air supply pipe 13 is connected to the cathode 3 b of the fuel cell 3. The air blower 8 is an air supply device that blows out air and sends it to the reformer 2 and the fuel cell 3.
 空気供給管12には、バルブ14が配設されている。つまり、バルブ14は、空気ブロア8と改質器2との間に配置されている。バルブ14は、空気ブロア8から改質器2へ供給される空気の流量を調整する電磁式の流量調整弁である。 The air supply pipe 12 is provided with a valve 14. That is, the valve 14 is disposed between the air blower 8 and the reformer 2. The valve 14 is an electromagnetic flow rate adjusting valve that adjusts the flow rate of air supplied from the air blower 8 to the reformer 2.
 熱交換器9は、空気供給管13に配設されている。つまり、熱交換器9は、空気ブロア8と燃料電池3との間に配置されている。熱交換器9は、燃料電池3に送り込む空気を熱交換して予熱する。 The heat exchanger 9 is disposed in the air supply pipe 13. That is, the heat exchanger 9 is disposed between the air blower 8 and the fuel cell 3. The heat exchanger 9 preheats the air sent to the fuel cell 3 by exchanging heat.
 燃焼器10は、排気管15を介して燃料電池3のアノード3a及びカソード3bと接続されている。排気管15には、アノード3aから排出された未反応の燃料ガスとカソード3bから排出された未反応の空気との混合ガスが排ガス(オフガス)として流れる。燃焼器10は、排ガスを燃焼する。具体的には、燃焼器10は、排ガス中に残存する未燃分の燃料ガスを燃焼する。燃焼器10により排ガスが燃焼されると、排ガスの温度が上昇する。 The combustor 10 is connected to the anode 3 a and the cathode 3 b of the fuel cell 3 through the exhaust pipe 15. In the exhaust pipe 15, a mixed gas of unreacted fuel gas discharged from the anode 3a and unreacted air discharged from the cathode 3b flows as exhaust gas (off gas). The combustor 10 burns exhaust gas. Specifically, the combustor 10 burns unburned fuel gas remaining in the exhaust gas. When exhaust gas is burned by the combustor 10, the temperature of the exhaust gas rises.
 また、燃料電池システム1は、燃焼器10により燃焼された排ガスを気化器7に供給する第1排ガス供給部を構成する排ガス供給管16と、燃焼器10により燃焼された排ガスを熱交換器9に供給する第2排ガス供給部を構成する排ガス供給管17とを備えている。 In addition, the fuel cell system 1 includes an exhaust gas supply pipe 16 that constitutes a first exhaust gas supply unit that supplies exhaust gas burned by the combustor 10 to the carburetor 7, and the exhaust gas burned by the combustor 10 as a heat exchanger 9. And an exhaust gas supply pipe 17 constituting a second exhaust gas supply unit for supplying to the exhaust gas.
 気化器7は、排ガス供給管16を流れる排ガスの排熱により液体アンモニアを気化させる。排ガス供給管16を流れる排ガスは、大気開放される。熱交換器9は、排ガス供給管17を流れる排ガスの排熱により空気を熱交換して予熱する。排ガス供給管17を流れる排ガスは、大気開放される。 The vaporizer 7 vaporizes liquid ammonia by exhaust heat of the exhaust gas flowing through the exhaust gas supply pipe 16. The exhaust gas flowing through the exhaust gas supply pipe 16 is released to the atmosphere. The heat exchanger 9 preheats the heat by exchanging air with the exhaust heat of the exhaust gas flowing through the exhaust gas supply pipe 17. The exhaust gas flowing through the exhaust gas supply pipe 17 is released to the atmosphere.
 さらに、燃料電池システム1は、起動運転時に改質器2を加熱する始動用の電気ヒータ18と、起動運転時に燃料電池3を加熱する始動用の電気ヒータ19と、燃料電池3の温度を検出する温度センサ20と、制御装置21(制御部)とを備えている。温度センサ20は、例えば燃料電池3における未反応の燃料ガスが排出される出口付近の温度を検出する。 Furthermore, the fuel cell system 1 detects the temperature of the fuel cell 3 and the electric heater 18 for starting to heat the reformer 2 during the starting operation, the electric heater 19 for starting to heat the fuel cell 3 during the starting operation. The temperature sensor 20 which performs and the control apparatus 21 (control part) are provided. The temperature sensor 20 detects, for example, the temperature near the outlet where unreacted fuel gas in the fuel cell 3 is discharged.
 制御装置21は、燃料電池システム1の運転時にシステム全体を制御する。具体的には、制御装置21は、温度センサ20の検出値に基づいて、ポンプ6、空気ブロア8、バルブ14及び電気ヒータ18,19を制御する。 The control device 21 controls the entire system during operation of the fuel cell system 1. Specifically, the control device 21 controls the pump 6, the air blower 8, the valve 14, and the electric heaters 18 and 19 based on the detection value of the temperature sensor 20.
 以上のような燃料電池システム1の通常運転時においては、液体NHタンク5に貯蔵された液体アンモニアがポンプ6より吐出されると、液体アンモニアがアンモニア供給管11を通って気化器7に送られる。そして、気化器7において、排ガス供給管16を流れる排ガスの排熱により液体アンモニアが加熱されて気化される。気化されたアンモニアは、アンモニア供給管11を通って改質器2に供給される。一方、空気ブロア8によって空気が空気供給管12を通って改質器2に供給される。 During normal operation of the fuel cell system 1 as described above, when liquid ammonia stored in the liquid NH 3 tank 5 is discharged from the pump 6, the liquid ammonia is sent to the vaporizer 7 through the ammonia supply pipe 11. It is done. In the vaporizer 7, the liquid ammonia is heated and vaporized by the exhaust heat of the exhaust gas flowing through the exhaust gas supply pipe 16. The vaporized ammonia is supplied to the reformer 2 through the ammonia supply pipe 11. On the other hand, air is supplied to the reformer 2 through the air supply pipe 12 by the air blower 8.
 アンモニア及び空気が改質器2に導入されると、改質器2のNH酸化部2aにおいて、下記式のように一部のアンモニアと空気中の酸素とが化学反応し、そのアンモニアの酸化反応により熱が発生する(発熱反応)。
   NH + 3/4O → 1/2N + 3/2H
When ammonia and air are introduced into the reformer 2, in the NH 3 oxidation section 2a of the reformer 2, a part of ammonia and oxygen in the air chemically react as shown in the following formula, and the oxidation of the ammonia Heat is generated by the reaction (exothermic reaction).
NH 3 + 3 / 4O 2 → 1 / 2N 2 + 3 / 2H 2 O
 そして、改質器2のNH分解部2bにおいて、下記式のようにNH酸化部2aで発生した熱により残りのアンモニアの分解反応が起こり(吸熱反応)、水素がリッチな状態の燃料ガスが生成される。燃料ガスは、燃料ガス供給管4を通って燃料電池3のアノード3aに供給される。なお、この時の燃料ガスの温度は、例えば600℃程度である。
   NH → 3/2H + 1/2N
Then, in the NH 3 decomposition section 2b of the reformer 2, the remaining ammonia is decomposed by the heat generated in the NH 3 oxidation section 2a as shown in the following formula (endothermic reaction), and the fuel gas is rich in hydrogen. Is generated. The fuel gas is supplied to the anode 3 a of the fuel cell 3 through the fuel gas supply pipe 4. The temperature of the fuel gas at this time is about 600 ° C., for example.
NH 3 → 3 / 2H 2 + 1 / 2N 2
 また、空気ブロア8によって常温の空気が空気供給管12,13を通って熱交換器9に送られる。そして、熱交換器9において、排ガス供給管17を流れる排ガスの排熱により常温の空気が熱交換されて予熱される。予熱された空気は、空気供給管13を通って燃料電池3のカソード3bに供給される。なお、この時の空気の温度は、例えば燃料ガスの温度と同程度である。 Also, air at room temperature is sent to the heat exchanger 9 through the air supply pipes 12 and 13 by the air blower 8. In the heat exchanger 9, air at normal temperature is heat-exchanged by the exhaust heat of the exhaust gas flowing through the exhaust gas supply pipe 17 and preheated. The preheated air is supplied to the cathode 3 b of the fuel cell 3 through the air supply pipe 13. Note that the temperature of the air at this time is approximately the same as the temperature of the fuel gas, for example.
 燃料ガス及び空気が燃料電池3に導入されると、燃料電池3において、燃料ガス中の水素と空気中の酸素とが化学反応して水が生成されると共に、直流電力が発生する。燃料電池3で発生した直流電力は、インバータ22により交流電力に変換される。そして、交流電力は、電力負荷23に供給される。 When the fuel gas and air are introduced into the fuel cell 3, in the fuel cell 3, hydrogen in the fuel gas and oxygen in the air chemically react to generate water and generate DC power. The DC power generated in the fuel cell 3 is converted into AC power by the inverter 22. Then, AC power is supplied to the power load 23.
 また、燃料電池3から排ガス(オフガス)が排出される。この時の排ガスの温度は、例えば700℃~800℃程度である。排ガスは、排気管15を通って燃焼器10に供給され、燃焼器10により燃焼される。燃焼後の排ガスの温度は、例えば1000℃~1100℃程度である。 Also, exhaust gas (off-gas) is discharged from the fuel cell 3. The temperature of the exhaust gas at this time is, for example, about 700 ° C. to 800 ° C. The exhaust gas is supplied to the combustor 10 through the exhaust pipe 15 and burned by the combustor 10. The temperature of the exhaust gas after combustion is, for example, about 1000 ° C. to 1100 ° C.
 燃焼器10で燃焼された排ガスは、排ガス供給管16を通って気化器7に供給される。そして、その排ガスの排熱が、気化器7による液体アンモニアの気化に利用される。また、燃焼器10で燃焼された排ガスは、排ガス供給管17を通って熱交換器9に供給される。そして、その排ガスの排熱が、熱交換器9による空気の熱交換に利用される。 The exhaust gas combusted in the combustor 10 is supplied to the vaporizer 7 through the exhaust gas supply pipe 16. The exhaust heat of the exhaust gas is used for vaporizing liquid ammonia by the vaporizer 7. Further, the exhaust gas combusted by the combustor 10 is supplied to the heat exchanger 9 through the exhaust gas supply pipe 17. The exhaust heat of the exhaust gas is used for heat exchange of air by the heat exchanger 9.
 図2は、燃料電池システム1の起動運転時に、制御装置21により実行される制御処理の手順を示すフローチャートである。燃料電池システム1の電源スイッチ(図示せず)がONになると、本処理の実行が開始される。 FIG. 2 is a flowchart showing the procedure of the control process executed by the control device 21 during the start-up operation of the fuel cell system 1. When a power switch (not shown) of the fuel cell system 1 is turned on, execution of this process is started.
 なお、本処理の実行が開始されるときの初期状態では、バルブ14の開度は、通常運転時における改質器2の空燃比(A/F)を確保するような開度となっている。改質器2の空燃比とは、改質器2に存在する空気量と燃料ガス量との比である。通常運転時における改質器2の空燃比は、例えば0.75(燃料ガス量100%に対して空気量75%)である。 In the initial state when the execution of this process is started, the opening degree of the valve 14 is an opening degree that ensures the air-fuel ratio (A / F) of the reformer 2 during normal operation. . The air-fuel ratio of the reformer 2 is a ratio between the amount of air present in the reformer 2 and the amount of fuel gas. The air-fuel ratio of the reformer 2 during normal operation is, for example, 0.75 (the amount of air is 75% with respect to the amount of fuel gas of 100%).
 ここで、通常運転とは、燃料電池3の温度が動作温度(例えば700℃程度)に達したときに実施される運転である。起動運転とは、燃料電池3の温度が動作温度に達する前に実施される運転である。 Here, the normal operation is an operation performed when the temperature of the fuel cell 3 reaches the operating temperature (for example, about 700 ° C.). The start-up operation is an operation that is performed before the temperature of the fuel cell 3 reaches the operating temperature.
 図2において、まず制御装置21は、始動用の電気ヒータ18,19をONにするように制御する(手順S101)。すると、改質器2の温度が上昇すると共に、燃料電池3の温度が上昇する。 In FIG. 2, the control device 21 first controls the starting electric heaters 18 and 19 to be turned on (step S101). Then, the temperature of the reformer 2 rises and the temperature of the fuel cell 3 rises.
 続いて、制御装置21は、ポンプ6により少量の液体アンモニアを改質器2に向けて送り出すようにポンプ6を制御する(手順S102)。ポンプ6から少量の液体アンモニアを吐出したときは、液体アンモニアの供給圧力が例えば常圧(大気圧)まで下がる。このため、液体アンモニアが常温状態にあっても、液体アンモニアが気化器7により気化される。そして、気化されたアンモニアが改質器2に供給される。 Subsequently, the control device 21 controls the pump 6 so that a small amount of liquid ammonia is sent out toward the reformer 2 by the pump 6 (step S102). When a small amount of liquid ammonia is discharged from the pump 6, the supply pressure of the liquid ammonia decreases to, for example, normal pressure (atmospheric pressure). For this reason, even if liquid ammonia is in a normal temperature state, liquid ammonia is vaporized by the vaporizer 7. The vaporized ammonia is supplied to the reformer 2.
 続いて、制御装置21は、空気ブロア8により空気を吹き出すように空気ブロア8を制御する(手順S103)。すると、改質器2及び燃料電池3に空気が供給される。 Subsequently, the control device 21 controls the air blower 8 so that air is blown out by the air blower 8 (step S103). Then, air is supplied to the reformer 2 and the fuel cell 3.
 続いて、制御装置21は、バルブ14の開度を通常運転時よりも大きくするように制御することにより、改質器2の空燃比を通常運転時よりも高くするように制御する(手順S104)。具体的には、制御装置21は、例えば改質器2の空燃比を1.0以上(A/F≧1.0)とするように制御する。このように改質器2の空燃比を高くすることにより、改質器2に供給される空気量が通常運転時よりも多くなる。 Subsequently, the control device 21 controls the air-fuel ratio of the reformer 2 to be higher than that during normal operation by controlling the opening of the valve 14 to be larger than that during normal operation (step S104). ). Specifically, the control device 21 performs control so that the air-fuel ratio of the reformer 2 is 1.0 or more (A / F ≧ 1.0), for example. By increasing the air-fuel ratio of the reformer 2 in this way, the amount of air supplied to the reformer 2 becomes larger than during normal operation.
 改質器2にアンモニア及び空気が供給されると、改質器2により燃料ガスが生成される。その後、燃料電池3に燃料ガス及び空気が供給されると、燃料電池3により発電が行われる。そして、燃料電池3から排出された排ガスが燃焼器10により燃焼され、燃焼後の排ガスが気化器7及び熱交換器9に供給される。これにより、空気ブロア8により送気された常温の空気は、熱交換器9において排ガスの排熱により予熱される。 When ammonia and air are supplied to the reformer 2, fuel gas is generated by the reformer 2. Thereafter, when fuel gas and air are supplied to the fuel cell 3, power generation is performed by the fuel cell 3. Then, the exhaust gas discharged from the fuel cell 3 is combusted by the combustor 10, and the exhaust gas after combustion is supplied to the vaporizer 7 and the heat exchanger 9. Thereby, the normal temperature air sent by the air blower 8 is preheated by the exhaust heat of the exhaust gas in the heat exchanger 9.
 続いて、制御装置21は、温度センサ20の検出値を取得する(手順S105)。そして、制御装置21は、燃料電池3の温度が動作温度に達したかどうかを判断する(手順S106)。燃料電池3の温度が動作温度に達していないときは、手順S105が繰り返し実行される。 Subsequently, the control device 21 acquires the detection value of the temperature sensor 20 (step S105). Then, the control device 21 determines whether or not the temperature of the fuel cell 3 has reached the operating temperature (step S106). When the temperature of the fuel cell 3 has not reached the operating temperature, step S105 is repeatedly executed.
 燃料電池3の温度が動作温度に達したときは、制御装置21は、始動用の電気ヒータ18,19をOFFにするように制御する(手順S107)。 When the temperature of the fuel cell 3 reaches the operating temperature, the control device 21 performs control so that the electric heaters 18 and 19 for starting are turned off (step S107).
 続いて、制御装置21は、ポンプ6により一定量の液体アンモニアを改質器2に向けて送り出すようにポンプ6を制御する(手順S108)。この時に送り出される液体アンモニアの量は、上記の手順S102の実行時に比べて十分多い。一定量の液体アンモニアは、気化器7において排ガスの排熱により気化される。 Subsequently, the control device 21 controls the pump 6 so that a certain amount of liquid ammonia is sent out toward the reformer 2 by the pump 6 (step S108). The amount of liquid ammonia sent out at this time is sufficiently larger than that during execution of the above-described procedure S102. A certain amount of liquid ammonia is vaporized by the exhaust heat of the exhaust gas in the vaporizer 7.
 続いて、制御装置21は、バルブ14の開度を初期状態(通常運転時)における開度に戻すように制御することにより、改質器2の空燃比を初期状態における空燃比に戻すように制御する(手順S109)。以上により、上述した燃料電池システム1の通常運転が実施されることとなる。 Subsequently, the control device 21 controls the opening degree of the valve 14 to return to the opening degree in the initial state (during normal operation), so that the air-fuel ratio of the reformer 2 is returned to the air-fuel ratio in the initial state. Control (step S109). As described above, the normal operation of the fuel cell system 1 described above is performed.
 以上のように本実施形態においては、燃料電池3から排出された排ガスが、排ガス供給管16を通って気化器7に供給される。そして、ポンプ6により送り出された液体アンモニアが、気化器7において排ガスの排熱により気化される。また、燃料電池3から排出された排ガスが、排ガス供給管17を通って熱交換器9に供給される。そして、空気ブロア8により送られた空気が、熱交換器9において排ガスの排熱により熱交換されて予熱される。このように液体アンモニアの気化及び空気の熱交換に排ガスの排熱が有効利用される。従って、液体アンモニアを気化させるための電気ヒータ、空気を熱交換するための電気ヒータ、及びこれらの電気ヒータにそれぞれ電力を供給する電源が不要となる。これにより、燃料電池システム1のシステム効率を向上させることができる。 As described above, in the present embodiment, the exhaust gas discharged from the fuel cell 3 is supplied to the vaporizer 7 through the exhaust gas supply pipe 16. Then, the liquid ammonia sent out by the pump 6 is vaporized by the exhaust heat of the exhaust gas in the vaporizer 7. The exhaust gas discharged from the fuel cell 3 is supplied to the heat exchanger 9 through the exhaust gas supply pipe 17. And the air sent by the air blower 8 is heat-exchanged by the exhaust heat of exhaust gas in the heat exchanger 9, and is preheated. Thus, exhaust heat of exhaust gas is effectively used for vaporization of liquid ammonia and heat exchange of air. Therefore, an electric heater for vaporizing liquid ammonia, an electric heater for exchanging heat of air, and a power source for supplying electric power to these electric heaters are not required. Thereby, the system efficiency of the fuel cell system 1 can be improved.
 また、熱交換器9は排ガスの排熱を利用して空気を予熱するので、燃料電池3のアノード3aに導入される燃料ガスと燃料電池3のカソード3bに導入される空気との温度差が小さくなる。従って、アノード3aとカソード3bとの温度差が小さくなるため、アノード3aとカソード3bとの間に配置された電解質(図示せず)に熱の応力分布が発生しにくくなる。その結果、燃料電池3の性能及び信頼性を高くすることができる。 Further, since the heat exchanger 9 preheats the air using the exhaust heat of the exhaust gas, there is a temperature difference between the fuel gas introduced into the anode 3a of the fuel cell 3 and the air introduced into the cathode 3b of the fuel cell 3. Get smaller. Therefore, since the temperature difference between the anode 3a and the cathode 3b becomes small, it becomes difficult for heat stress distribution to occur in the electrolyte (not shown) disposed between the anode 3a and the cathode 3b. As a result, the performance and reliability of the fuel cell 3 can be increased.
 また、制御装置21は、起動運転時における改質器2の空燃比を通常運転時における改質器2の空燃比よりも高くするように制御する。このため、起動運転時には、通常運転時に比べて改質器2に導入される空気量が増加する。従って、改質器2におけるアンモニアの分解温度が高くなるため、改質器2で生成されて燃料電池3に導入される燃料ガスの温度が高くなる。これにより、起動運転時に燃料電池3を早期に暖気することができる。 Further, the control device 21 controls the air-fuel ratio of the reformer 2 during the start-up operation to be higher than the air-fuel ratio of the reformer 2 during the normal operation. For this reason, at the start-up operation, the amount of air introduced into the reformer 2 is increased compared to the normal operation. Accordingly, since the decomposition temperature of ammonia in the reformer 2 is increased, the temperature of the fuel gas generated in the reformer 2 and introduced into the fuel cell 3 is increased. Thereby, the fuel cell 3 can be warmed up early at the time of starting operation.
 このとき、制御装置21は改質器2の空燃比を1.0以上とするように制御することにより、改質器2におけるアンモニアの分解温度が十分に高くなる。従って、起動運転時における燃料電池3の早期暖気を確実に行うことができる。 At this time, the control device 21 controls the air-fuel ratio of the reformer 2 to be 1.0 or more, so that the decomposition temperature of ammonia in the reformer 2 becomes sufficiently high. Accordingly, it is possible to reliably warm the fuel cell 3 early during the start-up operation.
 また、制御装置21は、空気ブロア8から改質器2へ供給される空気の流量を調整するバルブ14の開度を制御する。これにより、改質器2の空燃比を容易に制御することができる。 Further, the control device 21 controls the opening degree of the valve 14 that adjusts the flow rate of the air supplied from the air blower 8 to the reformer 2. Thereby, the air-fuel ratio of the reformer 2 can be easily controlled.
 さらに、気化器7及び熱交換器9には、燃焼器10により燃焼された後の排ガスが供給される。燃料電池3から排出された排ガスが燃焼器10により燃焼されると、排ガスの温度が高くなる。従って、排ガスの排熱を利用した液体アンモニアの気化及び空気の熱交換を効果的に行うことができる。 Furthermore, the exhaust gas after being combusted by the combustor 10 is supplied to the vaporizer 7 and the heat exchanger 9. When the exhaust gas discharged from the fuel cell 3 is combusted by the combustor 10, the temperature of the exhaust gas increases. Therefore, the vaporization of liquid ammonia and the heat exchange of air using the exhaust heat of exhaust gas can be performed effectively.
 なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、制御装置21は、空気ブロア8から改質器2へ供給される空気の流量を調整するバルブ14の開度を制御することにより、改質器2の空燃比を制御しているが、特にその形態には限られない。例えば、燃料電池システム1は、単位時間当たりの空気の吹き出し量が異なる2つの空気ブロアを備えてもよい。そのような構成では、制御装置21は、起動運転時には空気の吹き出し量が多い空気ブロアを作動させ、通常運転時には空気の吹き出し量が少ない空気ブロアを作動させることにより、起動運転時及び通常運転時における改質器2の空燃比を制御する。この場合には、バルブ14が不要となる。 Note that the present invention is not limited to the above embodiment. For example, in the above embodiment, the control device 21 controls the air-fuel ratio of the reformer 2 by controlling the opening of the valve 14 that adjusts the flow rate of air supplied from the air blower 8 to the reformer 2. However, the form is not particularly limited. For example, the fuel cell system 1 may include two air blowers with different air blowing amounts per unit time. In such a configuration, the control device 21 operates an air blower with a large amount of blown out air during start-up operation, and operates an air blower with a small amount of blown out air during normal operation, so that the control device 21 operates during start-up operation and normal operation. The air-fuel ratio of the reformer 2 is controlled. In this case, the valve 14 becomes unnecessary.
 また、上記実施形態では、制御装置21は、改質器2へ供給される空気の流量を制御することにより、改質器2の空燃比を制御している。しかし、制御装置21は、特にその形態には限られず、改質器2へ供給されるアンモニアの流量を制御することにより、改質器2の空燃比を制御してもよい。この場合には、改質器2へ供給されるアンモニアの流量を調整するバルブがアンモニア供給管11に配設される。 In the above embodiment, the control device 21 controls the air-fuel ratio of the reformer 2 by controlling the flow rate of the air supplied to the reformer 2. However, the control device 21 is not particularly limited to this configuration, and may control the air-fuel ratio of the reformer 2 by controlling the flow rate of ammonia supplied to the reformer 2. In this case, a valve for adjusting the flow rate of ammonia supplied to the reformer 2 is disposed in the ammonia supply pipe 11.
 また、上記実施形態では、制御装置21は、起動運転時における改質器2の空燃比を通常運転時における改質器2の空燃比よりも高くするように制御しているが、特にその形態には限られない。制御装置21は、燃料電池3の早期暖気が要求されない場合には、起動運転時における改質器2の空燃比を通常運転時における改質器2の空燃比と等しくてもよい。この場合には、制御装置21により実行される制御処理を簡素化することができる。 Moreover, in the said embodiment, although the control apparatus 21 is controlling so that the air fuel ratio of the reformer 2 at the time of starting operation is made higher than the air fuel ratio of the reformer 2 at the time of normal operation, especially the form It is not limited to. When the early warm-up of the fuel cell 3 is not required, the control device 21 may make the air-fuel ratio of the reformer 2 during start-up operation equal to the air-fuel ratio of the reformer 2 during normal operation. In this case, the control process executed by the control device 21 can be simplified.
 さらに、上記実施形態では、燃料電池システム1は、燃料電池3から排出された排ガスを燃焼する燃焼器10を備えている。しかし、燃料電池3から排出された直後の排ガスの排熱をそのまま液体アンモニアの気化及び空気の熱交換に利用することが可能であれば、燃焼器10は特に無くてもよい。この場合には、燃料電池システム1の構成を簡単化することができる。 Furthermore, in the above embodiment, the fuel cell system 1 includes the combustor 10 that combusts the exhaust gas discharged from the fuel cell 3. However, the combustor 10 may be omitted if the exhaust heat of the exhaust gas immediately after being discharged from the fuel cell 3 can be used as it is for the vaporization of liquid ammonia and the heat exchange of air. In this case, the configuration of the fuel cell system 1 can be simplified.
 また、上記実施形態では、制御装置21は、燃料電池3の温度を検出する温度センサ20の検出値に基づいて、起動運転から通常運転に切り替えるかどうかを判断しているが、特にその形態には限られない。例えば、燃料電池3の温度が高くなるに従って、燃料電池3の発電量が増加する。従って、燃料電池システム1は、温度センサ20に代えて、燃料電池3の発電量を検出するセンサを備えてもよい。そのような構成では、制御装置21は、燃料電池3の発電量に基づいて、起動運転から通常運転に切り替えるかどうかを判断する。 Moreover, in the said embodiment, although the control apparatus 21 determines whether it switches from starting operation to normal operation based on the detected value of the temperature sensor 20 which detects the temperature of the fuel cell 3, especially in that form. Is not limited. For example, the power generation amount of the fuel cell 3 increases as the temperature of the fuel cell 3 increases. Therefore, the fuel cell system 1 may include a sensor that detects the amount of power generated by the fuel cell 3 instead of the temperature sensor 20. In such a configuration, the control device 21 determines whether to switch from the startup operation to the normal operation based on the power generation amount of the fuel cell 3.
 また、他の実施形態に係る燃料電池システムとして、次のような構成を採用してもよい。すなわち、改質器は、アンモニア分解用触媒によって、アンモニアの一部を酸素により燃焼させ、その燃焼熱を用いてアンモニアを水素に分解する複数のアンモニア分解装置を備えていてよい。また、燃料電池は、複数のアンモニア分解装置の少なくとも一つによって生成された水素含有ガスを燃料として運転される固体酸化物形燃料電池(以下、SOFCという)によって構成されてよい。 Further, the following configuration may be adopted as a fuel cell system according to another embodiment. That is, the reformer may be provided with a plurality of ammonia decomposing apparatuses that use a catalyst for decomposing ammonia to burn a part of ammonia with oxygen and decompose the ammonia into hydrogen using the heat of combustion. The fuel cell may be constituted by a solid oxide fuel cell (hereinafter referred to as SOFC) that is operated using a hydrogen-containing gas generated by at least one of a plurality of ammonia decomposing apparatuses.
 本実施形態の発電装置は、アンモニア分解用触媒によって、アンモニアの一部を酸素により燃焼させ、その燃焼熱を用いてアンモニアを水素に分解する複数のアンモニア分解装置と、上記複数のアンモニア分解装置の少なくとも一つによって生成された水素含有ガスを燃料として運転される固体酸化物形燃料電池とを備える。 The power generation apparatus of the present embodiment includes a plurality of ammonia decomposition apparatuses that use an ammonia decomposition catalyst to burn part of ammonia with oxygen and decompose the ammonia into hydrogen using the heat of combustion, and the plurality of ammonia decomposition apparatuses. And a solid oxide fuel cell operated using at least one hydrogen-containing gas produced as a fuel.
 アンモニア分解装置では、アンモニアの一部を酸素により燃焼させる燃焼反応(発熱反応)と、その燃焼熱を用いてアンモニアを水素に分解する分解反応(吸熱反応)とが行われる。アンモニア分解装置は、2機以上であれば、何機備えていてもよい。ただし、アンモニア分解装置は、SOFCが所定の温度に到達するまで水素含有ガスを生成する装置として用いる第一のアンモニア分解装置(以下、昇温用装置という)と上記SOFCが所定の温度に到達した後に上記水素含有ガスを生成する装置として用いる第二のアンモニア分解装置(以下、運転用装置という)との少なくとも2機のアンモニア分解装置を備えていることが好ましい。 In the ammonia decomposition apparatus, a combustion reaction (exothermic reaction) in which a part of ammonia is combusted with oxygen and a decomposition reaction (endothermic reaction) in which ammonia is decomposed into hydrogen using the combustion heat are performed. As long as there are two or more ammonia decomposition apparatuses, any number of ammonia decomposition apparatuses may be provided. However, in the ammonia decomposition apparatus, the first ammonia decomposition apparatus (hereinafter referred to as a temperature raising apparatus) used as an apparatus for generating a hydrogen-containing gas until the SOFC reaches a predetermined temperature, and the SOFC has reached the predetermined temperature. It is preferable to provide at least two ammonia decomposing apparatuses including a second ammonia decomposing apparatus (hereinafter referred to as “operating apparatus”) used as an apparatus for generating the hydrogen-containing gas later.
 昇温用装置で生成された水素含有ガスがSOFCに供給され続けることによってSOFCは昇温する。より短時間で固体酸化物形燃料電池を昇温させるために、さらにヒーターなどによってSOFCの加熱を行ってもよい。 The temperature of the SOFC rises as the hydrogen-containing gas generated by the heating device continues to be supplied to the SOFC. In order to raise the temperature of the solid oxide fuel cell in a shorter time, the SOFC may be further heated by a heater or the like.
 SOFCが所定の温度に到達したときに、水素含有ガスを生成する装置を昇温用装置から運転用装置に切り替えるのが好ましい。上記所定の温度は、SOFCを用いて発電が可能となる温度であればよく、例えば、600~1000℃である。SOFCが所定の温度に到達した後であれば、昇温用装置から運転用装置に切り替えなくても発電は開始される。ただし、SOFCセルが作動温度に昇温するまで用いるアンモニア分解装置と、昇温後にSOFCで発電する際に用いるアンモニア分解装置とを別の装置にすることによって、アンモニア分解用触媒が失活して、発電効率が低下するのを防ぐことができる。昇温用装置から運転用装置に切り替えるのは、SOFCが所定の温度に到達した後であればいつでも構わない。ただし、上記失活を防ぐという観点からは、SOFCが所定の温度に到達したときに、速やかに切り替えるのが好ましい。昇温用装置と運転用装置との切替手段は、特に限定されないが、例えば、手動バルブ、自動バルブなどを用いて行うことができる。 When the SOFC reaches a predetermined temperature, it is preferable to switch the device that generates the hydrogen-containing gas from the temperature raising device to the operation device. The predetermined temperature may be any temperature that enables power generation using SOFC, and is, for example, 600 to 1000 ° C. If the SOFC has reached a predetermined temperature, power generation is started without switching from the temperature raising device to the driving device. However, the ammonia decomposition catalyst is deactivated by making the ammonia decomposition apparatus used until the temperature of the SOFC cell rises to the operating temperature and the ammonia decomposition apparatus used when generating power with SOFC after the temperature increase as separate apparatuses. It is possible to prevent the power generation efficiency from being lowered. Switching from the temperature raising device to the operation device may be performed at any time after the SOFC reaches a predetermined temperature. However, from the viewpoint of preventing the deactivation, it is preferable to switch quickly when the SOFC reaches a predetermined temperature. The switching means between the temperature raising device and the operation device is not particularly limited, and can be performed using, for example, a manual valve, an automatic valve, or the like.
 昇温用装置は、1機に限定されるものではなく、2機以上の複数の昇温用装置を用いてもよい。運転用装置も、1機に限定されるものではなく、2機以上の複数の運転用装置を用いてもよい。アンモニア分解装置が3機以上備わっている場合も、SOFCが所定の温度に到達するまでは、水素含有ガスを生成する装置として昇温用装置を用いることが好ましい。また、SOFCが所定の温度に到達した後は、水素含有ガスを生成する装置として運転用装置を用いるのが好ましい。そして、複数の昇温用装置を備えている場合、SOFCが所定の温度に到達するまでの間に、ある昇温用装置から別の昇温用装置へと切り替えてもよく、複数の運転用装置を備えている場合、SOFCが所定の温度に到達した後の発電中に、ある運転用装置から別の運転用装置へと切り替えてもよい。 The temperature raising device is not limited to one, and a plurality of temperature raising devices of two or more may be used. The driving device is not limited to one, and a plurality of driving devices of two or more may be used. Even when three or more ammonia decomposing apparatuses are provided, it is preferable to use a temperature raising apparatus as an apparatus for generating a hydrogen-containing gas until the SOFC reaches a predetermined temperature. In addition, after the SOFC reaches a predetermined temperature, it is preferable to use an operation device as a device for generating a hydrogen-containing gas. When a plurality of temperature raising devices are provided, the temperature may be switched from one temperature raising device to another temperature raising device until the SOFC reaches a predetermined temperature. In the case where the apparatus is provided, switching from one operating apparatus to another operating apparatus may be performed during power generation after the SOFC reaches a predetermined temperature.
 また、SOFCが所定の温度に到達するまでの間、複数の昇温用装置を同時に用いて水素含有ガスを生成してもよく、SOFCが所定の温度に到達した後の発電中に、複数の運転用装置を同時に用いて水素含有ガスを生成してもよい。 In addition, a hydrogen-containing gas may be generated using a plurality of temperature raising devices at the same time until the SOFC reaches a predetermined temperature. During power generation after the SOFC reaches a predetermined temperature, The hydrogen-containing gas may be generated using the operating device at the same time.
<昇温用装置>
 昇温用装置にはアンモニア分解用触媒が設けられており、この昇温用装置にアンモニアと酸素とを含有するガスを供給することで、アンモニアの一部を酸素により燃焼させる。その燃焼熱が用いられることで、アンモニアを水素及び窒素に分解するオートサーマルリフォーミング反応が進行する。アンモニア分解用触媒の形態としては、ペレット状やリング状の触媒を充填して用いることもできるが、圧力損失が少ないという観点からハニカム状触媒が好ましい。
<Elevation device>
The temperature raising device is provided with an ammonia decomposition catalyst. By supplying a gas containing ammonia and oxygen to the temperature raising device, a part of the ammonia is burned with oxygen. By using the combustion heat, an autothermal reforming reaction that decomposes ammonia into hydrogen and nitrogen proceeds. As a form of the catalyst for decomposing ammonia, a pellet-shaped or ring-shaped catalyst can be filled and used, but a honeycomb-shaped catalyst is preferable from the viewpoint of low pressure loss.
 昇温用装置で生成される水素含有ガスは、SOFCの昇温のために用いられる。そのため、昇温用装置の出口において、水素含有ガスは600~800℃と比較的高温となるのが好ましい。アンモニア分解用触媒は高温の条件下で用いられると失活しやすくなるので、SOFCが所定の温度に到達したときに、水素含有ガスを生成する装置を昇温用装置から運転用装置に切り替えるのが好ましい。SOFCが所定の温度に昇温するまで用いるアンモニア分解装置と、昇温後にSOFCで発電するために用いるアンモニア分解装置とを別にすることによって、アンモニア分解用触媒が失活して、発電効率が低下するのを防ぐことができる。 The hydrogen-containing gas generated by the temperature raising device is used for raising the temperature of the SOFC. For this reason, it is preferable that the hydrogen-containing gas be at a relatively high temperature of 600 to 800.degree. Since the ammonia decomposition catalyst is easily deactivated when used under high temperature conditions, when the SOFC reaches a predetermined temperature, the device that generates the hydrogen-containing gas is switched from the temperature raising device to the operation device. Is preferred. By separating the ammonia decomposing apparatus used until the SOFC is heated to a predetermined temperature and the ammonia decomposing apparatus used for generating power with the SOFC after the temperature rising, the ammonia decomposing catalyst is deactivated and the power generation efficiency is lowered. Can be prevented.
(アンモニア分解用触媒)
 昇温用装置に搭載されるアンモニア分解用触媒は、触媒活性成分と耐熱性酸化物を含むものが好ましいが、触媒活性成分の単位質量当たりの体積が大きい場合には触媒活性成分単独でもよい。触媒活性成分の単位質量当たりの体積が小さい触媒活性成分については耐熱性酸化物に担持及び/又は希釈して用いることが好ましい。耐熱性酸化物と併用することで触媒成分の耐熱性の向上が見込まれ、耐熱性酸化物上に分散されることで触媒成分の活性に関与する表面積の増加を見込まれるからである。
(Ammonia decomposition catalyst)
The catalyst for decomposing ammonia mounted in the temperature raising device preferably contains a catalytically active component and a heat-resistant oxide. However, when the volume per unit mass of the catalytically active component is large, the catalytically active component alone may be used. The catalytic active component having a small volume per unit mass of the catalytic active component is preferably used after being supported and / or diluted by a heat-resistant oxide. This is because the heat resistance of the catalyst component is expected to be improved by using it together with the heat resistant oxide, and the surface area involved in the activity of the catalyst component is expected to be increased by being dispersed on the heat resistant oxide.
 昇温用装置に搭載されるアンモニア分解用触媒は、触媒活性成分として鉄、コバルト、及びニッケルから選ばれる少なくとも1種の元素が含まれているのが好ましい。触媒中の触媒活性成分の含有量が5~80質量%であることが好ましく、より好ましくは10~70質量%、さらに好ましくは20~60質量%である。触媒活性成分の含有量が5質量%より少ないと、触媒活性成分量が不十分であり、SOFCに供給される水素量が不十分となるおそれがある。また、80質量%より多いと触媒活性成分の凝集が進行し、触媒が劣化するおそれがある。 It is preferable that the ammonia decomposition catalyst mounted on the temperature raising device contains at least one element selected from iron, cobalt, and nickel as a catalytically active component. The content of the catalytically active component in the catalyst is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, and further preferably 20 to 60% by mass. When the content of the catalytically active component is less than 5% by mass, the amount of the catalytically active component is insufficient, and the amount of hydrogen supplied to the SOFC may be insufficient. On the other hand, when the amount is more than 80% by mass, the aggregation of the catalytically active component proceeds and the catalyst may be deteriorated.
 耐熱性酸化物としては、一般的に触媒担体として用いられる多孔質酸化物を用いることができ、例えば、α-アルミナ、活性アルミナ、シリカ、ジルコニア、チタニア、ゼオライト、これらの複合酸化物であるシリカアルミナ、シリカチタニア、チタニアジルコニア等を用いることでき、触媒活性成分の残余質量を当該ハニカムに被覆することができる。 As the heat-resistant oxide, a porous oxide generally used as a catalyst carrier can be used. For example, α-alumina, activated alumina, silica, zirconia, titania, zeolite, silica which is a composite oxide thereof. Alumina, silica titania, titania zirconia, or the like can be used, and the honeycomb can be coated with the remaining mass of the catalytically active component.
 また、触媒中に助触媒成分として、銀、銅、パラジウム、プラチナから選ばれる少なくとも1種の金属を含有することが好ましい。触媒中における助触媒活性成分の含有量は0.1~5質量%であることが好ましく、より好ましくは1~3質量%である。助触媒成分の含有量が0.1質量%より少ないと、助触媒として十分な機能を果たすことができないおそれがある。一方、5質量%より多いと触媒の燃焼活性が上がりすぎてしまうおそれがある。 The catalyst preferably contains at least one metal selected from silver, copper, palladium and platinum as a promoter component. The content of the promoter active component in the catalyst is preferably 0.1 to 5% by mass, more preferably 1 to 3% by mass. When the content of the promoter component is less than 0.1% by mass, there is a possibility that a sufficient function as a promoter cannot be achieved. On the other hand, if it exceeds 5% by mass, the combustion activity of the catalyst may be excessively increased.
(触媒調製方法)
 触媒の調製は公知の方法を用いることができ、例えば、(1)触媒成分を湿式粉砕して得られるスラリーに当該ハニカムを浸し、余剰のスラリーを除き、乾燥、焼成することで触媒を調製する方法、(2)耐熱性酸化物を湿式粉砕して得られるスラリーに当該ハニカムを浸し、余剰のスラリーを除き、乾燥または焼成した後、触媒活性成分の水性液に浸し、余剰の液を除き、乾燥または焼成する方法、(3)耐熱性酸化物前駆体であるゾル状物、場合によっては触媒活性成分の水性液を含む液状物に当該ハニカムを浸し、余剰の液状物を除き、乾燥、焼成することで触媒を調製する方法である。乾燥温度は50~300℃、焼成温度は300~700℃であることが好ましい。
(Catalyst preparation method)
A known method can be used to prepare the catalyst. For example, (1) the catalyst is prepared by immersing the honeycomb in a slurry obtained by wet pulverizing the catalyst component, removing excess slurry, and drying and firing. Method, (2) Immerse the honeycomb in a slurry obtained by wet-grinding a heat-resistant oxide, remove excess slurry, dry or fire, then immerse in an aqueous catalyst active component solution, remove excess liquid, (3) A sol-like material that is a heat-resistant oxide precursor, and in some cases, the honeycomb is immersed in a liquid material containing an aqueous liquid of a catalytically active component, and excess liquid material is removed, followed by drying and firing. This is a method for preparing a catalyst. The drying temperature is preferably 50 to 300 ° C., and the firing temperature is preferably 300 to 700 ° C.
 当該湿式粉砕してスラリーを得るとき、二次粒子径が10μm以上の触媒成分粒子の個数分率が10%以下、好ましくは5%以下、更に好ましくは1%以下である水性スラリーを調製し、当該セラミックス成形体に塗布し、乾燥及び/又は焼成することが好ましい。10%を超えると触媒成分層の厚みが厚くなり、触媒成分層全体へのガスの拡散が遅くなるため、触媒成分層全体が有効に使われなくなり、十分な触媒活性を得ることができなくなるおそれがある。 When obtaining a slurry by wet pulverization, an aqueous slurry is prepared in which the number fraction of catalyst component particles having a secondary particle size of 10 μm or more is 10% or less, preferably 5% or less, more preferably 1% or less, It is preferable that the ceramic molded body is applied, dried and / or fired. If it exceeds 10%, the thickness of the catalyst component layer becomes thick, and the diffusion of gas to the entire catalyst component layer becomes slow, so that the entire catalyst component layer may not be used effectively, and sufficient catalytic activity may not be obtained. There is.
 また、該スラリーの算術平均径は5μm以下、好ましくは4μm以下、更に好ましくは3μm以下に調製することが好ましい。5μmを超えると触媒成分層の厚みが厚くなり、触媒成分層全体へのガスの拡散が遅くなるため、触媒成分層全体が有効に使われなくなり、十分な触媒活性を得ることができなくなるおそれがある。 The arithmetic average diameter of the slurry is preferably 5 μm or less, preferably 4 μm or less, and more preferably 3 μm or less. If the thickness exceeds 5 μm, the thickness of the catalyst component layer becomes thick and gas diffusion to the entire catalyst component layer becomes slow, so that the entire catalyst component layer may not be used effectively, and sufficient catalytic activity may not be obtained. is there.
 スラリーの粒度分布は、通常のスラリー粒度分布測定に用いられる方法を用いることができる。例えば、レーザー回折法を用いた粒度分布測定装置を用いて、スラリーの粒度分布を測定することができる。スラリーの粒度分布測定結果から、触媒成分スラリー中の粒子径に対する個数分率や、算術平均径を算出することができる。 As the particle size distribution of the slurry, a method used for usual slurry particle size distribution measurement can be used. For example, the particle size distribution of the slurry can be measured using a particle size distribution measuring apparatus using a laser diffraction method. From the particle size distribution measurement result of the slurry, the number fraction with respect to the particle diameter in the catalyst component slurry and the arithmetic average diameter can be calculated.
 上記手順により触媒成分を被覆するとき、被覆される量はスラリーの組成、粘度、固体成分濃度(液量に対する固体成分濃度)により異なるものとなるので、事前に上記調製方法をテストし、目標となる厚みとなることを確認することが好ましい。一回の操作で触媒成分が目標とする平均厚みよりも薄いときは、上記調製方法を複数回繰り返すことで目標となる厚みにすることができる。 When the catalyst component is coated by the above procedure, the amount to be coated varies depending on the slurry composition, viscosity, and solid component concentration (solid component concentration with respect to the liquid amount). It is preferable to confirm that the thickness becomes. When the catalyst component is thinner than the target average thickness in one operation, the target thickness can be obtained by repeating the above preparation method a plurality of times.
 また、スラリー粘度が高い場合には界面活性剤の添加、pH調整することで被覆するに好ましいスラリーに調整した後にハニカム成形体に被覆することもできる。 Further, when the slurry viscosity is high, the honeycomb formed body can be coated after adjusting to a slurry preferable for coating by adding a surfactant and adjusting pH.
(昇温用装置に供給されるガス)
 昇温用装置では、昇温用装置の出口でのガス温度を高温とすることによって、SOFCの昇温を促進するのが好ましいため、アンモニアの燃焼反応(発熱反応)に用いられる(昇温用装置に供給される)ガスは、アンモニアに対する酸素の体積比率(以下、酸素/アンモニアという)が比較的高い比率であることが好ましい。具体的には、酸素/アンモニアが0.19~0.25であることが好ましく、より好ましくは0.195~0.23である。酸素/アンモニアが0.19より低いと、昇温用装置から高温の出口ガスを得ることができず、SOFCの昇温を十分に促進できないおそれがある。また、酸素/アンモニアが0.25より高いと、アンモニアの燃焼反応が過剰となり、無駄にアンモニアを消費してしまうばかりでなく、アンモニア分解用触媒がより高温に曝されて失活してしまうおそれがある。
(Gas supplied to the temperature raising device)
In the temperature raising device, it is preferable to promote the temperature rise of the SOFC by increasing the gas temperature at the outlet of the temperature raising device, so that it is used for ammonia combustion reaction (exothermic reaction). The gas (supplied to the apparatus) preferably has a relatively high volume ratio of oxygen to ammonia (hereinafter referred to as oxygen / ammonia). Specifically, oxygen / ammonia is preferably 0.19 to 0.25, more preferably 0.195 to 0.23. If oxygen / ammonia is lower than 0.19, a high-temperature outlet gas cannot be obtained from the temperature-raising device, and the temperature rise of the SOFC may not be sufficiently promoted. Also, if oxygen / ammonia is higher than 0.25, the ammonia combustion reaction becomes excessive, and not only ammonia is consumed wastefully, but also the ammonia decomposition catalyst may be exposed to higher temperatures and deactivated. There is.
<運転用装置>
 昇温用装置と同様に、運転用装置にはアンモニア分解用触媒が設けられている。運転用装置で生成される水素含有ガスは、SOFCの発電のために用いられる。そのため、運転用装置の出口において、水素含有ガスは昇温用装置と比べ500℃程度と比較的低温で構わない。そうすると、運転用装置での反応温度は500~600℃と比較的低温で十分であるため、運転用装置で用いられるアンモニア分解用触媒を長時間用いたとしても失活は緩やかである。
<Operation device>
Similar to the temperature raising device, the operating device is provided with an ammonia decomposition catalyst. The hydrogen-containing gas produced by the operating device is used for SOFC power generation. Therefore, the hydrogen-containing gas may be at a relatively low temperature of about 500 ° C. compared to the temperature raising device at the outlet of the operating device. Then, since the reaction temperature in the operating device is sufficient at a relatively low temperature of 500 to 600 ° C., the deactivation is moderate even if the ammonia decomposition catalyst used in the operating device is used for a long time.
(アンモニア分解用触媒)
 運転用装置に搭載されるアンモニア分解用触媒としては、昇温用装置に搭載されるアンモニア分解用触媒と同じ触媒を用いてもよいが、上述のとおり、運転用装置の出口でのガス温度が比較的低温で抑えられていることが好ましいため、500~600℃程度の比較的低温での分解活性に優れるアンモニア分解用触媒とすることが好ましい。
(Ammonia decomposition catalyst)
As the ammonia decomposition catalyst mounted on the operation device, the same catalyst as the ammonia decomposition catalyst mounted on the temperature raising device may be used, but as described above, the gas temperature at the outlet of the operation device is Since it is preferably suppressed at a relatively low temperature, an ammonia decomposition catalyst having excellent decomposition activity at a relatively low temperature of about 500 to 600 ° C. is preferable.
 運転用装置に搭載されるアンモニア分解用触媒にも、触媒活性成分として鉄、コバルト、及びニッケルから選ばれる少なくとも1種の元素が含まれているのが好ましい。上述のとおり、運転用装置の出口において、水素含有ガスは比較的低温で構わないため、アンモニアの分解反応(吸熱反応)に用いられるアンモニアの比率が比較的高い(アンモニアの燃焼反応(発熱反応)に用いられるアンモニアの比率が比較的低い)のが好ましく、運転用装置で分解反応を促進するためには、運転用装置のアンモニア分解用触媒における触媒活性成分の含有率が、昇温用装置のアンモニア分解用触媒における上記触媒活性成分の含有率よりも高いことが好ましい。上記触媒活性成分の含有率が高いほど触媒粒子が凝集しやすくなるが、運転用装置の出口における水素含有ガスの温度は、昇温用装置の出口における水素含有ガスの温度と比べると低温で構わない。従って、上記触媒活性成分の含有率が高い場合であっても、触媒粒子の凝集を抑えることができる。運転用装置のアンモニア分解用触媒における触媒中の触媒活性成分の含有量が30~90質量%であることが好ましく、より好ましくは45~85質量%、さらに好ましくは60~80質量%である。 It is preferable that the ammonia decomposition catalyst mounted on the operation apparatus also contains at least one element selected from iron, cobalt, and nickel as a catalytic active component. As described above, since the hydrogen-containing gas may be at a relatively low temperature at the outlet of the operating device, the ratio of ammonia used in the ammonia decomposition reaction (endothermic reaction) is relatively high (ammonia combustion reaction (exothermic reaction)). In order to promote the decomposition reaction in the operating device, the content of the catalytically active component in the ammonia decomposition catalyst of the operating device is It is preferable that the content of the catalytically active component in the ammonia decomposition catalyst is higher. The higher the content of the catalytically active component, the more easily the catalyst particles aggregate. However, the temperature of the hydrogen-containing gas at the outlet of the operating device may be lower than the temperature of the hydrogen-containing gas at the outlet of the temperature raising device. Absent. Therefore, even if the content rate of the said catalyst active component is high, aggregation of a catalyst particle can be suppressed. The content of the catalytically active component in the catalyst in the ammonia decomposition catalyst of the operating device is preferably 30 to 90% by mass, more preferably 45 to 85% by mass, and still more preferably 60 to 80% by mass.
 運転用装置に搭載されるアンモニア分解用触媒には、助触媒成分として、例えば、アルカリ金属、アルカリ土類金属が含まれていることが好ましい。これらの金属は触媒の分解反応活性を向上させることから、水素生成量の増加や触媒の高寿命化に有効である。助触媒成分の含有量は、触媒全体の1~5質量%程度で、少なすぎると分解反応活性化の効果が得られず、多すぎると燃焼活性が落ちてしまうおそれがある。 It is preferable that the catalyst for decomposing ammonia mounted in the operation device contains, for example, an alkali metal or an alkaline earth metal as a promoter component. Since these metals improve the decomposition reaction activity of the catalyst, they are effective in increasing the amount of hydrogen generation and extending the life of the catalyst. The content of the cocatalyst component is about 1 to 5% by mass of the entire catalyst. If it is too small, the effect of activating the decomposition reaction cannot be obtained, and if it is too large, the combustion activity may be reduced.
(触媒調製方法)
 運転用装置に搭載されるアンモニア分解用触媒とは、昇温用装置に搭載されるアンモニア分解用触媒と同様の方法で調製することができる。
(Catalyst preparation method)
The ammonia decomposition catalyst mounted on the operation apparatus can be prepared in the same manner as the ammonia decomposition catalyst mounted on the temperature raising apparatus.
(運転用装置に供給されるガス)
 運転用装置で生成される水素含有ガスは、SOFCの発電のために用いられるので、運転用装置の出口での水素濃度が比較的高いのが好ましい。そのため、アンモニアの分解反応(吸熱反応)に用いられるアンモニアの比率が比較的高い(アンモニアの燃焼反応(発熱反応)に用いられるアンモニアの比率が比較的低い)のが好ましい。すなわち、運転用装置に供給されるガスは、酸素/アンモニアが比較的低い比率であることが好ましい。具体的には、酸素/アンモニアが0.08~0.17であることが好ましく、より好ましくは0.09~0.165である。酸素/アンモニアが0.08より低いと、オートサーマルリフォーミングに必要な熱量を十分に得ることができないおそれがあり、酸素/アンモニアが0.17より高いとアンモニアの燃焼反応が増加し、SOFCに供給する水素含有ガスにおける水素の比率が少なくなる上に、アンモニア分解用触媒が失活するおそれがある。
(Gas supplied to the operating device)
Since the hydrogen-containing gas generated in the operating device is used for SOFC power generation, the hydrogen concentration at the outlet of the operating device is preferably relatively high. Therefore, it is preferable that the ratio of ammonia used for ammonia decomposition reaction (endothermic reaction) is relatively high (the ratio of ammonia used for ammonia combustion reaction (exothermic reaction) is relatively low). That is, it is preferable that the gas supplied to the operating device has a relatively low ratio of oxygen / ammonia. Specifically, oxygen / ammonia is preferably 0.08 to 0.17, more preferably 0.09 to 0.165. If the oxygen / ammonia is lower than 0.08, there is a risk that the amount of heat necessary for autothermal reforming cannot be obtained sufficiently. If the oxygen / ammonia is higher than 0.17, the combustion reaction of ammonia increases, resulting in SOFC. The ratio of hydrogen in the supplied hydrogen-containing gas decreases, and the ammonia decomposition catalyst may be deactivated.
<SOFC>
 本発明に用いるSOFCの形態について説明する。通常、SOFCのセルは、固体酸化物電解質と当該電解質の一方の面に燃料極を配し他方の面に空気極を配する。
<SOFC>
The form of the SOFC used in the present invention will be described. Usually, a SOFC cell has a solid oxide electrolyte and a fuel electrode on one surface of the electrolyte and an air electrode on the other surface.
(燃料極)
 燃料極は、燃料ガスと、空気極で生じて固体酸化物電解質を介して燃料極へ移動してきた酸素イオンとを反応させる極であり、反応後には燃料排ガスを排出する。当該燃料極は、燃料ガスに用いるSOFCで通常使用される燃料極材料を用いることができ、一般的には、燃料極電極触媒及び固体電解質粒子により形成される。
(Fuel electrode)
The fuel electrode is a pole for reacting the fuel gas and oxygen ions generated at the air electrode and moving to the fuel electrode via the solid oxide electrolyte, and exhausts the fuel exhaust gas after the reaction. As the fuel electrode, a fuel electrode material usually used in SOFC used for fuel gas can be used, and it is generally formed by a fuel electrode catalyst and solid electrolyte particles.
 燃料極電極触媒の材料は、本発明の実施において特に限定されるものではなく、SOFCに一般的に使用されている燃料極用の電極触媒を、使用する燃料ガスに応じて選択でき、具体的には、コバルト、ニッケルといった金属、あるいはそれらの合金が選択される。 The material of the fuel electrode electrode catalyst is not particularly limited in the practice of the present invention, and an electrode catalyst for a fuel electrode generally used in SOFC can be selected according to the fuel gas used. For this, a metal such as cobalt or nickel, or an alloy thereof is selected.
 固体電解質粒子は、固体酸化物電解質中を移動してきた酸素イオンを燃料極中に拡散させるものである。その材質は、特に限定されるものではなく、例えば、固体酸化物電解質で用いることができる材料(後述)が使用される。固体電解質粒子は、必要ならば、2種類以上を混合して使用してもよい。 The solid electrolyte particles diffuse oxygen ions that have moved through the solid oxide electrolyte into the fuel electrode. The material is not particularly limited, and for example, a material (described later) that can be used for a solid oxide electrolyte is used. If necessary, two or more kinds of solid electrolyte particles may be mixed and used.
 固体電解質粒子は、その比表面積が1~20m2/gの範囲のものが燃料極の気孔形成に好ましく、3~15m2/gの範囲のものが特に好ましい。比表面積が1m2/gを下回ると燃料極中に大きな気孔が局所的にできやすくなり、燃料ガスの流配が不均一になる不具合が発生しやすくなる。反対に比表面積が20m2/gを上回ると焼結性が大きくなるため気孔量が少なくなり、燃料ガスの流配が不十分になる不具合が発生しやすくなる。 Solid electrolyte particles having a specific surface area in the range of 1 to 20 m 2 / g are preferred for forming pores in the fuel electrode, and those in the range of 3 to 15 m 2 / g are particularly preferred. When the specific surface area is less than 1 m <2> / g, large pores are likely to be locally formed in the fuel electrode, and the problem of non-uniform fuel gas flow tends to occur. On the other hand, if the specific surface area exceeds 20 m 2 / g, the sinterability increases, the amount of pores decreases, and the problem of insufficient fuel gas flow tends to occur.
 燃料極電極触媒と固体電解質粒子の混合比は、通常SOFCで使用される範囲であればよく、例えば燃料極電極触媒/固体電解質粒子の割合が質量比で20/80~60/40のものを用いることができる。 The mixing ratio of the fuel electrode electrode catalyst and the solid electrolyte particles may be within the range normally used in SOFC. For example, the ratio of the fuel electrode electrode catalyst / solid electrolyte particles is 20/80 to 60/40 by mass ratio. Can be used.
 燃料極の厚さは、いろいろに変更することができるが、通常、電解質支持型セル(ESC)や空気極支持型セル(CSC)および単室型の場合は約20~200μmであり、好ましくは約30~120μmである。一方、燃料極支持型セル(ASC)の場合のように燃料極支持基板と燃料極活性層とを1つの燃料極と見なす場合は、通常その厚さは200~2000μmであり、好ましくは300~1000μmである。燃料極が薄すぎると、燃料極本来の機能を得ることができなくなる。また、燃料極が厚すぎると、ガスの拡散が不十分となりセルの性能が低下する。 The thickness of the fuel electrode can be changed in various ways, but is usually about 20 to 200 μm in the case of an electrolyte-supported cell (ESC), an air-electrode-supported cell (CSC) and a single chamber type, preferably About 30 to 120 μm. On the other hand, when the anode supporting substrate and the anode active layer are regarded as one anode, as in the anode supporting cell (ASC), the thickness is usually 200 to 2000 μm, preferably 300 to 1000 μm. If the fuel electrode is too thin, the original function of the fuel electrode cannot be obtained. On the other hand, if the fuel electrode is too thick, gas diffusion is insufficient and cell performance is degraded.
 燃料極は、燃料排ガス中に含まれる未使用の燃料ガスを減少させるために、さらに改質触媒を含んでもよい。改質触媒には公知のものを使用することができる。 The fuel electrode may further contain a reforming catalyst in order to reduce unused fuel gas contained in the fuel exhaust gas. A known catalyst can be used as the reforming catalyst.
(燃料極の形成方法)
 燃料極は、薄膜、フィルム等の形成に慣用されている任意の技法を使用して形成することができる。例えば、すでに形成してある固体酸化物電解質の表面に電極の材料を含むペーストを所定のパターンで塗布し、乾燥後に焼成することによって容易に形成することができる。ペーストの塗布には、例えば、スクリーン印刷法などの印刷法を有利に使用することができる。焼成温度は、使用する材料の特徴などに応じて広い範囲で変更することができるが、通常、約900~1500℃の範囲である。もちろん、必要ならば、その他の手法を使用して形成してもよい。
(Method of forming fuel electrode)
The anode can be formed using any technique commonly used for forming thin films, films, and the like. For example, it can be easily formed by applying a paste containing an electrode material in a predetermined pattern on the surface of a solid oxide electrolyte that has already been formed, and baking it after drying. For the application of the paste, for example, a printing method such as a screen printing method can be advantageously used. The firing temperature can be varied in a wide range depending on the characteristics of the material used, but is usually in the range of about 900 to 1500 ° C. Of course, other methods may be used if necessary.
(空気極)
 空気極は、空気の他、酸素を含むガスなどが導入される極であり、当該極において酸素は酸素イオンとなり、固体酸化物電解質を介して燃料極に移動する。その材料としては、通常SOFCに用いられる空気極材料を用いることができ、一般的には空気極電極触媒と固体電解質粒子により形成される。
(Air electrode)
The air electrode is an electrode into which oxygen or a gas containing oxygen is introduced in addition to air. In the electrode, oxygen becomes oxygen ions and moves to the fuel electrode via the solid oxide electrolyte. As the material, an air electrode material usually used for SOFC can be used, and it is generally formed of an air electrode electrode catalyst and solid electrolyte particles.
 空気極電極触媒としては公知のものを用いることができ、例えばマンガン系、フェライト系、コバルト系やニッケル系ペロブスカイト型構造の酸化物が好ましく、例えば、ストロンチウム(Sr)等の周期律表第2族元素が添加されたランタンストロンチウムマンガナイト(LaXr1-X MnO3)、ランタンストロンチウムコバルタイト(LaXSr1-XCoO3)、ランタンストロンチウムコバルトフェライト(LaXSr1-X CoYFe1-Y O3)、ランタンニッケルフェライト(LaNiYFe1-Y O3)などが挙げられる。 As the air electrode catalyst, a known one can be used. For example, an oxide having a manganese-based, ferrite-based, cobalt-based or nickel-based perovskite structure is preferable. For example, a group 2 of the periodic table such as strontium (Sr) is used. lanthanum strontium manganite element is added (La X S r1-X MnO 3), lanthanum strontium cobaltite (La X Sr 1-X CoO 3), lanthanum strontium cobalt ferrite (La X Sr 1-X Co Y Fe 1 -Y O 3 ), lanthanum nickel ferrite (LaNi Y Fe 1 -Y O 3 ) and the like.
 空気極中に含有される固体電解質粒子は、燃料極で用いることのできる固体電解質粒子と同様の材料を使用できる。 The solid electrolyte particles contained in the air electrode can be the same material as the solid electrolyte particles that can be used in the fuel electrode.
 空気極の厚さは、いろいろに変更することができるが、通常、約20~200μmであり、好ましくは約30~120μmである。空気極が薄すぎると、空気極本来の機能を得ることができなくなり、空気極反応が不十分となり出力が低下する。 The thickness of the air electrode can be variously changed, but is usually about 20 to 200 μm, preferably about 30 to 120 μm. If the air electrode is too thin, the original function of the air electrode cannot be obtained, the air electrode reaction becomes insufficient, and the output decreases.
 空気極は、燃料極と同様の形成方法で形成できる。燃料極と空気極の形成方法は同一でもよいし異なっていてもよい。 The air electrode can be formed by the same formation method as the fuel electrode. The formation method of the fuel electrode and the air electrode may be the same or different.
(固体酸化物電解質)
 固体酸化物電解質の一方の面に燃料極が設置されており、他方の面に空気極が設置されている場合、空気極で生成した酸素イオンが燃料極に移動する際に固体酸化物電解質中を通過する。
(Solid oxide electrolyte)
When the fuel electrode is installed on one side of the solid oxide electrolyte and the air electrode is installed on the other side, the oxygen ions generated in the air electrode move into the fuel electrode. Pass through.
 固体酸化物電解質の材料としては、SOFCの固体酸化物電解質として公知のものを使用することができ、例えば、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、これらのジルコニアにさらにCe、Al等をドープしたジルコニア系粉末、SDC(サマリアドープドセリア)、GDC(ガドリアドープドセリア)等のドープセリア系粉末、LSGM(ランタンガレート)系粉末、酸化ビスマス系粉末などの酸素イオン伝導性セラミックス材料を用いることができる。これらの固体酸化物電解質は、必要ならば、2種類以上を混合して使用してもよい。 As a material for the solid oxide electrolyte, those known as SOFC solid oxide electrolytes can be used. For example, YSZ (yttria stabilized zirconia), ScSZ (scandia stabilized zirconia), and zirconia in addition to Ce. Oxygen ion conductivity such as zirconia powder doped with Al, etc., doped ceria powder such as SDC (Samaria doped ceria), GDC (gadria doped ceria), LSGM (lanthanum gallate) powder, bismuth oxide powder, etc. Ceramic materials can be used. These solid oxide electrolytes may be used in combination of two or more if necessary.
 固体酸化物電解質の形状はセルの形状に依存するが、特に規定されない。セルの形状は、一般に平板型セル、円筒型セル、セグメント型セルなどが挙げられ、固体酸化物電解質は各々の形状に合わせて直接形成されるか、支持体上にスクリーン印刷法、スピンコート法などのシート、薄膜、フィルム等の形成に慣用されている任意の技法を用いて形成される。例えばグリーンシートプロセスを使用して形成する場合、上記固体酸化物電解質の材料のペーストを所定のパターンで塗布し、乾燥してグリーンシートを形成した後、そのグリーンシートを高温で焼成することによって平板型の固体酸化物電解質を容易に形成することができる。ペーストの塗布には、例えば、スクリーン印刷法などの印刷法を有利に使用することができる。具体的には、平板状の仮支持体の片面に固体酸化物電解質材料のペーストを所定のパターンで印刷し、乾燥及び焼成することによって膜状の固体酸化物電解質を形成することができる。焼成温度は、使用する固体酸化物電解質材料の特徴などに応じて広い範囲で変更することができるが、通常、約1200~1500℃の範囲である。 The shape of the solid oxide electrolyte depends on the shape of the cell, but is not specified. The shape of the cell generally includes a flat plate cell, a cylindrical cell, a segmented cell, etc., and the solid oxide electrolyte is directly formed according to each shape, or screen printing method, spin coating method on the support. It is formed using any technique conventionally used for forming a sheet, a thin film, a film, and the like. For example, when forming using a green sheet process, the solid oxide electrolyte material paste is applied in a predetermined pattern, dried to form a green sheet, and then the green sheet is fired at a high temperature to obtain a flat plate. Type solid oxide electrolyte can be formed easily. For the application of the paste, for example, a printing method such as a screen printing method can be advantageously used. Specifically, a solid oxide electrolyte material can be formed by printing a paste of a solid oxide electrolyte material in a predetermined pattern on one side of a flat temporary support, and drying and firing. The firing temperature can be varied in a wide range depending on the characteristics of the solid oxide electrolyte material used, but is usually in the range of about 1200 to 1500 ° C.
固体酸化物電解質の厚さは一般的に5~500μmの範囲であり、電解質支持型セル(ESC)の場合は50~500μm、好ましくは100~400μm、燃料極支持型セル(ASC)や空気極支持型セル(CSC)の場合は5~100μm、好ましくは10~50μmである。 The thickness of the solid oxide electrolyte is generally in the range of 5 to 500 μm. In the case of an electrolyte-supported cell (ESC), the thickness is 50 to 500 μm, preferably 100 to 400 μm. The fuel electrode-supported cell (ASC) or air electrode In the case of a support type cell (CSC), the thickness is 5 to 100 μm, preferably 10 to 50 μm.
(SOFCセルの形成)
 SOFCセルは、従来の燃料電池と同様、例えば、固体酸化物電解質と、固体酸化物電解質の一方の面に形成された燃料極と、固体酸化物電解質を挟んで燃料極と反対の面に形成された空気極とを含むセルとして構成される。
(Formation of SOFC cell)
The SOFC cell is formed on the surface opposite to the fuel electrode with the solid oxide electrolyte and the fuel electrode formed on one surface of the solid oxide electrolyte, for example, as in the conventional fuel cell. Configured as a cell including the air electrode formed.
 SOFCのセルの形状は、平板型セル、円筒型セル、セグメント型セルなど一般的に用いられる形状であればよい。例えば、平板型セルとしてはESC、ASC、CSCが挙げられる。また、燃料極と空気極が固体酸化物電解質を挟んで形成される二室型燃料電池であることが好ましいが、燃料極と空気極のどちらもが固体酸化物電解質の一方の面に形成されている単室型燃料電池であってもよい。単室型のセルとして構成する場合には、固体酸化物電解質の少なくとも一方の面に燃料極と空気極の組が1組以上形成されたセルとして構成される。円筒型セルとしては、円筒縦縞型セルと円筒横縞型セルが挙げられ、さらにその中に円筒平板型セルを含むことができる。要するに、本実施形態の実施において、SOFCは、刊行物等で公知な構造及び現在実施されている構造を含めた様々な構造を有することができる。 The shape of the SOFC cell may be a generally used shape such as a flat plate cell, a cylindrical cell, or a segment cell. For example, ESC, ASC, and CSC are mentioned as a flat cell. In addition, it is preferable that the fuel electrode and the air electrode be a two-chamber fuel cell in which a solid oxide electrolyte is sandwiched, but both the fuel electrode and the air electrode are formed on one surface of the solid oxide electrolyte. The single-chamber fuel cell may be used. When configured as a single chamber type cell, it is configured as a cell in which one or more pairs of a fuel electrode and an air electrode are formed on at least one surface of the solid oxide electrolyte. Examples of the cylindrical cell include a cylindrical vertical stripe cell and a cylindrical horizontal stripe cell, and a cylindrical flat plate cell can be included therein. In short, in the implementation of the present embodiment, the SOFC can have various structures including structures known in publications and structures currently implemented.
 燃料極および空気極は、内部に燃料ガスが充分に拡散でき、かつ充分な電気伝導性を維持できる程度に、多孔質に形成される。その気孔率は、いろいろに変更することができるが、通常、約10~60%であることが好ましい。 The fuel electrode and the air electrode are formed to be porous so that the fuel gas can be sufficiently diffused therein and sufficient electric conductivity can be maintained. The porosity can be changed in various ways, but is usually preferably about 10 to 60%.
 また、本実施形態において、燃料極および/または空気極と固体酸化物電解質との間には、バリア層などの中間層を設置してもよい。 In this embodiment, an intermediate layer such as a barrier layer may be provided between the fuel electrode and / or the air electrode and the solid oxide electrolyte.
<燃料ガス>
 燃料ガスには、アンモニア分解装置の出口ガス(アンモニアを分解することによって生成された水素含有ガス)を用いる。そのため、燃料ガスには、装置内でアンモニア分解反応により発生した窒素及び水素の他に、アンモニア分解装置において、反応せずに残存しているアンモニアや水蒸気等が含まれていてもよい。また、発電効率が落ちない程度に希ガスなどの不活性ガスが含まれていてもよい。
<Fuel gas>
As the fuel gas, an outlet gas of an ammonia decomposing apparatus (a hydrogen-containing gas generated by decomposing ammonia) is used. Therefore, in addition to nitrogen and hydrogen generated by the ammonia decomposition reaction in the apparatus, the fuel gas may contain ammonia, water vapor, or the like remaining without reacting in the ammonia decomposition apparatus. Further, an inert gas such as a rare gas may be included to such an extent that the power generation efficiency does not decrease.
<酸化剤ガス>
 酸化剤ガスとしては、燃料ガスを酸化する能力を有するものであれば特に問わないが、酸素を主に含有するガスのほか、空気などを用いることができる。
<Oxidant gas>
The oxidant gas is not particularly limited as long as it has an ability to oxidize fuel gas, but air or the like can be used in addition to a gas mainly containing oxygen.
<各電極の反応>
 燃料極に燃料ガスを導入し、空気極に酸化剤ガスを導入することで発電を行うことができる。燃料電池としての発電自体は、各電極上において800~1000℃程度で、以下の反応式で進行する。
燃焼極:H + O2- → HO + 2e
空気極:O + 4e→ 2O2-
<Reaction of each electrode>
Electric power can be generated by introducing fuel gas into the fuel electrode and introducing oxidant gas into the air electrode. The power generation itself as a fuel cell proceeds at about 800 to 1000 ° C. on each electrode by the following reaction formula.
Combustion electrode: H 2 + O 2− → H 2 O + 2e
Air electrode: O 2 + 4e → 2O 2−
<発電方法>
 本実施形態の燃料電池システム及び発電装置を用いた発電方法の一例を以下に記載する。ここでは、1機の昇温用装置と、1機の運転用装置と、昇温用装置又は運転用装置のいずれか一方で生成された水素含有ガスを燃料として運転されるSOFCとを備えた発電装置を用いて発電を行うものとする。
<Power generation method>
An example of a power generation method using the fuel cell system and the power generation apparatus of the present embodiment will be described below. Here, it was provided with one device for temperature increase, one device for operation, and an SOFC operated with hydrogen-containing gas generated by either the temperature increase device or the operation device as fuel. Power generation is performed using a power generation device.
 発電方法は、昇温用装置にアンモニアに対する酸素の体積比率(以下、酸素/アンモニアという)が0.19以上である混合ガスを供給する第1工程と、水素含有ガスを生成する装置を昇温用装置から運転用装置に切り替える第2工程と、運転用装置に酸素/アンモニアが0.17以下である混合ガスを供給する第3工程とを含んでおり、第2工程は、SOFCが上記所定の温度に到達したときに行われる。 The power generation method includes a first step of supplying a gas mixture having a volume ratio of oxygen to ammonia (hereinafter referred to as oxygen / ammonia) of 0.19 or more to a temperature raising device, and raising the temperature of the device that generates a hydrogen-containing gas. The second step of switching from the operating device to the operating device and the third step of supplying the operating device with a mixed gas having oxygen / ammonia of 0.17 or less are included. When the temperature of is reached.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is implemented with modifications within a range that can be adapted to the purpose described above and below. All of which are within the scope of the present invention.
<アンモニア分解装置1>
(アンモニア分解用触媒Aの作製)
 硝酸コバルト六水和物131.0g、硝酸マンガン六水和物34.1gおよび硝酸銀7.56gを秤量し、純水200mLに溶解した。得られた金属硝酸塩溶液中にγ-アルミナ51.6gを投入し、ウォーターバスで100℃に加熱して蒸発乾固させた。得られた固体を空気雰囲気下、500℃で3時間焼成することで、触媒成分を得た。触媒成分をアルミナ乳鉢で粗粉砕した後、触媒成分粉末100g、純水100g、およびコロイダルシリカゾル10gを混合し、ボールミルで6時間、湿式粉砕した。1平方インチ辺り600セルを有する六角セルコージェライトハニカム成形体に、得られた触媒成分のスラリーをウォッシュコート法によってコートし、余分なスラリーをエアブローによって吹き飛ばし、120℃で乾燥させる工程を6回繰り返し行い、その後500℃で1時間焼成を行うことによって、触媒成分をコートしたハニカム状のアンモニア分解用触媒Aを得た。得られたアンモニア分解用触媒Aの触媒担持量はハニカム成形体1L当たり300gであった。また、触媒活性成分含有率は35質量%、助触媒成分含有率は5質量%であった。
<Ammonia decomposition device 1>
(Preparation of ammonia decomposition catalyst A)
Cobalt nitrate hexahydrate 131.0 g, manganese nitrate hexahydrate 34.1 g and silver nitrate 7.56 g were weighed and dissolved in 200 mL of pure water. Into the obtained metal nitrate solution, 51.6 g of γ-alumina was added and heated to 100 ° C. in a water bath to evaporate to dryness. The obtained solid was calcined at 500 ° C. for 3 hours in an air atmosphere to obtain a catalyst component. After roughly pulverizing the catalyst component in an alumina mortar, 100 g of the catalyst component powder, 100 g of pure water, and 10 g of colloidal silica sol were mixed and wet pulverized with a ball mill for 6 hours. A hexagonal cell cordierite honeycomb molded body having 600 cells per square inch is coated with the obtained catalyst component slurry by a wash coat method, excess slurry is blown off by air blow, and the process is dried at 120 ° C. six times. Thereafter, firing was performed at 500 ° C. for 1 hour to obtain a honeycomb-shaped ammonia decomposition catalyst A coated with a catalyst component. The amount of catalyst supported on the obtained ammonia decomposition catalyst A was 300 g per liter of the honeycomb formed body. Moreover, the catalyst active component content rate was 35 mass%, and the promoter component content rate was 5 mass%.
(アンモニア分解装置1の作製)
 アンモニア分解用触媒Aの体積が20mLとなるようにして、アンモニア分解装置1を作製した。
(Preparation of ammonia decomposition apparatus 1)
The ammonia decomposing apparatus 1 was prepared such that the volume of the ammonia decomposing catalyst A was 20 mL.
<アンモニア分解装置2>
(アンモニア分解用触媒Bの作製)
 硝酸コバルト六水和物291.0g、硝酸セリウム六水和物43.4gおよびジルコニアゾル(ZrO2換算25質量%濃度)懸濁液49.3gを秤量し、純水1Lに溶解して、金属硝酸塩水溶液を調製した。水酸化カリウム147.6gを純水2Lに溶解し、水酸化カリウム水溶液を調製した。水酸化カリウム水溶液を撹拌しながら、金属硝酸塩水溶液を滴下した。滴下終了後、得られた懸濁液を吸引ろ過して、純水で5回水洗を行い、沈殿物を得た。得られた沈殿物を120℃の乾燥機で一晩乾燥させた後、空気雰囲気下、450℃で3時間焼成することで、触媒成分を得た。触媒成分をアルミナ乳鉢で粗粉砕した後、触媒成分粉100g、純水100g、水酸化セシウム5.0g、およびコロイダルシリカゾル10gを混合し、ボールミルで6時間、湿式粉砕した。1平方インチ辺り600セルを有する六角セルコージェライトハニカム成形体に、得られた触媒成分のスラリーをウォッシュコート法によってコートし、余分なスラリーをエアブローによって吹き飛ばし、120℃で乾燥させる工程を6回繰り返し行い、その後500℃で1時間焼成を行うことによって、触媒成分をコートしたハニカム状のアンモニア分解用触媒Bを得た。得られたアンモニア分解用触媒Bの触媒担持量はハニカム成形体1L当たり280gであった。また、触媒活性成分含有率は73%であった。
<Ammonia decomposition device 2>
(Preparation of ammonia decomposition catalyst B)
291.0 g of cobalt nitrate hexahydrate, 43.4 g of cerium nitrate hexahydrate, and 49.3 g of zirconia sol (25 mass% concentration in terms of ZrO 2 ) suspension were weighed and dissolved in 1 L of pure water, A nitrate aqueous solution was prepared. 147.6 g of potassium hydroxide was dissolved in 2 L of pure water to prepare an aqueous potassium hydroxide solution. While stirring the potassium hydroxide aqueous solution, the metal nitrate aqueous solution was added dropwise. After completion of dropping, the obtained suspension was subjected to suction filtration, and washed with pure water 5 times to obtain a precipitate. The obtained precipitate was dried overnight at 120 ° C. and then calcined at 450 ° C. for 3 hours in an air atmosphere to obtain a catalyst component. After roughly pulverizing the catalyst component in an alumina mortar, 100 g of catalyst component powder, 100 g of pure water, 5.0 g of cesium hydroxide, and 10 g of colloidal silica sol were mixed, and wet pulverized with a ball mill for 6 hours. A hexagonal cell cordierite honeycomb molded body having 600 cells per square inch is coated with the obtained catalyst component slurry by a wash coat method, excess slurry is blown off by air blow, and the process is dried at 120 ° C. six times. Thereafter, firing was performed at 500 ° C. for 1 hour to obtain a honeycomb-shaped ammonia decomposition catalyst B coated with a catalyst component. The amount of catalyst supported on the obtained ammonia decomposition catalyst B was 280 g per liter of the honeycomb formed body. Further, the catalytic active component content was 73%.
(アンモニア分解装置2の作製)
 アンモニア分解用触媒Bの体積が20mLとなるようにして、アンモニア分解装置2を作製した。
(Preparation of ammonia decomposition apparatus 2)
The ammonia decomposing apparatus 2 was prepared such that the volume of the ammonia decomposing catalyst B was 20 mL.
<アンモニア分解装置2’>
 アンモニア分解装置2と全く同じ方法で作製した。
<Ammonia decomposition device 2 '>
It was produced by exactly the same method as the ammonia decomposition apparatus 2.
<実施例1>
(アンモニア分解反応)
 アンモニア分解装置1に、アンモニアを毎分3.32Lの流量、空気を毎分3.66Lの流量で供給した。供給ガスを電気ヒーターで200℃に加熱し、アンモニア分解用触媒上でのオートサーマルリフォーミング反応を開始した。このときの供給ガス中の酸素/アンモニアは0.23であった。また、アンモニア分解装置1の出口ガス(水素含有ガス)は毎分9.54Lの流量で、温度は750℃であった。
<Example 1>
(Ammonia decomposition reaction)
Ammonia was supplied to the ammonia decomposition apparatus 1 at a flow rate of 3.32 L / min and air at a flow rate of 3.66 L / min. The supplied gas was heated to 200 ° C. with an electric heater to start an autothermal reforming reaction on the ammonia decomposition catalyst. At this time, oxygen / ammonia in the supply gas was 0.23. Further, the outlet gas (hydrogen-containing gas) of the ammonia decomposing apparatus 1 was a flow rate of 9.54 L / min and the temperature was 750 ° C.
(SOFC起動昇温時)
 アンモニア分解装置1の出口ガスを直接、SOFC(セルサイズ:50mm×50mm)に供給しつつ、同時にSOFC加熱用ヒーターでSOFCセルを作動温度(650℃)まで加熱した。室温から作動温度への昇温には8分を要した。
(At SOFC startup temperature rise)
While supplying the outlet gas of the ammonia decomposing apparatus 1 directly to the SOFC (cell size: 50 mm × 50 mm), the SOFC cell was simultaneously heated to the operating temperature (650 ° C.) with the SOFC heater. It took 8 minutes to raise the temperature from room temperature to the operating temperature.
(SOFC定常運転時)
 SOFCセルを作動温度(650℃)まで昇温した後、アンモニア分解装置1からアンモニア分解装置2に切り替えた。同時に、供給ガスについては、アンモニアを毎分3.32Lの流量、空気を毎分2.49Lの流量に変更した。このときの酸素/アンモニアは0.16であった。また、分解触媒反応によるアンモニア転化率は83%であった。
(During SOFC steady operation)
After raising the temperature of the SOFC cell to the operating temperature (650 ° C.), the ammonia decomposition apparatus 1 was switched to the ammonia decomposition apparatus 2. At the same time, the supply gas was changed to a flow rate of 3.32 L / min for ammonia and a flow rate of 2.49 L / min for air. At this time, oxygen / ammonia was 0.16. Further, the ammonia conversion rate by the decomposition catalyst reaction was 83%.
<実施例2>
 アンモニア分解装置2に、アンモニアを毎分3.32Lの流量、空気を毎分3.36Lの流量で供給した。供給ガスを電気ヒーターで200℃に加熱し、アンモニア分解用触媒上でのオートサーマルリフォーミング反応を開始した。このときの供給ガス中の酸素/アンモニアは0.21であった。また、アンモニア分解装置2の出口ガス(水素含有ガス)は毎分9.28Lの流量で、温度は650℃であった。
<Example 2>
Ammonia was supplied to the ammonia decomposition apparatus 2 at a flow rate of 3.32 L / min and air at a flow rate of 3.36 L / min. The supplied gas was heated to 200 ° C. with an electric heater to start an autothermal reforming reaction on the ammonia decomposition catalyst. At this time, oxygen / ammonia in the supply gas was 0.21. Further, the outlet gas (hydrogen-containing gas) of the ammonia decomposing apparatus 2 had a flow rate of 9.28 L / min, and the temperature was 650 ° C.
(SOFC起動昇温時)
 アンモニア分解装置2の出口ガスを直接、SOFC(セルサイズ:50mm×50mm)に供給しつつ、SOFC加熱用ヒーターでSOFCセルを作動温度(650℃)まで加熱した。室温から作動温度への昇温には10分を要した。
(At SOFC startup temperature rise)
While supplying the outlet gas of the ammonia decomposing apparatus 2 directly to the SOFC (cell size: 50 mm × 50 mm), the SOFC cell was heated to the operating temperature (650 ° C.) with the heater for SOFC heating. It took 10 minutes to raise the temperature from room temperature to the operating temperature.
(SOFC定常運転時)
 SOFCセルを作動温度(650℃)まで昇温した後、アンモニア分解装置2からアンモニア分解装置2’に切り替えた。同時に、供給ガスについては、アンモニアを毎分3.32Lの流量、空気を毎分2.49Lの流量に変更した。このときの酸素/アンモニアは0.16であった。また、分解触媒反応によるアンモニア転化率は83%であった。
(During SOFC steady operation)
After raising the temperature of the SOFC cell to the operating temperature (650 ° C.), the ammonia decomposition apparatus 2 was switched to the ammonia decomposition apparatus 2 ′. At the same time, the supply gas was changed to a flow rate of 3.32 L / min for ammonia and a flow rate of 2.49 L / min for air. At this time, oxygen / ammonia was 0.16. Further, the ammonia conversion rate by the decomposition catalyst reaction was 83%.
<比較例1>
 実施例2において、SOFCセルを作動温度(650℃)まで昇温した後もそのままアンモニア分解装置2を使い続けたこと以外は実施例2と同様に発電を行った。室温から作動温度650℃への昇温に要した時間は10分、分解触媒反応によるアンモニア転化率は78%であった。
<Comparative Example 1>
In Example 2, power generation was performed in the same manner as in Example 2 except that the ammonia decomposition apparatus 2 was continuously used even after the temperature of the SOFC cell was raised to the operating temperature (650 ° C.). The time required for raising the temperature from room temperature to the operating temperature of 650 ° C. was 10 minutes, and the ammonia conversion rate by the decomposition catalyst reaction was 78%.
<比較例2>
 実施例2において、アンモニア分解装置2に空気を毎分2.49Lの流量(供給ガス中の酸素/アンモニアは0.16)で供給したこと以外は実施例2と同様に発電を行った。その結果、SOFCの昇温中における出口ガスの流量は毎分8.06Lで、その温度は480℃であった。また、室温から作動温度650℃への昇温に要した時間は14分であった。
<Comparative example 2>
In Example 2, power generation was performed in the same manner as in Example 2 except that air was supplied to the ammonia decomposition apparatus 2 at a flow rate of 2.49 L / min (oxygen / ammonia in the supply gas was 0.16). As a result, the flow rate of the outlet gas during the SOFC temperature increase was 8.06 L / min, and the temperature was 480 ° C. In addition, the time required for raising the temperature from room temperature to the operating temperature of 650 ° C. was 14 minutes.
<比較例3>
 SOFCセルをSOFC加熱用ヒーターのみで昇温させたところ、室温から作動温度650℃への昇温には20分を要した。
<Comparative Example 3>
When the temperature of the SOFC cell was raised only by the heater for SOFC heating, it took 20 minutes to raise the temperature from room temperature to the operating temperature of 650 ° C.
 本発明の発電装置は、発電効率に優れ、また、短時間で固体酸化物形燃料電池での発電を開始することができるため、低コストでの運転が可能となる。そのため、本発明の燃料電池は、自動車用発電、業務用発電、家庭用発電などの様々な分野で有利に利用することができる。また、小型化することで、例えばLEDの点灯、LCDの表示、携帯ラジオ、携帯情報機器などの駆動にも有利に利用することができる。 The power generation device of the present invention is excellent in power generation efficiency and can start power generation with a solid oxide fuel cell in a short time, and thus can be operated at a low cost. Therefore, the fuel cell of the present invention can be advantageously used in various fields such as automobile power generation, commercial power generation, and household power generation. Further, by downsizing, for example, it can be advantageously used for driving LEDs, LCD displays, portable radios, portable information devices, and the like.
 1…燃料電池システム、2…改質器、3…燃料電池、5…液体NH3タンク(アンモニアタンク)、6…ポンプ、7…気化器、8…空気ブロア(送気器)、9…熱交換器、10…燃焼器、16…排ガス供給管(第1排ガス供給部)、17…排ガス供給管(第2排ガス供給部)、21…制御装置(制御部)。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 2 ... Reformer, 3 ... Fuel cell, 5 ... Liquid NH3 tank (ammonia tank), 6 ... Pump, 7 ... Vaporizer, 8 ... Air blower (air supply device), 9 ... Heat exchange , 10 ... combustor, 16 ... exhaust gas supply pipe (first exhaust gas supply part), 17 ... exhaust gas supply pipe (second exhaust gas supply part), 21 ... control device (control part).

Claims (11)

  1.  酸化剤ガスを導入してアンモニアを改質することで燃料ガスを生成する改質器と、
     前記改質器により生成された前記燃料ガスと酸化剤ガスとを用いて発電を行う燃料電池と、
     前記アンモニアを液体状態で貯蔵するアンモニアタンクと、
     前記アンモニアタンクに貯蔵された前記液体状態のアンモニアを前記改質器に向けて送り出すポンプと、
     前記ポンプと前記改質器との間に配置され、前記液体状態のアンモニアを気化させる気化器と、
     前記改質器及び前記燃料電池に前記酸化剤ガスを送る送気器と、
     前記送気器と前記燃料電池との間に配置され、前記酸化剤ガスを熱交換して予熱する熱交換器と、
     前記燃料電池から排出された排ガスを前記気化器に供給する第1排ガス供給部と、
     前記排ガスを前記熱交換器に供給する第2排ガス供給部とを備え、
     前記気化器は、前記排ガスの排熱により前記液体状態のアンモニアを気化させ、
     前記熱交換器は、前記排ガスの排熱により前記酸化剤ガスを熱交換して予熱する燃料電池システム。
    A reformer that generates fuel gas by introducing oxidant gas to reform ammonia; and
    A fuel cell that generates power using the fuel gas and the oxidant gas generated by the reformer;
    An ammonia tank for storing the ammonia in a liquid state;
    A pump for feeding the liquid ammonia stored in the ammonia tank toward the reformer;
    A vaporizer disposed between the pump and the reformer to vaporize the liquid ammonia;
    An insufflator for sending the oxidant gas to the reformer and the fuel cell;
    A heat exchanger that is disposed between the air supply device and the fuel cell and preheats the oxidant gas by heat exchange;
    A first exhaust gas supply unit configured to supply exhaust gas discharged from the fuel cell to the vaporizer;
    A second exhaust gas supply unit for supplying the exhaust gas to the heat exchanger,
    The vaporizer vaporizes the liquid ammonia by exhaust heat of the exhaust gas,
    The heat exchanger is a fuel cell system that preheats the oxidant gas by exchanging heat with exhaust heat of the exhaust gas.
  2.  前記酸化剤ガスは空気であって、
     前記改質器の空燃比を制御する制御部を更に備え、
     前記制御部は、起動運転時における前記改質器の空燃比を通常運転時における前記改質器の空燃比よりも高くするように制御する請求項1記載の燃料電池システム。
    The oxidant gas is air,
    A control unit for controlling the air-fuel ratio of the reformer;
    The fuel cell system according to claim 1, wherein the control unit controls the air-fuel ratio of the reformer during start-up operation to be higher than the air-fuel ratio of the reformer during normal operation.
  3.  前記制御部は、前記起動運転時における前記改質器の空燃比を1.0以上とするように制御する請求項2記載の燃料電池システム。 The fuel cell system according to claim 2, wherein the control unit controls the air-fuel ratio of the reformer during the start-up operation to be 1.0 or more.
  4.  前記送気器と前記改質器との間には、前記送気器から前記改質器へ供給される前記空気の流量を調整するバルブが配置されており、
     前記制御部は、前記バルブの開度を制御することにより前記改質器の空燃比を制御する請求項2または3記載の燃料電池システム。
    Between the insufflator and the reformer, a valve for adjusting the flow rate of the air supplied from the insufflator to the reformer is disposed,
    The fuel cell system according to claim 2 or 3, wherein the control unit controls an air-fuel ratio of the reformer by controlling an opening degree of the valve.
  5.  前記燃料電池から排出された前記排ガスを燃焼する燃焼器を更に備え、
     前記第1排ガス供給部は、前記燃焼器により燃焼された前記排ガスを前記気化器に供給し、
     前記第2排ガス供給部は、前記燃焼器により燃焼された前記排ガスを前記熱交換器に供給する請求項1~4の何れか一項記載の燃料電池システム。
    Further comprising a combustor for combusting the exhaust gas discharged from the fuel cell;
    The first exhaust gas supply unit supplies the exhaust gas burned by the combustor to the vaporizer,
    The fuel cell system according to any one of claims 1 to 4, wherein the second exhaust gas supply unit supplies the exhaust gas burned by the combustor to the heat exchanger.
  6.  前記改質器は、アンモニア分解用触媒によって、アンモニアの一部を酸素により燃焼させ、その燃焼熱を用いてアンモニアを水素に分解する複数のアンモニア分解装置を備え、
     前記燃料電池は、前記複数のアンモニア分解装置の少なくとも一つによって生成された水素含有ガスを燃料として運転される固体酸化物形燃料電池によって構成される、請求項1~5の何れか一項に記載の燃料電池システム。
    The reformer includes a plurality of ammonia decomposing devices that burn a part of ammonia with oxygen using an ammonia decomposing catalyst, and decompose the ammonia into hydrogen using the heat of combustion.
    The fuel cell according to any one of claims 1 to 5, wherein the fuel cell is configured by a solid oxide fuel cell that is operated by using a hydrogen-containing gas generated by at least one of the plurality of ammonia decomposition apparatuses as a fuel. The fuel cell system described.
  7.  前記アンモニア分解装置は、前記固体酸化物形燃料電池が所定の温度に到達するまで前記水素含有ガスを生成する装置として用いられる第一のアンモニア分解装置及び前記固体酸化物形燃料電池が所定の温度に到達した後に前記水素含有ガスを生成する装置として用いられる第二のアンモニア分解装置を含む、請求項6に記載の燃料電池システム。 The ammonia decomposition apparatus includes a first ammonia decomposition apparatus and a solid oxide fuel cell that are used as an apparatus for generating the hydrogen-containing gas until the solid oxide fuel cell reaches a predetermined temperature. The fuel cell system according to claim 6, further comprising a second ammonia decomposition apparatus used as an apparatus for generating the hydrogen-containing gas after reaching the temperature.
  8.  前記第一のアンモニア分解装置及び前記第二のアンモニア分解装置に設けられたアンモニア分解用触媒は、それぞれ、鉄、コバルト、及びニッケルから選ばれる少なくとも1種の元素を触媒活性成分として含んでなる請求項7に記載の燃料電池システム。 The ammonia decomposing catalyst provided in the first ammonia decomposing apparatus and the second ammonia decomposing apparatus comprises at least one element selected from iron, cobalt, and nickel, respectively, as a catalytically active component. Item 8. The fuel cell system according to Item 7.
  9.  前記第二のアンモニア分解装置のアンモニア分解用触媒における前記触媒活性成分の含有率は、前記第一のアンモニア分解装置のアンモニア分解用触媒における前記触媒活性成分の含有率よりも高い請求項8に記載の燃料電池システム。 The content rate of the catalytically active component in the ammonia decomposition catalyst of the second ammonia decomposing apparatus is higher than the content rate of the catalytically active component in the ammonia decomposing catalyst of the first ammonia decomposing apparatus. Fuel cell system.
  10.  請求項7~9のいずれか1項に記載の燃料電池システムを用いた発電方法であって、
     前記第一のアンモニア分解装置に、アンモニアに対する酸素の体積比率が0.19以上である混合ガスを供給する第1工程と、
     前記水素含有ガスを生成する装置を前記第一のアンモニア分解装置から前記第二のアンモニア分解装置に切り替える第2工程と、
     前記第二のアンモニア分解装置に、アンモニアに対する酸素の体積比率が0.17以下である混合ガスを供給する第3工程とを含み、
     前記第2工程は、前記固体酸化物形燃料電池が所定の温度に到達したときに行われる、発電方法。
    A power generation method using the fuel cell system according to any one of claims 7 to 9,
    A first step of supplying the first ammonia decomposition apparatus with a mixed gas having a volume ratio of oxygen to ammonia of 0.19 or more;
    A second step of switching the device for generating the hydrogen-containing gas from the first ammonia decomposition device to the second ammonia decomposition device;
    A third step of supplying the second ammonia decomposition apparatus with a mixed gas having a volume ratio of oxygen to ammonia of 0.17 or less;
    The second step is a power generation method performed when the solid oxide fuel cell reaches a predetermined temperature.
  11.  アンモニア分解用触媒によって、アンモニアの一部を酸素により燃焼させ、その燃焼熱を用いてアンモニアを水素に分解する複数のアンモニア分解装置と、
     前記複数のアンモニア分解装置の少なくとも一つによって生成された水素含有ガスを燃料として運転される固体酸化物形燃料電池とを備える、発電装置。
    A plurality of ammonia decomposing apparatuses for burning a part of ammonia with oxygen by the catalyst for decomposing ammonia and decomposing ammonia into hydrogen using the combustion heat;
    A power generator comprising: a solid oxide fuel cell that is operated using a hydrogen-containing gas generated by at least one of the plurality of ammonia decomposition apparatuses as a fuel.
PCT/JP2016/050358 2015-01-13 2016-01-07 Fuel cell system, power generation method, and power generation device WO2016114214A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-003899 2015-01-13
JP2015003899A JP6439190B2 (en) 2015-01-13 2015-01-13 Power generation apparatus using ammonia as fuel and power generation method using the power generation apparatus
JP2015007971A JP2016134278A (en) 2015-01-19 2015-01-19 Fuel battery system
JP2015-007971 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016114214A1 true WO2016114214A1 (en) 2016-07-21

Family

ID=56405761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050358 WO2016114214A1 (en) 2015-01-13 2016-01-07 Fuel cell system, power generation method, and power generation device

Country Status (1)

Country Link
WO (1) WO2016114214A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051859A1 (en) * 2016-09-13 2018-03-22 国立大学法人熊本大学 Ammonia combustion catalyst and method for utilizing heat generated by ammonia catalytic combustion
CN111048804A (en) * 2019-12-30 2020-04-21 东风汽车集团有限公司 Oxygen supply method, oxygen supply system and control system for hydrogen fuel cell
CN113506902A (en) * 2021-08-06 2021-10-15 大连海事大学 Solid oxide fuel cell and proton exchange membrane fuel cell hybrid system using ammonia gas as fuel
US11239479B2 (en) 2020-03-26 2022-02-01 Saudi Arabian Oil Company Ignition method of fuel reformer using partial oxidation reaction of the fuel for SOFC fuel cell start-up
US11542159B2 (en) 2020-06-22 2023-01-03 Saudi Arabian Oil Company Autothermal reformer system with liquid desulfurizer for SOFC system
US11618003B2 (en) 2020-06-23 2023-04-04 Saudi Arabian Oil Company Diesel reforming apparatus having a heat exchanger for higher efficiency steam reforming for solid oxide fuel cells (SOFC)
WO2024126999A1 (en) 2022-12-13 2024-06-20 Ceres Intellectual Property Company Limited Fuel cell system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282755A (en) * 2009-06-02 2010-12-16 Hitachi Zosen Corp Fuel cell system using ammonia for fuel
JP2012028269A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Fuel cell system
JP2012162457A (en) * 2001-03-02 2012-08-30 Intelligent Energy Inc Ammonia-based hydrogen generation apparatus and method for using the same
JP2013229203A (en) * 2012-04-26 2013-11-07 Panasonic Corp Solid oxide fuel cell system
JP2014067565A (en) * 2012-09-25 2014-04-17 Nippon Shokubai Co Ltd Solid oxide type fuel cell, method for manufacturing the same and method for power generating using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162457A (en) * 2001-03-02 2012-08-30 Intelligent Energy Inc Ammonia-based hydrogen generation apparatus and method for using the same
JP2010282755A (en) * 2009-06-02 2010-12-16 Hitachi Zosen Corp Fuel cell system using ammonia for fuel
JP2012028269A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Fuel cell system
JP2013229203A (en) * 2012-04-26 2013-11-07 Panasonic Corp Solid oxide fuel cell system
JP2014067565A (en) * 2012-09-25 2014-04-17 Nippon Shokubai Co Ltd Solid oxide type fuel cell, method for manufacturing the same and method for power generating using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051859A1 (en) * 2016-09-13 2018-03-22 国立大学法人熊本大学 Ammonia combustion catalyst and method for utilizing heat generated by ammonia catalytic combustion
CN111048804A (en) * 2019-12-30 2020-04-21 东风汽车集团有限公司 Oxygen supply method, oxygen supply system and control system for hydrogen fuel cell
CN111048804B (en) * 2019-12-30 2021-06-04 东风汽车集团有限公司 Oxygen supply method, oxygen supply system and control system for hydrogen fuel cell
US11239479B2 (en) 2020-03-26 2022-02-01 Saudi Arabian Oil Company Ignition method of fuel reformer using partial oxidation reaction of the fuel for SOFC fuel cell start-up
US11542159B2 (en) 2020-06-22 2023-01-03 Saudi Arabian Oil Company Autothermal reformer system with liquid desulfurizer for SOFC system
US11618003B2 (en) 2020-06-23 2023-04-04 Saudi Arabian Oil Company Diesel reforming apparatus having a heat exchanger for higher efficiency steam reforming for solid oxide fuel cells (SOFC)
CN113506902A (en) * 2021-08-06 2021-10-15 大连海事大学 Solid oxide fuel cell and proton exchange membrane fuel cell hybrid system using ammonia gas as fuel
WO2024126999A1 (en) 2022-12-13 2024-06-20 Ceres Intellectual Property Company Limited Fuel cell system and method

Similar Documents

Publication Publication Date Title
JP6439190B2 (en) Power generation apparatus using ammonia as fuel and power generation method using the power generation apparatus
WO2016114214A1 (en) Fuel cell system, power generation method, and power generation device
KR100987823B1 (en) Solid Oxide Fuel Cell System
WO2006090685A1 (en) Solid oxide type fuel cell and operation method thereof
KR102132314B1 (en) Temperature distribution control system for fuel cell, fuel cell, and temperature distribution control method for fuel cell
JP6623030B2 (en) Solid oxide fuel cell system
KR101124859B1 (en) Manufacturing method of lscf powder and cell having the powder for solid oxide fuel cell
JP2004335163A (en) Solid oxide type fuel cell and its operation method
JP6993489B1 (en) Fuel cell power generation system
JP6623031B2 (en) Operation method of solid oxide fuel cell system
JP2016134278A (en) Fuel battery system
KR100987824B1 (en) Start-up protocol of Self-sustained Solid Oxide Fuel Cell System
JP5815452B2 (en) Fuel electrode for solid oxide fuel cell
JP2015191810A (en) Anode support substrate for solid oxide fuel batteries and solid oxide fuel battery cell
JP5826092B2 (en) Solid oxide fuel cell
KR102500041B1 (en) fuel cell system
KR101275787B1 (en) Oxidation catalyst, method for preparing the same, reformer comprising the same, and fuel cell system comprising the same
JP2004311437A (en) Method and system for elevating temperature within fuel cell
JP2010536120A (en) Solid oxide fuel cell system with improved gas channel transport and heat exchange
JP2005158355A (en) Porous electrode for sofc, its manufacturing method and sofc, and pore-forming material for carrying catalyst
JP2008269986A (en) Fuel cell
JP7293466B1 (en) FUEL CELL SYSTEM AND METHOD OF OPERATION OF FUEL CELL SYSTEM
JP5977142B2 (en) Fuel cell device
WO2022215224A1 (en) Fuel cell system
JP5240430B2 (en) Fuel cell system reformer and fuel cell system including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737285

Country of ref document: EP

Kind code of ref document: A1