WO2019130619A1 - Engine burning hydrogen and oxygen - Google Patents

Engine burning hydrogen and oxygen Download PDF

Info

Publication number
WO2019130619A1
WO2019130619A1 PCT/JP2018/018606 JP2018018606W WO2019130619A1 WO 2019130619 A1 WO2019130619 A1 WO 2019130619A1 JP 2018018606 W JP2018018606 W JP 2018018606W WO 2019130619 A1 WO2019130619 A1 WO 2019130619A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
engine
combustion
steam
oxygen
Prior art date
Application number
PCT/JP2018/018606
Other languages
French (fr)
Japanese (ja)
Inventor
泉寛治
Original Assignee
泉寛治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉寛治 filed Critical 泉寛治
Priority to JP2018545513A priority Critical patent/JP6680431B2/en
Publication of WO2019130619A1 publication Critical patent/WO2019130619A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the constitution of the combustion chamber of the combustion process of an engine capable of burning enriched oxygen and hydrogen is proposed in PCT / JP2016 / 079312, and the combustion chamber of the above engine receives direct heat from combustion of enriched oxygen and hydrogen
  • a heat resistant structure is provided, a water flow path is provided between the inner and outer walls of the combustion chamber, and an injection nozzle for injecting water into the heat resistant structure and the combustion chamber is provided on the inner wall of the combustion chamber and water is injected from the nozzle
  • the water vapor of the water vapor generation means and the exhaust gas of the water vapor from the combustion as the cooling means in the combustion chamber as well as the water vapor generation means flow through the rotational force extraction step and are extracted as rotational force, and the extracted rotational force is power or electricity.
  • the gas flowing through the take-out step is introduced into the fuel generation step of generating the fuel, and the fuel generation step is divided by the synthesis gas reformer and the gas separation membrane.
  • Patent No. 5967682 An engine that produces fuel by combustion of oxygen-enriched air and fuel.
  • the construction of an engine for burning hydrocarbon fuel containing carbon or hydrogen with enriched oxygen air is provided with means capable of resisting the heat of combustion of oxygen and hydrogen in the combustion chamber (combustion device 2) of the engine
  • the heat-resistant structure is provided with a jet nozzle for injecting water, and the water is injected into the heat-resistant structure to turn the water into steam, and heat absorption during steam generation enables combustion of oxygen and hydrogen, and the combustion chamber portion
  • the hydrogen generated in the reforming path is supplied to the hydrogen fuel cell to generate electricity.
  • the present invention provides the water passage of the combustion chamber constitution of the above-mentioned engine in the above-mentioned heat resistant structure, absorbs heat of the heat resistant structure in the process of passing water through the water passage and generates steam.
  • a hydrogen generating means ZU (for example, either the steam reformer Ka or the steam electrolyzer F1 or the partial oxidation reactor BO) is provided outside, and the steam generated in the heat-resistant structure section is a hydrogen generating means ZU (eg, steam reformer)
  • the technology differs in that hydrogen is produced by introducing it into the apparatus Ka, the steam electrolyzer F1 or the partial oxidation reactor BO), and the produced hydrogen is used as a fuel for the engine.
  • JP 2012-52162 A method of producing and using hydrogen and oxygen. It is a method of producing and using hydrogen and oxygen, wherein clean hydrogen and oxygen can be inexpensively produced and used by using low-grade steam generated secondarily at steelworks (iron-making process), A steam heater A for heating low-grade steam into high-temperature steam; a steam electrolyzer B for decomposing high-temperature steam obtained by the steam heater into hydrogen and oxygen by electrolysis; The sensible heat recovery device C1 which recovers sensible heat from hydrogen and oxygen obtained by the decomposition device, and the sensible heat recovered by the sensible heat recovery device using the hydrogen and oxygen obtained by the steam electrolyzer in the iron making process
  • a method for producing and using hydrogen and oxygen comprising: * While the steam heating device A is provided which heats low-grade steam generated as a by-product in the iron making process of the literature technology into high-temperature steam, the present invention relates to hydrogen in the engine combustion devices 2 to 2 d The major difference is that high-temperature steam is generated by direct combustion heat and indirect heat from the combustion of oxygen and oxygen
  • Patent application No. 2008-155195 Hydrogen generation method, hydrogen generator and catalyst
  • a catalyst formed by heating and solidifying a metal oxide (for example, Cr 2 O 3) and a metal hydroxide (for example, KOH) to a temperature above the melting point and below the boiling point of the metal oxide is installed in the catalyst storage chamber 21.
  • a metal oxide for example, Cr 2 O 3
  • a metal hydroxide for example, KOH
  • the water vapor around 750 ° C. evaporated is supplied to perform three reactions with the intermediate active substance to collect hydrogen from water.
  • the hydrogen of the hydroxyl group of the metal hydroxide is extracted instead of directly extracting the water molecule, so that the reaction can be performed with water vapor at around 700 ° C. You can extract hydrogen with less energy.
  • the catalyst material necessary for the practice of the present invention can be easily obtained as chromium oxide, titanium oxide, etc. as metal oxide, potassium hydroxide, calcium hydroxide, etc. as metal hydroxide, as a chemical material, It is a technology that is cheap.
  • JP-A-2015-189721 Method of producing natural gas treated product and treated natural gas treating plant
  • a method for producing a natural gas treated product for producing a natural gas treated product from natural gas comprising the steps of: electrolysis of water to produce oxygen and hydrogen; and reacting the produced oxygen with the natural gas to produce carbon monoxide and hydrogen.
  • the technology of reacting hydrogen with carbon dioxide to produce methanol Reaction formula CO 2 + 3 H 2 ⁇ CH 3 OH + H 2 O
  • the technology of reacting hydrogen with carbon dioxide to produce methane Reaction formula CO2 + 4H2 ⁇ CH4 + 2H2O.
  • Chiyoda Chemical Construction Co., Ltd. (company name) is a technology that generates 2CO + 2H 2 synthesis gas by reforming carbon dioxide CO 2 and methane CH 4 using a precious metal catalyst. Furthermore, carbon monoxide CO and hydrogen are reacted to produce dimethyl ether. 2CO + 4 H 2 ⁇ CH 3 OCH 3 + H 2 O * A technology that can be adopted as one of the carbon dioxide recycling means CH of the present application.
  • C12A7 composed of lime (CaO) and alumina Al2O3.
  • C12A7 electride selectively adsorbs and decomposes carbon dioxide molecules at room temperature. This property is attributed to the unique physical properties of C12A7 electride which has both the property of giving electrons extremely easily to the outside and the property of being chemically stable and generally incompatible with each other.
  • the technology can be one technology of the carbon dioxide recycling means CH of the present application.
  • water is converted to steam by heat produced by burning oxygen (separated by the separator 1) and hydrogen, and the steam is reacted (for example, electrolysis, steam reforming, partial oxidation reaction, etc.)
  • Engine combustion device Z provided with a construction for generating hydrogen (Figs.
  • a water passage MHa for making water vapor A in the MHa Water vapor A generation means for generating water vapor A in the MHa, and hydrogen generation means ZU provided on the outer shell (outside) of the heat resistant structure (for example, if ZU is an electrolyzer, F1, F2, Fig. 1 and Ka for steam reforming, FIG. 2 for a partial oxidation reaction OS, and FIG.
  • the steam Aa which absorbs heat from the heat inside to become higher heat, and the steam Aa is not decomposed (reformed) by the steam B generated by the above combustion and the hydrogen generating means ZU (STn and undecomposed steam)
  • the hydrogen and oxygen are characterized by an engine combustion apparatus Z which burns hydrogen and generates hydrogen, comprising an exhaust stream 5 discharged downstream as exhaust with steam STm) To provide an engine.
  • Heat absorption structure means SC which receives direct heat of the combustion flame 2F of the fuel provided in the combustion chamber NE of the above engine is a heat absorption structure material (for example, alumina Al 2 O 3 based alloy having high heat conductivity and heat resistance temperature is preferable)
  • the center temperature of the combustion flame is about 2800 ° C in the combustion of (enrichment) oxygen and hydrogen, and the center temperature of the combustion flame is about 1900 ° C in the combustion of air (oxygen in) and hydrogen by the use of (enrichment) oxygen
  • the core temperature of the combustion flame goes up by about 47% or is it used for the above-mentioned steam reformer or for the electrolysis of water?
  • the production of water vapor, which is either used for partial oxidation reaction BO can be calculated 47% more in calculation (the difference in oxygen density, which is referred to as oxygen energy in the present application).
  • the exhaust flow 5a from the combustion device Z is caused to flow through the rotational force extraction device 3 provided downstream of the engine combustion device Z, and the exhaust gas flow 5a flowing through the rotational force extraction device 3 is subjected to the heat resistance
  • a means R1 for example, a return line
  • the exhaust flow 5a is returned to the water flow path MHa.
  • Means are provided in the combustion device 2, 2a (described later), and the exhaust gas flowed through the rotational force output device 3 downstream of the combustion device is returned as a means R2 to the combustion chamber NE to burn hydrogen and oxygen.
  • the supply amount of steam to be supplied is 2 to 5 times the theoretical value according to carbon deposition (H 2 O / CH 4 (molar ratio) about 2 to 5) Supply steam), and the surplus steam supplied becomes unreformed steam STm, joins with the exhaust, flows from the exhaust stream 5 through the rotational force extracting device 3, and is discharged downstream as the exhaust stream 5a,
  • the regeneration means is provided with means R1 (for example, return line, no drawing) for returning the stream 5a to the water passage MHa of the above-mentioned heat resistant structure, and regenerating the exhaust stream 5a into the water vapor A of the hydrogen generating means.
  • the hydrogen generation means ZU of the engine combustion device Z is an electrolyzer F1 or F2
  • the electrolysis rate of water vapor is 50% to 60% when the decomposition rate of water vapor is allowed to pass through the solid electrolyte cell
  • the third invention relates to a rotary wing body 3a of the rotational force output device 3 (FIG.
  • the rotational force extraction device 3 has cooling means for the rotor blade 3a.
  • the fourth invention is an electricity & hydrogen that generates electricity & hydrogen by introducing an exhaust stream 5a that has flowed through the torque takeout device 3 of an engine equipped with any of the engine combustion devices 2, 2a, 2ar, Z Heat generated by the exhaust stream 5a introduced to the means (for example, approximately 1000 ° C.
  • a steam electrolyzer F1 or a steam electrolyzer FS1 or a device of collecting hydrogen with a catalyst of metal oxide and metal hydroxide and steam, or a steam reformer Ka1 or water Use one or more of the technologies of thermochemical decomposition F2 or thermoelectric energy conversion device DE, heat exchanger G, fuel cell generator FD1 or seawater true water purification (desalination) equipment Wa Electricity (or power) is generated from a plurality of engines operated by generating (producing) one or both of hydrogen and hydrogen and operating a plurality of engines having the engine combustion devices 2, 2a and 2ar according to the amount of the generated hydrogen Further, the present invention provides an engine that burns
  • the engine having the hydrogen generating means ZU is operated, and hydrogen generated by the hydrogen generating means ZU is either the engine or the engine combustion device 2 or 2a or 2ar not having the hydrogen generating means ZU. It is characterized in that either one or both of electricity and motive power are generated by one engine having a plurality of combustion devices and one engine having hydrogen generation means ZU and a plurality of engines not having hydrogen generation means ZU. To provide an engine that burns hydrogen and oxygen.
  • the power and electricity of the engine are produced by the downstream torque extraction means 3 in such a configuration as to discharge the exhaust stream 5 force of the table + 1 (the water vapor fraction used for the steam reforming Ka) is made negative. Electricity and hydrogen are further produced by the electricity / hydrogen producing means 4 for introducing the exhaust stream 5a which flows through the torque takeout means 3 and is discharged to produce electricity and hydrogen. Combustion of hydrogen and oxygen is characterized in that Engine. * The combustion device 2 (see FIGS. 4, 5 and 6) has a configuration in which the electrolyzer F1, the steam reforming section Ka, and the partial oxidation reaction OS are removed from the engine combustion devices 2b, 2c and 2d, respectively.
  • the heat-resistant structural portion SC is not provided and the injection is performed by injecting water directly to the combustion chamber wall 2U instead of the heat-resistant structural portion SC in the combustion device 2 provided with the structural portion SC (no water flow passage MHa).
  • the configuration provided with the nozzle Mj is the combustion apparatus 2a, and the steam not reformed by the electricity / hydrogen generation means 4 (fuel generation unit 4) of the engine is returned to the combustion chamber NE into the combustion chamber NE.
  • the configuration provided with the steam reheating means WR for reheating the reformed steam is the engine combustion device 2ar.
  • the electricity generated by the engine is stored in the storage battery 40 and used as the mobile power of the mobile unit, and the surplus electricity is generated or the electricity generated by the engine operation when the mobile unit is not moving
  • An engine for burning hydrogen and oxygen is provided, characterized in that any of the modes of delivery of electricity is an electricity transfer system EaST.
  • Electrical delivery system EaST 1 The electricity generated by the moving body and stored in a capacitor in the moving body is 1a, A transfer station for taking up electricity is provided to take up (sell) the electricity.
  • a parking lot (parking lot, etc.) of the engine-mounted equipment aircraft, ship, railway, automobile, etc. in which the engine equipped with the above engine combustion devices 2, 2a, 2ar, Z (2b, 2c, 2d) is mounted on a moving body Dock, airfield, etc. base military) to carbon monoxide CO or diacid carbon CO 2 with water to taken over to the station provided gas station or mobile gas station hydrocarbon compounds such as Pier marina (e.g. methane
  • the system is designed to receive the supply of CH 4 ) or to provide equipment (electrical transfer station) for taking up electricity generated by the engine to take up electricity.
  • the moving body is operated to generate hydrogen (and oxygen) of the fuel to be consumed as the energy of the moving body, and surplus carbon monoxide CO or carbon dioxide CO 2 is consumed at the gas station.
  • surplus carbon monoxide CO or carbon dioxide CO 2 is consumed at the gas station.
  • purchase at a mobile gas station to receive a supply of water and a hydrocarbon compound (eg methane CH 4 ), or consume electricity generated by the engine as power for the vehicle and exceed consumption
  • Carbon monoxide that has become surplus in the engine by making the surplus electricity that is generated and taken over with the electricity exchange system EaST (power supply to the external social power energy supply infrastructure) or either or both.
  • EaST electricity supply to the external social power energy supply infrastructure
  • the above mobile units for example, many vehicles traveling on public roads have the configuration of equipment that burns fuel and generates electricity with its rotational power, and operates the mobile unit during non-traveling to generate power and generate electricity
  • the cost received by calculating the difference between the hydrocarbon cost input by selling electricity and the electricity bill output-With the engine of the present application, if the input cost is positive, it is possible to obtain the profit from the above non-operating operation. It is an engine that can be configured (it can be operated at the time of non-running to gain a profit). * If the amount of hydrogen generated by the above engine is consumed by the engine (consumption as movement power of the mobile unit) and if it can generate surplus electricity, the surplus electricity is temporarily stored in the storage battery 40 or Sold by direct transportation.
  • the seventh invention is provided with means for adding combustion gas supplied to the engine provided with the engine combustion device Z to oxygen and hydrogen and mixing an inert gas (for example, argon gas) with the combustion device (for example, 2, 2a, 2ar, An engine that burns hydrogen and oxygen, characterized in that it is controlled as a means to lower the flame center temperature in 2b, 2c, 2d).
  • an inert gas for example, argon gas
  • the eighth invention supplies combustion gas (gas mixed with oxygen and hydrogen plus inert gas (for example, argon gas)) supplied to the above engine to either a reciprocating engine, a rotary engine or a diesel engine
  • combustion gas gas mixed with oxygen and hydrogen plus inert gas (for example, argon gas)
  • inert gas for example, argon gas
  • An engine for burning hydrogen and oxygen characterized in that the inert gas is collected from the exhaust gas of the engine (provided upstream of the exhaust port for discharging the exhaust gas to the outside of the equipment) by the collection means for collecting the inert gas.
  • FIG. 7 An oxygen (enrichment) means for separating and removing nitrogen N 2 from the air atmosphere, but the gas separation by a membrane ⁇ eg, prism separator ⁇ Monsanto Co., Ltd., prism alpha gas ) (Company name) PV (pervaporation), etc.) is a technology that has become common sense along with the cryogenic separation method and the adsorption separation method in the present technology, and the separation membrane system is Monsanto, Dow, Separek, WR Grace, and in Japan Ube Industries (all are company names) have commercialized their own separation membrane systems.
  • a membrane ⁇ eg, prism separator ⁇ Monsanto Co., Ltd., prism alpha gas ) (Company name) PV (pervaporation), etc.
  • the separation membrane system is Monsanto, Dow, Separek, WR Grace, and in Japan Ube Industries (all are company names) have commercialized their own separation membrane systems.
  • the principle configuration of membrane separation that separates gases is that which separates according to the relative permeation rate of the separating gas, so that the fast gas can easily permeate through the membrane wall and exit to the side port, the slow gas Because of the difficulty in permeating the membrane wall, it moves inside the hollow fiber and is discharged from the outlet, and H 2 O, H 2 , H 2 S, CO 2 , O 2 are used as the fast gas.
  • slow gases include Ar, CO 3 , N 2 , CH 4 and the like.
  • Operating pressure 8 ⁇ 150Kg / Cm 2 G (also those which can be at a pressure below 8 Kg / cm 2) (Enriched) Oxygen gas purity is 70% to less than 100% (range where NOx is not emitted) It is a condition that the gas to be separated has pressure, and the driving force of the separation membrane system is the use of pressure difference.
  • the compressor any of an axial flow type, a reciprocating type, a screw type, a rotary type, a scroll type and the like can be used.
  • ⁇ Steam Reformer Ka> A method of producing a synthesis gas by reacting a hydrocarbon compound (for example, methane CH 4 ) and steam (steam) in a steam reformer Ka carrying a catalyst, and a large endothermic reaction between H 2 and CO It is represented by the following reaction formula in which a molar ratio of 3 and hydrogen are produced in large quantities.
  • a hydrocarbon compound for example, methane CH 4
  • steam steam
  • the reforming reaction formula using methane CH 4 as a substance to be reformed CH 4 + H 2 O ⁇ 3H 2 + CO (1) CO + H 2 O ⁇ H 2 + CO 2 (2) Shift reaction ⁇ Secondary to the reaction of *
  • a known catalyst such as a nickel-based catalyst can be used.-Reforming temperature about 650 to 1000 ° C.
  • Partial Oxidation Reaction Device BO of Hydrocarbon Compound The partial oxidation reaction of the hydrogen generation means ZU is a means which does not require a catalyst, and is separated from the hydrocarbon compound (for example, methane CH 4 ) by the oxygen separation device 1 and high.
  • the oxygen (1/2 O 2 ) that has become a density is introduced into the hydrogen generation means Z, and the heat of the steam A is supplied to the partial oxidation reaction apparatus BO of the mixed gas (by the heat transfer of the heat resistant conductor SC) for combustion.
  • the partial oxidation reaction apparatus BO promotes to obtain a synthesis gas of hydrogen and carbon monoxide, supplies the above-mentioned steam A to the synthesis gas, generates hydrogen and carbon dioxide by shift reaction, and selectively selects hydrogen from the product gas It can be configured to use a permselective membrane reactor that takes out permeatingly.
  • Another method of the above hydrogen generation means is methane direct reforming, which can be used as the reforming technique of the present invention.
  • ⁇ Heat-resistant structural part SC> Engine combustion devices 2, 2b, 2c, 2d (see FIGS. 1, 2, 4, 5, 6 and 10) (enriched)
  • the center temperature of the combustion flame is about 2800 ° C in the combustion of oxygen and hydrogen
  • the center temperature of the combustion flame is about 1900 ° C in air (oxygen and hydrogen) combustion and the center temperature of the combustion flame rises by about 47% by using (enriched) oxygen, the heat of combustion where the oxygen and hydrogen are burned
  • the heat absorption structure means SC receiving direct heat of the combustion flame 2F of the fuel provided in the combustion chamber NE of the above engine is provided, for example, as an alumina Al 2 O 3 based alloy having high thermal conductivity and heat resistant temperature
  • the heat absorption structure means in NE and the injection means for injecting water vapor A to the hydrogen generation means ZU wall are the cooling means of the engine combustion chamber and the water vapor A of the water vapor generation means as a new technology capable of continuous combustion of oxygen and hydrogen. It was possible.
  • a method of electrolyzing water vapor has been developed at an operating temperature of 900 ° C. to 1000 ° C., a current density of 40 A / dm 2, a cell voltage of 1.3 and a capacity of 90%, and a power conversion efficiency of 90%.
  • a high voltage of 40 to 64 V is obtained in the solid oxide fuel cell stack 10 consisting of 64 pieces.
  • the solid oxide fuel cell stack and the solid oxide fuel cell module can be suitably used in the technical fields of portable solid electrolyte fuel cell compact generators and hydrogen generators by electrolysis reaction.
  • This technology can also be the technology of decomposing the steam electrolysis technology of JP 2012-52162 into hydrogen and oxygen of fuel of the above-mentioned engine, and is discharged from the above-mentioned engine combustion apparatus
  • the exhaust gas is allowed to flow through the rotational force extracting device 3 and high temperature steam having heat after flowing is electrolyzed (steam electrolysis) by the steam electrolyzing devices F1 and F2 to generate hydrogen and oxygen.
  • steam electrolysis temperature the more advantageous the direct utilization of the heat source.
  • a medium temperature steam electrolysis system operating at 600 ° C. may be used, and an electrolysis system operating at 1000 ° C. may be used more preferably.
  • the medium temperature steam electrolysis apparatus uses a proton conductor: SrZr 0.5 Ce 0.4 Y 0.1 O 3-a as an electrolyte, and as an electrode, an anode that decomposes water has high activity Sm 0. .5
  • an oxide electrode having a composition of 5 Sr 0.5 CoO 3 By employing an oxide electrode having a composition of 5 Sr 0.5 CoO 3 and by adopting a structure in which a thin layer of a serate proton conductor is inserted between the nickel electrode and the electrolyte for the cathode which is a hydrogen generation electrode.
  • a technology that operates with a low over voltage of 0.3 V under conditions of 600 ° C and 0.2 A / cm 2 It is a technology that can be adopted as the electrolyzers F1 and F2 incorporated in the engine combustion device 2c of the present application and a technology of the electrolyzer F1 that can be adopted as the electric / hydrogen generation means 4.
  • a technology belonging to the technology of a steam electrolyzer which discloses a technology of a construction in which a high temperature steam gas is electrolyzed while passing through the inside of a solid electrolyte cell
  • the fuel electrode and the air electrode are energized by an external power source while blowing in steam under high temperature conditions of about 900 ° C.
  • Water molecules are broken down. Specifically, hydrogen gas derived from water molecules is taken out at the fuel electrode, and oxygen gas derived from water molecules is taken out at the air electrode.
  • This high-temperature steam electrolysis is a technology in which the theoretical decomposition voltage is low (for example, 0.9 V at 1000 ° C) compared to low-temperature water decomposition.
  • * 1 d Solid oxide type steam electrolytic device (technique described in JP 2008-243744) A steam electrolytic device using a metal thin film that can improve atomic permeability even at an operating temperature of 400 ° C. to 600 ° C.
  • a metal thin film contains a metal composition and an oxide in which the metal grain of the metal composition is dispersed.
  • This technology is formed by simultaneously sputtering the metal target that constitutes the metal composition and the oxide target that constitutes the oxide, and further decomposes the water vapor that has not been decomposed by the high-temperature water vapor electrolysis ( It can be an electrolyzer F2).
  • a catalyst formed by heating and solidifying a metal oxide (for example, Cr 2 O 3 ) and a metal hydroxide (for example, KOH) to a temperature above the melting point and below the boiling point of the metal oxide is installed in the catalyst storage chamber 21.
  • An engine equipped with the above-described engine combustion devices 2, 2a, 2ar, 2b, 2c, 2d is a means for acquiring freshwater from ships traveling on the sea surface, etc.
  • a seawater desalination device equipped with a chemical.
  • Heat exchangers G and G3> A product of the above-mentioned heat exchange device which transfers heat, which has become common sense, for example, the heat of the heat medium compressed by heat exchange of the air of the air conditioner with the heat medium It is technology such as exchanging with water or air.
  • thermoelectric conversion module is produced on a trial basis with heat relating to a technology to be a thermoelectric conversion device that directly converts heat into electricity, which is a technology described in Patent Document 2, and a power generation test is performed, and the result of the power generation test (300 ° C.
  • the above-mentioned promoted power generation module has been published in the case where it succeeded in taking out 0.39 V of electromotive force, and the Fe2 V 0.9 Ti 0.1 Al 2, n-type material was used as the p-type material.
  • Copper is used for the electrode, and it is joined to each of p, n materials by diffusion bonding, and one side of the module is kept constant at 20 ° C. This is a technology that heats the other surface to 300 ° C and generates power by the temperature difference between the upper and lower surfaces.
  • ⁇ Fuel Cell Generator FD1> A configuration in which hydrogen generated by the engine combustion device 2 described in Patent Document 1 is sent to a fuel stack, electricity is generated by the fuel stack, and the electricity is used as traveling power (fuel cell generator Configuration that can be said).
  • the above-mentioned configuration for generating electricity with hydrogen and oxygen to power an automobile is a technology that has already been commercialized as a hybrid vehicle, but the configuration for generating electricity with hydrogen, oxygen and a fuel stack produced in the present application is also electricity generation means 4 As a means of
  • High temperature hydrogen gas separation membrane (ceramics) There is a high temperature hydrogen gas separation membrane system at around 700 ° C, for example, reforming from steam at 600 ° C to 1000 ° C. It is suitable for high temperature gas separation to separate and take out.
  • Membrane type reactor integrated reactor and separator integrated type
  • oxygenated hydrocarbons are used as main raw material gas
  • water (steam), carbon dioxide, oxygen etc. are used as auxiliary raw material gas.
  • the membrane reactor is a selectively permeable membrane reactor (also referred to as a membrane reactor) capable of simultaneously separating the above-mentioned chemical reaction and selective separation from hydrogen.
  • the exhaust gas and water vapor flowing through the rotational force output structure 3 may be at least 600 ° C., as long as they are blades (impellers) that are commonly used in the present application (known techniques).
  • Means eg Means for processing a ceramic coating or the like in a nickel alloy or means for introducing water from the water passage of the water passage MH from the shaft portion of the rotary blade of the rotational force extraction structure 3 (for example, a sprinkler for sprinkling water Water is supplied to the rotor by the structure that supplies water to the rotating rotor, and the water or steam that absorbed the heat of the rotor is discharged outside the rotor and the exhaust flows through the rotor.
  • a structure which merges with the flow 5 and flows downstream it may be configured as a cooling means of a wing body (impeller).
  • a mobile gas station is, for example, a large truck or large trailer equipped with an empty tank of carbon dioxide or carbon monoxide, or the like, disposed at a gas station (such as a refueling station), and a tank for the large truck or large trailer.
  • a gas station such as a refueling station
  • a tank for the large truck or large trailer When the carbon dioxide (or carbon monoxide) loading capacity reaches a specified value, the empty carbon dioxide gas (or carbon monoxide gas) tank car is replaced with a tank car and transported to the base, and hydrocarbon compounds (eg, methane CH 4 ) are further transported.
  • a large truck or large trailer that is loaded is disposed at a gas station (such as a fueling station), and when the loading capacity of the large truck or large trailer becomes empty, it is returned to the gas station and loaded.
  • a high pressure gas cylinder such as an oxygen gas cylinder, a carbon dioxide gas cylinder, a hydrocarbon compound (eg, methane) cylinder or the like currently in circulation is mounted and transported on a rack that can carry a plurality of liquefied gas cylinders. If it does, it can be set as the above-mentioned gas transfer system (as infrastructure maintenance).
  • a high pressure gas cylinder such as an oxygen gas cylinder, a carbon dioxide gas cylinder, a hydrocarbon compound (eg, methane) cylinder or the like currently in circulation is mounted and transported on a rack that can carry a plurality of liquefied gas cylinders. If it does, it can be set as the above-mentioned gas transfer system (as infrastructure maintenance).
  • the above resource conversion means CH1 is a resource conversion means according to the technology described in Patent Document 4.
  • * -1 Delivered to an external facility having facilities for producing hydrogen, and are processed into hydrocarbon compounds (eg, methane CH 4 ⁇ methanol CH 3 OH 3 ⁇ dimethyl ether CH 3 OH 3 ) at the external facility.
  • 2 CO + 2 H 2 synthesis gas is generated by reforming carbon dioxide CO 2 and methane CH 4 using a precious metal catalyst (steam / CO 2 reforming) and its technology Use.
  • C12A7 Electride selectively adsorbs and decomposes carbon dioxide molecules at room temperature and uses it to decompose carbon dioxide into carbon monoxide (described later).
  • C12A7 which takes in electrons into the structure of compound 12CaO 7A ⅼ 2 O 3 (hereinafter referred to as C12A7) composed of lime (CaO) and alumina Al 2 O 3 is a molecule of carbon dioxide
  • a decomposition technology that selectively adsorbs at room temperature and decomposes to carbon monoxide and oxygen.
  • Carbon dioxide CO 2 recycling means CH4 is a group of global carbon dioxide recycling Tohoku metal Institute et al., Sea water from hydrogen and carbon dioxide produced to produce hydrogen by electrolysis, methane at atmospheric pressure 300 ° C. Technology has been invented including the invention of the formation and the catalyst used for the formation, the electricity is generated by photovoltaic generation in deserts such as the Middle East, and the carbon dioxide is from a carbon dioxide emitting country It is procured by transportation.
  • the inert gas is introduced into the combustion nozzle of the engine combustion apparatus (Z or 2, 2a, 2ar, 2b, 2c, 2d) to control the oxygen concentration during combustion.
  • the engine combustion apparatus Z or 2, 2a, 2ar, 2b, 2c, 2d
  • the inert gas is introduced into the combustion nozzle of the engine combustion apparatus (Z or 2, 2a, 2ar, 2b, 2c, 2d) to control the oxygen concentration during combustion.
  • the period until the maintenance of the system to shift to the engine having hydrogen generation means ZU by providing the above inert gas mixing means should be an engine that does not discharge "CO 2 " and "NO X " Can do. (For example, take measures against the use of German fossil fuel combustion engines)
  • An engine-combustion apparatus Z for burning oxygen and hydrogen (separated by the separator 1) (FIG. 1), which incorporates a hydrogen generation means ZU in the combustion apparatus, the combustion apparatus comprising a gas storage tank T1 and Oxygen and hydrogen are supplied from the gas storage tank T2 to the combustion nozzle 2N, ignited by the spark plug 2P and burned in the combustion chamber NE, and the combustion chamber is provided with a heat resistant structure SC receiving direct heat due to combustion.
  • the heat resistant structure is provided with a water passage MHa for supplying water from a water tank and receiving the supplied direct heat from the above-mentioned combustion while passing the supplied water through the heat resistant structure SC and converting the water into water vapor.
  • the steam injection nozzle Zj is provided for injecting the generated steam A into the hydrogen generation means ZU provided on the outer shell of the heat resistant structure (the outer side), and the steam A is jetted from the jet nozzle.
  • the hydrogen is used as the fuel of the engine combustion device Z, and the steam A generated in the water passage MHa is supplied to the combustion chamber NE from the supply nozzle Zj and the supply nozzle Zj.
  • the water vapor A absorbs the heat in the combustion chamber NE, and the water vapor Aa becomes more high heat, and the water vapor Aa is not decomposed (reformed) by the water vapor B generated by the combustion and the hydrogen generation means ZU
  • An engine-combustion apparatus Z that burns hydrogen and generates hydrogen, comprising: an exhaust stream 5 discharged downstream as exhaust with the cracked steam STn (and uncracked steam STm).
  • a rotational force takeout device 3 is provided downstream of the combustion device Z, and the exhaust flow 5 is introduced into the rotational force takeout device 3 and flows through the rotational force takeout device 3 (for example, a rotary blade) to substantially straight line Electricity (or either or both) taken out by converting fluid power into rotational power is either stored in the capacitor 40, consumed as power or used as electricity, or means for generating electricity or hydrogen (4) or delivered to the electricity transfer system EaST (for example, sold to a power company)
  • EaST for example, sold to a power company
  • An electric Ea / hydrogen generating means 4 which receives the exhaust stream 5a flowing through the rotational force extracting device 3 and introduces the heat and water vapor of the exhaust stream 5a to generate electricity Ea ⁇ hydrogen.
  • a steam electrolyzer F1 a steam electrolyzer FS1, a steam reforming Ka1, a thermoelectric energy conversion, etc.
  • composition which can theoretically generate electricity Ea and hydrogen heat and steam of the exhaust stream 5a
  • electricity or hydrogen Hydrothermal chemistry that requires time for reforming and decomposition when the engine is used to produce one or both of them (using known technology) and furthermore, when the engine is installed on a medium- or large-sized ship (for example, 500 tons or more) or stationary configuration.
  • the steam not decomposed (or generated) by the electricity Ea / hydrogen generation means 4 is returned to the downstream (combustion chamber NE) of the electrolyzer F1 by the water vapor reheating (means) device WR (water circulation loop) Or put it back in the water tank T4.
  • the same components as those of the engine combustion device Z are denoted by the same reference numerals and their description is omitted, and only different parts will be described.
  • the engine combustion apparatus 2c wherein the hydrogen generation means of the hydrogen generation means ZU is an electrolyzer F1 (FIG.
  • the apparatus F1 and a water injection nozzle Tj to be injected into the combustion chamber NE are provided to inject water from the injection nozzle, and from the storage battery 40 to the electrolyzer F1 (in the stationary form (for example, a power plant) engine) Good) to supply electricity Ea, and the steam A injected to the electrolyzer F1 and the supplied electricity are separated into hydrogen and oxygen by the electrolyzer F1 and taken out, and the obtained hydrogen and
  • the heat E is introduced into the heat exchanger G3 for recovering sensible heat from oxygen (can be supplied directly to the combustion nozzle 2N), and the heat E recovered by the heat exchanger G3 is hydrogen, oxygen and monoxide in the engine combustion device 2C and thereafter.
  • An engine combustion apparatus 2b (FIG. 3) in which the hydrogen generating means of the hydrogen generating means ZU is a steam reforming unit Ka (FIG.
  • the hydrogen reforming means ZU is provided with a steam reforming unit Ka
  • the methane CH 4 (hydrocarbon compound, hereinafter referred to as methane) aeration channel MC is provided in the outer shell part of the (outside) to introduce methane CH 4 from the methane CH 4 injection nozzle Cj into the steam reforming channel Ka
  • the steam A is injected from the water injection nozzle Tj into the steam reforming section Ka and the combustion chamber NE provided on the outer side (outer shell) of the heat resistant structure, and the injected methane CH 4 and the steam A are steam
  • the reforming unit Ka is reformed into a synthesis gas of hydrogen and carbon dioxide (the steam reforming unit has, for example, a honeycomb structure supporting a catalyst on an alumina carrier)
  • the reformed hydrogen gas is separated (for example, high temperature hydrogen gas separation)
  • Membrane ceramic And hydrogen are separated out into hydrogen and carbon dioxide + unreformed steam STm, and carbon dioxide + unreformed steam STm is
  • the carbon dioxide can be taken out in the state of carbon monoxide (without shift reaction). As for the safety when transporting the gas, carbon dioxide may be carbon monoxide.
  • the steam reforming section Ka is carried out with an excess of water vapor of about 2 to 5 H 2 O / CH 4 (molar ratio).
  • the hydrogen produced by the engine combustion system 2b is the hydrogen of the engine combustion system 2 or the engine combustion system 2a or the engine combustion system 2ar excluding the steam reforming section Ka of the combustion system, and the fuel of its own engine combustion system 2b
  • the engine combustion chamber 2 is a schematic configuration flow diagram 6 of a combustion process of an engine in which hydrogen (H 2 ) is continuously (intermittently) burned with (enriched) oxygen (O 2 ).
  • An oxygen separator is provided for separating nitrogen from air, the oxygen separator comprising an air compressor and a separator for separating air into (enriched) oxygen and nitrogen ⁇ eg membrane separator (FIG. 7) ⁇
  • the hydrogen is supplied to the fuel injection nozzle from the hydrogen storage gas tank T2 through the hydrogen introduction pipe 2 and the hydrogen and enriched oxygen of the fuel injected from the combustion nozzle to the combustion chamber NE are ignited by the spark plug 2P.
  • Continuous burning, by the combustion Exhaust gas (mostly water vapor) is discharged as exhaust stream 5.
  • a water passage MH is provided between the inner and outer walls (between 2G and 2U) of the above engine combustion process (outer shell), and water is introduced from the water tank to the water passage MH through the water introduction pipe 4
  • a plurality of injection nozzles TJ are provided on the inner wall 2U of the combustion chamber for injecting water in the water passage into the combustion chamber, and the heat absorption structure means receives the direct heat of the combustion flame by the continuous combustion of the (enriched) oxygen and hydrogen.
  • An SC is provided at intervals in the inner central direction of the inner wall of the combustion chamber portion to protect the inner wall surface (with respect to the combustion temperature) of the combustion chamber by the combustion of hydrogen and (enriched) oxygen.
  • the water injected into the large diameter direction surface of the structural means and into the combustion chamber of the engine and injected into the heat absorbing structural means in the combustion chamber of the engine absorbs the heat of the heat absorbing structural means SC to convert the water into water vapor
  • Water injected into the combustion chamber NE also The heat of combustion (heat of exhaust gas) in the chamber is absorbed to convert the water into water vapor, which is used as a cooling means and water vapor generating means in the combustion chamber, and the injected water becomes water vapor and the above (enrichment)
  • the combustion step 2a (FIG. 6) of the above-mentioned engine is an engine combustion apparatus for burning hydrogen (H 2 ) with (enriched) oxygen (O 2 ), and an oxygen separating apparatus separately supplying oxygen to the engine combustion apparatus 2a.
  • an engine-combustion apparatus 2 for sending separated oxygen (supplied in the oxygen channel 3) and hydrogen (supplied from the hydrogen tank in the hydrogen channel 2) to the combustion nozzle 2N and ignited by the spark plug 2P for burning;
  • Water passage MH provided between inner and outer walls (between 2G and 2U) of the combustion apparatus 2 and water from the water tank T4 to the water passage MH are introduced to the water passage MH through the water passage 4 comprising a plurality of injection nozzles MJ that directly injects water Nikki water conduit is provided on the inner wall 2U the combustion chamber wall surface, the water injected from the injection nozzle MJ and steam generating means to steam a, above (enrichment) Exhaust gas produced by combustion of oxygen and hydrogen Engine combustion apparatus 2a for burning hydrogen and oxygen
  • the steam not converted (unreformed) by reforming / decomposition etc. by the electricity / hydrogen generation means 4 using a part of the generated electricity Ea is returned into the combustion chamber NE of the combustion apparatus 2a and the exhaust stream A combustion apparatus (Figs. 1, 2, 3, 6, 7 and 11) provided with a water vapor reheating device WR which joins with No. 5 to absorb the heat of the exhaust stream 5 to obtain reheated water vapor.
  • FIG. 5 (B) is a schematic configuration diagram 5 (B) in which the exhaust streams 5 of the four combustion chambers are connected to one rotational force take-out device 3 downstream of the configuration described in the third embodiment.
  • This is an example of a structure in which the exhaust flow 5 of four combustion chambers is converted into a rotational force by one engine combustion device 2b and can be commercialized in the above-mentioned form (CPT).
  • the combustion device and the electric / hydrogen generating means 4 are operated under certain setting conditions to move the moving body.
  • Such control is electricity.
  • the above-mentioned engine mounted equipment (aircraft, ship, railway, car, etc.) of the engine equipped with the engine of the above Examples 2 to 5
  • a parking lot (airport, jetty, marina, etc.) of a dock area, airfield, army base Or the like) by providing a gas station or a mobile gas station with carbon monoxide CO or carbon dioxide CO 2 and taking it to the station to receive the supply of water and hydrocarbon compound (eg methane CH 4 ) or by the engine
  • a facility (electrical transfer system EaST) for taking up the generated electricity is provided to take up the electricity. That is, at the time of moving the moving body, the engine is operated to generate hydrogen (and oxygen) of the fuel to make energy of the moving body and work is finished.
  • carbon dioxide CO 2 may be purchased at a gas station or mobile gas station to be supplied with water and a hydrocarbon compound (eg methane CH 4), or the electricity generated by the engine may be taken over (external social power energy supply
  • the power supply to the infrastructure is used as a means for utilizing the non-operating time of the mobile body by either receiving or receiving it.
  • the hydrogen generation means ZU is a partial oxidation reaction apparatus OS (engine combustion apparatus 2d) (FIG. 10)
  • methane CH 4 and oxygen are supplied to the hydrogen generation means and flow through the hydrogen generation means ZU
  • the heat of steam A is supplied to the mixed gas of methane CH 4 and oxygen via the heat-resistant heat transfer structure section SC to promote the partial oxidation reaction, the synthesis gas generated by the reaction is sent to the shift reaction section, and steam A is introduced.
  • a structure in which hydrogen and carbon dioxide are produced, and hydrogen is separated from the produced gas by a permselective membrane.
  • Partial oxidation reactor OS that reforms the heat of the heat resistant structure, the hydrocarbon compound supplied from the outside of the engine, and the oxygen supplied from the oxygen separator 1 to the outer shell (outside) of the heat resistant structure SC
  • steam A is supplied to the mixed gas to generate hydrogen and carbon dioxide
  • hydrogen is separated from the generated gas
  • the hydrogen taken out is extracted from the hydrogen of the fuel engine fuel.
  • It is an engine that burns hydrogen and oxygen, which is characterized by * Using the above hydrocarbon as the main raw material gas and water (water vapor), carbon dioxide, oxygen, etc. as the secondary raw material gas, a mixed gas containing hydrogen was generated using a chemical reaction such as partial oxidation reaction or decomposition reaction.
  • the hydrogen generation means of the present invention is a technology for separating hydrogen from the mixed gas and taking it out by means of a selectively permeable membrane (for example, a high temperature hydrogen gas separation membrane (ceramics)) capable of selectively permeating hydrogen (after the shift reaction).
  • a selectively permeable membrane for example, a high temperature hydrogen gas separation membrane (ceramics)
  • ceramics high temperature hydrogen gas separation membrane
  • the present application is an engine that burns oxygen (enriched) separated from oxygen in air and hydrogen, and is an engine that can be widely used in industry as hydrogen fuel using water as a raw material.
  • FIG. 1 is an example (axial direction sectional view) of an integrated (integrated) type of steam electrolysis apparatus F1 in an engine combustion apparatus 2c that burns oxygen and hydrogen.
  • An example figure (axial direction cross section figure) of combustion equipment 2b of an engine which changed to the above-mentioned steam electrolyzer F1 and provided steam reforming part Ka.
  • FIG. 1 The schematic block diagram of the oxygen separation apparatus 1.
  • FIG. 1 The rotor blade sectional view showing the cooling means of the rotor blade of the above-mentioned torque extraction device 3.

Abstract

[Problem] To invent an engine that reduces CO2 andNOX emissions as a countermeasure to global warming and contrive a configuration that is superior to an electrically driven moving object. [Solution] An engine in which hydrogen and oxygen are burned in an engine combustion device that burns hydrogen and oxygen, heat and steam produced by the combustion device are guided into a hydrogen production means ZU provided inside the engine combustion device, either electricity, a hydrocarbon compound, oxygen, or the heat of the steam A is guided into the means ZU, hydrogen (or carbon monoxide or carbon dioxide) is extracted by the hydrogen production means, the hydrogen is used as fuel, carbon dioxide (or carbon monoxide) is recycled by a carbon dioxide recycling means CH that uses carbon dioxide as a resource outside of the engine, more electricity and hydrogen are produced by a rotational force extraction means 3 and a downstream electricity/hydrogen production means 4, the hydrogen is used as fuel for the engine, electricity powers engine-mounted instruments, surplus electricity is either sold by an electricity transfer system EaST or designated as electricity for private or home use, and an engine on a scale equivalent to the produced hydrogen quantity can be further operated.

Description

水素と酸素を燃焼するエンジン。An engine that burns hydrogen and oxygen.
 水素と酸素を燃焼させるエンジンの技術分野である。 The technical field of engines that burn hydrogen and oxygen.
富化酸素と水素を燃焼出来るエンジンの燃焼工程の燃焼室部の構成についてPCT/JP2016/079312にて提案いたしており上記エンジンの燃焼室部には富化酸素と水素の燃焼による直射熱を受ける耐熱構造部を設けて燃焼室部内外壁間に水の通水路を設け該燃焼室部内壁に上記耐熱構造部と燃焼室部内に水を噴射する噴射ノズルを設けて該ノズルから水を噴射して該燃焼室内の冷却手段とするとともに水蒸気生成手段として該水蒸気生成手段の水蒸気と燃焼による水蒸気の排気ガスとを回転力取り出し工程を貫流させて回転力として取り出し、取り出した該回転力を動力若しくは電気としており、該取り出し工程を貫流したガスを燃料に生成する燃料生成工程に導入しており該燃料生成工程に合成ガス改質器と気体分離膜による分離器と気体改質分離器を設けて燃料の水素を生成して燃料を自給し、かつCO、NOを排出しないエンジンシステムの技術がある。 The constitution of the combustion chamber of the combustion process of an engine capable of burning enriched oxygen and hydrogen is proposed in PCT / JP2016 / 079312, and the combustion chamber of the above engine receives direct heat from combustion of enriched oxygen and hydrogen A heat resistant structure is provided, a water flow path is provided between the inner and outer walls of the combustion chamber, and an injection nozzle for injecting water into the heat resistant structure and the combustion chamber is provided on the inner wall of the combustion chamber and water is injected from the nozzle The water vapor of the water vapor generation means and the exhaust gas of the water vapor from the combustion as the cooling means in the combustion chamber as well as the water vapor generation means flow through the rotational force extraction step and are extracted as rotational force, and the extracted rotational force is power or electricity. And the gas flowing through the take-out step is introduced into the fuel generation step of generating the fuel, and the fuel generation step is divided by the synthesis gas reformer and the gas separation membrane. Provided vessels and gas reformer separator to produce hydrogen fuel self-sufficient fuel, and there is a CO 2, NO X engine system technology which does not emit.
特許第5967682 富化酸素空気と燃料の燃焼で燃料を生成するエンジン。 炭素か、水素を含む、炭化水素系燃料を富化酸素空気で燃焼させるエンジンの構成で該エンジンの燃焼室部(燃焼装置2)を酸素と水素の燃焼熱に耐えられる手段を設け該手段の耐熱構造部に水を噴射する噴射ノズルを設けて耐熱構造部に水を噴射して水を水蒸気にしており、水蒸気生成時の吸熱により酸素と水素の燃焼を可能にしており、該燃焼室部からの排気ガス流路中に水蒸気改質か、水生ガスシフトか、ドライリフォーミングかの改質路を設けて該改質路にて生成した水素を水素燃料電池に供給して電気を生成しており、更に燃焼ガスと生成ガスとの両方でタービン翼を回転してその回転力を運搬機器の駆動力とするか発電機の発電動力とするかにしておる技術。 *本願は上記エンジンの燃焼室構成の通水路を上記耐熱構造部内に設け該通水路を水が通過する過程で該耐熱構造部の熱を吸熱し水蒸気を生成しており、上記耐熱構造部の外側に水素生成手段ZU(例えば水蒸気改質装置Kaか水蒸気電気分解装置F1か部分酸化反応装置BOかの何れか)を設け上記耐熱構造部で生成した水蒸気を水素生成手段ZU(例えば水蒸気改質装置Kaか水蒸気電気分解装置F1か部分酸化反応装置BOかの何れか)に導入し水素を生成し生成した水素を該エンジンの燃料としておる点が異なる技術。Patent No. 5967682 An engine that produces fuel by combustion of oxygen-enriched air and fuel. The construction of an engine for burning hydrocarbon fuel containing carbon or hydrogen with enriched oxygen air is provided with means capable of resisting the heat of combustion of oxygen and hydrogen in the combustion chamber (combustion device 2) of the engine The heat-resistant structure is provided with a jet nozzle for injecting water, and the water is injected into the heat-resistant structure to turn the water into steam, and heat absorption during steam generation enables combustion of oxygen and hydrogen, and the combustion chamber portion In the exhaust gas flow path from the water vapor reforming, aquatic gas shift, or dry reforming reforming path is provided, and the hydrogen generated in the reforming path is supplied to the hydrogen fuel cell to generate electricity. Furthermore, it is a technology that uses the rotational power as the driving power of the transport equipment or the power generation power of the generator by rotating the turbine blade with both combustion gas and product gas. * The present invention provides the water passage of the combustion chamber constitution of the above-mentioned engine in the above-mentioned heat resistant structure, absorbs heat of the heat resistant structure in the process of passing water through the water passage and generates steam. A hydrogen generating means ZU (for example, either the steam reformer Ka or the steam electrolyzer F1 or the partial oxidation reactor BO) is provided outside, and the steam generated in the heat-resistant structure section is a hydrogen generating means ZU (eg, steam reformer) The technology differs in that hydrogen is produced by introducing it into the apparatus Ka, the steam electrolyzer F1 or the partial oxidation reactor BO), and the produced hydrogen is used as a fuel for the engine.
特開2012-52162水素および酸素の製造・使用方法。製鉄所(製鉄プロセス)で副次的に発生する低品位の水蒸気を用いて、クリーンな水素および酸素を安価に製造して使用することができる水素および酸素の製造・使用方法であって、上記低品位の水蒸気を加熱して高温の水蒸気とする水蒸気加熱装置Aと、前記水蒸気加熱装置で得られた高温の水蒸気を電気分解により水素と酸素に分解する水蒸気電気分解装置Bと、前記水蒸気電気分解装置で得られた水素および酸素から顕熱を回収する顕熱回収装置C1と、前記水蒸気電気分解装置で得られた水素および酸素と前記顕熱回収装置で回収した顕熱を製鉄プロセスで利用する利用装置E1とを備えていることを特徴とする水素および酸素の製造・利用方法。*該文献技術の製鉄プロセスで副次的に発生する低品位の水蒸気を加熱して高温の水蒸気とする水蒸気加熱装置Aを設けておるのに対して本願はエンジン燃焼装置2~2dでの水素と酸素の燃焼による直接燃焼熱及び間接熱により高温水蒸気を生成しておる点が大きな相違点であるが、該文献の水蒸気電気分解装置及び熱電エネルギー変換装置の技術部分は本願に採用しておる。JP 2012-52162 A method of producing and using hydrogen and oxygen. It is a method of producing and using hydrogen and oxygen, wherein clean hydrogen and oxygen can be inexpensively produced and used by using low-grade steam generated secondarily at steelworks (iron-making process), A steam heater A for heating low-grade steam into high-temperature steam; a steam electrolyzer B for decomposing high-temperature steam obtained by the steam heater into hydrogen and oxygen by electrolysis; The sensible heat recovery device C1 which recovers sensible heat from hydrogen and oxygen obtained by the decomposition device, and the sensible heat recovered by the sensible heat recovery device using the hydrogen and oxygen obtained by the steam electrolyzer in the iron making process A method for producing and using hydrogen and oxygen, comprising: * While the steam heating device A is provided which heats low-grade steam generated as a by-product in the iron making process of the literature technology into high-temperature steam, the present invention relates to hydrogen in the engine combustion devices 2 to 2 d The major difference is that high-temperature steam is generated by direct combustion heat and indirect heat from the combustion of oxygen and oxygen, but the technical parts of the steam electrolyzer and the thermoelectric energy converter in this document are adopted in the present application. .
特願2008-155195 水素発生法、水素発生装置及び触媒。 金属酸化物(例えばCr2O3)と金属水酸化物(例えばKOH)を金属酸化物の融点以上、沸点以下の温度に加熱して固化せしめた触媒を触媒収納室21内に設置し、この収納室21に蒸発室内で蒸発した750℃前後の水蒸気を供給して、中間活性物質を伴う3つの反応を行い水から水素を採集する。  該発明によれば、水の分子を直接取出すのではなく、金属水酸化物の水酸基の水素を取出すようにしたので、700℃前後の水蒸気で反応をさせることができ、水の電気分解に比較して少ないエネルギーで水素を取出すことが出来る。  また、3つの反応が組み合わされて触媒自体は減少することなく、見掛け上は水を水素と酸素に分解するようにしているので、触媒自体の減少はない。  また、更に該発明の実施に必要な触媒の材料は、金属酸化物として酸化クロム、酸化チタン等、金属水酸化物として水酸化カリウム、水酸化カルシウム等、化学材料としては手に入れ易く、しかも安価である、とした技術である。*本願の燃焼装置2~2d(燃焼装置2,2a,2ar,2b,2c,2d)の排気流5又は回転力取り出し装置3を貫流後の排気流5aの何れかの水蒸気を該発明の金属酸化物と金属水酸化物の触媒と水蒸気で水素を採集する装置SYの水蒸気とし本願に採用できる技術である。Patent application No. 2008-155195 Hydrogen generation method, hydrogen generator and catalyst A catalyst formed by heating and solidifying a metal oxide (for example, Cr 2 O 3) and a metal hydroxide (for example, KOH) to a temperature above the melting point and below the boiling point of the metal oxide is installed in the catalyst storage chamber 21. In the evaporation chamber, the water vapor around 750 ° C. evaporated is supplied to perform three reactions with the intermediate active substance to collect hydrogen from water. According to the invention, the hydrogen of the hydroxyl group of the metal hydroxide is extracted instead of directly extracting the water molecule, so that the reaction can be performed with water vapor at around 700 ° C. You can extract hydrogen with less energy. In addition, since the three reactions are combined and the catalyst itself is not reduced and apparently water is decomposed into hydrogen and oxygen, there is no decrease in the catalyst itself. Further, the catalyst material necessary for the practice of the present invention can be easily obtained as chromium oxide, titanium oxide, etc. as metal oxide, potassium hydroxide, calcium hydroxide, etc. as metal hydroxide, as a chemical material, It is a technology that is cheap. * The steam of exhaust stream 5 of the combustion apparatus 2 to 2d (combustion apparatus 2, 2a, 2ar, 2b, 2c, 2d) of the present invention or the exhaust stream 5a after flowing through the rotational force extracting device 3 It is a technology that can be adopted in the present application as the water vapor of the apparatus SY for collecting hydrogen by the catalyst of the oxide and the metal hydroxide and the water vapor.
特開2015-189721天然ガス処理物の製造方法及び処理天然ガス処理プラント。天然ガスから天然ガス処理物を製造する天然ガス処理物の製造方法であって、水を電気分解して酸素及び水素を生成し、生成した酸素を前記天然ガスと反応させて一酸化炭素及び水素を含有する合成ガスを生成し、生成した前記合成ガスを反応させて天然ガス処理物を得る技術。更に二酸化炭素に水素を反応させメタノールを製造する技術、 反応式 CO2+3H2→CH3OH+H2O  更に二酸化炭素に水素を反応させメタンを製造する技術。 反応式 CO2+4H2→CH4+2H2O。更に千代田化工建設(企業名)では二酸化炭素CO2とメタンCH4を貴金属系触媒を使用した改質で2CO+2H2の合成ガスを生成しておる技術。更に一酸化炭素COと水素を反応させてジメチルエーテルを製造する技術。 2CO+4H2→CH3OCH3+H2O *本願の二酸化炭素資源化手段CHの一つとして採用出来る技術。JP-A-2015-189721 Method of producing natural gas treated product and treated natural gas treating plant A method for producing a natural gas treated product for producing a natural gas treated product from natural gas, comprising the steps of: electrolysis of water to produce oxygen and hydrogen; and reacting the produced oxygen with the natural gas to produce carbon monoxide and hydrogen. A technology for producing a synthesis gas containing C. and reacting the produced synthesis gas to obtain a natural gas treated product. Furthermore, the technology of reacting hydrogen with carbon dioxide to produce methanol, Reaction formula CO 2 + 3 H 2 → CH 3 OH + H 2 O Furthermore, the technology of reacting hydrogen with carbon dioxide to produce methane. Reaction formula CO2 + 4H2 → CH4 + 2H2O. In addition, Chiyoda Chemical Construction Co., Ltd. (company name) is a technology that generates 2CO + 2H 2 synthesis gas by reforming carbon dioxide CO 2 and methane CH 4 using a precious metal catalyst. Furthermore, carbon monoxide CO and hydrogen are reacted to produce dimethyl ether. 2CO + 4 H 2 → CH 3 OCH 3 + H 2 O * A technology that can be adopted as one of the carbon dioxide recycling means CH of the present application.
1、上記背景技術に記載の特許文献PCT/JP2016/079312に記載の燃焼装置2に設けた耐熱伝導体SCを熱の伝熱体として活用し上記エンジン燃焼装置内で水蒸気改質や電気分解が出来る(一体型)構造を発明すること。(燃料の水素を自給自足、若しくは燃料費用に相当する対価が得られる構成のエンジン燃焼装置又は電気・水素生成手段を)発明。
2、上記1に記載しておる技術の水素を製造する燃料生成工程4での水蒸気改質を繰り返すと二酸化炭素が増えるがこの二酸化炭素を処理するシステムを構築すること。
3、上記エンジンの稼働に於ける生成物で燃料費を賄う手段を見つける、更には上記エンジンを移動形態に搭載したケースでは当該エンジンの償却費を賄う手段を見つけ電気駆動の移動体に勝る構成にする。
4.上記生成する二酸化炭素COを外部設備 (定置形態設備に設置した場合は該設備内であっても良い)にて資源として活用する二酸化炭素資源化する方法を見つける。
5、エンジンの燃焼室内の温度を下げる方向にコントロールする手段を見つけ、該手段をレシプロエンジンかロータリーエンジンかディゼルエンジンかのいずれかのエンジンに設け現在製造されておるレシプロエンジンかロータリーエンジンかディゼルエンジンかのいずれかのエンジンの燃料を水素とする本願エンジン製造体制整備迄の「NO」,「CO」排出削減策とする構成を見つける。
1. Using the heat resistant conductor SC provided in the combustion apparatus 2 described in the patent document PCT / JP2016 / 079312 described in the above background art as a heat transfer body, steam reforming and electrolysis are performed in the engine combustion apparatus Invent a (one-piece) structure that can (The engine combustion device or the electric / hydrogen generation means is configured to be self-sufficient for the hydrogen of the fuel, or the price corresponding to the fuel cost).
2. Repeating the steam reforming in the fuel producing step 4 of producing hydrogen according to the technology described in 1 above, carbon dioxide is increased, but a system for processing this carbon dioxide is to be constructed.
3. Find the means to cover the fuel cost with the product in the operation of the above-mentioned engine, Furthermore, in the case where the above-mentioned engine is installed in the mobile form, find the means to cover the depreciation expense of the engine; Make it
4. Find out a method of carbon dioxide resource conversion that is utilized as a resource in the external equipment (it may be in the equipment if installed in a stationary form equipment) the carbon dioxide CO 2 to be generated.
5. Find a means to control the temperature in the combustion chamber of the engine in a decreasing direction, and install the means on either a reciprocating engine, a rotary engine or a diesel engine. Currently manufactured reciprocating engine or rotary engine or diesel engine Find a configuration to reduce the "NO X " and "CO 2 " emissions of the engine manufacturing system maintenance department of this application, which uses hydrogen as the fuel for one of the engines.
第一の発明は、酸素(分離装置1により分離された)と水素を燃焼させた熱で水を水蒸気にしており、該水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させて水素を生成する構成を設けたエンジン燃焼装置Zであって、(図1、2、3,10)、該燃焼装置Zの(蓄ガスタンクT1及び蓄ガスタンクT2から)燃焼ノズル2Nに酸素及び水素を供給し点火栓2Pにより点火し燃焼室NE内で燃焼しており、該燃焼室に設けておる燃焼による直射熱を受ける耐熱構造部SCと(耐熱構造部SCは直射熱を受け易い形状(例えば略円筒状)にしており)、該耐熱構造部に設けておる(水タンクより水を供給し供給された)水を耐熱構造部SCを通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路MHaと、該通水路MHa内で水蒸気Aを生成する水蒸気A生成手段と,上記耐熱構造部の外殻体(外側)に設けておる水素生成手段ZUと、(例えばZUが電気分解装置であれはF1,F2,図1、であり、水蒸気改質であればKa、図2、であり、部分酸化反応OSであれば図10)該水素生成手段ZUに上記水蒸気Aを供給する供給ノズルZjと該供給ノズルZjから該水素生成手段ZUに供給しており該水素生成手段ZUにて水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させる副材料SBを供給する副材料(例えば熱・電気・酸素・炭化水素化合物等)SB供給手段と、該水素生成手段ZUに供給された水蒸気Aと上記供給された副材料SBの何れか(熱・電気・酸素・炭化水素化合物等)一以上を使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、該混合ガスから水素を分離する分離装置と、該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、上記通水路MHaで生成した水蒸気Aを燃焼室NEに供給する供給ノズルZjと該供給ノズルZjから供給された水蒸気Aは燃焼室NE内の熱を吸熱してさらに高熱に成った水蒸気Aaと、該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解(改質)されなかった未分解水蒸気(STn及び未分解水蒸気STm)とともに下流に排気として排出される排気流5と、を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Zを特徴とする水素と酸素を燃焼するエンジンを提供する。
*上記エンジンの燃焼室NE内に設けておる燃料の燃焼火炎2Fの直射熱を受ける吸熱構造手段SCを耐熱吸熱構造材(例えば熱伝導率及び耐熱温度が高いアルミナAl系合金が好ましい)にして設け、上記吸熱構造手段SC内に水を水蒸気にする通水路MHaを設け水が該通水路を通過する間に水を水蒸気Aとし該水蒸気Aを上記水素生成手段ZUと該エンジン燃焼室NEに噴射してエンジン燃焼室の冷却手段と水素生成手段ZU(装置)に水蒸気を供給する手段としたことが酸素と水素を燃焼を可能にし、更に該燃焼装置Z内で水素を生成出来るエンジンを考案出来た新規技術である。
*(富化)酸素と水素の燃焼では燃焼炎の中心温度は2800℃程度で空気(中の酸素)と水素の燃焼では燃焼炎の中心温度は1900℃程度で(富化)酸素の使用により47%程度燃焼炎の中心温度が上がる、(富化)酸素を使用したエンジンと、空気(の酸素)を使用したエンジンとでは上記水蒸気改質器に使用するか水の電気分解に使用するか部分酸化反応BOに使用するかの何れかの水蒸気の製造を計算上47%多く出来る(酸素密度の差であり、本願ではこれを酸素エネルギーと呼ぶ)。
*エンジン燃焼装置Zの水素生成手段ZUが水蒸気改質及び部分酸化反応の場合水蒸気改質CH+HO→CO+3Hと(部分酸化反応CH+O→CO+2H)シフト反応部を設けておるCO+HO→CO+H構成であるが、上記シフト反応部を設けない構成にして二酸化炭素に替えて一酸化炭素を生成する構成でもよい。
第二の発明は、上記エンジン燃焼装置Zの下流に設けておる回転力取り出し装置3に該燃焼装置Zからの排気流5を貫流させ該回転力取り出し装置3を貫流した排気流5aを上記耐熱構造部SC内に設けておる通水路MHaに(全部または半分以上)戻し入れる手段R1(例えば戻し入れ管路)を設けて上記通水路MHaに排気流5aを戻し入れており、更に上記戻し入れる手段を燃焼装置2,2a(後述)に設け、上記燃焼装置下流の回転力取り出し装置3を貫流した排気流を燃焼室NEに戻し入れる手段R2としておる事を特徴とする水素と酸素を燃焼するエンジンを提供する。
*エンジン燃焼装置Zの水素生成手段ZUが水蒸気改質の場合供給する水蒸気の供給量は炭素析出対応により理論値の2~5倍供給(HO/CH(モル比)2~5程度で供給)しており、余剰に供給した水蒸気は未改質水蒸気STmとなり排気に合流して排気流5から回転力取り出し装置3を貫流して排気流5aとなり下流に排出されており、該排気流5aを上記耐熱構造部の通水路MHaに戻し入れる手段R1(例えば戻し入れ管路、図面なし)を設け該排気流5aを水素生成手段の水蒸気Aに再生する再生手段であり、更に該再生手段を上記燃焼装置2,2aに設け、上記燃焼装置下流の回転力取り出し装置を貫流した排気を燃焼室NEに戻し入れる手段とする。
*エンジン燃焼装置Zの水素生成手段ZUが電気分解装置F1、F2の場合水蒸気の電気分解率は例えば水蒸気を固体電解質セルを通過させ分解する装置での分解率を50~60%とした場合排出される未分解水蒸気を戻し入れ再加熱し再度電気分解装置F1、F2に投入する事で分解率を上げる構成とする(電気分解能力UP=セル設置数を増やす)ことが出来る。
第三の発明は、上記回転力取り出し装置3の回転翼体3aであって、(図8)排気流5の略直線的な排気流力を回転力に変換する回転翼体と、該回転翼体3aの回転力を取り出す一方の回転軸3cと、該回転軸3cの他方の回転軸3c1と、上記回転力取り出し装置3の外殻体3dと、上記他方の回転軸3c1端部から回転軸3c1内と回転翼体3a内を通り回転翼体3a外に通じる通水路3MHとを備えており、上記通水路3MHに水を導入し該通水路を通過する過程で該水が回転翼体3aの熱を吸熱し水蒸気Cとなり上記回転力取り出し装置3貫流後の排気流5a(と合流)として下流に排出される構造で、回転翼体3aの冷却手段を有する回転力取り出し装置3とした事を特徴とする水素と酸素を燃焼するエンジンを提供する。
第四の発明は、エンジン燃焼装置2、2a、2ar、Z、の何れかを搭載するエンジンの回転力取り出し装置3を貫流した排気流5a、を導入して電気&水素を生成する電気&水素生成手段4であって、該手段に導入されておる排気流5aの持つ熱(例えば上記エンジンの設定次第ではあるが概略1000℃程度)と水蒸気(水蒸気A,水蒸気Aa,水蒸気B,水蒸気C,未分解水蒸気STn若しくは未改質水蒸気STmの内何れか1以上の水蒸気)及び回転力取り出し装置3で取り出した電気Ea及び海水(例えば船舶での水蒸気化に使用の水)の内の1以上を材料として、(例えば、)水蒸気電気分解装置F1か水蒸気電気分解装置FS1か金属酸化物と金属水酸化物の触媒と水蒸気で水素を採取する装置SYか水蒸気改質装置Ka1か水熱化学分解F2か熱電エネルギー変換装置DEか、熱交換器Gか燃料電池発電機FD1か海水真水化(淡水化)装置Waかの技術のいずれか1種以上の装置を用いるか組み合わせて、電気か水素の一方か両方を生成(製造)し、上記生成した水素の量により上記エンジン燃焼装置2,2a,2arを有するエンジンを複数台稼働させて稼働した複数台のエンジンから電気(又は動力)を更に生成する事を特徴とする水素と酸素を燃焼するエンジンを提供する。
*上記電気&水素生成手段4に記載のいずれかの装置の単独稼動かあるいは組み合わせ稼働かについては複数の形態が想到でき該装置と機器との構成に矛盾がない(理論上成立する構成は)自在に出来る(例えば燃料電池発電機FD1で発電し該電気を水蒸気電気分解装置F1の電気とする構成での組み合わせ)。
第五の発明は、 上記水素生成手段ZUを有すエンジンを稼働させ該水素生成手段ZUで生成した水素を当該エンジンと水素生成手段ZUを有さないエンジン燃焼装置2及び2a及び2arかの何れかの燃焼装置を複数台稼働させ水素生成手段ZUを有すエンジン1台と水素生成手段ZUを有さないエンジン複数台で電気又は動力の何れか一方か両方かを生成しておる事を特徴とする水素と酸素を燃焼するエンジンを提供する。
*上記エンジン燃焼装置2b1台と水蒸気改質Kaを持たない(上記2bと同じ量の水素を消費する規模の燃焼装置)エンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arの3種の内の何れか一種以上で構成した複数台(例えば3台)を稼働させ合計(例えば4台)分の(上記エンジン燃焼装置Zは(水蒸気改質の場合)水蒸気改質Kaに用いた水蒸気分程の排気流5の流力は少ないが上記水蒸気改質Kaを持たないエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arは該装置からの排気流5の流力は概100%であり3台+1台(水蒸気改質Kaに用いた水蒸気分程マイナスにした))の排気流5力を排出する構成にして下流の回転力取り出し手段3で上記エンジンの動力及び電気を製造し、該回転力取り出し手段3を貫流し排出される排気流5aを導入して電気及び水素を生成する電気・水素生成手段4で更に電気・水素を製造しておることを特徴とする水素と酸素を燃焼するエンジン。
*上記燃焼装置2は(図4,5,6参照)、上記エンジン燃焼装置2b,2c,2dから電気分解装置F1、及び水蒸気改質部Ka、部分酸化反応OSをそれぞれ除いた構成でかつ耐熱構造部SC(通水路MHaは設けていない)を設けたものが上記燃焼装置2で上記耐熱構造部SCを設けないで該耐熱構造部SCに替えて水を直接燃焼室内壁2Uに噴射する噴射ノズルMjを設けた構成が上記燃焼装置2aであり該燃焼室NEに上記エンジンの電気・水素生成手段4(燃料生成部4)で未改質となった水蒸気を上記燃焼室NEに戻し上記未改質水蒸気を再加熱する水蒸気再加熱手段WRを設けた構成が上記エンジン燃焼装置2arである。
第六の発明は、上記エンジンで生成した電気を蓄電器40に蓄電し移動体の移動電力として使用し、余剰となった蓄電しておる電気か移動体非移動時の該エンジン稼働により生成する電気かのいずれかの電気の受け渡し形態を電気授受システムEaSTとしておる事を特徴とする水素と酸素を燃焼するエンジンを提供する。
*電気授受システムEaSTは、
1、    該移動体で生成し移動体内で蓄電器に蓄電した電気を、
1a,,電気を引き取らせる授受ステーションを設けて該電気を引き取らせる(売電する)。
   1b, 電気授受ステーション及び移動体の駐機場に於ける蓄電器交換システム(複数の蓄電器を1単位としてセットされているのを1単位のセットごと交換して電気の補充時間を短縮)を導入して移動体内で生成し充電した蓄電器と充電量が下限設定値(近く)に成っておる蓄電器と交換するシステム。
2、    移動体の駐機場に於いて該移動体駐機中にエンジンを稼働させ、該移動体で生成した電気を直接ケーブル等で接続し売電する手段。(太陽光発電で発電した電気を電力会社に売電するのと同じ形態)。以上を電気授受システムEaSTの代表事例としたものである。
*上記エンジン燃焼装置2,2a,2ar,Z(2b,2c、2d)を備えたエンジンを移動体に搭載した該エンジン搭載機器(航空機・船舶・鉄道・自動車等々)の駐機場(駐車場・桟橋・マリーナ等の係船場・飛行場・軍隊の基地等々)に一酸化炭素CO又は二酸炭素COをガスステーション又は移動式ガスステーションを設けて該ステーションに引き取らせ水と炭化水素化合物(例えばメタンCH)の供給を受ける形態にするか該エンジンにより生成される電気を引き取らせる設備(電気授受ステーション)を設けて電気を引き取らせるものである。すなわち上記移動体移動時は該移動体を稼働して燃料の水素(及び酸素)を生成し移動体のエネルギーとして消費し、かつ、余剰となった一酸化炭素CO又は二酸化炭素COをガスステーション又は移動式ガスステーションに買い取らせ水と炭化水素化合物(例えばメタンCH)の供給を受ける形態にするか、該エンジンにより生成される電気を移動体の動力として消費しかつ、消費量を超えて生成し余剰となった電気を電気授受システムEaSTにて引き取らせる(外部社会電力エネルギー供給インフラへの電力供給)かのいずれか一方か両方かにすることで該エンジンで余剰となつた一酸化炭素CO又は二酸化炭素CO及び電気を有価物とする手段とした。
*上記移動体例えば公道を走行する自動車の多くは燃料を燃焼しその回転力で電気を生成する機器の構成を備えており、該移動体を非走行時稼働させ電力を生成し生成した電気を売電することでインプットされる炭化水素費用とアウトプットされる電気料金との差し引き計算で受け取る費用―投入費用がプラスであれば上記非稼働時の稼働による収益を得ることが出来る本願のエンジンではその構成が出来る (非走行時稼動させ利益を得ることが出来る)エンジンである。
*上記エンジンで生成した水素量が該エンジンで消費(移動体の移動動力として消費量)しさらに余剰の電気を生成出来る量であれば該余剰の電気を一時的に蓄電器40に蓄電するか或いは直接電気輸送手段にて売電する。
*上記移動体非稼働時を活用する手段によりエンジン内の停止・稼働の繰り返しによる該エンジンの構成材の疲労による亀裂破壊等を防止出来該エンジンの寿命延長に繋げるとともに該エンジン生成物の販売もしくは使用(例えば自工場で使用)により該エンジンの原価償却を早く出来る。
第七の発明は、上記エンジン燃焼装置Zを備えるエンジンに供給する燃焼気体を酸素と水素に加え不活性ガス(例えばアルゴンガス)を混入させる手段を設け該燃焼装置(例えば2,2a,2ar,2b,2c,2d)での火炎中心温度を下げる方向にコントロールする手段としておる事を特徴とする水素と酸素を燃焼するエンジン。
第八の発明は、上記エンジンに供給する燃焼気体(酸素と水素に加え不活性ガス(例えばアルゴンガス)を混入したガス))をレシプロエンジンかロータリーエンジンかディゼルエンジンかのいずれかのエンジンに供給し該エンジンの排気ガスから(排気ガスを機器外に排出する排気口上流に設けた)上記不活性ガスを採集する採取手段にて採集しておる事を特徴とする水素と酸素を燃焼するエンジン。
In the first invention, water is converted to steam by heat produced by burning oxygen (separated by the separator 1) and hydrogen, and the steam is reacted (for example, electrolysis, steam reforming, partial oxidation reaction, etc.) Engine combustion device Z provided with a construction for generating hydrogen (Figs. 1, 2, 3, 10) (from the gas storage tank T1 and the gas storage tank T2) of the combustion device Z (from the gas storage tank T1 and the gas storage tank T2) And the heat-resistant structure portion SC that receives direct heat due to combustion provided in the combustion chamber, and (the heat-resistant structure portion SC is likely to receive direct heat ( (For example, approximately cylindrical)), the water (supplied and supplied from the water tank) provided in the heat resistant structure receives the direct heat from the above-mentioned combustion while passing through the heat resistant structure SC. And a water passage MHa for making water vapor Water vapor A generation means for generating water vapor A in the MHa, and hydrogen generation means ZU provided on the outer shell (outside) of the heat resistant structure (for example, if ZU is an electrolyzer, F1, F2, Fig. 1 and Ka for steam reforming, FIG. 2 for a partial oxidation reaction OS, and FIG. 10 for the partial oxidation reaction OS) from the supply nozzle Zj for supplying the steam A to the hydrogen generation means ZU and the supply nozzle Zj Secondary materials (for example, heat, electricity, oxygen) which are supplied to the hydrogen generation means ZU and which causes the steam to be reacted (for example, electrolysis, steam reforming, partial oxidation reaction, etc.) by the hydrogen generation means ZU · Hydrocarbon compounds, etc.) One or more of SB supply means, steam A supplied to the hydrogen generation means ZU, and any of the supplied auxiliary materials SB (thermal, electrical, oxygen, hydrocarbon compounds, etc.) Hydrogen or hydrogen Hydrogen is extracted by introducing hydrogen or a mixed gas containing hydrogen into the separation device, and a separation device for separating hydrogen from the mixed gas, and hydrogen or hydrogen mixed gas containing hydrogen or hydrogen containing hydrogen which generates mixed gas, The supplied hydrogen is used as the fuel of the engine combustion device Z, and the steam A supplied from the water passage MHa to the combustion chamber NE is supplied to the combustion chamber NE and the steam A supplied from the supply nozzle Zj is the combustion chamber NE. The steam Aa which absorbs heat from the heat inside to become higher heat, and the steam Aa is not decomposed (reformed) by the steam B generated by the above combustion and the hydrogen generating means ZU (STn and undecomposed steam) The hydrogen and oxygen are characterized by an engine combustion apparatus Z which burns hydrogen and generates hydrogen, comprising an exhaust stream 5 discharged downstream as exhaust with steam STm) To provide an engine.
* Heat absorption structure means SC which receives direct heat of the combustion flame 2F of the fuel provided in the combustion chamber NE of the above engine is a heat absorption structure material (for example, alumina Al 2 O 3 based alloy having high heat conductivity and heat resistance temperature is preferable) A water passage MHa for converting water into water vapor in the heat absorption structure means SC while the water passes through the water passage, the water is water vapor A and the water vapor A is the hydrogen generation means ZU and the engine combustion Injection into the chamber NE to supply steam to the cooling means of the engine combustion chamber and the hydrogen generation means ZU (apparatus) enables combustion of oxygen and hydrogen, and further hydrogen can be generated in the combustion apparatus Z It is a new technology that has devised an engine.
* The center temperature of the combustion flame is about 2800 ° C in the combustion of (enrichment) oxygen and hydrogen, and the center temperature of the combustion flame is about 1900 ° C in the combustion of air (oxygen in) and hydrogen by the use of (enrichment) oxygen In the engine using oxygen (enriched) and the engine using air (oxygen), the core temperature of the combustion flame goes up by about 47% or is it used for the above-mentioned steam reformer or for the electrolysis of water? The production of water vapor, which is either used for partial oxidation reaction BO, can be calculated 47% more in calculation (the difference in oxygen density, which is referred to as oxygen energy in the present application).
* When the hydrogen generation means ZU of the engine combustion system Z is steam reforming and partial oxidation reaction, steam reforming CH 4 + H 2 O → CO + 3H 2 and (partial oxidation reaction CH 4 + O → CO + 2H 2 ) shift Although the reaction unit is provided in the structure of CO + H 2 O → CO 2 + H 2 , the shift reaction unit may not be provided and carbon dioxide may be generated instead of carbon dioxide to generate carbon monoxide.
In the second invention, the exhaust flow 5a from the combustion device Z is caused to flow through the rotational force extraction device 3 provided downstream of the engine combustion device Z, and the exhaust gas flow 5a flowing through the rotational force extraction device 3 is subjected to the heat resistance A means R1 (for example, a return line) is provided to return the water flow path MHa provided in the structural part SC (all or half or more), and the exhaust flow 5a is returned to the water flow path MHa. Means are provided in the combustion device 2, 2a (described later), and the exhaust gas flowed through the rotational force output device 3 downstream of the combustion device is returned as a means R2 to the combustion chamber NE to burn hydrogen and oxygen. Provide an engine.
* When the hydrogen generation means ZU of the engine combustion system Z is steam reforming, the supply amount of steam to be supplied is 2 to 5 times the theoretical value according to carbon deposition (H 2 O / CH 4 (molar ratio) about 2 to 5) Supply steam), and the surplus steam supplied becomes unreformed steam STm, joins with the exhaust, flows from the exhaust stream 5 through the rotational force extracting device 3, and is discharged downstream as the exhaust stream 5a, The regeneration means is provided with means R1 (for example, return line, no drawing) for returning the stream 5a to the water passage MHa of the above-mentioned heat resistant structure, and regenerating the exhaust stream 5a into the water vapor A of the hydrogen generating means. Means are provided in the combustion devices 2 and 2a, and the exhaust gas flowing through the rotational force take-off device downstream of the combustion device is returned to the combustion chamber NE.
* In the case where the hydrogen generation means ZU of the engine combustion device Z is an electrolyzer F1 or F2, for example, the electrolysis rate of water vapor is 50% to 60% when the decomposition rate of water vapor is allowed to pass through the solid electrolyte cell The decomposition rate can be increased by adding the undecomposed water vapor back to the furnace, reheating it, and charging it again to the electrolyzers F1 and F2 (electrolysis capacity UP = increase the number of cells installed).
The third invention relates to a rotary wing body 3a of the rotational force output device 3 (FIG. 8) for converting the substantially linear exhaust flow of the exhaust flow 5 into a rotary force, and the rotary wing One rotary shaft 3c for taking out the rotational force of the body 3a, the other rotary shaft 3c1 of the rotary shaft 3c, the outer shell 3d of the rotational force takeout device 3, and the rotary shaft from the other rotary shaft 3c1 end 3c1 and a water passage 3MH communicating with the inside of the rotor 3a and passing through the inside of the rotor 3a, and water is introduced into the water passage 3MH and passes through the water passage. The heat is absorbed to form steam C, which is discharged downstream as the exhaust flow 5a (joined with) after passing through the rotational force extraction device 3. The rotational force extraction device 3 has cooling means for the rotor blade 3a. To provide an engine that burns hydrogen and oxygen.
The fourth invention is an electricity & hydrogen that generates electricity & hydrogen by introducing an exhaust stream 5a that has flowed through the torque takeout device 3 of an engine equipped with any of the engine combustion devices 2, 2a, 2ar, Z Heat generated by the exhaust stream 5a introduced to the means (for example, approximately 1000 ° C. depending on the setting of the engine) and steam (steam A, steam Aa, steam B, steam C, steam) One or more of undecomposed steam STn or one or more of unreformed steam STm), electricity Ea taken out by the rotational force extracting device 3 and seawater (eg, water used for steaming on a ship) As a material, (for example) a steam electrolyzer F1 or a steam electrolyzer FS1 or a device of collecting hydrogen with a catalyst of metal oxide and metal hydroxide and steam, or a steam reformer Ka1 or water Use one or more of the technologies of thermochemical decomposition F2 or thermoelectric energy conversion device DE, heat exchanger G, fuel cell generator FD1 or seawater true water purification (desalination) equipment Wa Electricity (or power) is generated from a plurality of engines operated by generating (producing) one or both of hydrogen and hydrogen and operating a plurality of engines having the engine combustion devices 2, 2a and 2ar according to the amount of the generated hydrogen Further, the present invention provides an engine that burns hydrogen and oxygen, which is characterized by further producing
* Multiple modes can be considered for the single operation or combined operation of any of the devices described in the above electricity & hydrogen generation means 4 and there is no contradiction in the configuration of the device and the device (theoretically established configuration) This can be freely performed (for example, a combination in a configuration in which the fuel cell generator FD1 generates electric power and the electric power is used as the electric power of the water vapor electrolyzer F1).
According to a fifth aspect of the invention, the engine having the hydrogen generating means ZU is operated, and hydrogen generated by the hydrogen generating means ZU is either the engine or the engine combustion device 2 or 2a or 2ar not having the hydrogen generating means ZU. It is characterized in that either one or both of electricity and motive power are generated by one engine having a plurality of combustion devices and one engine having hydrogen generation means ZU and a plurality of engines not having hydrogen generation means ZU. To provide an engine that burns hydrogen and oxygen.
* Among the above three types of engine combustion device 2 or engine combustion device 2a or engine combustion device 2ar, one engine combustion device 2b and one having no steam reforming Ka (a combustion device of a scale that consumes the same amount of hydrogen as 2b) Plural (for example, three) configured by any one or more of them are operated, and the total (for example, four) of the engine combustion device Z (in the case of steam reforming) In the engine-combustion device 2 or the engine-combustion device 2a or the engine-combustion device 2ar which does not have the steam reforming Ka, the flow force of the exhaust stream 5 from the device is approximately 100%. The power and electricity of the engine are produced by the downstream torque extraction means 3 in such a configuration as to discharge the exhaust stream 5 force of the table + 1 (the water vapor fraction used for the steam reforming Ka) is made negative. Electricity and hydrogen are further produced by the electricity / hydrogen producing means 4 for introducing the exhaust stream 5a which flows through the torque takeout means 3 and is discharged to produce electricity and hydrogen. Combustion of hydrogen and oxygen is characterized in that Engine.
* The combustion device 2 (see FIGS. 4, 5 and 6) has a configuration in which the electrolyzer F1, the steam reforming section Ka, and the partial oxidation reaction OS are removed from the engine combustion devices 2b, 2c and 2d, respectively. In the above-described combustion apparatus 2, the heat-resistant structural portion SC is not provided and the injection is performed by injecting water directly to the combustion chamber wall 2U instead of the heat-resistant structural portion SC in the combustion device 2 provided with the structural portion SC (no water flow passage MHa). The configuration provided with the nozzle Mj is the combustion apparatus 2a, and the steam not reformed by the electricity / hydrogen generation means 4 (fuel generation unit 4) of the engine is returned to the combustion chamber NE into the combustion chamber NE. The configuration provided with the steam reheating means WR for reheating the reformed steam is the engine combustion device 2ar.
In the sixth invention, the electricity generated by the engine is stored in the storage battery 40 and used as the mobile power of the mobile unit, and the surplus electricity is generated or the electricity generated by the engine operation when the mobile unit is not moving An engine for burning hydrogen and oxygen is provided, characterized in that any of the modes of delivery of electricity is an electricity transfer system EaST.
* Electrical delivery system EaST
1. The electricity generated by the moving body and stored in a capacitor in the moving body is
1a, A transfer station for taking up electricity is provided to take up (sell) the electricity.
1b, Introduction of a capacitor exchange system at an electric transfer station and a parking lot of a mobile unit (a set of multiple capacitors set as one unit is replaced with a set of one unit to shorten the replenishment time of electricity) A system to replace a capacitor generated and charged in a moving body with a capacitor whose charge amount is at the lower limit setting value (nearly).
2. A means for operating an engine during parking of the mobile unit at a parking lot of the mobile unit, connecting electricity generated by the mobile unit directly with a cable or the like, and selling it. (The same form as selling electricity generated by solar power generation to a power company). The above is a representative example of the electric delivery system EaST.
* A parking lot (parking lot, etc.) of the engine-mounted equipment (aircraft, ship, railway, automobile, etc.) in which the engine equipped with the above engine combustion devices 2, 2a, 2ar, Z (2b, 2c, 2d) is mounted on a moving body Dock, airfield, etc. base military) to carbon monoxide CO or diacid carbon CO 2 with water to taken over to the station provided gas station or mobile gas station hydrocarbon compounds such as Pier marina (e.g. methane The system is designed to receive the supply of CH 4 ) or to provide equipment (electrical transfer station) for taking up electricity generated by the engine to take up electricity. That is, at the time of moving the moving body, the moving body is operated to generate hydrogen (and oxygen) of the fuel to be consumed as the energy of the moving body, and surplus carbon monoxide CO or carbon dioxide CO 2 is consumed at the gas station. Or purchase at a mobile gas station to receive a supply of water and a hydrocarbon compound (eg methane CH 4 ), or consume electricity generated by the engine as power for the vehicle and exceed consumption Carbon monoxide that has become surplus in the engine by making the surplus electricity that is generated and taken over with the electricity exchange system EaST (power supply to the external social power energy supply infrastructure) or either or both. Means of using CO or carbon dioxide CO 2 and electricity as valuables.
* The above mobile units, for example, many vehicles traveling on public roads have the configuration of equipment that burns fuel and generates electricity with its rotational power, and operates the mobile unit during non-traveling to generate power and generate electricity The cost received by calculating the difference between the hydrocarbon cost input by selling electricity and the electricity bill output-With the engine of the present application, if the input cost is positive, it is possible to obtain the profit from the above non-operating operation. It is an engine that can be configured (it can be operated at the time of non-running to gain a profit).
* If the amount of hydrogen generated by the above engine is consumed by the engine (consumption as movement power of the mobile unit) and if it can generate surplus electricity, the surplus electricity is temporarily stored in the storage battery 40 or Sold by direct transportation.
* By means of utilizing the above non-operating time of the moving object, it is possible to prevent cracking and the like due to fatigue of components of the engine due to repeated stop and operation in the engine, and to extend the life of the engine and sell or sell the engine products The use (for example, own factory) can accelerate the cost-off of the engine.
The seventh invention is provided with means for adding combustion gas supplied to the engine provided with the engine combustion device Z to oxygen and hydrogen and mixing an inert gas (for example, argon gas) with the combustion device (for example, 2, 2a, 2ar, An engine that burns hydrogen and oxygen, characterized in that it is controlled as a means to lower the flame center temperature in 2b, 2c, 2d).
The eighth invention supplies combustion gas (gas mixed with oxygen and hydrogen plus inert gas (for example, argon gas)) supplied to the above engine to either a reciprocating engine, a rotary engine or a diesel engine An engine for burning hydrogen and oxygen characterized in that the inert gas is collected from the exhaust gas of the engine (provided upstream of the exhaust port for discharging the exhaust gas to the outside of the equipment) by the collection means for collecting the inert gas. .
<<上記問題を解決する手段の補足説明>>
<酸素分離装置1>(図7)空気大気から窒素Nを分離除去する酸素(富化)手段であるが、気体の膜による分離{例えば、プリズムセパレーター(モンサント社)、プリズムアルファガス(モンサント社)(企業名)PV(透過気化)、等}は、現技術に於いては深冷分離方や吸着分離方と並んで常識と成っておる技術であり、分離膜システムはモンサント、ダウ、セパレック、WRグレース、我が国では、宇部興産(何れも会社名)等がそれぞれ独自の分離膜システムを商品化しておる。
*ガスを分離する膜分離の原理構成は、分離する気体の相対的透過速度により分離する物で、早いガスは膜の壁を通って簡単に透過し、サイドポートに出て行き、遅いガスは膜の壁の透過が困難なために、中空糸の内部を移動し、排出口から排出される構成であり、早いガスには、HO,H,HS,CO,Oがあり、遅いガスにはAr,CO,N,CH等がある。
運転圧力8~150Kg/CmG (8Kg/cm未満の圧力で可能な物もある)
(富化)酸素ガス純度は70%~100%未満(NOxを排出しない範囲)
被分離ガスに圧力が有ることが条件であり、該分離膜システムの駆動力は圧力差の利用である。コンプレッサーとしては、軸流式、往復式、スクリュー式、ロータリ式、スクロール式等のいずれをも用いることが出来る。
<< Supplementary explanation of means to solve the above problems >>
<Oxygen Separator 1> (FIG. 7) An oxygen (enrichment) means for separating and removing nitrogen N 2 from the air atmosphere, but the gas separation by a membrane {eg, prism separator {Monsanto Co., Ltd., prism alpha gas ) (Company name) PV (pervaporation), etc.) is a technology that has become common sense along with the cryogenic separation method and the adsorption separation method in the present technology, and the separation membrane system is Monsanto, Dow, Separek, WR Grace, and in Japan Ube Industries (all are company names) have commercialized their own separation membrane systems.
* The principle configuration of membrane separation that separates gases is that which separates according to the relative permeation rate of the separating gas, so that the fast gas can easily permeate through the membrane wall and exit to the side port, the slow gas Because of the difficulty in permeating the membrane wall, it moves inside the hollow fiber and is discharged from the outlet, and H 2 O, H 2 , H 2 S, CO 2 , O 2 are used as the fast gas. And slow gases include Ar, CO 3 , N 2 , CH 4 and the like.
Operating pressure 8 ~ 150Kg / Cm 2 G (also those which can be at a pressure below 8 Kg / cm 2)
(Enriched) Oxygen gas purity is 70% to less than 100% (range where NOx is not emitted)
It is a condition that the gas to be separated has pressure, and the driving force of the separation membrane system is the use of pressure difference. As the compressor, any of an axial flow type, a reciprocating type, a screw type, a rotary type, a scroll type and the like can be used.
<水蒸気改質装置Ka>触媒を担持した水蒸気改質装置Kaで炭化水素化合物(例えばメタンCH)とスチーム(水蒸気)を反応させ合成ガスを製造する方法で大きな吸熱反応でH2とCOのモル比が3と水素が多く製造される下記反応式で表される。
例えば被改質物質としてメタンCHを用いた改質反応式 CH+HO⇔3H+CO  (1)    CO+HO⇔H+CO  (2) シフト反応・・該反応は(1)の反応時に副次的に起こる。
*上記水蒸気改質用触媒としては、例えば、ニッケル系触媒などの公知の触媒を用いることができる、 ・改質温度650~1000℃程度。
<Steam Reformer Ka> A method of producing a synthesis gas by reacting a hydrocarbon compound (for example, methane CH 4 ) and steam (steam) in a steam reformer Ka carrying a catalyst, and a large endothermic reaction between H 2 and CO It is represented by the following reaction formula in which a molar ratio of 3 and hydrogen are produced in large quantities.
For example, the reforming reaction formula using methane CH 4 as a substance to be reformed CH 4 + H 2 O⇔3H 2 + CO (1) CO + H 2 O⇔H 2 + CO 2 (2) Shift reaction ··· Secondary to the reaction of
* As the catalyst for steam reforming, for example, a known catalyst such as a nickel-based catalyst can be used.-Reforming temperature about 650 to 1000 ° C.
<炭化水素化合物の部分酸化反応装置BO>上記水素生成手段ZUで触媒を必要としない手段の部分酸化反応であって、炭化水素化合物(例えばメタンCH)と上記酸素分離装置1で分離し高密度となった酸素(1/2O)とを水素生成手段Zに導入し該混合気体の部分酸化反応装置BOに上記水蒸気Aの熱を(耐熱伝導体SCの伝熱で)供給し燃焼を促進して該部分酸化反応装置BOで、水素と一酸化炭素の合成ガスを得、該合成ガスに上記水蒸気Aを供給しシフト反応で水素と二酸化炭素を生成し生成ガスから水素を選択的に透過して取り出す選択透過膜型反応器を使用する構成に出来る。 上記水蒸気改質Ka、電気分解F1,F2に替えて部分酸化反応BOを使用する構成。 上記水素生成手段の他の方法には、メタン直接改質等があり、本願の改質技術として使用する事ができる。 Partial Oxidation Reaction Device BO of Hydrocarbon Compound The partial oxidation reaction of the hydrogen generation means ZU is a means which does not require a catalyst, and is separated from the hydrocarbon compound (for example, methane CH 4 ) by the oxygen separation device 1 and high. The oxygen (1/2 O 2 ) that has become a density is introduced into the hydrogen generation means Z, and the heat of the steam A is supplied to the partial oxidation reaction apparatus BO of the mixed gas (by the heat transfer of the heat resistant conductor SC) for combustion. The partial oxidation reaction apparatus BO promotes to obtain a synthesis gas of hydrogen and carbon monoxide, supplies the above-mentioned steam A to the synthesis gas, generates hydrogen and carbon dioxide by shift reaction, and selectively selects hydrogen from the product gas It can be configured to use a permselective membrane reactor that takes out permeatingly. A configuration in which a partial oxidation reaction BO is used instead of the steam reforming Ka and the electrolysiss F1 and F2. Another method of the above hydrogen generation means is methane direct reforming, which can be used as the reforming technique of the present invention.
<改質器設置例>本願エンジンでの改質装置及び電気分解装置で反応時間が必要な場合、改質ガスの量を多くする場合等を同時進行で行いたい場合等に複数の水素生成装置を設ける構成にも出来るし、上記改質で吸熱された後の(500℃程度の)排気ガスを使用した改質器を別に設け、更に定置形態のエンジン(例えば発電所の発電に係るエンジン)では改質・分解・分離等が時間(例えば数時間)を要する技術を採用する事も出来、移動形態での設置では上記改質・分解・分離等のサイクルの短い技術を採用するのが好ましい。例えば図4に記載のエンジン燃焼装置2bの水蒸気改質部Kaを4分割し(90°*4)順次水蒸気を噴射(導入)する構成。 <Example of installation of reformer> When reaction time is required in the reformer and the electrolyzer in the engine of the present invention, a plurality of hydrogen generators are required to simultaneously proceed when increasing the amount of reformed gas, etc. In addition, a reformer using an exhaust gas (of about 500 ° C.) after absorption of heat by the above reforming is separately provided, and an engine in a stationary form (for example, an engine related to power generation in a power plant) It is also possible to adopt a technology that requires time (for example, several hours) for reforming, decomposition, separation, etc., and it is preferable to adopt a technology with a short cycle of the above reforming, decomposition, separation, etc. for installation in mobile mode. . For example, the steam reforming portion Ka of the engine combustion device 2b shown in FIG. 4 is divided into four (90 ° * 4) to sequentially inject (introduce) steam.
<耐熱構造部SC>エンジン燃焼装置2、2b,2c,2d(図1,2,4,5,6、10参照)(富化)酸素と水素の燃焼では燃焼炎の中心温度は2800℃程度で空気(中の酸素)と水素の燃焼では燃焼炎の中心温度は1900℃程度で(富化)酸素の使用により47%程度燃焼炎の中心温度が上がる、上記酸素と水素を燃焼する燃焼熱に耐えれる燃焼室内壁材としては例えばタングステンWかハフニュウムHfかセラミックスかアルミナAlかチタンTiかニッケルNiか炭化ケイ素SiC(炭化ケイ素セラミックス)あるいはそれらをコーティング(蒸着)した物やボイラー等の定置設備では水冷壁の耐火煉瓦が考えられるが移動形態の燃焼室内壁材としては上記タングステンやハフニュウムは加工性、価格の面で問題がある。上記エンジンの燃焼室NE内に設けておる燃料の燃焼火炎2Fの直射熱を受ける吸熱構造手段SCを例えば熱伝導率及び耐熱温度が高いアルミナAl系合金にして設け、該エンジン燃焼室NE内の吸熱構造手段と水素生成手段ZU壁に水蒸気Aを噴射する噴射手段をエンジン燃焼室の冷却手段と水蒸気生成手段の水蒸気Aとしたことが酸素と水素を連続燃焼出来る新技術とすることが出来た。 <Heat-resistant structural part SC> Engine combustion devices 2, 2b, 2c, 2d (see FIGS. 1, 2, 4, 5, 6 and 10) (enriched) The center temperature of the combustion flame is about 2800 ° C in the combustion of oxygen and hydrogen The center temperature of the combustion flame is about 1900 ° C in air (oxygen and hydrogen) combustion and the center temperature of the combustion flame rises by about 47% by using (enriched) oxygen, the heat of combustion where the oxygen and hydrogen are burned For example, tungsten W or hafnium Hf ceramic or alumina Al 2 O 3 or titanium Ti or nickel Ni silicon carbide SiC (silicon carbide ceramic) or those coated (deposited) or boiler etc. In the stationary equipment of this type, fire-resistant bricks with water-cooled walls can be considered, but the above-mentioned tungsten and hafnium have problems in terms of processability and price as the combustion chamber wall material in moving form . The heat absorption structure means SC receiving direct heat of the combustion flame 2F of the fuel provided in the combustion chamber NE of the above engine is provided, for example, as an alumina Al 2 O 3 based alloy having high thermal conductivity and heat resistant temperature The heat absorption structure means in NE and the injection means for injecting water vapor A to the hydrogen generation means ZU wall are the cooling means of the engine combustion chamber and the water vapor A of the water vapor generation means as a new technology capable of continuous combustion of oxygen and hydrogen. It was possible.
1a,<水蒸気電気分解FS1>水蒸気電気分解装置・サンシャイン計画(産業技術総合研究所)で個体電解質として安定化ジルコニア(Zro-10%Y2O3(酸化イットリュウム))薄膜を用いて800℃~1000℃で水蒸気を電解する方法が開発されておる、作動温度は900℃~1000℃、電流密度40A/dm2,槽電圧1.3&#8483;、電力変換効率90%の性能である。
*特開2017-45601(記載),実施例において、64本から成る固体酸化物形燃料電池スタック10では40~64Vの高電圧が得られたとしておる。固体酸化物形燃料電池スタック及び固体酸化物形燃料電池モジュールは、可搬型固体電解質形燃料電池小型発電機、電気分解反応による水素発生装置の技術分野において好適に利用することができる。
1a, <Steam electrolysis FS1> Stabilized zirconia (Zro-10% Y 2 O 3 (yttria) oxide) thin film as solid electrolyte in steam electrolysis unit, Sunshine project (AIST) 800 ° C. to 1000 ° C. A method of electrolyzing water vapor has been developed at an operating temperature of 900 ° C. to 1000 ° C., a current density of 40 A / dm 2, a cell voltage of 1.3 and a capacity of 90%, and a power conversion efficiency of 90%.
* In JP-A-2017-45601 (description) and the embodiment, it is assumed that a high voltage of 40 to 64 V is obtained in the solid oxide fuel cell stack 10 consisting of 64 pieces. The solid oxide fuel cell stack and the solid oxide fuel cell module can be suitably used in the technical fields of portable solid electrolyte fuel cell compact generators and hydrogen generators by electrolysis reaction.
*1b、<電気分解装置F1及びF2>特開2012-52162の水蒸気電気分解技術を上記エンジンの燃料の水素と酸素に分解する技術とすることも出来る技術であり、上記エンジン燃焼装置から排出される排気ガスを上記回転力取り出し装置3を貫流させ貫流後の熱を持つ高温の水蒸気を水蒸気電気分解装置F1,F2にて電気分解(水蒸気電解)し、水素および酸素を発生させる。水蒸気電解温度は高温ほど、熱源の直接利用に有利となる。600℃で作動する中温水蒸気電解装置を用いても良く、1000℃で作動する電気分解装置を用いればさらによい。なお、中温水蒸気電解装置は、電解質としてプロトン伝導体:SrZr0.5Ce0.40.13-aを用い、電極として、水を分解するアノードには、高活性であるSm0.5Sr0.5CoOという組成の酸化物電極、また、水素発生極であるカソードにはニッケル電極と電解質の間にセレート系のプロトン伝導体の薄い層を挿入する構造を採用することにより、600℃、0.2A/cmの条件で0.3Vという低過電圧で作動する技術。本願のエンジン燃焼装置2cに内蔵しておる電気分解装置F1及びF2として採用出来る技術及び電気・水素生成手段4に採用できる電気分解装置F1の技術である。 * 1b, <Electrolyzer F1 and F2> This technology can also be the technology of decomposing the steam electrolysis technology of JP 2012-52162 into hydrogen and oxygen of fuel of the above-mentioned engine, and is discharged from the above-mentioned engine combustion apparatus The exhaust gas is allowed to flow through the rotational force extracting device 3 and high temperature steam having heat after flowing is electrolyzed (steam electrolysis) by the steam electrolyzing devices F1 and F2 to generate hydrogen and oxygen. The higher the steam electrolysis temperature, the more advantageous the direct utilization of the heat source. A medium temperature steam electrolysis system operating at 600 ° C. may be used, and an electrolysis system operating at 1000 ° C. may be used more preferably. In addition, the medium temperature steam electrolysis apparatus uses a proton conductor: SrZr 0.5 Ce 0.4 Y 0.1 O 3-a as an electrolyte, and as an electrode, an anode that decomposes water has high activity Sm 0. .5 By employing an oxide electrode having a composition of 5 Sr 0.5 CoO 3 and by adopting a structure in which a thin layer of a serate proton conductor is inserted between the nickel electrode and the electrolyte for the cathode which is a hydrogen generation electrode. , A technology that operates with a low over voltage of 0.3 V under conditions of 600 ° C and 0.2 A / cm 2 . It is a technology that can be adopted as the electrolyzers F1 and F2 incorporated in the engine combustion device 2c of the present application and a technology of the electrolyzer F1 that can be adopted as the electric / hydrogen generation means 4.
*1c、<電気分解装置F1及びF2>水蒸気電気分解装置の技術に属する技術であり、高温水蒸気ガスが固体電解質セル内を通過する間に電気分解する構成の技術が開示されておる特開2006-307290や特開平9-228085や特開2017-33816等に記載されており該開示技術記載では約900℃前後の高温条件下において、水蒸気を吹き込みながら外部電源によって燃料極及び空気極に通電することにより、水分子が分解される。具体的には、燃料極において水分子由来の水素ガスが取り出され、空気極において水分子由来の酸素ガスが取り出される。この高温水蒸気電解は、低温の水分解に比べて理論分解電圧が低い(例えば1000℃では0.9V)としておる技術。
*1d, 固体酸化物形水蒸気電解装置(特開2008-243744記載技術)400℃~600℃の作動温度においても、原子の透過性を向上させることができる金属薄膜を用いた水蒸気電解装置で該金属薄膜を金属組成物と、前記金属組成物の結晶粒界に分散させた酸化物とを含有する。前記金属組成物を構成する金属ターゲットと、前記酸化物を構成する酸化物ターゲットとを同時にスパッタリングして形成した技術であり、上記高温水蒸気電解にて未分解となった水蒸気を更に分解する技術(電気分解装置F2)に出来る。
* 1c, <Electrolyzer F1 and F2> A technology belonging to the technology of a steam electrolyzer, which discloses a technology of a construction in which a high temperature steam gas is electrolyzed while passing through the inside of a solid electrolyte cell As disclosed in JP-A-307290, JP-A-9-228085, JP-A-2017-33816, etc., the fuel electrode and the air electrode are energized by an external power source while blowing in steam under high temperature conditions of about 900 ° C. Water molecules are broken down. Specifically, hydrogen gas derived from water molecules is taken out at the fuel electrode, and oxygen gas derived from water molecules is taken out at the air electrode. This high-temperature steam electrolysis is a technology in which the theoretical decomposition voltage is low (for example, 0.9 V at 1000 ° C) compared to low-temperature water decomposition.
* 1 d, Solid oxide type steam electrolytic device (technique described in JP 2008-243744) A steam electrolytic device using a metal thin film that can improve atomic permeability even at an operating temperature of 400 ° C. to 600 ° C. A metal thin film contains a metal composition and an oxide in which the metal grain of the metal composition is dispersed. This technology is formed by simultaneously sputtering the metal target that constitutes the metal composition and the oxide target that constitutes the oxide, and further decomposes the water vapor that has not been decomposed by the high-temperature water vapor electrolysis ( It can be an electrolyzer F2).
 *1E,<金属酸化物と金属水酸化物の触媒と水蒸気で水素採取装置SY,>特願2008-155195水素発生法、水素発生装置及び触媒。 金属酸化物(例えばCr)と金属水酸化物(例えばKOH)を金属酸化物の融点以上、沸点以下の温度に加熱して固化せしめた触媒を触媒収納室21内に設置し、この収納室21に蒸発室内で蒸発した750℃前後の水蒸気を供給して、中間活性物質を伴う3つの反応を行い水から水素を採集する技術。 * 1 E, <Hydrogen extraction device with metal oxide and metal hydroxide catalyst and water vapor SY> Japanese Patent Application 2008-155195 Hydrogen generation method, hydrogen generation device and catalyst. A catalyst formed by heating and solidifying a metal oxide (for example, Cr 2 O 3 ) and a metal hydroxide (for example, KOH) to a temperature above the melting point and below the boiling point of the metal oxide is installed in the catalyst storage chamber 21. A technology for supplying the water vapor at around 750 ° C. evaporated in the evaporation chamber to the storage chamber 21 and performing three reactions involving an intermediate active substance to collect hydrogen from water.
<固体電解質膜型反応器> 部分酸化反応利用,特開2006-298664の記載では、多孔質支持体1と、この上に形成された酸素イオン・電子混合伝導性固体電解質からなる緻密層2と、前記緻密層2の上に形成された触媒層3とからなる3層構造の反応構造体を用いた膜型反応器であって、前記触媒層3表面に炭化水素を主成分とした被処理ガス4を、前記多孔質支持体1側表面に高純度酸素ガス5を、それぞれ供給し、改質ガス(合成ガス等)を得ることを特徴とする技術の高純度酸素ガスを供給する膜型反応器。 <Solid Electrolyte Membrane Type Reactor> Partial oxidation reaction utilization, as described in JP-A-2006-298664, a porous support 1 and a dense layer 2 composed of an oxygen ion / electron mixed conductive solid electrolyte formed thereon A membrane type reactor using a reaction structure of a three-layer structure comprising a catalyst layer 3 formed on the dense layer 2, wherein the surface of the catalyst layer 3 is mainly treated with hydrocarbon. A film type for supplying high purity oxygen gas according to a technology characterized in that high purity oxygen gas 5 is supplied to the surface of the porous support 1 side to obtain a reformed gas (such as synthesis gas). Reactor.
<海水淡水(真水)化装置Wa>上記エンジン燃焼装置2,2a,2ar,2b,2c,2dを搭載したエンジンに於いて海面走行の船舶等の淡水取得手段であって、海水淡水(真水)化に係る技術は数多く公開され実用化されておりそのいずれかの技術を使用する事でも良い。例えば特開2018-30133では海水をろ過する海水ろ過器とろ過器でろ過した水を逆浸透膜で淡水に分離する逆浸透膜分離装置と取水する水取水部への貝類の付着を制御する制御剤とを備えた海水淡水化装置がある。 <Seawater Freshwater (Freshwater) Generator Wa> An engine equipped with the above-described engine combustion devices 2, 2a, 2ar, 2b, 2c, 2d is a means for acquiring freshwater from ships traveling on the sea surface, etc. There are many publicizing and commercializing technologies, and any one of them may be used. For example, in Japanese Patent Application Laid-Open No. 20180-13133, a seawater filter for filtering seawater and a reverse osmosis membrane separation device for separating water filtered by the filter into fresh water with a reverse osmosis membrane and a control for controlling adhesion of shellfish to the water intake portion for intake water There is a seawater desalination device equipped with a chemical.
<熱交換器G,G3> 上記熱交換装置であるがすでに常識となっておる熱を移動させる系の製品で例えばエャーコンディショナーのエャーを熱媒との熱交換で圧縮した熱媒の熱を水もしくは空気と交換する等の技術である。 <Heat exchangers G and G3> A product of the above-mentioned heat exchange device which transfers heat, which has become common sense, for example, the heat of the heat medium compressed by heat exchange of the air of the air conditioner with the heat medium It is technology such as exchanging with water or air.
<熱電エネルギー変換装置、>特開2012-52162水素および酸素の製造・使用方法。特許文献2に記載の技術であって、熱を電気に直接変換する熱電変換装置となる技術に係る熱で熱電変換モジュールが試作され、発電試験が実施されており、発電試験の結果(300℃に加熱し無負荷=電流ゼロ)起電力0.39Vを取り出すのに成功した事例が公開されておる、上記施策された発電モジュールは、p型材料にFe2V0.9Ti0.1Al2,n型材料にFe2val0.9si0.1を用いて18個の熱電素子からなるのである、 電極には銅が使用され、p,n各材料と拡散接合で接合しており、該モジュールの片方は20℃で一定とし、他方面を300℃に加熱し上下面の温度差により発電する技術である。 <Thermoelectric energy conversion device> JP-A-2012-52162 Method of producing and using hydrogen and oxygen. A thermoelectric conversion module is produced on a trial basis with heat relating to a technology to be a thermoelectric conversion device that directly converts heat into electricity, which is a technology described in Patent Document 2, and a power generation test is performed, and the result of the power generation test (300 ° C. In the above case, the above-mentioned promoted power generation module has been published in the case where it succeeded in taking out 0.39 V of electromotive force, and the Fe2 V 0.9 Ti 0.1 Al 2, n-type material was used as the p-type material. Copper is used for the electrode, and it is joined to each of p, n materials by diffusion bonding, and one side of the module is kept constant at 20 ° C. This is a technology that heats the other surface to 300 ° C and generates power by the temperature difference between the upper and lower surfaces.
<燃料電池発電機FD1>上記特許文献1に記載しておるエンジン燃焼装置2で生成した水素を燃料スタックに送り該燃料スタックで電気を生成し該電気を走行動力とする構成(燃料電池発電機と言える構成)。
上記水素と酸素で電気を生成して自動車の動力とする構成はすでにハイブリッド車として商品化されておる技術であるが本願生成の水素と酸素と燃料スタックで電気を生成する構成も電気生成手段4の1手段としている。
<Fuel Cell Generator FD1> A configuration in which hydrogen generated by the engine combustion device 2 described in Patent Document 1 is sent to a fuel stack, electricity is generated by the fuel stack, and the electricity is used as traveling power (fuel cell generator Configuration that can be said).
The above-mentioned configuration for generating electricity with hydrogen and oxygen to power an automobile is a technology that has already been commercialized as a hybrid vehicle, but the configuration for generating electricity with hydrogen, oxygen and a fuel stack produced in the present application is also electricity generation means 4 As a means of
<気体分離膜による分離器(分離手段)>・高分子膜分離器,水素の膜分離で工業的に実績のある物にポリイミド、ポリアミド、ポリスルホン、等が有り
・金属分離膜(パラジュウムPd金属薄膜),金属パラジュウム膜は、水素分子のみ透過する。すなわち、水素分子が膜表面で原子化してプロトン(H)とエレクトロン(e)となり、これが膜中を拡散して膜の表面で再結合し、分子化して分離する物であり、パラジュウム合金の細管を300℃~500℃に加熱する事で水素を分離出来る、この膜は高純度の水素製造に適している。
・高温水素ガス分離膜(セラミックス)700℃程度の高温水素ガス分離膜システムがあり例えば600℃~1000℃で改質をする水蒸気改質で改質された水素と一酸化炭素の合成ガスから水素を分離して取り出す高温ガス分離に適している。
・膜型反応器(反応器と分離器一体型)特開2008-302334の記載では
含酸素炭化水素を主原料ガスとし、水(水蒸気)、二酸化炭素、酸素等を副原料ガスとして用いて改質反応、部分酸化反応、分解反応等の化学反応を利用して、水素を含む混合ガスを生成した後に、水素を選択的に透過させることの出来る選択透過膜(例えばパラジウム合金膜)によって混合ガスから水素を分離して取り出す膜型反応器であり上記の化学反応と選択分離とを同時に行うことの可能な選択透過膜型反応器(メンブレンリアクタともいう)である。
*上記水素及び一酸化炭素及び酸素及び水蒸気の高温帯で分離する分離膜での高温ガス分離が使用困難な場合熱交換装置にて吸熱後の低温(例えば100~200℃程度)ガスから公知の分離方法(例えばPAS吸着法やメンブレン分離膜等で)で分離する構成にも出来る。
<Separator with gas separation membrane (separating means)> ・ Polymer membrane separator, there are polyimide, polyamide, polysulfone etc. in the industrially proven thing in membrane separation of hydrogen ・ Metal separation membrane (Palladium Pd metal thin film ), Metal palladium membranes allow only hydrogen molecules to permeate. That is, hydrogen molecules are atomized on the surface of the membrane to form protons (H + ) and electrons (e), which diffuse through the membrane and recombine on the surface of the membrane to be separated into molecules, which are separated from palladium alloy Hydrogen can be separated by heating the capillary to 300 ° C. to 500 ° C. This membrane is suitable for high purity hydrogen production.
・ High temperature hydrogen gas separation membrane (ceramics) There is a high temperature hydrogen gas separation membrane system at around 700 ° C, for example, reforming from steam at 600 ° C to 1000 ° C. It is suitable for high temperature gas separation to separate and take out.
Membrane type reactor (integral reactor and separator integrated type) In the description of JP 2008-302334, oxygenated hydrocarbons are used as main raw material gas, and water (steam), carbon dioxide, oxygen etc. are used as auxiliary raw material gas. After a mixed gas containing hydrogen is generated using chemical reactions such as high-quality reactions, partial oxidation reactions, decomposition reactions, etc., the mixed gas can be selectively permeated through a selectively permeable membrane (eg, palladium alloy membrane) The membrane reactor is a selectively permeable membrane reactor (also referred to as a membrane reactor) capable of simultaneously separating the above-mentioned chemical reaction and selective separation from hydrogen.
* When it is difficult to use high temperature gas separation in the separation membrane which separates the above hydrogen and carbon monoxide and oxygen and steam in the high temperature zone, it is known from low temperature (for example, about 100 to 200 ° C) gas after heat absorption in heat exchanger It can also be configured to be separated by a separation method (for example, PAS adsorption method, membrane separation membrane, etc.).
排気流力5を回転力として取り出す回転力取り出し装置3であるが、流体(水、水蒸気、燃焼ガス)の略直線方向の流力を回転力にして取り出す構造にはダムからの落水力や潮流の干満潮の流力、農業用水路の水流力等の水の流れる力を回転力に替える技術及び蒸気機関(水蒸気の圧力を利用してピストンの往復運動を回転力にする原動機)やタービン〔水蒸気を吹き付けて羽根車を回転運動させる原動機の翼体やガスタービンの圧縮空気に燃料をまぜて燃焼させた高温・高圧のガスを使ってタービンを回す原動機の翼体(動翼)等〕があり、本願では常識化(公知の技術)されておる翼体(羽根車)であれば良く上記回転力取出し構造部3を貫流する排気ガス及び水蒸気は少なくとも600℃の高温なので必要に応じて耐熱構造手段(例えばニッケル合金にセラミックコーティング等の加工をする)を設けるかあるいは上記通水路MHの水を上記回転力取出し構造部3の回転翼体の軸部から水を導入する手段(例えば水を散水するスプリンクラーの回転する回転体に水を供給する構造)にて回転翼体に水を供給し該回転翼体の熱を吸熱した水もしくは水蒸気を回転翼体外に放出し該回転翼体を貫流しておる排気流5と合流し下流に流す構造として翼体(羽根車)の冷却手段とする構成でも良い。 It is a rotational force output device 3 for taking out the exhaust flow force 5 as a rotational force, but in the structure for taking out the flow force in the substantially linear direction of the fluid (water, water vapor, combustion gas) as the rotational force Technology that converts the flow of water, such as the flow of tidal tides and water flow in agricultural waterways, into rotational power and steam engines (motors that use the pressure of water vapor to turn the reciprocating motion of the piston into rotational power) There are wings (motor blades) etc. of the prime mover that rotates the turbine using high-temperature, high-pressure gas made by mixing fuel with the compressed air of the gas turbine and the blades of the prime mover that sprays and rotates the impeller. The exhaust gas and water vapor flowing through the rotational force output structure 3 may be at least 600 ° C., as long as they are blades (impellers) that are commonly used in the present application (known techniques). Means (eg Means for processing a ceramic coating or the like in a nickel alloy or means for introducing water from the water passage of the water passage MH from the shaft portion of the rotary blade of the rotational force extraction structure 3 (for example, a sprinkler for sprinkling water Water is supplied to the rotor by the structure that supplies water to the rotating rotor, and the water or steam that absorbed the heat of the rotor is discharged outside the rotor and the exhaust flows through the rotor. As a structure which merges with the flow 5 and flows downstream, it may be configured as a cooling means of a wing body (impeller).
移動式ガスステーションとは,例えば二酸化炭素又は一酸化炭素の何れか一種以上の空のタンクを備えた大型トラックや大型トレーラーをガスステーション(給油ステーション等)に配備し該大型トラックや大型トレーラーのタンクの二酸化炭素(又は一酸化炭素)の積載量が規定値に達すると空の二酸化炭素ガス(又は一酸化炭素ガス)タンク車と入れ替え基地に運搬し、更に炭化水素化合物(例えばメタンCH)を積載しておる大型トラックや大型トレーラーをガスステーション(給油ステーション等)に配備し該大型トラックや大型トレーラーの積載量が空になるとガス基地に帰り積載する形態である。上記移動式ガスステーションの別の形態では現在流通しておる酸素ガスボンベ・二酸化炭素ガスボンベ・炭化水素化合物(例えばメタン)ボンベ等の高圧ガスボンベ若しくは液化ガスボンベを複数本積載できるラックに搭載し運搬する形態にすれば、上記ガス授受システム(のインフラ整備として)とすることが出来る。 A mobile gas station is, for example, a large truck or large trailer equipped with an empty tank of carbon dioxide or carbon monoxide, or the like, disposed at a gas station (such as a refueling station), and a tank for the large truck or large trailer. When the carbon dioxide (or carbon monoxide) loading capacity reaches a specified value, the empty carbon dioxide gas (or carbon monoxide gas) tank car is replaced with a tank car and transported to the base, and hydrocarbon compounds (eg, methane CH 4 ) are further transported. A large truck or large trailer that is loaded is disposed at a gas station (such as a fueling station), and when the loading capacity of the large truck or large trailer becomes empty, it is returned to the gas station and loaded. In another form of the mobile gas station, a high pressure gas cylinder such as an oxygen gas cylinder, a carbon dioxide gas cylinder, a hydrocarbon compound (eg, methane) cylinder or the like currently in circulation is mounted and transported on a rack that can carry a plurality of liquefied gas cylinders. If it does, it can be set as the above-mentioned gas transfer system (as infrastructure maintenance).
<二酸化炭素CO資源化手段CH>上記水蒸気改質Ka、及び電気・水素生成手段で生成した二酸化炭素CO資源化手段CHであって、上記二酸化炭素COを改質分解技術で炭素と酸素を含む資源(例えば一酸化炭素・メタンCH・メタノールCHOH・ジメチルエーテルCHOH等)を得る技術。
*上記資源化手段CH1は、特許文献4に記載の技術にて資源化手段とする。
*-1、水素を製造しておる設備を有する外部施設に引き渡し該外部施設で炭化水素化合物(例えばメタンCH・メタノールCHOH・ジメチルエーテルCHOH)に加工する。
*-2、太陽光・風力・波力発電等の発電設備を有する外部施設の電力で水を電気分解して水素H2を得その水素と二酸化炭素COで炭化水素化合物(例えばメタンCH・メタノールCHOH・ジメチルエーテルCHOH)に加工する。
*-3、水素Hを余剰として排出しておる石油精製所等に引き渡し該石油精製所にて炭化水素化合物(例えばメタンCH・メタノールCHOH・ジメチルエーテルCHOH)に加工する。
*二酸化炭素CO資源化手段CH2は、水蒸気改質を有する外部施設にて炭化水素化合物に加工する。例えば千代田化工建設(企業名)では二酸化炭素COとメタンCHを貴金属系触媒を使用した改質で2CO+2Hの合成ガスを生成しており(スチーム/COリフォーミング)その技術を活用。
A <dioxide CO 2 recycling means CH> the steam reforming Ka, and carbon dioxide CO 2 recycling means CH generated by electric and hydrogen generating means, and carbon the carbon dioxide CO 2 in the reforming decomposition technique Technology to obtain resources including oxygen (eg carbon monoxide, methane CH 4 , methanol CH 3 OH 3 , dimethyl ether CH 3 OH 3 etc.).
* The above resource conversion means CH1 is a resource conversion means according to the technology described in Patent Document 4.
* -1 Delivered to an external facility having facilities for producing hydrogen, and are processed into hydrocarbon compounds (eg, methane CH 4 · methanol CH 3 OH 3 · dimethyl ether CH 3 OH 3 ) at the external facility.
* -2 Water is electrolyzed by the power of an external facility equipped with power generation facilities such as solar power, wind power and wave power generation to obtain hydrogen H 2 and its hydrogen and carbon dioxide CO 2 hydrocarbon compounds (eg methane CH 4 Process into methanol CH 3 OH 3 .Dimethylether CH 3 OH 3 ).
* -3 Delivered to a petroleum refinery, etc., which is discharging hydrogen H 2 as surplus, and processing it into hydrocarbon compounds (eg methane CH 4 · methanol CH 3 OH 3 · dimethyl ether CH 3 OH 3 ) at the petroleum refinery .
* Carbon dioxide CO 2 recycling means CH2 is processed into hydrocarbon compounds with an external facility with a steam reforming. For example, at Chiyoda Chemical Construction Co., Ltd. (company name), 2 CO + 2 H 2 synthesis gas is generated by reforming carbon dioxide CO 2 and methane CH 4 using a precious metal catalyst (steam / CO 2 reforming) and its technology Use.
*二酸化炭素CO資源化手段CH3は,東京工業大学細野英雄教授らのグループが発明されておる。C12A7エレクトライドが二酸化炭素の分子を室温で選択的に吸着し、分解する技術(後述)にて二酸化炭素を一酸化炭素に分解する技術使用。
*-1、石灰(CaO)とアルミナAl2O3から構成される化合物12CaO 7A&#8572;(以下C12A7)の構造の中に、電子を取り込んだC12A7エレクトライドが二酸化炭素の分子を室温で選択的に吸着し、一酸化炭素と酸素に分解する分解技術。
* Carbon dioxide CO 2 recycling means CH3, a group of Tokyo Institute of Technology Hideo Hosono Prof. Nikki invented. C12A7 Electride selectively adsorbs and decomposes carbon dioxide molecules at room temperature and uses it to decompose carbon dioxide into carbon monoxide (described later).
* 1, C12A7 electride which takes in electrons into the structure of compound 12CaO 7A &#8572; 2 O 3 (hereinafter referred to as C12A7) composed of lime (CaO) and alumina Al 2 O 3 is a molecule of carbon dioxide A decomposition technology that selectively adsorbs at room temperature and decomposes to carbon monoxide and oxygen.
*二酸化炭素CO資源化手段CH4は,・グローバル二酸化炭素リサイクル
東北大学金属研究所らのグループでは、海水を電気分解により水素を生成し生成した水素と二酸化炭素から、常圧300℃でメタンの生成と、該生成に使用する触媒の発明を含む技術を発明されておられ、該電気は中東地区等の砂漠での太陽光発電で発電しており、該二酸化炭素は二酸化炭素排出国からの輸送で調達するものである。
*二酸化炭素CO資源化手段CH5は,二酸化炭素のカソード還元(特開2018-24895)触媒及び電極触媒、並びに電極触媒の製造方法、  水の電気分解による水素の生成、または二酸化炭素をカソード還元して炭素含有物質に変換する触媒=銅酸化物の被膜を有する触媒。  CO+8H+8e+→CH+2HO  二酸化炭素と水素でメタンを生成する構成。
*二酸化炭素CO資源化手段CH6は,二酸化炭素は最近工業プロセスで超臨界流体COを溶媒として使用する方法が見出されており、該方法での活用も出来る。
* Carbon dioxide CO 2 recycling means CH4 is a group of global carbon dioxide recycling Tohoku metal Institute et al., Sea water from hydrogen and carbon dioxide produced to produce hydrogen by electrolysis, methane at atmospheric pressure 300 ° C. Technology has been invented including the invention of the formation and the catalyst used for the formation, the electricity is generated by photovoltaic generation in deserts such as the Middle East, and the carbon dioxide is from a carbon dioxide emitting country It is procured by transportation.
* Carbon dioxide CO 2 recycling means CH5 is cathodic reduction of carbon dioxide (JP 2018-24895) catalyst and the electrode catalyst, and a method of manufacturing an electrode catalyst, the generation of hydrogen by electrolysis of water, or carbon dioxide cathodic reduction To convert into carbon-containing substances = catalysts with a coating of copper oxide. CO 2 + 8H 2 + 8e + → CH 4 + 2H 2 O Carbon dioxide and hydrogen constitute methane.
* Carbon dioxide CO 2 recycling means CH6 is carbon dioxide recently industrial processes have been found a method of using supercritical fluid CO 2 as a solvent, can also take advantage of in the method.
<上記不活性ガス混入手段>該エンジン燃焼装置(Z又は2,2a,2ar,2b,2c,2d)の燃焼ノズルに該不活性ガスを導入し燃焼時の酸素濃度をコントロールする一手段であって該手段を導入する事で現在製造されておるレシプロエンジンやディゼルエンジンやロータリーエンジンをそのまま(若しくは耐熱手段を施す事で)水素と酸素を燃焼可能なエンジンとする事が出来る手段である。 The inert gas is introduced into the combustion nozzle of the engine combustion apparatus (Z or 2, 2a, 2ar, 2b, 2c, 2d) to control the oxygen concentration during combustion. By introducing this means, it is a means that can be used as an engine capable of burning hydrogen and oxygen as it is (or by applying heat resistant means) to a reciprocating engine, diesel engine or rotary engine currently manufactured.
1、最大の課題は地球温暖化に対処する「CO」の排出削減であり、(富化)酸素を使用する事で、窒素酸化物「NO」を排出しないエンジンとするとともに課題である二酸化炭素をも排出しない構成にしておるので、温室効果ガス削減施策課題の1つを構成する温室効果ガス排出削減策のエンジンとする事が出来た。
2、改質で生成した水素と一酸化炭素CO又は二酸化炭素COを移動式ガスステーション(又はガスステーション)に引き渡す形態としたことでメタンと水の供給費用より多くの対価を得ることが出来た。
3、エンジンで生成した電気を電気授受システムEaSTで売電する形態とした事で多くの対価を得ることが出来た。
4、上記不活性ガス混入手段を設けた事で水素生成手段ZUを有すエンジンに移行する体制の整備までの期間上記エンジンを「CO」、「NO」を排出しなエンジンとする事が出来る。(例えばドイツの化石燃料燃焼エンジンの使用禁止対応策とする)
1) The biggest issue is the reduction of CO 2 emissions to cope with global warming, and by using (enriched) oxygen, it is an issue as it is an engine that does not emit nitrogen oxides “NO x ” Since it is configured not to emit carbon dioxide, it can be used as an engine for greenhouse gas emission reduction measures, which constitutes one of the greenhouse gas reduction measures issues.
2. It is possible to obtain more compensation than methane and water supply costs by transferring hydrogen generated by reforming and carbon monoxide CO or carbon dioxide CO 2 to a mobile gas station (or gas station). The
3. A lot of compensation can be obtained by using the form of selling electricity generated by the engine with the electricity transfer system EaST.
4. The period until the maintenance of the system to shift to the engine having hydrogen generation means ZU by providing the above inert gas mixing means The above engine should be an engine that does not discharge "CO 2 " and "NO X " Can do. (For example, take measures against the use of German fossil fuel combustion engines)
図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いところは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している、更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。 In the drawings, the dimensional relationships are enlarged in important parts, exaggerated in places where details are not easy to understand, and reduced when describing a wide area or a part of low importance in the present invention. Accordingly, the dimensions between the drawings and in the drawings are not to scale, and not to scale. Also, if the distance between the lines is narrow, it tends to become black and thick and one line at the stage of scanning, so either increase the distance between the lines or write as a single line. Furthermore, the basic (main) mechanism of the present invention As for the other parts, there are also parts omitted between the drawings.
(分離装置1により分離された)酸素と水素を燃焼させるエンジン燃焼装置Zであって(図1)、該燃焼装置内に水素生成手段ZUを内蔵しており、該燃焼装置は蓄ガスタンクT1及び蓄ガスタンクT2から燃焼ノズル2Nに酸素及び水素を供給し点火栓2Pにより点火し燃焼室NE内で燃焼しており、該燃焼室には燃焼による直射熱を受ける耐熱構造部SCを設けており該耐熱構造部には水タンクより水を供給し供給された水を耐熱構造部SCを通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路MHaを設けて該通水路MHa内で水蒸気Aを生成しており生成した水蒸気Aを上記耐熱構造部の外殻体(外側)に設けておる水素生成手段ZU内に噴射する水蒸気噴射ノズルZjを設け該噴射ノズルから噴射しており、該水素生成手段ZUにて水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させる副材料SBを供給する副材料(例えば熱・電気・酸素・炭化水素化合物等)SB供給手段と、該水素生成手段ZUに供給された水蒸気Aと上記供給された副材料SBの何れか(熱・電気・酸素・炭化水素化合物等)一以上を使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、該水素若しくは水素を含む混合ガスから水素を分離する分離装置と、該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、上記通水路MHaで生成した水蒸気Aを燃焼室NEに供給する供給ノズルZjと該供給ノズルZjから供給された水蒸気Aは燃焼室NE内の熱を吸熱してさらに高熱に成った水蒸気Aaと,該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解(改質)されなかった未分解水蒸気STn(及び未分解水蒸気STm)とともに下流に排気として排出される排気流5と、を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Z。 An engine-combustion apparatus Z for burning oxygen and hydrogen (separated by the separator 1) (FIG. 1), which incorporates a hydrogen generation means ZU in the combustion apparatus, the combustion apparatus comprising a gas storage tank T1 and Oxygen and hydrogen are supplied from the gas storage tank T2 to the combustion nozzle 2N, ignited by the spark plug 2P and burned in the combustion chamber NE, and the combustion chamber is provided with a heat resistant structure SC receiving direct heat due to combustion. The heat resistant structure is provided with a water passage MHa for supplying water from a water tank and receiving the supplied direct heat from the above-mentioned combustion while passing the supplied water through the heat resistant structure SC and converting the water into water vapor. The steam injection nozzle Zj is provided for injecting the generated steam A into the hydrogen generation means ZU provided on the outer shell of the heat resistant structure (the outer side), and the steam A is jetted from the jet nozzle. , The water Auxiliary material (eg, heat, electricity, oxygen, hydrocarbon compound, etc.) SB supplying means for supplying an auxiliary material SB to be reacted (eg, electrolysis, steam reforming, partial oxidation reaction, etc.) by steam generation means ZU; Hydrogen that generates hydrogen or a mixed gas containing hydrogen using one or more of steam A supplied to the hydrogen generation means ZU and one or more of the supplied auxiliary materials SB (thermal, electrical, oxygen, hydrocarbon compounds, etc.) Or hydrogen is introduced by introducing mixed gas containing hydrogen or a separation device for separating hydrogen from the mixed gas containing hydrogen or hydrogen, and the separation device containing hydrogen or hydrogen into the separation device. The hydrogen is used as the fuel of the engine combustion device Z, and the steam A generated in the water passage MHa is supplied to the combustion chamber NE from the supply nozzle Zj and the supply nozzle Zj. The water vapor A absorbs the heat in the combustion chamber NE, and the water vapor Aa becomes more high heat, and the water vapor Aa is not decomposed (reformed) by the water vapor B generated by the combustion and the hydrogen generation means ZU An engine-combustion apparatus Z that burns hydrogen and generates hydrogen, comprising: an exhaust stream 5 discharged downstream as exhaust with the cracked steam STn (and uncracked steam STm).
燃焼装置Zの下流に回転力取り出し装置3を設けており、上記排気流5を該回転力取り出し装置3に導入し回転力取り出し装置3(内の例えば回転翼体)を貫流させ略直線方向の流力を回転力に変換して取り出し取り出した電気(か動力のいずれか一方か両方)は蓄電器40に蓄電されるか、動力として消費されるか電気として使用されるか、電気・水素生成手段4で使用するかあるいは電気授受システムEaSTに引き渡す(例えば電力会社に売電する)かいずれか1以上の形態としており、 A rotational force takeout device 3 is provided downstream of the combustion device Z, and the exhaust flow 5 is introduced into the rotational force takeout device 3 and flows through the rotational force takeout device 3 (for example, a rotary blade) to substantially straight line Electricity (or either or both) taken out by converting fluid power into rotational power is either stored in the capacitor 40, consumed as power or used as electricity, or means for generating electricity or hydrogen (4) or delivered to the electricity transfer system EaST (for example, sold to a power company)
上記回転力取り出し装置3を貫流し排出された排気流5aを受けて該排気流5aの熱と水蒸気を導入して電気Ea・水素を生成する電気Ea・水素生成手段4を設けており、該電気Ea・水素生成手段4(下記電気Ea・水素生成手段については上記しており、詳細説明は省略する)は例えば水蒸気電気分解装置F1・水蒸気電気分解装置FS1・水蒸気改質Ka1・熱電エネルギー変換装置DE・海水真水化装置Wa・燃料電池発電機FD1・熱交換器G等の組み合わせ可能な(電気Ea・水素生成が理論上出来る構成)上記排気流5aの熱及び水蒸気を電気・水素のいずれか一方か両方かを生成する装置(公知の技術使用)であり、更に該エンジンを中大型船(例えば500トン以上)や定置形態設置では,改質・分解に時間を要する水熱化学分解F2等を用いた電気Ea・水素生成手段4とすることが出来る。上記生成手段内で生成する中間生成物(例えば一酸化炭素CO・水素・酸素・電気等)を上記排気流5aの熱と水蒸気にプラスして使用することも含む。上記電気Ea・水素生成手段4で未分解(又は生成された)となった水蒸気は水蒸気再加熱(手段)装置WR(水循環ループ)で上記電気分解装置F1の下流(燃焼室NE)に戻入れるか水タンクT4に戻し入れる。 An electric Ea / hydrogen generating means 4 is provided which receives the exhaust stream 5a flowing through the rotational force extracting device 3 and introduces the heat and water vapor of the exhaust stream 5a to generate electricity Ea · hydrogen. For example, a steam electrolyzer F1, a steam electrolyzer FS1, a steam reforming Ka1, a thermoelectric energy conversion, etc. The combination of the equipment DE, seawater freshening equipment Wa, fuel cell generator FD1, heat exchanger G, etc. (composition which can theoretically generate electricity Ea and hydrogen) heat and steam of the exhaust stream 5a, either electricity or hydrogen Hydrothermal chemistry that requires time for reforming and decomposition when the engine is used to produce one or both of them (using known technology) and furthermore, when the engine is installed on a medium- or large-sized ship (for example, 500 tons or more) or stationary configuration. Can be an electrical Ea · hydrogen generation unit 4 using a solution F2 like. It also includes using an intermediate product (for example, carbon monoxide CO, hydrogen, oxygen, electricity, etc.) generated in the generation means in addition to the heat and water vapor of the exhaust stream 5a. The steam not decomposed (or generated) by the electricity Ea / hydrogen generation means 4 is returned to the downstream (combustion chamber NE) of the electrolyzer F1 by the water vapor reheating (means) device WR (water circulation loop) Or put it back in the water tank T4.
上記エンジン燃焼装置Zと同じ構成部は同じ符号を用いて説明を省略しており異なる部分のみを解説する。 上記水素生成手段ZUの水素生成手段を電気分解装置F1としたエンジン燃焼装置2cであって(図2)、であって、上記水蒸気Aを上記耐熱構造部の外殻体に設けておる電気分解装置F1と燃焼室NE内に噴射する水噴射ノズルTjを設け該噴射ノズルから噴射しており、電気分解装置F1に蓄電器40から(定置形態(例えば発電所)エンジンでは外部からの電力であっても良い)電気Eaを供給しており、電気分解装置F1に噴射された水蒸気Aと上記供給された電気とを電気分解装置F1で水素と酸素に分解して取り出しており、得られた水素と酸素から顕熱を回収する熱交換器G3に導入し(直接燃焼ノズル2Nに供給することも可能)該熱交換器G3で回収した熱Eは該エンジン燃焼装置2C以降で水素及び酸素及び一酸化炭素及び電気及び動力のいずれか1以上を得るエネルギーとして使用する形態にしておる水素と酸素を燃焼させる燃焼装置。 The same components as those of the engine combustion device Z are denoted by the same reference numerals and their description is omitted, and only different parts will be described. The engine combustion apparatus 2c wherein the hydrogen generation means of the hydrogen generation means ZU is an electrolyzer F1 (FIG. 2), wherein the water vapor A is provided in the outer shell of the heat-resistant structure portion The apparatus F1 and a water injection nozzle Tj to be injected into the combustion chamber NE are provided to inject water from the injection nozzle, and from the storage battery 40 to the electrolyzer F1 (in the stationary form (for example, a power plant) engine) Good) to supply electricity Ea, and the steam A injected to the electrolyzer F1 and the supplied electricity are separated into hydrogen and oxygen by the electrolyzer F1 and taken out, and the obtained hydrogen and The heat E is introduced into the heat exchanger G3 for recovering sensible heat from oxygen (can be supplied directly to the combustion nozzle 2N), and the heat E recovered by the heat exchanger G3 is hydrogen, oxygen and monoxide in the engine combustion device 2C and thereafter. Carbon and electricity And combustion apparatus for burning hydrogen and oxygen Nikki in the form to be used as energy for obtaining any one or more of power.
上記エンジン燃焼装置Zと同じ構成部は同じ符号を用いて説明を省略しており異なる部分のみを解説する。 上記水素生成手段ZUのの水素生成手段を水蒸気改質部Kaとしたエンジン燃焼装置2b(図3)、であって、上記水素生成手段ZUに水蒸気改質部Kaを設け該水蒸気改質部Kaの外殻部(外側)にメタンCH(炭化水素化合物、以降メタンで解説する)通気路MCを設けてメタンCH4をメタンCH噴射ノズルCjから水蒸気改質路Kaに導入しており、上記水蒸気Aを上記耐熱構造部の外側(外殻部)に設けておる水蒸気改質部Kaと燃焼室NE内に水噴射ノズルTjから噴射しており、 噴射されたメタンCHと水蒸気Aは水蒸気改質部Ka内で水素と二酸化炭素の合成ガスに改質され(該水蒸気改質部は例えば触媒をアルミナ担体に担持したハニカム構造)改質された水素ガスは分離手段(例えば高温水素ガス分離膜(セラミックス))で水素と二酸化炭素+未改質水蒸気STmに分離され水素を取り出し、更に二酸化炭素+未改質水蒸気STmを分離し二酸化炭素を取り出し未分解水蒸気STmは排気流5に合流して下流に排出される。上記取り出された水素は(水素タンクT2経由)燃料として燃焼ノズル2Nに導入されるサイクルを構成し、二酸化炭素は二酸化炭素タンクT7に蓄ガスし二酸化炭素資源化手段CHにて資源として活用される。 The same components as those of the engine combustion device Z are denoted by the same reference numerals and their description is omitted, and only different parts will be described. An engine combustion apparatus 2b (FIG. 3) in which the hydrogen generating means of the hydrogen generating means ZU is a steam reforming unit Ka (FIG. 3), and the hydrogen reforming means ZU is provided with a steam reforming unit Ka The methane CH 4 (hydrocarbon compound, hereinafter referred to as methane) aeration channel MC is provided in the outer shell part of the (outside) to introduce methane CH 4 from the methane CH 4 injection nozzle Cj into the steam reforming channel Ka The steam A is injected from the water injection nozzle Tj into the steam reforming section Ka and the combustion chamber NE provided on the outer side (outer shell) of the heat resistant structure, and the injected methane CH 4 and the steam A are steam The reforming unit Ka is reformed into a synthesis gas of hydrogen and carbon dioxide (the steam reforming unit has, for example, a honeycomb structure supporting a catalyst on an alumina carrier) The reformed hydrogen gas is separated (for example, high temperature hydrogen gas separation) Membrane (ceramic And hydrogen are separated out into hydrogen and carbon dioxide + unreformed steam STm, and carbon dioxide + unreformed steam STm is further separated to remove carbon dioxide, and uncracked steam STm joins the exhaust stream 5 and is downstream Discharged into The hydrogen taken out constitutes a cycle to be introduced to the combustion nozzle 2N as fuel (via hydrogen tank T2), and carbon dioxide is stored in a carbon dioxide tank T7 and used as a resource in carbon dioxide recycling means CH .
上記二酸化炭素は一酸化炭素の状態で取り出す(シフト反応はしない)事も出来る。
 ガスの運搬時の安全性は二酸化炭素が勝が一酸化炭素であっても良い。該水蒸気改質部KaではHO/CH(モル比)2~5程度の水蒸気過剰化でおこなわれる。
The carbon dioxide can be taken out in the state of carbon monoxide (without shift reaction).
As for the safety when transporting the gas, carbon dioxide may be carbon monoxide. The steam reforming section Ka is carried out with an excess of water vapor of about 2 to 5 H 2 O / CH 4 (molar ratio).
上記エンジン燃焼装置2bで生成した水素で該燃焼装置の水蒸気改質部Kaを除いたエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arの燃料の水素とし更に自らのエンジン燃焼装置2bの燃料の水素を自給する構成、 CH+HO=CO+3H  これをシフト反応(発熱反応)で  CO+HO=H+CO  が生成することになり、上記燃焼熱で4分子弱の水蒸気を生成出来、水蒸気から2分子の水素とメタンから2分子の水素Hと1分子のCOが生成することになり、上記4分子弱の水素が生成するとすれば、燃焼には1分子の水素があればよく水蒸気改質を持つ燃焼室2bは一つあれば水蒸気改質をもたないエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2arの何れか3個弱を燃焼させる水素が確保される計算になる.上記1に満たない水素の不足分(未改質分)は電気+水素生成手段4から補給出来るので図4の記載例の様に水蒸気改質Kaを持つエンジン燃焼装置2b一台で水蒸気改質Kaを持たないエンジン燃焼装置2か2aか2arを3台稼働させるエンジンCPT(コンプリート)に出来〔又上記シフト改質をしない構成では水蒸気改質Kaを持つエンジン燃焼装置2b一台で水蒸気改質Kaを持たないエンジン燃焼装置2か2aか2arかの何れかを2台稼働させるエンジンCPT(コンプリート)に出来〕ることを表した図5。 The hydrogen produced by the engine combustion system 2b is the hydrogen of the engine combustion system 2 or the engine combustion system 2a or the engine combustion system 2ar excluding the steam reforming section Ka of the combustion system, and the fuel of its own engine combustion system 2b The composition to self-supply hydrogen, CH 4 + H 2 O = CO + 3H 2 It is this shift reaction (exothermic reaction) that CO + H 2 O = H 2 + CO 2 will be generated, 4 molecules by the above heat of combustion If weak steam can be generated, and two molecules of hydrogen and two molecules of hydrogen H 2 and one molecule of CO 2 will be generated from two molecules of hydrogen and methane, and four molecules of hydrogen are generated, it is necessary for combustion If there is one molecule of hydrogen, there is only one combustion chamber 2b with steam reforming, and if there is one engine combustion unit 2 without steam reforming or any two or three engine combustion units 2a or 2ar with engine combustion unit 2ar It will calculate the hydrogen to be baked is ensured. Since a deficiency (unmodified content) of hydrogen less than 1 can be replenished from electricity + hydrogen generation means 4, steam reforming is performed by one engine combustion device 2b having steam reforming Ka as shown in the example of FIG. Engine CPT (complete) can be operated to operate three engine combustion devices 2 or 2a or 2ar without Ka [and, in the configuration without the above-described shift reforming, steam reforming is performed by one engine combustion device 2b having steam reforming Ka FIG. 5 shows that the engine CPT (complete) can operate two engine combustion devices 2 or 2a or 2ar without Ka.
上記エンジン燃焼室2は水素(H)を(富化)酸素(O)で連続(間欠にも出来る)燃焼させるエンジンの燃焼工程の概略構成フロー図6であって、エンジン燃焼工程2に空気から窒素を分離除去する酸素分離器を設けており、該酸素分離器には空気圧縮装置と空気を(富化)酸素と窒素とに分離する分離装置{例えばメンブレン分離膜(図7)}と分離した(富化)酸素を畜ガスする畜ガスタンクT1を備えており、該畜ガスタンクから(富化)酸素導入管3にて燃料噴射ノズル2Nに供給されており、燃料の水素を畜ガスしておる水素畜ガスタンクT2より水素導入管2にて燃料噴射ノズルに供給されており、該燃焼ノズルから燃焼室部NEに噴射された燃料の水素と富化酸素に点火栓2Pにて点火され連続燃焼し、該燃焼による排気ガス(大半は水蒸気)は排気流5となって排出される。上記エンジン燃焼工程(外郭体)の内外壁間(2G,2U間)に通水路MHを設けて該通水路MHに水タンクから水導入管4にて水を該通水路MHに導入しており、燃焼室部内壁2Uには通水路の水を燃焼室部内に噴射する噴射ノズルTJを複数設けており、上記(富化)酸素と水素の連続燃焼による燃焼火炎の直射熱を受ける吸熱構造手段SCを上記燃焼室部内壁の内側中心方向に間隔を開けて設けて水素と(富化)酸素の燃焼による燃焼室内壁面の(燃焼温度に対する)保護手段としており、該水を噴射ノズルTJから吸熱構造手段の大径方向面及びエンジンの燃焼室部内に噴射しており該エンジンの燃焼室部内の吸熱構造手段に噴射した水は吸熱構造手段SCの熱を吸熱して該水を水蒸気にしており、燃焼室部内NEに噴射した水も該燃焼室部内の燃焼熱(排気ガスの熱)を吸熱して該水を水蒸気にしおり、該燃焼室部内の冷却手段及び水蒸気生成手段としており、噴射された水は水蒸気と成り上記(富化)酸素と水素の燃焼で生成された排気ガスとともに排気ガス流路5に排出される構成の水素と(富化)酸素空気を連続燃焼するエンジンの燃焼工程2。 The engine combustion chamber 2 is a schematic configuration flow diagram 6 of a combustion process of an engine in which hydrogen (H 2 ) is continuously (intermittently) burned with (enriched) oxygen (O 2 ). An oxygen separator is provided for separating nitrogen from air, the oxygen separator comprising an air compressor and a separator for separating air into (enriched) oxygen and nitrogen {eg membrane separator (FIG. 7)} And a stock gas tank T1 for stocking separated oxygen (riched) from the stock gas tank, which is supplied from the stock gas tank to the fuel injection nozzle 2N through the (riched) oxygen introduction pipe 3, and stores hydrogen of fuel as stock gas. The hydrogen is supplied to the fuel injection nozzle from the hydrogen storage gas tank T2 through the hydrogen introduction pipe 2 and the hydrogen and enriched oxygen of the fuel injected from the combustion nozzle to the combustion chamber NE are ignited by the spark plug 2P. Continuous burning, by the combustion Exhaust gas (mostly water vapor) is discharged as exhaust stream 5. A water passage MH is provided between the inner and outer walls (between 2G and 2U) of the above engine combustion process (outer shell), and water is introduced from the water tank to the water passage MH through the water introduction pipe 4 A plurality of injection nozzles TJ are provided on the inner wall 2U of the combustion chamber for injecting water in the water passage into the combustion chamber, and the heat absorption structure means receives the direct heat of the combustion flame by the continuous combustion of the (enriched) oxygen and hydrogen. An SC is provided at intervals in the inner central direction of the inner wall of the combustion chamber portion to protect the inner wall surface (with respect to the combustion temperature) of the combustion chamber by the combustion of hydrogen and (enriched) oxygen. The water injected into the large diameter direction surface of the structural means and into the combustion chamber of the engine and injected into the heat absorbing structural means in the combustion chamber of the engine absorbs the heat of the heat absorbing structural means SC to convert the water into water vapor Water injected into the combustion chamber NE also The heat of combustion (heat of exhaust gas) in the chamber is absorbed to convert the water into water vapor, which is used as a cooling means and water vapor generating means in the combustion chamber, and the injected water becomes water vapor and the above (enrichment) A combustion step 2 of an engine that continuously burns hydrogen and (enriched) oxygen air configured to be discharged to the exhaust gas flow path 5 together with exhaust gas generated by combustion of oxygen and hydrogen.
上記エンジンの燃焼工程2a(図6)は水素(H)を(富化)酸素(O)で燃焼させるエンジン燃焼装置であって、該エンジン燃焼装置2aに酸素を分離供給する酸素分離装置1と,分離した酸素(酸素路3にて供給)と水素(水素タンクから水素路2にて供給)を燃焼ノズル2Nに送り点火栓2Pにて点火され燃焼させるエンジン燃焼装置2と,上記エンジン燃焼装置2の内外壁間(2G,2U間)に設けておる通水路MHと,該通水路MHに水タンクT4から水路4にて水を該通水路MHに導入しており、燃焼室部内壁2Uに設けておる通水路の水を燃焼室内壁面に直接噴射する複数の噴射ノズルMJと,該噴射ノズルMJから噴射した水を水蒸気aとする水蒸気生成手段とを備え,上記(化)酸素と水素の燃焼で生成された排気ガスの水蒸気Bともに排気流5となって排出しておる事を特徴とする水素と酸素を燃焼するエンジン燃焼装置2a。 The combustion step 2a (FIG. 6) of the above-mentioned engine is an engine combustion apparatus for burning hydrogen (H 2 ) with (enriched) oxygen (O 2 ), and an oxygen separating apparatus separately supplying oxygen to the engine combustion apparatus 2a. 1, an engine-combustion apparatus 2 for sending separated oxygen (supplied in the oxygen channel 3) and hydrogen (supplied from the hydrogen tank in the hydrogen channel 2) to the combustion nozzle 2N and ignited by the spark plug 2P for burning; Water passage MH provided between inner and outer walls (between 2G and 2U) of the combustion apparatus 2 and water from the water tank T4 to the water passage MH are introduced to the water passage MH through the water passage 4 comprising a plurality of injection nozzles MJ that directly injects water Nikki water conduit is provided on the inner wall 2U the combustion chamber wall surface, the water injected from the injection nozzle MJ and steam generating means to steam a, above (enrichment) Exhaust gas produced by combustion of oxygen and hydrogen Engine combustion apparatus 2a for burning hydrogen and oxygen, characterized in that Nikki discharged steam B both become exhaust stream 5.
上記エンジンのエンジン燃焼装置2又はエンジン燃焼装置2a又はエンジン燃焼装置2ar又はエンジン燃焼装置2b又はエンジン燃焼装置2c又はエンジン燃焼装置2dのいずれか1以上のからの熱及び水蒸気及び回転力取り出し手段3で生成された電気Eaの一部を使用した電気・水素生成手段4にて改質・分解等々で未分解(未改質)となった水蒸気を燃焼装置2aの燃焼室NE内に戻し入れ排気流5に合流させ該排気流5の熱を吸熱し再加熱水蒸気とする水蒸気再加熱装置WRを備え水循環ループを構成した燃焼装置(図1,2,3、6,7,11)。 Heat, steam and rotational force extracting means 3 from any one or more of the engine combustion device 2 or the engine combustion device 2a or the engine combustion device 2ar or the engine combustion device 2b or the engine combustion device 2c or the engine combustion device 2d of the above engine The steam not converted (unreformed) by reforming / decomposition etc. by the electricity / hydrogen generation means 4 using a part of the generated electricity Ea is returned into the combustion chamber NE of the combustion apparatus 2a and the exhaust stream A combustion apparatus (Figs. 1, 2, 3, 6, 7 and 11) provided with a water vapor reheating device WR which joins with No. 5 to absorb the heat of the exhaust stream 5 to obtain reheated water vapor.
上記実施例3に記載の構成の下流に上記4台分の燃焼室の排気流5を一台の回転力取り出し装置3に連結した概略構成図5(B)であって、メタンを改質するエンジン燃焼装置2b1台で4台分の燃焼室の排気流5を回転力に変換する構造にした一例であり上記形態(CPT)で商品化出来るもの。 FIG. 5 (B) is a schematic configuration diagram 5 (B) in which the exhaust streams 5 of the four combustion chambers are connected to one rotational force take-out device 3 downstream of the configuration described in the third embodiment. This is an example of a structure in which the exhaust flow 5 of four combustion chambers is converted into a rotational force by one engine combustion device 2b and can be commercialized in the above-mentioned form (CPT).
上記エンジン燃焼装置2,2a,2ar,2b,2c,2dを有するエンジンの好ましい移動体での実施形態は上記燃焼装置及び電気・水素生成手段4を一定の設定条件で稼働し移動体の移動に係る制御は電気とする。 In the preferred moving body embodiment of the engine having the engine combustion devices 2, 2a, 2ar, 2b, 2c, 2d, the combustion device and the electric / hydrogen generating means 4 are operated under certain setting conditions to move the moving body. Such control is electricity.
上記エンジン上記実施例2~5のエンジンを移動体に搭載した該エンジン搭載機器(航空機・船舶・鉄道・自動車等々)の駐機場(駐車場・桟橋・マリーナ等の係船場・飛行場・軍隊の基地等)に一酸化炭素CO又は二酸化炭素COをガスステーション又は移動式ガスステーションを設けて該ステーションに引き取らせ水と炭化水素化合物(例えばメタンCH)の供給を受ける形態にするか該エンジンにより生成される電気を引き取らせる設備(電気授受システムEaST)を設けて電気を引き取らせるものである。
すなわち上記移動体移動時は上記エンジンを稼働して燃料の水素(及び酸素)を生成し移動体のエネルギーとし移動と言う仕事を終えた後は上記移動体エンジンを稼働させ生成した一酸化炭素CO又は二酸化炭素COをガスステーション又は移動式ガスステーションに買い取らせ水と炭化水素化合物(例えばメタンCH4)の供給を受ける形態にするか該エンジンにより生成される電気を引き取り設備(外部社会電力エネルギー供給インフラへの電力供給)にて引き取らせるかするかのいずれかにすることで該移動体非稼働時を活用する手段とする。
該手段によりエンジン内の停止・稼働の繰り返しによる該エンジンの構成材の疲労による亀裂破壊等を防止出来該エンジンの寿命延長に繋げるとともに該エンジン生成物の販売もしくは使用(例えば自工場で使用)により該エンジンの原価償却を早く出来る。
The above-mentioned engine mounted equipment (aircraft, ship, railway, car, etc.) of the engine equipped with the engine of the above Examples 2 to 5 A parking lot (airport, jetty, marina, etc.) of a dock area, airfield, army base Or the like) by providing a gas station or a mobile gas station with carbon monoxide CO or carbon dioxide CO 2 and taking it to the station to receive the supply of water and hydrocarbon compound (eg methane CH 4 ) or by the engine A facility (electrical transfer system EaST) for taking up the generated electricity is provided to take up the electricity.
That is, at the time of moving the moving body, the engine is operated to generate hydrogen (and oxygen) of the fuel to make energy of the moving body and work is finished. Then, the moving body engine is operated to generate carbon monoxide CO Alternatively, carbon dioxide CO 2 may be purchased at a gas station or mobile gas station to be supplied with water and a hydrocarbon compound (eg methane CH 4), or the electricity generated by the engine may be taken over (external social power energy supply The power supply to the infrastructure is used as a means for utilizing the non-operating time of the mobile body by either receiving or receiving it.
By means of such measures, it is possible to prevent cracking and the like due to fatigue of components of the engine due to repeated stopping and operation in the engine, and to extend the life of the engine, as well as by selling or using the engine product (for example, used in own factory) The cost of the engine can be depreciated quickly.
上記水素生成手段ZUを部分酸化反応装置OS(エンジン燃焼装置2d)とした一例であって(図10)、水素生成手段部にメタンCH4と酸素を供給し該水素生成手段ZU部を流れておる水蒸気Aの熱を耐熱伝熱構造部SCを介して上記メタンCHと酸素の混合ガスに供給し部分酸化反応を促進し該反応で生成した合成ガスをシフト反応部に送りさらに水蒸気Aを導入し水素と二酸化炭素を生成し、生成したガスから選択透過膜にて水素を分離して取り出しておる構造。
*上記耐熱構造部SCの外殻(外側)に該耐熱構造部の熱と該エンジン外から供給される炭化水素化合物と上記酸素分離器1から供給される酸素を改質する部分酸化反応装置OSで、水素を含む混合ガスを生成した後に、該混合ガスに水蒸気Aを供給し水素と二酸化炭素を生成し生成した該ガスから水素を分離して取り出し取り出した水素を該燃料エンジンの燃料の水素としておる事を特徴とする水素と酸素を燃焼するエンジンるである。
*上記炭化水素を主原料ガスとし、水(水蒸気)、二酸化炭素、酸素等を副原料ガスとして用いて部分酸化反応、分解反応等の化学反応を利用して、水素を含む混合ガスを生成した(更にシフト反応後に)、水素を選択的に透過させることの出来る選択透過膜(例えば高温水素ガス分離膜(セラミックス))によって混合ガスから水素を分離して取り出す技術を本願の水素生成手段ZUの一手段としておる。
This is an example in which the hydrogen generation means ZU is a partial oxidation reaction apparatus OS (engine combustion apparatus 2d) (FIG. 10), methane CH 4 and oxygen are supplied to the hydrogen generation means and flow through the hydrogen generation means ZU The heat of steam A is supplied to the mixed gas of methane CH 4 and oxygen via the heat-resistant heat transfer structure section SC to promote the partial oxidation reaction, the synthesis gas generated by the reaction is sent to the shift reaction section, and steam A is introduced. A structure in which hydrogen and carbon dioxide are produced, and hydrogen is separated from the produced gas by a permselective membrane.
* Partial oxidation reactor OS that reforms the heat of the heat resistant structure, the hydrocarbon compound supplied from the outside of the engine, and the oxygen supplied from the oxygen separator 1 to the outer shell (outside) of the heat resistant structure SC After the mixed gas containing hydrogen is generated, steam A is supplied to the mixed gas to generate hydrogen and carbon dioxide, hydrogen is separated from the generated gas, and the hydrogen taken out is extracted from the hydrogen of the fuel engine fuel. It is an engine that burns hydrogen and oxygen, which is characterized by
* Using the above hydrocarbon as the main raw material gas and water (water vapor), carbon dioxide, oxygen, etc. as the secondary raw material gas, a mixed gas containing hydrogen was generated using a chemical reaction such as partial oxidation reaction or decomposition reaction. The hydrogen generation means of the present invention is a technology for separating hydrogen from the mixed gas and taking it out by means of a selectively permeable membrane (for example, a high temperature hydrogen gas separation membrane (ceramics)) capable of selectively permeating hydrogen (after the shift reaction). As a means.
本願の特許請求の範囲に記載の権利範囲事項から容易に想到出来る構造を使用したもの全て本願の権利範囲である。 It is the scope of the present application to use any structure that can be easily conceived from the scope of the scope of claims described in the present application.
本願は空気中の酸素を分離した(富化)酸素と水素を燃焼させるエンジンであり、水を原料とした水素燃料として幅広く産業に利用できるエンジンである。 The present application is an engine that burns oxygen (enriched) separated from oxygen in air and hydrogen, and is an engine that can be widely used in industry as hydrogen fuel using water as a raw material.
酸素と水素を燃焼させるエンジンの燃焼装置Zの1例図(軸線方向断面図)。An example figure (axial direction cross section figure) of combustion device Z of an engine which burns oxygen and hydrogen. 酸素と水素を燃焼させるエンジンの燃焼装置2cで水蒸気電気分解装置F1内蔵(一体)型の1例図(軸線方向断面図)。FIG. 1 is an example (axial direction sectional view) of an integrated (integrated) type of steam electrolysis apparatus F1 in an engine combustion apparatus 2c that burns oxygen and hydrogen. 上記水蒸気電気分解装置F1に替えて水蒸気改質部Kaを設けたエンジンの燃焼装置2bの1例図(軸線方向断面図)。An example figure (axial direction cross section figure) of combustion equipment 2b of an engine which changed to the above-mentioned steam electrolyzer F1 and provided steam reforming part Ka. 上記水蒸気改質部Kaを設けたエンジン燃焼装置2bで生成した水素4Hで4台のエンジン燃焼装置の燃料とした概略構成図。Fuel and the schematic configuration diagram of a hydrogen 4H 2 generated by the engine combustion apparatus 2b provided with the steam reforming section Ka 4 sets of engine combustion apparatus. (A)エンジン燃焼装置2bの軸線方向の中心部を径方向の断面から燃料噴射ノズル方向を見た断面図。 (B)上記径方向の断面から排気排出口方向を見た断面図。(A) Sectional drawing which looked at the fuel injection nozzle direction from the cross section of radial direction about the center part of the axial direction of the engine combustion apparatus 2b. (B) Sectional drawing which looked at the exhaust gas discharge port direction from the cross section of the said radial direction. (A,B,E)エンジン燃焼装置2、2a、2arの長手方向断面図,(C)(D)燃焼室内壁面に噴射する噴射ノズル設置要領図。(A, B, E) Longitudinal sectional view of engine combustion device 2, 2a, 2ar, (C) (D) Injection nozzle installation procedure diagram injected to the combustion chamber wall surface. 上記エンジン燃焼装置2、2a、2arから回転力取り出し装置3(を経由して)から電気・水素生成装置4(を経由して)から水蒸気再加熱手段WRにて上記エンジン燃焼装置2、2a、2ar内に戻し入れる循環ループの概略図。From the engine combustion devices 2, 2a, 2ar to the torque takeout device 3 (via) to the electricity / hydrogen generation device 4 (via) via the steam reheating means WR, the engine combustion devices 2, 2a, Schematic of the circulation loop back into 2ar. 酸素分離装置1の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the oxygen separation apparatus 1. FIG. 上記回転力取り出し装置3の回転翼体の冷却手段を表した回転翼体断面図。The rotor blade sectional view showing the cooling means of the rotor blade of the above-mentioned torque extraction device 3. 上記水素生成手段ZU部に部分酸化反応を設けた概略構成図。The schematic block diagram which provided partial oxidation reaction in the said hydrogen production means ZU part.

Claims (8)

  1. 酸素と水素を燃焼させた熱で水を水蒸気にしており、該水蒸気を反応させて水素を生成する構成を設けたエンジン燃焼装置Zであって、該燃焼装置Zの燃焼ノズル2Nに酸素及び水素を供給し点火栓2Pにより点火し燃焼室NE内で燃焼しており、該燃焼室に設けておる燃焼による直射熱を受ける耐熱構造部SCと、該耐熱構造部に設けておる水を耐熱構造部SCを通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路MHaと、該通水路MHa内で水蒸気Aを生成する水蒸気A生成手段と,上記耐熱構造部の外殻体に設けておる水素生成手段ZUと、該水素生成手段ZUに上記水蒸気Aを供給する供給ノズルZjと該供給ノズルZjから該水素生成手段ZUに供給しており該水素生成手段ZUにて水蒸気を反応させる副材料SBを供給する副材料SB供給手段と、該水素生成手段ZUに供給された水蒸気Aと上記供給された副材料SBの内の何れか一以上を使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、該混合ガスから水素を分離する分離装置と、該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、上記通水路MHaで生成した水蒸気Aを燃焼室NEに供給する供給ノズルZjと該供給ノズルZjから供給された水蒸気Aは燃焼室NE内の熱を吸熱してさらに高熱に成った水蒸気Aaと該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解されなかった未分解水蒸気とともに下流に排気として排出される排気流5と、を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Zを特徴とする水素と酸素を燃焼するエンジン。 The engine combustion apparatus Z is provided with a configuration in which water is converted to steam by heat generated by burning oxygen and hydrogen, and the steam is reacted to generate hydrogen, and oxygen and hydrogen are supplied to the combustion nozzle 2N of the combustion apparatus Z A heat-resistant structure SC which is supplied with a spark plug 2P and ignited by a spark plug 2P and burned in a combustion chamber NE and receives direct heat from combustion provided in the combustion chamber, and water provided in the heat-resistant structure A water passage MHa which receives direct heat from the combustion to pass water while passing through the part SC, water vapor A generating means for generating water vapor A in the water passage MHa, and an outer shell of the heat resistant structure The hydrogen generation means ZU provided in the above, the supply nozzle Zj for supplying the steam A to the hydrogen generation means ZU, and the supply nozzle Zj supply the hydrogen generation means ZU with the steam in the hydrogen generation means ZU Secondary material to be reacted The auxiliary material SB supplying means for supplying B, steam A supplied to the hydrogen generation means ZU, and any one or more of the supplied auxiliary materials SB are used to generate hydrogen or a mixed gas containing hydrogen Hydrogen or hydrogen-containing mixed gas generation means, a separation device for separating hydrogen from the mixed gas, and hydrogen or a mixed gas containing hydrogen introduced into the separation device to extract hydrogen, the obtained hydrogen being obtained The feed nozzle Zj, which serves as hydrogen of the fuel of the engine combustion unit Z and supplies the steam A generated in the water passage MHa to the combustion chamber NE, and the steam A supplied from the feed nozzle Zj use heat in the combustion chamber NE. The steam Aa which absorbed heat and became further high heat and the steam Aa were discharged downstream together with the steam B generated by the above combustion and the undivided steam not decomposed by the hydrogen generation means ZU. Engine burning hydrogen and oxygen to the exhaust stream 5, wherein the engine combustion device Z for generating combustion by hydrogen hydrogen Nikki comprise issued.
  2. 上記エンジン燃焼装置Zの下流に設けておる回転力取り出し装置3に該燃焼装置Zからの排気流5を貫流させ該回転力取り出し装置3を貫流した排気流5aを上記耐熱構造部SC内に設けておる通水路MHaに戻し入れる手段R1を設けて上記通水路MHaに排気流5aを戻し入れており、更に上記戻し入れ手段を燃焼装置2,2aに設け、上記燃焼装置下流の回転力取り出し装置3を貫流した排気流を燃焼室NEに戻し入れる手段R2としておる事を特徴とする水素と酸素を燃焼するエンジン。 The exhaust flow 5a flowing through the rotational force extracting device 3 is provided in the heat-resistant structural portion SC, and the exhaust flow 5 from the combustion device Z flows through the rotational force extracting device 3 provided downstream of the engine combustion device Z. The exhaust flow 5a is returned to the water flow passage MHa by providing means R1 to return the water flow passage MHa to the holding water passage MHa, and the return device is further provided to the combustion device 2, 2a. An engine for burning hydrogen and oxygen, characterized in that the exhaust gas flowed through 3 is returned to the combustion chamber NE as means R2.
  3. 上記回転力取り出し装置3の回転翼体3aであって、排気流5の略直線的な排気流力を回転力に変換する回転翼体と該回転翼体3aの回転力を取り出す一方の回転軸3cと、該回転軸3cの他方の回転軸3c1と、上記回転力取り出し装置3の外殻体3dと、上記他方の回転軸3c1端部から回転軸3c1内と回転翼体3a内を通り回転翼体3a外に通じる通水路3MHとを備えており、上記通水路3MHに水を導入し該通水路を通過する過程で該水が回転翼体3aの熱を吸熱し水蒸気Cとなり回転力取り出し装置3貫流後の排気流5aとして下流に排出される構造で、回転翼体3aの冷却手段を有する回転力取り出し装置3とした事を特徴とする水素と酸素を燃焼するエンジン。 A rotary wing body 3a of the rotational force output device 3, which converts the substantially linear exhaust flow of the exhaust flow 5 into a rotational force, and one rotary shaft for taking out the rotational force of the rotary wing body 3a. 3c, the other rotating shaft 3c1 of the rotating shaft 3c, the outer shell 3d of the rotating force output device 3, and the other rotating shaft 3c1 from the end of the other rotating shaft 3c1 and through the rotating wing 3a It is equipped with a water passage 3MH leading to the outside of the wing body 3a, and water is introduced into the water passage 3MH and passes through the water passage. Device 3 An engine that burns hydrogen and oxygen, characterized in that it is a rotational power take-out device 3 having cooling means for the rotor blade 3a, which is discharged downstream as an exhaust stream 5a after flowing through.
  4. エンジン燃焼装置2、2a、2ar、Z、の何れかを搭載するエンジンの回転力取り出し装置3を貫流した排気流5a、を導入して電気&水素を生成する電気&水素生成手段4であって、該手段に導入されておる排気流5aの持つ熱と水蒸気及び回転力取り出し装置3で取り出した電気Ea及び海水の内の1以上を材料として、水蒸気電気分解装置F1か水蒸気電気分解装置FS1か金属酸化物と金属水酸化物の触媒と水蒸気で水素を採取する装置SYか水蒸気改質装置Ka1か水熱化学分解F2か熱電エネルギー変換装置DEか、熱交換器Gか燃料電池発電機FD1か海水真水化装置Waかの技術のいずれか1種以上の装置を用いるか組み合わせて、電気か水素の一方か両方を生成し、上記生成した水素の量により上記エンジン燃焼装置2,2a,2arを有するエンジンを複数台稼働させて稼働した複数台のエンジンから電気を更に生成する事を特徴とする水素と酸素を燃焼するエンジン。 The electric and hydrogen generating means 4 is for generating the electricity & hydrogen by introducing the exhaust gas flow 5a which has flowed through the rotational power takeout device 3 of the engine equipped with any of the engine combustion devices 2, 2a, 2ar, Z The steam electrolyzer F1 or the steam electrolyzer FS1 using as a material one or more of heat, steam and electricity Ea extracted from the exhaust stream 5a introduced into the means and electricity Ea and seawater taken out by the rotational force extractor 3; Device SY to extract hydrogen with metal oxide and metal hydroxide catalyst and steam, or steam reforming device Ka1, hydrothermal decomposition F2 or thermoelectric energy conversion device DE, heat exchanger G or fuel cell generator FD1 Either or both of the electric and hydrogen are generated by using or combining any one or more devices of the seawater desalination device Wa, and the above-mentioned engine combustion device 2, depending on the amount of the generated hydrogen, An engine that burns hydrogen and oxygen, which further generates electricity from a plurality of engines operated by operating a plurality of engines having 2a and 2ar.
  5.  上記水素生成手段ZUを有すエンジンを稼働させ該水素生成手段ZUで生成した水素を当該エンジンと水素生成手段ZUを有さないエンジン燃焼装置2及び2a及び2arかの何れかの燃焼装置を複数台稼働させる水素とし、水素生成手段ZUを有すエンジン1台と水素生成手段ZUを有さないエンジン複数台稼働させ稼働させたエンジン全部で電気又は動力の何れか一方か両方かを生成しておる事を特徴とする水素と酸素を燃焼するエンジン。 The engine having the hydrogen generating means ZU is operated, and the hydrogen generated by the hydrogen generating means ZU is not divided into the engine and the engine combustion device 2 having no hydrogen generating means ZU, and a plurality of combustion devices of either 2a or 2ar Hydrogen to be operated as one unit, and one engine having hydrogen generation means ZU and multiple engines not having hydrogen generation means ZU to generate either electricity or motive power in all engines operated and operated An engine that burns hydrogen and oxygen, which is characterized by a man.
  6. 上記エンジンで生成した電気を蓄電器40に蓄電し移動体の移動電力として使用し、余剰となった電気か移動体非移動時の該エンジン稼働により生成する電気かのいずれかの電気の受け渡し形態を電気授受システムEaSTとしておる事を特徴とする水素と酸素を燃焼するエンジン。 The electricity generated by the engine is stored in the storage battery 40 and used as mobile power of the mobile unit, and there is a delivery form of either surplus electricity or electricity generated by the operation of the engine when the mobile unit is not moving. An engine that burns hydrogen and oxygen, which is characterized as being an electrical delivery system EaST.
  7. 上記エンジン燃焼装置Zを備えるエンジンに供給する燃焼気体を酸素と水素に加え不活性ガスを混入させる手段を設け該燃焼装置での火炎中心温度を下げる方向にコントロールする手段としておる事を特徴とする水素と酸素を燃焼するエンジン。 A means is provided for adding combustion gas supplied to the engine equipped with the engine combustion device Z to oxygen and hydrogen and mixing an inert gas, and as a means for controlling the flame center temperature in the combustion device to lower it. An engine that burns hydrogen and oxygen.
  8. 上記エンジンに供給する燃焼気体をレシプロエンジンかロータリーエンジンかディゼルエンジンかのいずれかのエンジンに供給し該エンジンの排気ガスから上記不活性ガスを採集する手段を設けて、該不活性ガスを採集しておる事を特徴とする水素と酸素を燃焼するエンジン。
     
     
    A means is provided for supplying the combustion gas supplied to the engine to either a reciprocating engine, a rotary engine or a diesel engine and collecting the inert gas from the exhaust gas of the engine to collect the inert gas. An engine that burns hydrogen and oxygen, which is characterized by

PCT/JP2018/018606 2017-12-28 2018-05-14 Engine burning hydrogen and oxygen WO2019130619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018545513A JP6680431B2 (en) 2017-12-28 2018-05-14 An engine that burns hydrogen and oxygen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017254895 2017-12-28
JP2017-254895 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019130619A1 true WO2019130619A1 (en) 2019-07-04

Family

ID=67063364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018606 WO2019130619A1 (en) 2017-12-28 2018-05-14 Engine burning hydrogen and oxygen

Country Status (2)

Country Link
JP (1) JP6680431B2 (en)
WO (1) WO2019130619A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092224A (en) * 2019-12-03 2021-06-17 寛治 泉 Engine burning hydrogen and oxygen and also producing hydrogen and oxygen
WO2021186089A1 (en) * 2020-03-19 2021-09-23 Luis Cuenca Adrover Wankel engine with thrust propulsion
RU2763804C1 (en) * 2021-03-04 2022-01-11 Виктор Фёдорович Карбушев Internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239488A (en) * 2004-02-26 2005-09-08 Tohoku Techno Arch Co Ltd Thermochemical decomposition method for water
JP2009155195A (en) * 2007-12-05 2009-07-16 Takamasa Asakawa Hydrogen generating method, hydrogen generating apparatus, and catalyst
JP2017074892A (en) * 2015-10-16 2017-04-20 寛治 泉 Engine of producing fuel with combustion of enriched oxygen air and fuel
JP2018025375A (en) * 2016-07-31 2018-02-15 寛治 泉 Constitution method for engine burning hydrogen and oxygen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239488A (en) * 2004-02-26 2005-09-08 Tohoku Techno Arch Co Ltd Thermochemical decomposition method for water
JP2009155195A (en) * 2007-12-05 2009-07-16 Takamasa Asakawa Hydrogen generating method, hydrogen generating apparatus, and catalyst
JP2017074892A (en) * 2015-10-16 2017-04-20 寛治 泉 Engine of producing fuel with combustion of enriched oxygen air and fuel
JP2018025375A (en) * 2016-07-31 2018-02-15 寛治 泉 Constitution method for engine burning hydrogen and oxygen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092224A (en) * 2019-12-03 2021-06-17 寛治 泉 Engine burning hydrogen and oxygen and also producing hydrogen and oxygen
JP7004887B2 (en) 2019-12-03 2022-02-07 寛治 泉 An engine that burns hydrogen and oxygen.
WO2021186089A1 (en) * 2020-03-19 2021-09-23 Luis Cuenca Adrover Wankel engine with thrust propulsion
RU2763804C1 (en) * 2021-03-04 2022-01-11 Виктор Фёдорович Карбушев Internal combustion engine

Also Published As

Publication number Publication date
JP6680431B2 (en) 2020-04-15
JPWO2019130619A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
Zou et al. Industrial status, technological progress, challenges, and prospects of hydrogen energy
WO2019130619A1 (en) Engine burning hydrogen and oxygen
JP5967682B1 (en) An engine that produces fuel by the combustion of enriched oxygen air and fuel.
US11848467B2 (en) Carbon-neutral process for generating electricity
CN109638324B (en) Pure hydrogen catalytic device and PEMFC power generation system of many sleeve structures of integration to multiple hydrocarbon fuel
Prigent On board hydrogen generation for fuel cell powered electric cars. A review of various available techniques
CN109707992A (en) A kind of multi-functional charging hydrogenation stations
US20230402636A1 (en) Carbon-neutral process for generating electricity
JP6473955B2 (en) An engine that burns oxygen and hydrogen separated by separation means.
CN112531185A (en) Power generation system and method using methanol as raw material
EP3906356B1 (en) System and method for adjusting pressure in a reservoir
KR102190948B1 (en) Ship
KR102168018B1 (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
JP2019196028A (en) Engine combusting hydrogen and oxygen
CN112786934A (en) Phosphoric acid fuel cell power system taking methanol as raw material and power generation method thereof
KR102190938B1 (en) Ship
Wu et al. Electrochemical conversion of natural gas to value added chemicals
JPH11350972A (en) Gas turbine combined cycle power generation system
CN215220773U (en) Alcohol-hydrogen fuel power system and power generation device
KR101842581B1 (en) Stand-alone Heat-exchanger Type Modular Self-sustaining Reformer
CN105612648A (en) Power generation and co2 capture with turbines in series
WO2017065038A1 (en) Engine system performing continuous combustion of oxygen and oxygen-enriched air
JP2021092224A (en) Engine burning hydrogen and oxygen and also producing hydrogen and oxygen
CN112582644A (en) Alcohol-hydrogen fuel power system and power generation device
CN114105095A (en) Marine methanol-water reforming hydrogen production proton exchange membrane fuel cell system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545513

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894206

Country of ref document: EP

Kind code of ref document: A1