JP6741218B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP6741218B2
JP6741218B2 JP2018529339A JP2018529339A JP6741218B2 JP 6741218 B2 JP6741218 B2 JP 6741218B2 JP 2018529339 A JP2018529339 A JP 2018529339A JP 2018529339 A JP2018529339 A JP 2018529339A JP 6741218 B2 JP6741218 B2 JP 6741218B2
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
metal support
seal member
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018529339A
Other languages
English (en)
Other versions
JPWO2018020684A1 (ja
Inventor
杉本 博美
博美 杉本
慎二 宮川
慎二 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2018020684A1 publication Critical patent/JPWO2018020684A1/ja
Application granted granted Critical
Publication of JP6741218B2 publication Critical patent/JP6741218B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池に関する。
従来、セルフレームを形成しないため、工程が簡単であり経済性に優れた金属支持体型固体酸化物燃料電池スタックが提案されている。この燃料電池スタックは、複数の単位電池と、二つ以上の単位電池の間に配置されて直列連結する分離板と、単位電池と分離板の間に形成される密封材と、を含むものである。そして、この単位電池は、金属支持体と、金属支持体の一面に形成された第1の電極と、第1の電極の一面に形成される電解質と、電解質の一面に形成され第1の電極と異なる極性を有する第2の電極と、を含んでなる。また、金属支持体、第1の電極、電解質及び第2の電極に流体通路であるマニホールドが形成されている(特許文献1参照。)。
日本国特表2014−504778号公報
ところで、特許文献1に記載された燃料電池スタックにあっては、クロスリークを防止するために電解質が金属支持体の端部まで形成されている。そのため、熱応力などによって、密封材にクラックが発生し、発生したクラックが電解質にまで伝搬した場合や、密封材に接する電解質にクラックが発生し、発生したクラックが電解質の面方向中心側に伝搬した場合に、クロスリークが発生するおそれがあるという問題点があった。
本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明は、より確実にクロスリークを防止し得る燃料電池を提供することを目的とする。
本発明者らは、上記目的を達成するため鋭意検討を重ねた。その結果、金属支持板とガラスシール部材との間に、所定の被覆層を配置し、前記セル構造体と前記被覆層との間に、クラックの伝搬を防止する所定の間隔を設けることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
本発明によれば、クラックが電解質にまで伝搬することを防止して、より確実にクロスリークを防止し得る燃料電池を提供することができる。
図1は、本発明の第1の実施形態に係る燃料電池の分解した状態を示す模式的な説明図である。 図2は、図1に示した金属支持板の一方の主面側を示す説明図である。 図3は、図1に示した金属支持板の他方の主面側を示す説明図である。 図4は、図1に示した燃料電池の組み立てた状態を示す模式的な説明図である。 図5は、図4に示した燃料電池のV−V’線に沿った模式的な断面図である。 図6は、本発明の第2の実施形態に係る燃料電池の模式的な断面図である。
以下、本発明の一実施形態に係る燃料電池について図面を参照しながら詳細に説明する。なお、以下で引用する図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
(第1の実施形態)
まず、本発明の第1の実施形態に係る燃料電池について詳細に説明する。図1は、第1の実施形態に係る燃料電池の分解した状態を示す模式的な説明図である。また、図2は、図1に示した金属支持板の一方の主面側を示す説明図である。ここで、一方の主面側とは、図1におけるセパレータ21が配置される側を意味する。なお、図2においては、ガラスシール部材が設けられた状態を示している。さらに、図3は、図1に示した金属支持板の他方の主面側を示す説明図である。ここで、他方の主面側とは、図1におけるセパレータ22が配置される側を意味する。なお、図3においては、シール部が形成された状態を示している。また、図4は、図1に示した燃料電池の組み立てた状態を示す模式的な説明図である。さらに、図5は、図4に示した燃料電池のV−V’線に沿った模式的な断面図である。
図1〜図5に示すように、本実施形態の燃料電池1は、金属支持板10と、セル構造体20と、セパレータ31と、ガラスシール部材40と、被覆層50とを備えている。なお、図示例においては、燃料電池1は、セパレータ31と同様のセパレータ32を備えている。セパレータ31とセパレータ32とは、部品の種類数の低減や、燃料電池を複数積層して燃料電池スタックを組み立てし易いという観点からは、同一であることが好ましいが、異なっていてもよい。また、図示例においては、燃料電池1は、多孔質集電部材61を備えている。詳しくは後述する空気極層における集電性を向上させる観点からは、多孔質集電部材を備えていることが好ましいが、多孔質集電部材を備えていなくてもよい。さらに、図示例においては、燃料電池1は、セパレータ32側に、セパレータ31側と同様に多孔質集電部材62を備えている。多孔質集電部材61と多孔質集電部材62とは、部品の種類数の低減という観点からは、同一であることが好ましいが、異なっていてもよい。また、図示例においては、金属支持板10の他方の主面側には、シール部70が形成されている。
そして、金属支持板10は、例えば、厚み方向に対して垂直な方向である面方向において内側に多孔質部101を有し、かつ、外側に緻密質部102を有することが好ましい。ここで、「多孔質」とは、燃料ガスや酸化剤ガスを透過し得るガス透過性を有することを意味する。また、「緻密質」とは、燃料ガスや酸化剤ガスを透過し得えないガス不透過性を有することを意味する。なお、図示例においては、金属支持板10における緻密質部102は、ガス透過を遮断するフレームを形成している。一方で、緻密質部102で形成されたフレームは、燃料ガスや酸化剤ガスが流通する貫通孔H1〜H4を有する。また、図示例においては、金属支持板10は、一方の主面が平坦である構造を有している。詳しくは後述する電解質層及び電解質層と同一の材料からなる被覆層をパターンニングにより形成し易いという観点からは、一方の主面が平坦である構造を有していることが好ましいが、これに限定されるものではない。さらに、特に限定されるものではないが、金属支持板10としては、耐熱性が高いなどの観点から、例えば、ステンレス鋼からなるものを適用することが好ましい。また、特に限定されるものではないが、金属支持板10として、多孔質板の周囲を適宜加圧圧縮して緻密質にし、所定の多孔質部と緻密質部を形成したものを適用することも可能である。なお、貫通孔に関しては、加圧圧縮後に機械加工によって形成してもよいが、これに限定されるものではない。
また、セル構造体20は、電解質層201を有する。また、電解質層201は、金属支持板10上に配置されている。さらに、図示例においては、電解質層201の面方向における大きさは、金属支持板10における多孔質部101の面方向における大きさよりも大きい関係を有している。このような関係を有していると、クロスリークを防止するために電解質層201以外の他の部材でさらにガスシールする必要がないため好ましいが、これに限定されるものではない。また、図示例においては、セル構造体20は、空気極層202と燃料極層203とを有し、電解質層201が空気極層202と燃料極層203とで挟持された構造を有する。さらに、図示例においては、セル構造体20は、金属支持板10と電解質層201との間に配置された燃料極層203を有する。なお、このような構造を有していると、優れた発電性能を発揮することができるが、これに限定されるものではない。例えば、図示しないが、金属支持板の多孔質部の材質を調製することにより、多孔質部の一部又は全部に燃料極層としての機能を担わせることが可能である。また、図示例においては、電解質層201の面方向における大きさは、燃料極層203の面方向における大きさよりも大きい関係を有している。このような関係を有していると、クロスリークを防止するために電解質層201以外の他の部材でさらにガスシールする必要がないため好ましいが、これに限定されるものではない。さらに、電解質層201としては、固体酸化物形燃料電池の電解質層に適用される従来公知の電解質材料からなるものを適用することができる。また、特に限定されるものではないが、電解質層201としては、イットリウム安定化ジルコニア等の酸化物イオン伝導体で構成されるものを好適例として挙げることができる。さらに、空気極層202としては、固体酸化物形燃料電池の空気極層に適用される従来公知の空気極材料からなるものを適用することができる。また、燃料極層203としては、固体酸化物形燃料電池の燃料極層に適用される従来公知の燃料極材料からなるものを適用することができる。なお、金属支持板10に対して、燃料極層203、電解質層201及び空気極層202をこの順に積層してなるセル構造体を形成したものは、一般に、メタルサポートセルと呼ばれる。
さらに、セパレータ31は、セル構造体20上に配置されている。なお、図示例においては、セル構造体20とセパレータ31との間には多孔質集電部材61が配置されている。また、図示例においては、セパレータ32は、金属支持板10のセル構造体20が配置されていない側に配置されている。さらに、図示例においては、セパレータ31は、平板部311と、連続する凸部312を有する。また、図示例においては、セパレータ32も、平板部321と、連続する凸部322を有する。さらに、図示例においては、セル構造体20が配置される発電領域に対向する位置に連続する凸部312,322が形成されている。そして、連続する凸部312,322は、燃料ガスや酸化剤ガスが流通する流路を形成する。また、図示例においては、セパレータ31,32は、金属支持板10における貫通孔H1〜H4と同様の位置に貫通孔H1〜H4を有する。さらに、特に限定されるものではないが、セパレータ31,32としては、耐熱性が高いなどの観点から、例えば、ステンレス鋼からなるものを適用することが好ましい。なお、図示しないが、セパレータ31,32は、セル構造体20が配置される発電領域に対向する位置に連続する表裏反転した凹凸部を有し、これらが、燃料ガスや酸化剤ガスが流通する流路を形成していてもよい。
また、ガラスシール部材40は、金属支持板10とセパレータ31との間で、かつ、セル構造体20よりも外側に配置されている。さらに、図示例においては、ガラスシール部材40は、金属支持板10やセパレータ31の外周縁部や貫通孔H1,H3の周囲に配置されている。また、ガラスシール部材40としては、固体酸化物形燃料電池のガラスシール部材に適用される従来公知のガラスシール材からなるものを適用することができる。
さらに、被覆層50は、金属支持板10とガラスシール部材40との間に配置されている。また、被覆層50は、金属支持板10とガラスシール部材40とに接している。ガスシール性の十分な確保という観点からは、セパレータ31側からのガラスシール部材40の投影面全体に被覆層50が配置されていることが好ましい。さらに、セル構造体20と被覆層50との間には、所定の間隔Gが設けられている。また、図示例においては、所定の間隔Gは、金属支持板10における緻密質部102上に位置する。所定の間隔Gを金属支持板10における緻密質部102上に位置させると、クロスリークを防止するために他の部材でガスシールする必要がないため好ましい。さらに、図示例においては、所定の間隔Gの面方向における幅は、金属支持板10における多孔質部101の外端101oeとガラスシール部材40の内端40ieの面方向における距離よりも小さい関係を有している。このような関係を有していると、ガラスシール部材と金属支持板との間に確実に被覆層が配置されることとなり、より確実にクロスリークを防止できるだけでなく、ガスシール性を十分に確保することができる。また、図示例においては、被覆層50は、貫通孔H1,H3の周囲及び緻密質部102のほぼ全面に配置されている。これにより、発電性能を維持しやすいという利点がある。しかしながら、これに限定ものではなく、図示しないが、貫通孔H1,H3の周囲及び緻密質部102の外周縁部にのみ配置してもよい。さらに、特に限定されるものではないが、被覆層50としては、構造の自由度が高いなどの観点から、例えば、絶縁性を有するものを適用することが好ましい。また、特に限定されるものではないが、被覆層50としては、例えば、電解質層を構成する材料と同じ材料を含むものを適用することが好ましく、より具体的には、電解質層と同じものであることが好ましい。
また、図示例において、多孔質集電部材61は、セパレータ31と空気極層202との間に配置されている。さらに、多孔質集電部材61は、空気極層202における集電性と空気極層202側における酸化剤ガスを透過し得るガス透過性を適切に確保することができれば、特に限定されるものではない。多孔質集電部材61としては、エキスパンドメタルからなるものを好適例として挙げることができる。なお、多孔質集電部材62は、多孔質集電部材61と同様のものである。多孔質集電部材61と多孔質集電部材62とは、部品の種類数の低減や、燃料電池を複数積層して燃料電池スタックを組み立てし易いという観点からは、同一であることが好ましいが、異なっていてもよい。
さらに、図示例において、シール部70は、金属支持板10やセパレータ32の外周縁部や貫通孔H2,H4の周囲に形成されている。また、シール部70は、例えば、ガラスシール材やロウ材からシール部材を配置して形成することができる。なお、ガラスシール材としては、上述したものと同様のものを適用することができる。また、ロウ材としては、固体酸化物形燃料電池において適用されている従来公知のロウ材を適用することができる。しかしながら、これらに限定されるものではなく、例えば、シール部70は、金属支持板10とセパレータ32とを溶接して形成することもできる。さらに、シール部70は、導電性を確保できるという観点から、ロウ材の配置や溶接によって形成することが好ましい。また、シール部70は、部品点数の低減という観点からは、溶接によって形成することが好ましい。
そして、燃料電池1が組み立てられた状態となると、金属支持体10上の被覆層50とセパレータ31との間がガラスシール部材40でガスシールされ、金属支持体10とセパレータ32との間がシール部70でガスシールされる。なお、図2及び図3に示すように、燃料電池においては、貫通孔H4から図中矢印Zで示すように空気極層側に酸化剤ガスが供給され、貫通孔H1から図中矢印Yで示すように燃料極層側に燃料ガスが供給されることにより、発電が行われる。なお、貫通孔H2から未利用の酸化剤ガスが排出され、貫通孔H3から未利用の燃料ガスや反応生成ガス、水蒸気などが排出される。ここで、酸化剤ガスとしては、例えば、酸素、空気などを適用することができる。また、燃料ガスとしては、例えば、水素、ガソリン等の炭化水素燃料、アルコール等の炭化水素系燃料などを適用することができ、必要に応じて水を混合させてもよい。
また、特に限定されるものではないが、燃料電池1をさらに複数積層して燃料電池スタックを組み立てる場合には、金属支持板10上にセル構造体20と被覆層50とを形成し、セル構造体20を形成しない側にセパレータ32と多孔質集電部材62を接合して構成されたセルユニットを用いることができる。金属支持板10とセパレータ32との間の接合やセパレータ32と多孔質集電部材62との間の接合は、特に限定されるものではないが、導電性を確保できるという観点から、ロウ材の配置や溶接によって行うことが好ましい。このようなセルユニットを用いて積層する場合には、セパレータ31と多孔質集電部材61は他のセルユニットを構成するものとなる。そして、セルユニット間の接合及びガスシールをガラスシール部材40によって行うこととなる。なお、このようなセルユニットを用いると、燃料電池スタックを組み立てる場合には、セルユニットにガラスシール材を塗布して、積層するだけであるため、製造工程を簡素化することができる。
上述したように、燃料電池は、以下の(1)〜(6)の構成を有することにより、より確実にクロスリークを防止し得るものとなる。
(1)金属支持板と、セル構造体と、セパレータと、ガラスシール部材と、被覆層とを備えている。
(2)セル構造体は、金属支持板上に配置された電解質層を有する。
(3)セパレータは、セル構造体上に配置されている。
(4)ガラスシール部材は、金属支持板とセパレータとの間で、かつ、セル構造体よりも外側に配置されている。
(5)被覆層は、金属支持板とガラスシール部材との間に配置され、かつ、金属支持板及びガラスシール部材に接している。
(6)セル構造体と被覆層との間に、所定の間隔を設けている。
つまり、ガラスシール部材や被覆層で形成されたシール部には、熱応力などによってクラックが生じることがある。しかしながら、セル構造体と被覆層との間に、所定の間隔を設けることにより、ガラスシール部材や被覆層で発生したクラックが、セル構造体、ひいては電解質層に伝搬することを防止することができる。これにより、より確実にクロスリークを防止することができる。
また、金属支持板とガラスシール部材との間に、金属支持板及びガラスシール部材に接した被覆層を配置することにより、被覆層とガラスシール部材との間やガラスシール材自体におけるガスシール性の低下を抑制ないし防止することができるという副次的な利点もある。より具体的には、被覆層を配置することにより、例えば、被覆層が電解質層と同様に酸化物であれば、ガラスシール部材も酸化物であるため、被覆層とガラスシール部材との接合性が優れる。これにより、被覆層とガラスシール部材との間におけるガスシール性の低下を抑制ないし防止することができる。また、被覆層を配置することにより、例えば、ステンレス鋼などクロムを含む金属支持板とガラスシール部材との直接接触を避けることができる。これにより、高温でのクロムの蒸発や拡散によるガラスシール部材自体の劣化を抑制することができる。その結果、ガラスシール部材自体におけるガスシール性の低下を抑制ないし防止することができる。
また、上述したように、燃料電池は、以下の(7)の構成を有することが好ましい。これにより、より確実にクロスリークを防止することができ、優れたガスシール性を有するものとなる。
(7)被覆層は、電解質層を構成する材料と同じ材料を含む。
つまり、既に燃料極層と空気極層との間のクロスリークを防止し得ることが分かっている電解質層と同じ材料で被覆層を形成することにより、より確実にクロスリークを防止することができ、ガスシール性を十分に確保することができる。
さらに、上述したように、燃料電池は、以下の(8)〜(10)の構成を有することが好ましい。これにより、より確実にクロスリークを防止することができる。
(8)金属支持板は、厚み方向に対して垂直な方向である面方向において内側に多孔質部を有し、かつ、外側に緻密質部を有する。
(9)所定の間隔は、緻密質部上に位置する。
(10)所定の間隔の面方向における幅は、多孔質部の外端とガラスシール部材の内端の面方向における距離よりも小さい。
つまり、緻密質部上に所定の間隔を配置することにより、例えば、クロスリークを防止するために多孔質部の一部をガスシールするような他のシール部材を配置する必要がなく、また、ガスシール性の低下要因となる部材同士の接合界面を少なくすることができる。その結果、より確実にクロスリークを防止することができる。
また、上述したように、燃料電池は、以下の(11)の構成を有することが好ましい。これにより、より確実にクロスリークを防止することができる。
(11)電解質層の面方向における大きさは、多孔質部の面方向における大きさよりも大きい。
つまり、電解質層の面方向における大きさを、多孔質部の面方向における大きさよりも大きくすることにより、例えば、クロスリークを防止するために多孔質部の一部をガスシールするような他のシール部材を配置する必要がなく、また、ガスシール性の低下要因となる部材同士の接合界面を少なくすることができる。その結果、より確実にクロスリークを防止することができる。
さらに、上述したように、燃料電池は、以下の(12)及び(13)の構成を有することが好ましい。これにより、より確実にクロスリークを防止することができ、優れた発電性能を有するものとなる。
(12)セル構造体は、金属支持板と電解質層との間に配置された燃料極層を有する。
(13)電解質層の面方向における大きさは、燃料極層の面方向における大きさよりも大きい。
つまり、セル構造体を、金属支持板と電解質層との間に配置された燃料極層を有するものとし、電解質層の面方向における大きさを、燃料極層の面方向における大きさよりも大きくすることにより、例えば、燃料極層の一部をガスシールするような他のシール部材を配置する必要がなく、また、ガスシール性の低下要因となる部材同士の接合界面を少なくすることができる。その結果、より確実にクロスリークを防止することができる。また、燃料極層を設けたため、優れた発電性能を発揮することができる。
また、上述したように、燃料電池は、以下の(14)の構成を有することが好ましい。これにより、より確実にクロスリークを防止することができる。
(14)緻密質部は、ガス透過を遮断するフレームを形成している。
つまり、緻密質部によってガス透過を遮断するフレームを形成することにより、例えば、金属支持板の周囲に貫通孔を形成した別の部材を配置する必要がなく、また、ガスシール性の低下要因となる部材同士の接合界面を少なくすることができる。その結果、より確実にクロスリークを防止することができる。
(第2の実施形態)
次に、本発明の第2の実施形態に係る燃料電池について詳細に説明する。図6は、第2の実施形態に係る燃料電池の模式的な断面図であり、具体的には、図4に示したV−V’線と同じ位置の線に沿った断面図である。なお、上述した実施形態と同一の構成については、同一の符号を付すことにより重複する説明を省略する。
図6に示すように、本実施形態の燃料電池2は、所定の間隔Gに凸部103が設けられている点が、上述した実施形態の燃料電池1と相違する。なお、図示しない部分については、凸部103以外については、図1〜図5に示した構成と同様である。また、図示例においては、凸部103は、金属支持板10によって、さらに言えば、緻密質部102によって形成されているが、これに限定されるものではない。例えば、緻密質部102上に別部材を配置して形成してもよい。また、凸部103は、必ずしも緻密質部102と同様に緻密質である必要はない。
上述したように、燃料電池は、(1)〜(6)の構成を有することにより、より確実にクロスリークを防止することができる。また、ガスシール性の低下を抑制ないし防止することができるという副次的な利点もある。さらに、上述したように、燃料電池は、(7)〜(14)の構成を適宜有することが好ましい。これにより、より確実にクロスリークを防止することができ、優れたガスシール性や発電性能を有するものとなる。そして、上述したように、所定の凸部103を設けることにより、被覆層やガラスシール部材がセル構造体と接することを確実に避けることができる。これにより、ガラスシール部材や被覆層で発生したクラックが、セル構造体、ひいては電解質層に伝搬することをより確実に防止することができる。その結果、より確実にクロスリークを防止することができる。
以上、本発明を若干の実施形態によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。
例えば、上述した燃料電池の好適形態における構成は、適宜組み合わせて採用することができる。
1,2 燃料電池
10 金属支持板
101 多孔質部
101oe 外端
102 緻密質部
103 凸部
20 セル構造体
201 電解質層
202 空極極層
203 燃料極層
31,32 セパレータ
311,321 平板部
312,322 凸部
40 ガラスシール部材
40ie 内端
50 被覆層
61,62 多孔質集電部材
70 シール部
G 間隔
H1〜H4 貫通孔

Claims (6)

  1. 金属支持板と、
    前記金属支持板上に配置された電解質層を有するセル構造体と、
    前記セル構造体上に配置されたセパレータと、
    前記金属支持板と前記セパレータとの間で、かつ、前記セル構造体よりも外側に配置されたガラスシール部材と、を備える燃料電池であって、
    前記金属支持板と前記ガラスシール部材との間に配置され、かつ、前記金属支持板及び前記ガラスシール部材に接している被覆層を備え、
    前記セル構造体と前記被覆層との間に、クラックの伝搬を防止する所定の間隔を設けた
    ことを特徴とする燃料電池。
  2. 前記被覆層は、前記電解質層を構成する材料と同じ材料を含むことを特徴とする請求項1に記載の燃料電池。
  3. 前記金属支持板は、厚み方向に対して垂直な方向である面方向において内側に多孔質部を有し、かつ、外側に緻密質部を有し、
    前記所定の間隔は、前記緻密質部上に位置し、
    前記所定の間隔の前記面方向における幅は、前記多孔質部の外端と前記ガラスシール部材の内端の前記面方向における距離よりも小さい
    ことを特徴とする請求項1又は2に記載の燃料電池。
  4. 前記電解質層の前記面方向における大きさは、前記多孔質部の前記面方向における大きさよりも大きいことを特徴とする請求項3に記載の燃料電池。
  5. 前記セル構造体は、前記金属支持板と前記電解質層との間に配置された燃料極層を有し、
    前記電解質層の厚み方向に対して垂直な方向である面方向における大きさは、前記燃料極層の厚み方向に対して垂直な方向である面方向における大きさよりも大きい
    ことを特徴とする請求項1〜4のいずれか1つの項に記載の燃料電池。
  6. 前記緻密質部は、ガス透過を遮断するフレームを形成していることを特徴とする請求項3に記載の燃料電池。
JP2018529339A 2016-07-29 2016-07-29 燃料電池 Active JP6741218B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072440 WO2018020684A1 (ja) 2016-07-29 2016-07-29 燃料電池

Publications (2)

Publication Number Publication Date
JPWO2018020684A1 JPWO2018020684A1 (ja) 2019-05-09
JP6741218B2 true JP6741218B2 (ja) 2020-08-19

Family

ID=61015908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529339A Active JP6741218B2 (ja) 2016-07-29 2016-07-29 燃料電池

Country Status (7)

Country Link
US (1) US10608261B2 (ja)
EP (1) EP3493307B1 (ja)
JP (1) JP6741218B2 (ja)
CN (1) CN109478660B (ja)
BR (1) BR112019001269B1 (ja)
CA (1) CA3031877C (ja)
WO (1) WO2018020684A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740856B2 (ja) * 2016-10-26 2020-08-19 株式会社デンソー 燃料電池及び燃料電池の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942348A (en) * 1994-12-01 1999-08-24 Siemens Aktiengesellschaft Fuel cell with ceramic-coated bipolar plates and a process for producing the fuel cell
GB9807977D0 (en) * 1998-04-16 1998-06-17 Gec Alsthom Ltd Improvements in or relating to coating
JP4438295B2 (ja) * 2003-01-21 2010-03-24 三菱マテリアル株式会社 燃料電池
DE10302124A1 (de) * 2003-01-21 2004-07-29 Bayerische Motoren Werke Ag Dichtungsaufbau für eine Brennstoffzelle bzw. einen Elektrolyseur sowie Verfahren zu dessen Herstellung und Brennstoffzelle bzw. Elektrolyseur aufweisend den Dichtungsaufbau
DE10302122A1 (de) * 2003-01-21 2004-07-29 Elringklinger Ag Dichtungsaufbau für eine Brennstoffzelle bzw. einen Elektrolyseur sowie Verfahren zu dessen Herstellung und Brennstoffzelle bzw. Elektrolyseur aufweisend den Dichtungsaufbau
JP4027836B2 (ja) 2003-04-16 2007-12-26 東京瓦斯株式会社 固体酸化物形燃料電池の作製方法
JP5093833B2 (ja) * 2005-01-25 2012-12-12 住友精密工業株式会社 燃料電池用単電池セル
JP4899324B2 (ja) * 2005-03-04 2012-03-21 日産自動車株式会社 固体酸化物形燃料電池及びその製造方法
JP5422867B2 (ja) * 2006-05-31 2014-02-19 大日本印刷株式会社 固体酸化物形燃料電池及びその製造方法
JP2011222161A (ja) * 2010-04-05 2011-11-04 Toyota Motor Corp 燃料電池
JP2014504778A (ja) 2010-12-28 2014-02-24 ポスコ 金属支持体型固体酸化物燃料電池の単位電池及びその製造方法とこれを用いた固体酸化物燃料電池スタック
JP2013257989A (ja) * 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池

Also Published As

Publication number Publication date
EP3493307A1 (en) 2019-06-05
EP3493307A4 (en) 2019-06-05
WO2018020684A1 (ja) 2018-02-01
CA3031877C (en) 2020-08-18
CN109478660B (zh) 2020-07-03
BR112019001269A2 (pt) 2019-04-30
BR112019001269B1 (pt) 2022-06-14
CA3031877A1 (en) 2018-02-01
US10608261B2 (en) 2020-03-31
EP3493307B1 (en) 2020-05-20
JPWO2018020684A1 (ja) 2019-05-09
US20190252691A1 (en) 2019-08-15
CN109478660A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP2008066264A (ja) 燃料電池スタック用金属セパレータの積層性向上構造
JP5679893B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP6020413B2 (ja) 燃料電池用のターミナルプレートと燃料電池
JP4438295B2 (ja) 燃料電池
JP2008171613A (ja) 燃料電池
JP6741218B2 (ja) 燃料電池
JP4900364B2 (ja) 燃料電池
JP6118230B2 (ja) 燃料電池スタック
JP2017517837A (ja) Sfocユニットのための電気絶縁性の三層ガスケット
JP6339495B2 (ja) インターコネクタ−燃料電池単セル複合体及び燃料電池スタック
JP2007250228A (ja) 燃料電池
JP5482488B2 (ja) 燃料電池スタック
JP6185448B2 (ja) 燃料電池用のターミナルプレートと燃料電池
JP6350358B2 (ja) 燃料電池セルスタック
JPWO2018225617A1 (ja) 電気化学反応セルスタック、インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタックの製造方法
JP5650019B2 (ja) 固体酸化物形燃料電池
JP5701697B2 (ja) 燃料電池及びその製造方法
JP2010287367A (ja) 燃料電池を構成する発電モジュール
JP6740856B2 (ja) 燃料電池及び燃料電池の製造方法
JP2015185505A (ja) 燃料電池
JP2017212032A (ja) 電気化学反応セルスタック
JPS6353856A (ja) 燃料電池用セパレ−タ
JP2022166476A (ja) 燃料電池のセルスタック
JP2014143052A (ja) 固体電解質型燃料電池ユニットおよびその製造方法
JP2002313372A (ja) 燃料電池用セパレータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R151 Written notification of patent or utility model registration

Ref document number: 6741218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151