JP6735508B2 - 疲労限度応力特定システム及び疲労限度応力特定方法 - Google Patents

疲労限度応力特定システム及び疲労限度応力特定方法 Download PDF

Info

Publication number
JP6735508B2
JP6735508B2 JP2016251885A JP2016251885A JP6735508B2 JP 6735508 B2 JP6735508 B2 JP 6735508B2 JP 2016251885 A JP2016251885 A JP 2016251885A JP 2016251885 A JP2016251885 A JP 2016251885A JP 6735508 B2 JP6735508 B2 JP 6735508B2
Authority
JP
Japan
Prior art keywords
fatigue limit
limit stress
temperature
approximation line
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016251885A
Other languages
English (en)
Other versions
JP2018105709A5 (ja
JP2018105709A (ja
Inventor
入江 庸介
庸介 入江
裕嗣 井上
裕嗣 井上
亮悟 河合
亮悟 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016251885A priority Critical patent/JP6735508B2/ja
Priority to CN201780079633.8A priority patent/CN110100164A/zh
Priority to EP17888692.5A priority patent/EP3546919A4/en
Priority to PCT/JP2017/029846 priority patent/WO2018123129A1/ja
Publication of JP2018105709A publication Critical patent/JP2018105709A/ja
Priority to US16/449,777 priority patent/US11275005B2/en
Publication of JP2018105709A5 publication Critical patent/JP2018105709A5/ja
Application granted granted Critical
Publication of JP6735508B2 publication Critical patent/JP6735508B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/36Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/34Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by mechanical means, e.g. hammer blows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本開示は、測定対象物の疲労限度応力を測定する疲労限度応力特定システムに関する。
特許文献1は、繰り返し応力振幅を測定対象物に加えて、材料内部のエネルギー散逸によって生じる平均温度上昇量の一定領域内における分布を赤外線サーモグラフィによって測定する散逸エネルギー測定手段を用いた疲労限度応力特定装置を開示する。
特許文献1の疲労限度応力特定システムは、測定対象物に対して荷重を繰り返し加える加振機と、測定対象物の温度画像を得る赤外線カメラと、赤外線カメラから得た測定対象物の温度画像を処理するフーリエ変換手段を有する情報処理装置とを備える。情報処理装置は、散逸エネルギーを測定する散逸エネルギー測定工程と、散逸エネルギー測定工程から得られた測定結果から疲労限度応力を特定する疲労限度応力特定工程とを有する。
散逸エネルギー測定工程は、赤外線カメラが撮影した温度画像より、加振の基本周波数の成分および第二高調波の成分の温度振幅画像を取得し、第二高調波の成分の温度振幅画像の最大を示す領域内において、基本周波数の成分の温度振幅画像に対する荷重特性の傾きが最大であるピクセル領域の散逸エネルギーを抽出する。
疲労限度応力特定工程では、自由度調整済み決定係数およびGauss-Newton法によって求められる2本の近似線の交点から疲労限度応力を特定している。2本の近似線として、y=ax+b(n=2)で表される多項式と直線とが使用されている。
特許文献1のシステムによれば、応力集中を有する材料や部品の疲労限度応力を、主観的な判断に頼ることなく客観的に疲労限度応力を正確に求めることができる。
特開2016−24056号公報
本開示は、測定対象物の疲労限度応力を精度よく測定できる疲労限度応力特定システムを提供する。
本開示の第一の態様において、荷重を段階的に増加させながら測定対象物を加振したときに発生する測定対象物の温度変動に基づいて、測定対象物の疲労限度応力を測定する疲労限度応力特定システムを提供する。疲労限度応力特定システムは、測定対象物に対して各荷重を所定の周波数で繰り返して加える加振機と、荷重が加えられている測定対象物の温度変動を示す温度画像を撮像する赤外線カメラと、赤外線カメラから得た温度画像に基づき測定対象物の疲労限度応力を求める情報処理装置と、を備える。情報処理装置は、赤外線カメラから得た温度画像から、測定対象物に関する、加振の基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係を求め、その関係を二次曲線である第一の近似線と二次曲線である第二の近似線によりフィッティングし、第一の近似線と第二の近似線の交点に基づき測定対象物の疲労限度応力を求める。
本開示の第二の態様において、荷重を段階的に増加させながら測定対象物を加振したときに発生する測定対象物の温度変動に基づいて、測定対象物の疲労限度応力を測定する疲労限度応力特定装置を提供する。疲労限度応力特定装置は、測定対象物の温度変動を示す温度画像を取得する取得部と、温度画像を解析して測定対象物の疲労限度応力を測定する演算部とを備える。演算部は、温度画像から、加振の基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係を求め、その関係を二次曲線である第一の近似線と二次曲線である第二の近似線によりフィッティングし、第一の近似線と第二の近似線の交点に基づき測定対象物の疲労限度応力を求める。
本開示の第三の態様において、荷重を段階的に増加させながら測定対象物を加振したときに発生する測定対象物の温度変動に基づいて前記測定対象物の疲労限度応力を測定する疲労限度応力特定方法を提供する。疲労限度応力特定方法は、荷重を段階的に増加させながら所定の周波数で繰り返し測定対象物に加え、荷重が加えられている測定対象物の温度変動を示す温度画像を撮像し、温度画像から、加振の基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係を求め、その関係を二次曲線である第一の近似線と二次曲線である第二の近似線によりフィッティングし、第一の近似線と第二の近似線の交点に基づき前記測定対象物の疲労限度応力を求める。
本開示によれば、基本周波数成分の温度振幅に対する第二高調波成分の温度振幅の関係を2つの二次曲線でフィッティングし、その2つの二次曲線の交点に基づき測定対象物の疲労限度応力を求める。これにより、精度良く測定対象物の疲労限度応力を求めることができる。
本開示の実施の形態1における疲労限度応力特定システムの構成を示す図 試験片を加振機に固定した状態を示す図 実施の形態1における情報処理装置の構成を示すブロック図 本発明の実施の形態1における曲率半径rh0を有する測定対象物である試験片1bの形状及び寸法を示す図 疲労限度応力の特定処理を示すフローチャート 第二高調波成分についての温度振幅画像分布を示す図 図4Aの領域R1の部分の拡大図 (A)加振時の試験片の温度変動を示す図、(B)(A)における破線領域を拡大した図 (A)温度変動の周波数スペクトルを示す図、(B)(A)における破線領域を拡大した図 (A)荷重振幅と基本波振幅の関係を示す図、(B)荷重振幅と第二高調波振幅の関係を示す図、(C)基本波振幅と第二高調波振幅の関係を示す図 2つの近似線の求め方を説明するための図 二本の近似線の算出処理を示すフローチャート 基本波振幅と第二高調波振幅の関係を示す図 境界毎に求めた残差二乗和を示す図 (A)、(B)荷重振幅が大きい場合に測定される不適切なデータを説明した図、(C)自由度調整済み決定係数の算出式を示す図 様々なデータ範囲に対するフィッティング結果を説明した図 基本波振幅と第二高調波振幅の関係を示す図 図13に示すデータに基づいて疲労限度を算出する方法を説明するための図 実施の形態1の方法により求めた疲労限度応力と、従来の方法により求めた疲労限度応力との比較を示す図(試験片の切欠き半径:5.0mm) 実施の形態1の方法により求めた疲労限度応力と、従来の方法により求めた疲労限度応力との比較を示す図(試験片の切欠き半径:2.0mm) 実施の形態1の方法により求めた疲労限度応力と、従来の方法により求めた疲労限度応力との比較を示す図
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
なお、発明者(ら)は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
(実施の形態1)
[1−1.構成]
以下、添付の図面を参照して本開示に係る疲労限度応力特定システムの実施の形態を説明する。以下の実施形態で説明する疲労限度応力特定システムは、試験片の疲労限度を算出するシステムである。
図1Aは、本開示の実施の形態における疲労限度応力特定システムを示した図である。疲労限度応力特定システム100は、測定対象物である試験片1を加振する加振機10と、試験片1の温度画像(赤外画像)を撮像する赤外線カメラ30と、温度画像を解析し、試験片1の疲労限度を算出する情報処理装置50(疲労限度応力特定装置の一例)と、所定の情報を表示するモニタ60とを備える。
図1Bは、試験片1を加振機10に固定した状態を示した図である。加振機10は、試験片1に対して所定の力を所定の周波数で加える装置である。
なお、以下の説明で参照する測定データは、加振機10として、油圧サーボ疲労試験機(島津製作所社製,サーボパルサ,最大試験能力:10kN)を利用して測定したデータである。加振機10の荷重制御により、試験片1に対する引張荷重を0kN〜8.5kNまで0.1kNずつ増加させながら測定を行った。加振による基本周波数(1f)は25Hzとした。赤外線カメラ30としてCedip社のSilver480Mを利用した。赤外線カメラ30のフレームレートは249Hzである。
赤外線カメラ30で測定した温度画像は、フーリエ変換機能を有する情報処理装置50でデータ処理される。情報処理装置50は、赤外線カメラ30により撮像された温度画像(赤外画像)を解析して試験片1の疲労限度応力を特定する。情報処理装置50にはモニタ60が接続されている。モニタ60は液晶ディスプレイ装置または有機ELディスプレイ装置である。
図2は、情報処理装置50の内部構成を説明したブロック図である。情報処理装置50は例えばパーソナルコンピュータである。情報処理装置50は、その全体動作を制御するコントローラ51と、ユーザが操作を行う操作部55と、データやプログラムを記憶するRAM56及びデータ格納部57とを備える。
情報処理装置50はさらに、赤外線カメラ30やモニタ60等の外部機器に接続するための機器インタフェース58(取得部の一例)と、ネットワークに接続するためのネットワークインタフェース59(取得部の一例)とを含む。機器インタフェース58は、USB、HDMI、IEEE1394等に準拠してデータ等の通信を行う通信モジュール(回路)である。ネットワークインタフェース59は、IEEE802.11、WiFi、Bluetooth等の規格に準拠してデータ通信を行う通信モジュール(回路)である。
コントローラ51(演算部の一例)はCPUやMPUで構成され、データ格納部57に格納された所定の制御プログラム57aを実行することにより所定の機能を実現する。コントローラ51で実行される制御プログラムはネットワーク200を介して提供されてもよいし、CD−ROM等の記録媒体を介して提供されてもよい。
RAM56はプログラムやデータを一時的に格納する記憶素子であり、コントローラ51の作業領域として機能する。
データ格納部57は機能を実現するために必要なパラメータ、データ及びプログラムを記憶する記録媒体であり、コントローラ51で実行される制御プログラムや各種のデータを格納している。データ格納部57は、例えば、ハードディスク(HDD)、SSD(Solid State Drive)、光ディスク媒体で構成される。データ格納部57には制御プログラム57aがインストールされている。コントローラ51はこの制御プログラム57aを実行することで後述する機能を実現する。データ格納部57はコントローラ51の作業領域としても機能する。
図3は、測定対象物である試験片1を説明した図である。試験片1は、幅B、厚みtの短冊状部材であり、長さ方向の中央に両側から中心に向かって深くなるノッチ25が形成されている。ノッチ25の曲率半径はrh0である。ノッチ25の深さdは、応力集中部であるノッチ25の最小幅部分の幅の1/2の長さである。長さbは、ノッチ25の幅方向の中央からノッチの最も深い部分までの長さである。長さbはノッチ25の深さdと等しい。
[1−2.動作]
以上のように構成された疲労限度応力特定システム100の動作を以下に説明する。疲労限度応力特定システム100において、情報処理装置50(コントローラ51)は、散逸エネルギー測定工程21と、疲労限度応力特定工程22とを実施する。
散逸エネルギー測定の原理について説明する。繰り返し負荷を受けた試験片1は、熱弾性効果によって、加振機10による加振周波数と同一周波数の繰り返し温度変化を生じるが、それに加えて材料内部のエネルギー散逸によって平均温度上昇を生じる。ただし、熱弾性効果による温度変化および散逸エネルギーによる平均温度上昇は、外乱の温度変化に比べて小さい。このため試験片1の温度変化量ΔTを表すと下記(式1)のようになる。
ΔT=re−Tc+D+Te ・・・・・・ (1)
ΔT:温度変化量
re:外的要因(風や周囲の温度変化)
Tc:熱の伝導(温度の高い箇所と低い箇所が均一化を図る働き)
D :散逸エネルギー(繰り返しサイクルにおける温度上昇量)
Te:熱弾性効果
実際の散逸エネルギーの測定では、赤外線カメラ30で試験片1の温度測定を行うと同時に、加振機10から制御信号である同期入力信号を取り込み、同期入力信号に基づく特定の周波数成分についてフーリエ変換による赤外線応力画像処理を行う。これにより外乱の影響を除外して、試験片1の熱弾性効果による温度変化だけを測定する。
熱弾性効果による温度上昇・下降から、さらに小さな繰り返しサイクル毎の機械的現象に基づく材料内部の散逸エネルギーによる温度上昇量を分離して測定すると、繰り返しサイクルにおける温度上昇量の散逸エネルギーDの測定画像が得られる。散逸エネルギーDの測定画像から試験片1の疲労限度応力を算出する。
図4に示すフローチャートを用いて疲労限度応力の特定処理を説明する。本処理は主として情報処理装置50のコントローラ51により実行される。
コントローラ51は、まず、赤外線カメラ30からの画像に基づき疲労限度応力を求める際に使用するピクセルを特定する(S11)。
図5Aは、赤外線カメラ30から得られる、試験片1の散逸エネルギーを測定した結果を示す画像である。図5Bは、図5Aの破線領域R1の部分を拡大して示した図である。これらの図を参照すると、試験片1のノッチ25付近に非常に温度が高くなっている部分が見られる。コントローラ51は、この温度振幅が高く示される部分を含む領域R2内のピクセルを特定する。
そしてコントローラ51は、特定した領域R2内の各ピクセルに対して、荷重振幅に対する、加振における基本周波数の温度振幅のグラフを作成し、傾きを求める。この傾きが最大となるピクセルが、主応力和の大きさが最大であり、最大応力集中部のピクセルである。よって、加振の基本周波数fの2倍の周波数2f(以下「第二高調波」という)の成分の温度振幅が大きく、かつ荷重振幅と加振による基本周波数の温度振幅のグラフの傾きが最大のピクセルを選択することにより、疲労損傷と応力集中の両方が発生しているピクセルを選択できる。
この処理は、散逸エネルギー測定工程21においてコントローラ51により次のように処理される。
ステップ1:赤外線カメラ30からの画像に基づき、各荷重振幅について第二高調波の成分の温度振幅の分布画像を作成する。
ステップ2:試験片1の領域において第二高調波成分の温度振幅が比較的大きい領域である領域R2を特定する。
ステップ3:特定した領域R2内のすべてのピクセルにおいて、荷重振幅に対する加振周波数の温度振幅のグラフを作成する。
ステップ4:ステップ3で求めたグラフの傾きが最大となるピクセルを、疲労限度応力の特定に用いるピクセルとして決定する。
以上のようにして疲労限度応力の特定に用いるピクセルを決定すると、コントローラ51は疲労限度応力特定工程22を実行する。具体的には、コントローラ51は、特定したピクセルについて、基本波振幅に対する第二高調波振幅のグラフ(図8(C)参照)を生成する(S12)。以下、この処理を具体的に説明する。
図6(A)は、赤外線カメラ30の画像を解析して得られる、加振による試験片1の温度変動を示した図である。図6(B)は、図6(A)の破線領域を拡大して示した図である。図6(A)、(B)は、切り欠き半径rh0が5.0mmの試験片に対して、荷重振幅7.0kN、加振周波数25Hzで加振したときの測定結果を示している。
図6に示すような温度変動のデータをフーリエ変換することで、図7(A)に示すような、温度振幅に対する周波数スペクトルを求めることができる。図7(B)は、図7(A)に示す破線領域を拡大して示した図である。この周波数スペクトルにおいて、基本周波数成分(1f)の温度振幅(以下「基本波振幅」という)と、第二高調波成分(2f)の温度振幅(以下「第二高調波振幅」という)に着目する。
複数の荷重振幅のそれぞれについて、基本波振幅(1f)と第二高調波振幅(2f)を求める。これにより、図8(A)、(B)に示すような、荷重振幅に対する基本波振幅(1f)のグラフと、荷重振幅に対する第二高調波振幅(2f)のグラフとを得る。そして、荷重振幅に対する基本波振幅のグラフ(図8(A)参照)と、荷重振幅に対する第二高調波振幅のグラフ(図8(B)参照)とから、図8(C)に示すような基本波振幅に対する第二高調波振幅のグラフ(関係)を生成する。
図4のフローチャートに戻り、コントローラ51は、基本波振幅に対する第二高調波振幅のグラフ(図8(C)参照)に対して2つの近似線を決定する(S13)。すなわち、図9に示すように、基本波振幅に対する第二高調波振幅の関係をフィッティングする2つの近似線L1、L2を求める。本処理の詳細については後述する。
2つの近似線L1、L2が決定されると、コントローラ51は、2つの近似線L1、L2の交点を算出し(S14)、その交点に基づいて疲労限度応力を決定する(S15)。これらの処理の詳細については後述する。以上のようにして試験片1の疲労限度応力が求められる。
以下、上記のステップS13〜S15の処理の詳細について説明する。
本実施形態では、図9に示すように、基本波振幅の領域において境界Bを設定し、境界B以下の領域と境界B以上の領域において第一及び第二の近似線L1、L2を設定する。ここで、第一及び第二の近似線L1、L2は次式のように二次曲線(二次関数)で表される。
第一の近似線L1(境界B以下の範囲):y=ax+b (2)
第二の近似線L2(境界B以上の範囲):y=ax+cx+d (3)
ここで、xは基本波振幅であり、yは第二高調波振幅である。
境界B以下の範囲に対する第一の近似線L1は、基本波振幅の二次の項と定数項からなり、一次の項は含まない多項式である。一方、境界B以上の範囲に対する第二の近似線L2は、基本波振幅の二次の項,一次の項および定数項からなる多項式である。第二の近似線L2は、境界B以下の範囲で第一の近似線L1(y=ax+b)によって定まった定数aを用いて、境界B以上の範囲で近似線L2(y=ax+cx+d)をフィッティングさせてcとdを求めることによって定まる。あるいは、境界B以上の範囲のデータから第一の近似線L1の延長線(y=ax+b)の値を差し引いたデータに対して、境界B以上の範囲で直線(y=cx+d’)をフィッティングさせてcとd’を求めることによって定めてもよい(y=ax+cx+b+d’=ax+cx+d)。
本願発明者は、荷重振幅制御において、ロードセル、アクチェエータ及びひずみゲージから出力される荷重信号、変位信号及びひずみ信号について調査したところ、荷重信号に第二高調波成分が含まれていることがわかった。このことから、本願発明者は、試験片1には必ずしも完全な正弦波が付加されておらず、制御する過程で波形に歪みが生じていると考えた。また、変位信号とひずみ信号においても第二高調波成分が含まれていることが確認された。これは荷重信号に含まれる第二高調波成分による影響であると考えられる。さらに、第二高調波成分には、赤外線カメラのセンサから生じる暗電流や周囲環境からのノイズに起因するものもあると考えられる。本願発明者は、温度の第二高調波成分には、以上のような原因によって発生する第二高調波成分(近似線L1及びその延長線)が含まれていると考えた。このような知見に基づき本願発明者は、式(2)、(3)に示すように二次曲線(二次関数)である近似線L1、L2によりフィッティングを行ったところ、疲労限度応力を精度良く求めることができた。
図10のフローチャートを参照し、基本波振幅に対する第二高調波振幅のグラフ(図8(C)参照)から第一及び第二の近似線L1、L2を決定する処理を説明する。
コントローラ51は、まず、境界を開始点に設定する(S21)。そして、全範囲の測定データを用いて、設定された境界Bで第一及び第二の近似線L1、L2を求める(S22)。具体的には、図11Aに示すように境界B以下の領域のデータについて第一の近似線L1でフィッティングし、境界B以上の領域のデータについて第二の近似線L2でフィッティングし、測定値と計算値との残差二乗和が最小となるよう第一及び第二の近似線L1、L2の係数を求める。
コントローラ51は、図9に示すように境界Bの位置を段階的に変化させながら(S23、S30)、各境界に対して第一及び第二の近似線L1、L2を求めていく(S22)。境界Bを移動させる範囲は事前に設定されている。その範囲内全域で境界Bの移動が終了すると(S23でYES)、各境界で得られた近似線L1、L2に対して算出された残差二乗和が最小となる一つの境界を特定する(S24)。これにより、第一の近似線L1が適用されるデータ範囲と第二の近似線L2が適用されるデータ範囲の境界が特定される。
図11Bは、各境界に対して算出された残差二乗和を示した図である。横軸は、境界を示す境界番号であり、境界番号は境界の位置に比例した値をとる。図11Bのグラフの例では、境界番号が「92」の境界において残差二乗和が最小となっている。このため、境界番号「92」の位置が境界として特定される。
図10のフローチャートに戻り、境界が決定されると、コントローラ51は、疲労限度応力の算出に使用するデータの適切な範囲(上限)を決定する(S25〜S28、S31)。
荷重振幅が大きい範囲では、測定データにおいて、図12(A)及び図12(B)の破線領域R11、R12に示すように、疲労限度応力の算出に使用するのに不適切なデータが含まれる。この原因としては微小亀裂の発生、進展、ひずみ誘起マルテンサイト変態の発生などが考えられる。そこで、本実施の形態では、領域R11、R12に含まれるデータのような、疲労限度応力の算出に使用するのに不適切なデータを除去するため、自由度調整済み決定係数を使用してデータ範囲の上限を設定する。
このため、コントローラ51はまず、データ範囲の上限を最大値に設定する(S25)。すなわち、データ範囲を全データを含むように設定する。そして、設定されたデータ範囲内のデータを用いて、先に特定した境界に基づき第一及び第二の近似線L1,L2を算出する(S26)。すなわち、設定されたデータ範囲内のデータを用いて残差二乗和が最小となる第一及び第二の近似線L1、L2を算出する。
次に、コントローラ51は、算出した第一及び第二の近似線L1、L2に対する自由度調整済み決定係数を算出する(S27)。自由度調整済み決定係数は図12(C)に示す式により算出される。
その後、データ範囲の上限を変更し(S31)、新たなデータ範囲について第一及び第二の近似線L1、L2を求め(S26)、さらに第一及び第二の近似線L1、L2に対する自由度調整済み決定係数を算出する(S27)。データ範囲の上限の変更は、データ範囲を狭めるように、上限を第二高調波振幅の高い側から1つずつ低い方にシフトしていくことにより行われる。
図13(A)〜(H)は、上限を1データずつ変更しながら算出された近似線L1、L2および自由度調整済み決定係数の変化を示した図である。図13(A)は、上限を最大に設定したときの全データ(N個)に対する近似線のフィッティング結果と自由度調整済み決定係数の値を示した図である。図13(B)は、上限を全データの場合から1データ分シフトしたとき、すなわち、N−1個分のデータに対する近似線のフィッティング結果と自由度調整済み決定係数の値を示した図である。図13(C)は、上限を2データ分シフトしたときの近似線のフィッティング結果と自由度調整済み決定係数の値を示した図である。図13(D)〜図13(H)は、同様に上限を1つずつシフトしながら求めた近似線のフィッティング結果と自由度調整済み決定係数を順次示している。
データ範囲の上限を変更する範囲は予め決められている。所定の範囲内で上限の変更が完了すると(S28でYES)、コントローラ51は、自由度調整済み決定係数が最大となるときのデータ範囲の上限を特定し、その特定した上限の範囲で算出された第一及び第二の近似線L1、L2を特定する(S29)。図13に示す例では、図13(G)に示すケースが、自由度調整済み決定係数が最大となっている。よって、全データの場合から6データ分シフトした位置を上限とし、近似線L1a、L2aが特定される。
以上のようにして、基本波振幅に対する第二高調波振幅のグラフ(図8(C)参照)から第一及び第二の近似線L1、L2を求めることができる。
コントローラ51は、第一及び第二の近似線L1、L2の交点に基づき、次にようにして、疲労限度応力を算出する(S15)。図14Aに示すように近似線L1,L2が求められると、それらの近似線L1、L2の交点が求められる。図14Aの例では、交点の基本波振幅の値として0.42[K]が求められる。そして、荷重振幅に対する基本波振幅のグラフ(図14B参照)を参照し、交点の基本波振幅値0.42[K]に基づいて荷重振幅値6.266[N]を求め、この値を疲労限度応力とする。
以上のようにして、試験片1の疲労限度応力を求めることができる。
図15〜図17は、実施の形態1の方法により求めた疲労限度応力と、従来の方法により求めた疲労限度応力とを比較した図である。実施の形態1の方法では、第一及び第二の近似線の双方を二次曲線(二次関数)としている。これに対して、従来の方法では、第一の近似線を二次曲線(二次関数)とし、第二の近似線を直線としている。
図15は、切り欠き半径が5.0mmである5種類の試験片1について求めた疲労限度応力値の比較を示す。同じ条件の試験片1に対して疲労試験から求めた疲労限度応力の測定値は、6.4kNであった。図16は、切り欠き半径が2.0mmのである5種類の試験片1について求めた疲労限度応力値を示す。同じ条件の試験片1に対して疲労試験から求めた疲労限度応力の測定値は、5.7kNであった。図15〜図17を参照すると、切り欠き半径が5.0mmの場合(図15)も2.0mmの場合(図19)も、2つの二次曲線でフィッティングした場合の方が、二次曲線と直線でフィッティングした場合よりも、疲労試験から得られた値により近い疲労限度応力の値が得られている。
以上のようにして、情報処理装置50は、荷重を段階的に増加しながら各荷重を所定の周波数で付加した測定対象物の温度画像から試験片1の疲労限度応力を求めることができる。
[1−3.効果等]
以上のように、本実施の形態の疲労限度応力特定システム100は、試験片1(測定対象物の一例)に作用させる荷重を段階的に増加させながら測定された各段の荷重に対して発生する温度振幅に基づいて試験片1の疲労限度応力を測定する。疲労限度応力特定システム100は、試験片1に対して荷重を所定の周波数で繰り返し加える加振機10と、試験片1の温度画像を撮像する赤外線カメラ30と、赤外線カメラ30から得た試験片1の温度画像に基づき試験片1の疲労限度応力を測定する情報処理装置50(疲労限度応力特定装置の一例)と、を備える。情報処理装置50は、赤外線カメラ30から得た温度画像から、試験片1に関する、加振の基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係(図9のグラフ)を求める。情報処理装置50は、その関係を、二次曲線である第一の近似線L1と二次曲線である第二の近似線L2によりフィッティングし、第一の近似線L1と第二の近似線L2の交点に基づき測定対象物の疲労限度応力を求める。
このような疲労限度応力特定システム100によれば、フィッティングに使用する2つの近似線L1、L2に二次曲線を用いる。これにより、フィッティング過程において、加振の制御過程で生じる荷重の波形の歪みや試験片に生じる歪み、外乱ノイズ等の影響が反映されるため、精度よく疲労限度応力を求めることができる。
第一の近似線L1は、基本周波数成分の温度振幅が境界B(所定値の例)以下の範囲のデータに対するフィッティングに使用される。第二の近似線L2は、基本周波数成分の温度振幅が境界B以上の範囲のデータに対するフィッティングに使用される。
第一の近似線L1はy=ax+bで表される。第二の近似線L2はy=ax+cx+dで表される。xは基本周波数成分の温度振幅である。yは第二高調波成分の温度振幅である。a、b、c、dは係数である。
第一及び第二の近似線L1、L2は、複数のデータ範囲におけるそれぞれの近似線に対する自由度調整済み決定係数の中で最大の自由度調整済み決定係数が得られる場合のデータ範囲を用いることによって求められる。これにより、適切なデータのみを用いて疲労限度応力を求めることができ、精度を向上できる。
また、本開示は、荷重を段階的に増加させながら測定対象物(試験片1)を加振したときに発生する測定対象物の温度変動に基づいて測定対象物の疲労限度応力を測定する疲労限度応力特定方法を提供する。この疲労限度応力特定方法では、荷重を段階的に増加させながら所定の周波数で繰り返し測定対象物に加え、荷重が加えられている測定対象物の温度変動を示す温度画像を撮像する。そして、温度画像から、加振の基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係を求め、その関係を二次曲線である第一の近似線L1と二次曲線である第二の近似線L2によりフィッティングする。そして、第一の近似線L1と第二の近似線L2の交点に基づき測定対象物の疲労限度応力を求める。
このような疲労限度応力特定方法によっても、基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係が二次曲線である近似線L1、L2によってフィッティングされるため、精度よく疲労限度応力を求めることができる。
(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
本開示は、測定対象物の疲労限度を測定する装置に有用である。
1 試験片(測定対象物)
10 加振機
30 赤外線カメラ
50 情報処理装置
51 情報処理装置のコントローラ
58 情報処理装置の機器インタフェース
60 モニタ
100 疲労限度応力特定システム

Claims (6)

  1. 荷重を段階的に増加させながら測定対象物を加振したときに発生する測定対象物の温度変動に基づいて前記測定対象物の疲労限度応力を測定する疲労限度応力特定システムであって、
    測定対象物に対して各荷重を所定の周波数で繰り返して加える加振機と、
    荷重が加えられている測定対象物の温度変動を示す温度画像を撮像する赤外線カメラと、
    前記赤外線カメラから得た前記温度画像に基づき前記測定対象物の疲労限度応力を求める情報処理装置と、を備え、
    前記情報処理装置は、
    前記赤外線カメラから得た温度画像から、前記測定対象物に関する、加振の基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係を求め、
    前記関係を、二次曲線である第一の近似線と二次曲線である第二の近似線によりフィッティングし、
    前記第一の近似線と前記第二の近似線の交点に基づき前記測定対象物の疲労限度応力を求める、
    疲労限度応力特定システム。
  2. 前記第一の近似線は、前記基本周波数成分の温度振幅が所定値以下の範囲のデータに対するフィッティングに使用され、
    前記第二の近似線は、前記基本周波数成分の温度振幅が所定値以上の範囲のデータに対するフィッティングに使用される、
    請求項1に記載の疲労限度応力特定システム。
  3. 前記第一の近似線はy=ax+bで表され、
    前記第二の近似線はy=ax+cx+dで表され、
    xは前記基本周波数成分の温度振幅であり、yは前記第二高調波成分の温度振幅であり、a、b、c、dは係数である、
    請求項2に記載の疲労限度応力特定システム。
  4. 前記第一及び第二の近似線は、複数のデータ範囲におけるそれぞれの近似線に対する自由度調整済み決定係数の中で最大の自由度調整済み決定係数が得られる場合のデータ範囲を用いることによって求められる、
    請求項1ないし3のいずれかに記載の疲労限度応力特定システム。
  5. 荷重を段階的に増加させながら測定対象物を加振したときに発生する測定対象物の温度変動に基づいて前記測定対象物の疲労限度応力を測定する疲労限度応力特定装置であって、
    前記測定対象物の温度変動を示す温度画像を取得する取得部と、
    前記温度画像を解析して前記測定対象物の疲労限度応力を測定する演算部と、を備え、
    前記演算部は、
    前記温度画像から、加振の基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係を求め、
    前記関係を、二次曲線である第一の近似線と二次曲線である第二の近似線によりフィッティングし、
    前記第一の近似線と前記第二の近似線の交点に基づき前記測定対象物の疲労限度応力を求める、
    疲労限度応力特定装置。
  6. 荷重を段階的に増加させながら測定対象物を加振したときに発生する測定対象物の温度変動に基づいて前記測定対象物の疲労限度応力を測定する疲労限度応力特定方法であって、
    荷重を段階的に増加させながら所定の周波数で繰り返し測定対象物に加え、
    前記荷重が加えられている測定対象物の温度変動を示す温度画像を撮像し、
    前記温度画像から、加振の基本周波数の成分の温度振幅に対する第二高調波成分の温度振幅の関係を求め、
    前記関係を、二次曲線である第一の近似線と二次曲線である第二の近似線によりフィッティングし、
    前記第一の近似線と前記第二の近似線の交点に基づき前記測定対象物の疲労限度応力を求める、
    疲労限度応力特定方法。
JP2016251885A 2016-12-26 2016-12-26 疲労限度応力特定システム及び疲労限度応力特定方法 Active JP6735508B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016251885A JP6735508B2 (ja) 2016-12-26 2016-12-26 疲労限度応力特定システム及び疲労限度応力特定方法
CN201780079633.8A CN110100164A (zh) 2016-12-26 2017-08-22 疲劳限度应力确定系统、疲劳限度应力确定装置以及疲劳限度应力确定方法
EP17888692.5A EP3546919A4 (en) 2016-12-26 2017-08-22 FATIGUE LIMIT CONSTRAINT SPECIFICATION SYSTEM, FATIGUE LIMIT CONSTRAINT SPECIFICATION DEVICE AND FATIGUE LIMIT CONSTRAINT SPECIFICATION METHOD
PCT/JP2017/029846 WO2018123129A1 (ja) 2016-12-26 2017-08-22 疲労限度応力特定システム、疲労限度応力特定装置及び疲労限度応力特定方法
US16/449,777 US11275005B2 (en) 2016-12-26 2019-06-24 Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016251885A JP6735508B2 (ja) 2016-12-26 2016-12-26 疲労限度応力特定システム及び疲労限度応力特定方法

Publications (3)

Publication Number Publication Date
JP2018105709A JP2018105709A (ja) 2018-07-05
JP2018105709A5 JP2018105709A5 (ja) 2019-08-29
JP6735508B2 true JP6735508B2 (ja) 2020-08-05

Family

ID=62707084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016251885A Active JP6735508B2 (ja) 2016-12-26 2016-12-26 疲労限度応力特定システム及び疲労限度応力特定方法

Country Status (5)

Country Link
US (1) US11275005B2 (ja)
EP (1) EP3546919A4 (ja)
JP (1) JP6735508B2 (ja)
CN (1) CN110100164A (ja)
WO (1) WO2018123129A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6796813B2 (ja) * 2017-02-10 2020-12-09 パナソニックIpマネジメント株式会社 応力測定システムおよび応力測定方法
JP7229731B2 (ja) * 2018-11-16 2023-02-28 株式会社豊田中央研究所 疲労限度推定装置、疲労限度推定方法及び疲労限度推定プログラム
JP7213436B2 (ja) * 2019-03-08 2023-01-27 パナソニックIpマネジメント株式会社 応力特性測定方法、応力特性測定装置および応力特性測定システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032381B2 (ja) 1992-07-06 2000-04-17 日本電子株式会社 応力画像システム
JP3945496B2 (ja) * 2004-06-09 2007-07-18 いすゞ自動車株式会社 ターボチャージャの疲労故障診断方法及び装置
JP4610955B2 (ja) 2004-07-15 2011-01-12 ▲隆▼英 阪上 塑性変形による熱的影響度の測定方法及び装置
JP2006250683A (ja) * 2005-03-10 2006-09-21 Toyota Motor Corp 疲労破壊特定システムおよび疲労破壊特定方法
US20090000382A1 (en) * 2006-07-31 2009-01-01 University Of Dayton Non-contact acousto-thermal method and apparatus for detecting incipient damage in materials
JP5411020B2 (ja) * 2009-02-25 2014-02-12 パナソニック株式会社 疲労限度特定システム、疲労破壊箇所特定方法および疲労限度特定方法
US9243985B2 (en) * 2009-10-05 2016-01-26 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Fracture fatigue entropy determination
JP5059224B2 (ja) * 2010-11-09 2012-10-24 新日本製鐵株式会社 部品の疲労破壊評価装置、部品の疲労破壊評価方法、及びコンピュータプログラム
JP5710997B2 (ja) * 2011-02-04 2015-04-30 パナソニック株式会社 疲労限度特定システムおよび疲労限度特定方法
CN103323352B (zh) * 2013-06-07 2015-04-08 中国石油天然气股份有限公司 天然气水合物沉积物动三轴力学-声学-电学同步测试的实验装置及方法
JP6397678B2 (ja) * 2014-07-22 2018-09-26 パナソニック株式会社 疲労限度応力特定システムおよび疲労限度応力特定方法
JP6077042B2 (ja) * 2015-04-06 2017-02-08 三菱重工業株式会社 切欠き係数推定方法、切欠き係数推定システム及び切欠き係数推定装置

Also Published As

Publication number Publication date
EP3546919A1 (en) 2019-10-02
US11275005B2 (en) 2022-03-15
WO2018123129A1 (ja) 2018-07-05
EP3546919A4 (en) 2020-01-15
CN110100164A (zh) 2019-08-06
JP2018105709A (ja) 2018-07-05
US20190310174A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP6735508B2 (ja) 疲労限度応力特定システム及び疲労限度応力特定方法
JP6796813B2 (ja) 応力測定システムおよび応力測定方法
KR101935148B1 (ko) 선형 안내 홈에 가해진 선-하중의 편차를 추정하는 방법
Blanche et al. Dissipation assessments during dynamic very high cycle fatigue tests
JP6397678B2 (ja) 疲労限度応力特定システムおよび疲労限度応力特定方法
JP6077042B2 (ja) 切欠き係数推定方法、切欠き係数推定システム及び切欠き係数推定装置
JP2007147634A (ja) 振動解析の方法および装置ならびにコンピュータ読み取り可能な記録媒体
Lindner et al. On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated digital image correlation
JP7122670B2 (ja) 疲労限度応力特定システム、疲労限度応力特定装置及び疲労限度応力特定方法
JP4610955B2 (ja) 塑性変形による熱的影響度の測定方法及び装置
JP6477411B2 (ja) 解析プログラム
Dizaji et al. Reframing measurement for structural health monitoring: a full-field strategy for structural identification
JP2001350741A (ja) 振動解析の方法および装置ならびにコンピュータ読み取り可能な記録媒体
JP6408564B2 (ja) アクティブ制振装置および設計方法
Huang Electromechanical coupling efficiency of transverse vibration in piezoelectric plates according to electrode configuration
JP7229731B2 (ja) 疲労限度推定装置、疲労限度推定方法及び疲労限度推定プログラム
Drvárová et al. Effect of accelerometer mass on the natural frequencies of the measured structure
WO2017179441A1 (ja) 情報処理装置、情報処理方法、並びにプログラム
Shambaugh et al. Multi-path Vibrometer-Based Strain Measurement Technique for Very High Cycle Fatigue (VHCF) Testing
JP7469660B2 (ja) スポット溶接継手の内面応力評価方法及び熱弾性応力測定法の評価方法
Mat Tahir et al. Evaluation of the digital image correlation method for the measurement of vibration mode shapes
Patterson et al. Determining individual stresses thermoelastically
JP2022062764A (ja) ダンパ評価システムおよびダンパ評価方法
JP2023044390A (ja) 材料試験機
JP2015158400A (ja) 応力測定方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200626

R151 Written notification of patent or utility model registration

Ref document number: 6735508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151