JP6734785B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP6734785B2
JP6734785B2 JP2016563627A JP2016563627A JP6734785B2 JP 6734785 B2 JP6734785 B2 JP 6734785B2 JP 2016563627 A JP2016563627 A JP 2016563627A JP 2016563627 A JP2016563627 A JP 2016563627A JP 6734785 B2 JP6734785 B2 JP 6734785B2
Authority
JP
Japan
Prior art keywords
copper foil
layer
wiring
carrier
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016563627A
Other languages
Japanese (ja)
Other versions
JPWO2016093109A1 (en
Inventor
吉川 和広
和広 吉川
浩人 飯田
浩人 飯田
歩 立岡
歩 立岡
中島 大輔
大輔 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2016093109A1 publication Critical patent/JPWO2016093109A1/en
Application granted granted Critical
Publication of JP6734785B2 publication Critical patent/JP6734785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/184Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、プリント配線板の製造方法に関する。 The present invention relates to a method for manufacturing a printed wiring board.

近年、プリント配線板の実装密度を上げて小型化するために、プリント配線板の多層化が広く行われるようになってきている。このような多層プリント配線板は、携帯用電子機器の多くで、軽量化や小型化を目的として利用されている。そして、この多層プリント配線板には、層間絶縁層の更なる厚みの低減、及び配線板としてのより一層の軽量化が要求されている。 In recent years, in order to increase the mounting density of printed wiring boards and reduce the size thereof, multilayering of printed wiring boards has been widely performed. Such a multilayer printed wiring board is used in many portable electronic devices for the purpose of weight reduction and size reduction. Further, the multilayer printed wiring board is required to further reduce the thickness of the interlayer insulating layer and further reduce the weight of the wiring board.

このような要求を満足させる技術として、極薄金属層上に直接配線層を形成した後に多層化するプリント配線板の工法が提案されており、その一つとしてコアレスビルドアップ法を用いた製造方法が採用されている。キャリア付銅箔を用いたコアレスビルドアップ法によるプリント配線板の製造方法の一例が図1及び2に示される。図1及び2に示される例では、まず、キャリア層12、剥離層14及び銅箔16をこの順に備えたキャリア付銅箔10を、プリプレグ等のコアレス支持体18に積層する。次いで、銅箔16にフォトレジストパターン20を形成し、パターンめっき(電気銅めっき)22の形成及びフォトレジストパターン20の剥離を経て配線パターン24を形成させる。そして、パターンめっきに粗化処理等の積層前処理を施して第一配線層26とする。次いで、図2に示されるように、ビルドアップ層42を形成すべく絶縁層28及びキャリア付銅箔30(キャリア層32、剥離層34及び銅箔36を備える)を積層し、キャリア層32を剥離し、かつ、炭酸ガスレーザー等により銅箔36及びその直下の絶縁層28をレーザー加工する。続いて、フォトレジスト加工、無電解銅めっき、電解銅めっき、フォトレジスト剥離及びフラッシュエッチング等によりパターニングを行って第2配線層38を形成し、このパターニングを必要に応じて繰り返して第n配線層40(nは2以上の整数)まで形成する。そして、コアレス支持体18をキャリア層12とともに剥離して、配線パターン間に露出する銅箔16,36をフラッシュエッチングにより除去して所定の配線パターンを得る。 As a technique to satisfy such requirements, a method of manufacturing a printed wiring board in which a wiring layer is directly formed on an ultrathin metal layer and then multilayered is proposed, and one of them is a manufacturing method using a coreless build-up method. Has been adopted. An example of a method for manufacturing a printed wiring board by a coreless build-up method using a copper foil with a carrier is shown in FIGS. In the example shown in FIGS. 1 and 2, first, a copper foil with a carrier 10 including a carrier layer 12, a release layer 14 and a copper foil 16 in this order is laminated on a coreless support 18 such as a prepreg. Next, a photoresist pattern 20 is formed on the copper foil 16, and a wiring pattern 24 is formed through pattern plating (electro copper plating) 22 and peeling of the photoresist pattern 20. Then, the pattern plating is subjected to a pre-lamination treatment such as a roughening treatment to form the first wiring layer 26. Then, as shown in FIG. 2, an insulating layer 28 and a copper foil 30 with a carrier (including a carrier layer 32, a peeling layer 34 and a copper foil 36) are laminated to form a build-up layer 42, and the carrier layer 32 is formed. The copper foil 36 and the insulating layer 28 immediately below the copper foil 36 are laser-processed with a carbon dioxide laser or the like. Then, patterning is performed by photoresist processing, electroless copper plating, electrolytic copper plating, photoresist stripping, flash etching, etc. to form the second wiring layer 38, and this patterning is repeated as necessary to repeat the nth wiring layer. Up to 40 (n is an integer of 2 or more). Then, the coreless support 18 is peeled off together with the carrier layer 12, and the copper foils 16 and 36 exposed between the wiring patterns are removed by flash etching to obtain a predetermined wiring pattern.

そして、配線パターンが形成されたプリント配線板に対して、配線パターンの位置及び形状の正確性を確認するための外観画像検査が一般的に行われている。この外観画像検査は光学式自動外観検査(AOI)装置を用いて光源から所定の光を照射して、配線パターンの二値化画像を取得し、この二値化画像と設計データ画像とのパターンマッチングを試み、両者間における一致/不一致を評価することにより行われる。一般に、外観画像検査は、図2に示される例の場合には、絶縁層28表面の配線パターン間に露出する銅箔16,36をフラッシュエッチングにより除去した後に、絶縁層28が配線パターン間に露出した面に対して行われる。例えば、特許文献1(特開2014−116533号公報)には剥離可能な金属箔を用いたコアレス配線基板の製造方法が開示されているが、外観検査等の所定の検査は、配線積層部と補強基板とを剥離し、配線積層部に付着している銅箔を除去して誘電体層(絶縁樹脂層)を露呈させた後(最終工程)に行われている。 An appearance image inspection for confirming the accuracy of the position and shape of the wiring pattern is generally performed on the printed wiring board on which the wiring pattern is formed. In this appearance image inspection, a predetermined light is emitted from a light source using an optical automatic appearance inspection (AOI) device to obtain a binary image of a wiring pattern, and a pattern of the binary image and the design data image is obtained. It is performed by attempting matching and evaluating the match/mismatch between the two. Generally, in the appearance image inspection, in the case of the example shown in FIG. 2, after the copper foils 16 and 36 exposed between the wiring patterns on the surface of the insulating layer 28 are removed by flash etching, the insulating layer 28 is removed between the wiring patterns. This is done on the exposed surface. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2014-116533) discloses a method for manufacturing a coreless wiring board using a peelable metal foil, but a predetermined inspection such as an appearance inspection is performed on a wiring laminated portion. This is performed after peeling off the reinforcing substrate and removing the copper foil adhering to the wiring laminated portion to expose the dielectric layer (insulating resin layer) (final step).

特開2014−116533号公報JP, 2014-116533, A

しかしながら、上記のようにプリント配線板の製造後(又は製造工程の後工程段階)で絶縁層28表面に形成されている第一配線層26の配線パターン部を外観画像検査する方法は、仮に前工程であるコアレス支持体の銅箔16表面に第一配線層26を形成した直後の段階で第一配線層26の配線パターンに不良部があるチップがあっても、この段階では不良品の判別ができないこととなる。このため、第一配線層26のチップ良品率が著しく悪く、その後の工程に進めるのが経済的に不利な場合でも、その現象を把握できないまま、ビルドアップ積層工程に進むこととなる。その場合、最終工程に至ってからの検査となるため、不良品を多量に含むチップが途中工程内に多数滞留するリスクを有していた。さらに上記の方法は、第一配線層26の配線パターンにおける不良部の有無にかかわらず、全チップにわたってビルドアップ層の外観検査工程を行う必要があり、検査工程のタクトタイムを無駄に遅延させる問題を有していた。このため、コアレス支持体の銅箔16表面に第一配線層26の配線パターンを形成した直後の段階で配線パターンの外観画像検査を行って配線パターン不良が発生したチップを認識することができれば、その後のビルドアップ積層工程以降での検査工程をスキップして検査工程を簡略化できるため好都合である。しかしながら、プリント配線板の製造後の外観画像検査は従来絶縁層(樹脂層)と配線層(銅層)の色調コントラスト、すなわち異種材料に起因する色調コントラストを利用して鮮明な外観画像検査を行うことができるため、検査精度が高いとの利点がある。その反面、第一配線層形成直後の早期の段階で外観画像検査を行う場合、銅箔と配線層(銅層)といった同種の材料間で配線パターンを検出しなければならず、両材料間での色調コントラスト不足から、検査精度が大きく低下するとの問題があった。 However, as described above, the method of visually inspecting the wiring pattern portion of the first wiring layer 26 formed on the surface of the insulating layer 28 after the manufacturing of the printed wiring board (or the post-process step of the manufacturing process) is not performed before. Even if there is a chip having a defective portion in the wiring pattern of the first wiring layer 26 immediately after the first wiring layer 26 is formed on the surface of the copper foil 16 of the coreless support, which is a step, the defective product is determined at this stage. Will not be possible. Therefore, even if the chip non-defective rate of the first wiring layer 26 is extremely low and it is economically disadvantageous to proceed to the subsequent step, the build-up laminating step proceeds without understanding the phenomenon. In that case, since the inspection is performed after reaching the final process, there is a risk that a large number of chips containing a large number of defective products stay in the intermediate process. Further, in the above method, it is necessary to perform the appearance inspection step of the buildup layer over all the chips regardless of the presence or absence of a defective portion in the wiring pattern of the first wiring layer 26, which unnecessarily delays the takt time of the inspection step. Had. Therefore, if the appearance image inspection of the wiring pattern can be performed at a stage immediately after the wiring pattern of the first wiring layer 26 is formed on the surface of the copper foil 16 of the coreless support to identify the chip in which the wiring pattern defect occurs, This is convenient because the inspection process after the subsequent build-up stacking process can be skipped and the inspection process can be simplified. However, the appearance image inspection after manufacturing the printed wiring board is performed by using the conventional color tone contrast between the insulating layer (resin layer) and the wiring layer (copper layer), that is, the color tone contrast caused by different materials. Therefore, there is an advantage that the inspection accuracy is high. On the other hand, when visual inspection is performed at an early stage immediately after the formation of the first wiring layer, the wiring pattern must be detected between the same type of material such as the copper foil and the wiring layer (copper layer). There is a problem that the inspection accuracy is greatly reduced due to the lack of color tone contrast.

本発明者らは、今般、プリント配線板の製造において、入射光に対する8°拡散反射率SCIが41%以下である処理表面を備えた銅箔を用いることにより、フォトレジスト剥離後で且つビルドアップ配線層の形成前という早期の段階に、銅箔上に形成された配線パターンに対する外観画像検査を、高いコントラストによる高精細な二値化画像を得ながら高精度に行なえるとの知見を得た。また、上記のような早期の段階で外観画像検査における不合格品を除外できることで、プリント配線板の生産性を有意に向上できるとの知見も得た。 The present inventors have recently used a copper foil having a treated surface having an 8° diffuse reflectance SCI of 41% or less with respect to incident light in the manufacture of a printed wiring board, which enables the build-up after photoresist peeling and build-up. In the early stage before the formation of the wiring layer, it was found that the appearance image inspection of the wiring pattern formed on the copper foil can be performed with high precision while obtaining a high-definition binary image with high contrast. .. In addition, it was also found that it is possible to significantly improve the productivity of the printed wiring board by eliminating rejected products in the appearance image inspection at an early stage as described above.

したがって、本発明の目的は、プリント配線板の製造において、フォトレジスト剥離後で且つビルドアップ配線層の形成前という早期の段階に、銅箔上に形成された配線パターンに対する外観画像検査を、高い色調コントラストによる高精細な二値化画像を得ながら高精度に行なうことができ、それによりプリント配線板の生産性を有意に向上可能な、プリント配線板の製造方法を提供することにある。 Therefore, an object of the present invention is to enhance the appearance image inspection for a wiring pattern formed on a copper foil at an early stage after the photoresist is peeled off and before the build-up wiring layer is formed in the production of a printed wiring board. It is an object of the present invention to provide a method for manufacturing a printed wiring board, which can be performed with high accuracy while obtaining a high-definition binarized image based on color tone contrast, thereby significantly improving the productivity of the printed wiring board.

本発明の一態様によれば、プリント配線板の製造方法であって、
入射光に対する8°拡散反射率SCIが41%以下である処理表面を有してなる銅箔を用意する工程と、
前記銅箔の前記処理表面にフォトレジストパターンを形成する工程と、
前記フォトレジストパターンが形成された前記銅箔に電気銅めっきを施す工程と、
前記フォトレジストパターンを剥離して配線パターンを形成する工程と、
前記配線パターンが形成された前記銅箔に対して、配線パターンの外観画像検査を行う工程と、
を含む、方法が提供される。
According to one aspect of the present invention, there is provided a method for manufacturing a printed wiring board,
A step of preparing a copper foil having a treated surface having an 8° diffuse reflectance SCI of 41% or less for incident light;
Forming a photoresist pattern on the treated surface of the copper foil;
A step of performing electrolytic copper plating on the copper foil on which the photoresist pattern is formed,
A step of peeling the photoresist pattern to form a wiring pattern,
A step of performing an appearance image inspection of the wiring pattern on the copper foil on which the wiring pattern is formed,
A method is provided, including:

コアレスビルドアップ法を用いたプリント配線板の製造方法の一例における、前半の工程を示す図である。It is a figure which shows the first half process in an example of the manufacturing method of the printed wiring board using the coreless buildup method. コアレスビルドアップ法を用いたプリント配線板の製造方法の一例における、図1に示される工程に続く後半の工程を示す。The latter half process following the process shown in FIG. 1 in an example of a method for manufacturing a printed wiring board using the coreless build-up method is shown. 外観画像検査に用いられる測定系を、配線パターンの断面構成と関連付けて示す概念図である。It is a conceptual diagram which shows the measuring system used for an external appearance image inspection in relation with the cross-sectional structure of a wiring pattern. 配線パターンとスペースの識別が良好な場合における外観画像結果の一例を、配線パターンの断面構成と関連付けて示す図である。It is a figure which shows an example of the external appearance image result in the case where a wiring pattern and a space are satisfactorily distinguished in association with the cross-sectional structure of the wiring pattern. 外観画像検査におけるパターンマッチング用の設計データ画像の一例である。It is an example of a design data image for pattern matching in an appearance image inspection. 外観画像検査の初期設定時に得られる輝度ヒストグラムの一例を示す図であり、横軸が輝度(例えば256階層軸)を、縦軸が積算量をそれぞれ表す。It is a figure which shows an example of the brightness|luminance histogram obtained at the time of initial setting of an external appearance image inspection, and a horizontal axis|shaft represents brightness|luminance (for example, 256 hierarchy axis|shaft), and a vertical axis|shaft represents each integrated amount. 配線パターンとスペースの識別が困難な場合における外観画像結果の一例を示す図である。It is a figure which shows an example of an external appearance image result when it is difficult to identify a wiring pattern and a space.

本発明はプリント配線板の製造方法に関する。本発明によるプリント配線板の製造は、所定の処理表面を一方の側に有してなる銅箔を用意し、この処理表面にフォトレジストパターンの形成、電気銅めっきの形成、及びフォトレジストパターンの剥離を施して配線パターンを形成し、この配線パターンが形成された銅箔に対して、配線パターンの外観画像検査を行うことにより行われる。そして、この一連の工程に用いられる銅箔として、入射光に対する8°拡散反射率SCIが41%以下である処理表面を備えた銅箔を用いる。これにより、フォトレジスト剥離後で且つビルドアップ配線層の形成前という早期の段階において、銅箔上に形成された配線パターンに対する外観画像検査を、高いコントラストによる高精細な二値化画像を得ながら高精度に行なうことができる。 The present invention relates to a method for manufacturing a printed wiring board. In the production of a printed wiring board according to the present invention, a copper foil having a predetermined treated surface on one side is prepared, a photoresist pattern is formed on the treated surface, electrolytic copper plating is formed, and a photoresist pattern is formed. This is performed by peeling the wiring pattern to form a wiring pattern, and performing a visual image inspection of the wiring pattern on the copper foil on which the wiring pattern is formed. Then, as the copper foil used in this series of steps, a copper foil having a treated surface having an 8° diffuse reflectance SCI of 41% or less for incident light is used. As a result, at an early stage after the photoresist is peeled off and before the build-up wiring layer is formed, the appearance image inspection of the wiring pattern formed on the copper foil can be performed while obtaining a high-definition binary image with high contrast. It can be performed with high accuracy.

このように本発明においては8°拡散反射率SCIを銅箔の評価指標として採用する。これは、配線パターンである光沢銅表面への外観画像検査には、光沢銅表面に対して拡散反射の視感度が高い8°が有効であることが判明したことに基づくものである。また、この外観画像検査には、光沢銅表面に対して反射効率の高い(視感度が高い)赤色LEDを用いた光源、特に635nmにピーク領域を有する光源が特に有効であることも判明した。すなわち、この波長にピーク領域を有する光源であると、例えば3μm以下の微細配線パターンの欠損、ショート等を示す画像を認識しやすくなる。このような特性を活かして外観画像検査において配線パターンに対して画像処理上高いコントラストを得るためには、銅箔の表面は、配線パターンを構成する第一配線層とは対照的に上記赤色半導体光に対する反射が少ないことが求められる。この点、波長635nmの入射光に対する8°拡散反射率SCIが41%以下である銅箔は非常に有利となる。このことを外観画像検査の一例に触れつつ以下に説明する。外観画像検査は、例えば図3に概念的に示されるように、配線パターン24が形成された基板にリング状光源50から赤色半導体光(例えば波長635nmにピーク領域を有する光)を照射し、第一配線層26からの反射光と銅箔16からの反射光を受光部52で受光して、得られた輝度データを予め設定された閾値に照らして間隙部(スペース)と配線部(ライン)に判別して例えば図4に示されるような二値化画像を形成し、この二値化画像と図5に示されるような設計データ由来の画像とに基づくパターンマッチングにより配線パターン24の位置及び形状の正確性を評価することにより行われる。そして、このときに用いられる閾値は、初期設定において、配線パターン24が形成された基板表面(銅箔16上に第一配線層26が直接形成された表面)の全面ないし特定の抜取り検査部位を予めスキャンし、得られた輝度データを積算して図6に示されるような輝度ヒストグラム(横軸を輝度(例えば256階層軸)、縦軸を積算量)を作成し、輝度ヒストグラムのスペース(間隙部)由来のピークPとライン(配線部)由来のピークPの間において、それぞれのピーク末端間(間隙部に相当するピークの終端と配線部に相当するピークの開始点の間)の中央値として決定することができる。したがって、図6に示されるように輝度ヒストグラムにおいて間隙部(スペース)と配線部(ライン)との間のピーク間距離Dが大きいほど外観画像検査において高いコントラストによる高精細な二値化画像が得られ、その結果視認性が向上する。そして、銅箔16の処理表面において入射光、好ましくは外観画像検査に使用される光源波長のピーク領域内の波長を有する入射(好ましくは波長635nmの入射光)に対する8°拡散反射率SCIが41%以下であると、上述した輝度ヒストグラムにおけるピーク間距離Dが顕著に増大する。その結果、外観画像検査を高いコントラストによる高精細な二値化画像を得ながら高精度に行なうことが可能となる。As described above, in the present invention, the 8° diffuse reflectance SCI is adopted as the evaluation index of the copper foil. This is based on the fact that it was found that 8°, which has a high visibility of diffuse reflection with respect to the glossy copper surface, is effective for the appearance image inspection on the glossy copper surface which is the wiring pattern. It has also been found that a light source using a red LED having a high reflection efficiency (high visibility) with respect to a glossy copper surface, particularly a light source having a peak region at 635 nm is particularly effective for this appearance image inspection. That is, with a light source having a peak region at this wavelength, for example, it becomes easy to recognize an image showing a defect or short circuit of a fine wiring pattern of 3 μm or less. In order to obtain a high contrast in image processing with respect to the wiring pattern in the appearance image inspection by utilizing such characteristics, the surface of the copper foil has the above-mentioned red semiconductor in contrast to the first wiring layer which constitutes the wiring pattern. It is required that the reflection of light is small. In this respect, a copper foil having an 8° diffuse reflectance SCI of 41% or less for incident light having a wavelength of 635 nm is very advantageous. This will be described below with reference to an example of the appearance image inspection. In the appearance image inspection, for example, as conceptually shown in FIG. 3, the substrate on which the wiring pattern 24 is formed is irradiated with red semiconductor light (for example, light having a peak region at a wavelength of 635 nm) from the ring-shaped light source 50, and The reflected light from the one wiring layer 26 and the reflected light from the copper foil 16 are received by the light receiving section 52, and the obtained brightness data is compared with a preset threshold value to obtain a gap (space) and a wiring section (line). 4 to form a binarized image as shown in FIG. 4, and perform pattern matching based on the binarized image and the image derived from the design data as shown in FIG. This is done by evaluating the accuracy of the shape. The threshold value used at this time is, in the initial setting, the entire surface of the substrate on which the wiring pattern 24 is formed (the surface where the first wiring layer 26 is directly formed on the copper foil 16) or a specific sampling inspection site. The brightness data obtained by scanning in advance is integrated to create a brightness histogram as shown in FIG. 6 (a horizontal axis represents brightness (for example, a 256-level axis), a vertical axis represents an integrated amount), and the brightness histogram space (gap) Part) between the peak P S derived from the line and the peak P L derived from the line (wiring part), between the respective peak ends (between the end of the peak corresponding to the gap part and the start point of the peak corresponding to the wiring part). It can be determined as the median. Therefore, as shown in FIG. 6, as the peak-to-peak distance D between the gap portion (space) and the wiring portion (line) in the luminance histogram is larger, a high-definition binarized image with higher contrast is obtained in appearance image inspection. As a result, the visibility is improved. The 8° diffuse reflectance SCI of the incident light on the treated surface of the copper foil 16 is preferably 41 with respect to the incident light having a wavelength within the peak region of the light source wavelength used for appearance image inspection (preferably incident light having a wavelength of 635 nm). If it is less than or equal to %, the peak-to-peak distance D in the above-described brightness histogram significantly increases. As a result, the appearance image inspection can be performed with high accuracy while obtaining a high-definition binary image with high contrast.

このように、本発明の方法によれば、フォトレジスト剥離後で且つビルドアップ配線層の形成前という早期の段階において、銅箔上に形成された配線パターンに対する外観画像検査を、高いコントラストによる高精細な二値化画像を得ながら高精度に行なうことができる。前述のとおり、従来は、配線パターンが形成されたプリント配線板に対して外観画像検査が一般的に行われてきたが、プリント配線板の製造後(又は製造工程の後工程段階)で外観画像検査に付する場合、仮に前工程であるコアレス支持体の銅箔16表面に第一配線層26を形成した直後の段階で第一配線層26の配線パターンに不良部があるチップがあっても、この段階では不良が判別できていないため、全チップにわたってビルドアップ層の外観検査工程を行う必要があり、検査工程のタクトタイムを無駄に遅延させる。このため、それよりも早期の段階で外観画像検査を行うことができれば好都合である。しかしながら、プリント配線板の製造後の外観画像検査は絶縁層(樹脂層)と配線層(銅層)のコントラスト、すなわち異種材料に起因するコントラストを利用して鮮明な外観画像検査を行うことができるため、検査精度が高いとの利点がある。その反面、それよりも早期の段階で外観画像検査を行う場合、銅箔と配線層(銅層)といった同種の材料間で配線パターンを検出しなければならず、両材料間でのコントラスト不足から、例えば図7に示されるような配線パターンが判然としない二値化画像しか得られず、検査精度が大きく低下するとの問題があった。この点、本発明においては上記特定の拡散反射率SCIを有する銅箔を用いることで、高いコントラストによる高精細な二値化画像を得られるため、かかる問題を効果的に回避することができる。その結果、上記のような早期の段階で外観画像検査における不合格品を除外できるため、プリント配線板の生産性を有意に向上することもできる。 As described above, according to the method of the present invention, the appearance image inspection for the wiring pattern formed on the copper foil is performed by the high contrast at the early stage after the photoresist is removed and before the build-up wiring layer is formed. It can be performed with high accuracy while obtaining a fine binary image. As described above, conventionally, the appearance image inspection is generally performed on the printed wiring board on which the wiring pattern is formed. However, the appearance image inspection is performed after the printed wiring board is manufactured (or after the manufacturing process is completed). In the case of inspection, even if there is a chip having a defective portion in the wiring pattern of the first wiring layer 26 immediately after the first wiring layer 26 is formed on the surface of the copper foil 16 of the coreless support, which is the previous step. At this stage, since the defect cannot be discriminated, it is necessary to perform the appearance inspection process of the buildup layer over all the chips, which wastefully delays the takt time of the inspection process. Therefore, it is convenient if the appearance image inspection can be performed at an earlier stage. However, the appearance image inspection after manufacturing the printed wiring board can perform a clear appearance image inspection by utilizing the contrast between the insulating layer (resin layer) and the wiring layer (copper layer), that is, the contrast caused by different materials. Therefore, there is an advantage that the inspection accuracy is high. On the other hand, when performing appearance image inspection at an earlier stage than that, it is necessary to detect the wiring pattern between the same type of material such as the copper foil and the wiring layer (copper layer), and the contrast between both materials is insufficient. For example, there is a problem that only a binarized image in which the wiring pattern as shown in FIG. 7 is unclear can be obtained, and the inspection accuracy is greatly reduced. In this respect, in the present invention, by using the copper foil having the above specific diffuse reflectance SCI, a high-definition binarized image with high contrast can be obtained, so that such a problem can be effectively avoided. As a result, the rejected products in the appearance image inspection can be excluded at the early stage as described above, so that the productivity of the printed wiring board can be significantly improved.

以下、図1及び2に示される工程図を参照しながら、本発明の方法の態様について説明する。なお、図1及び2に示される態様は説明の簡略化のためにコアレス支持体18の片面にキャリア付銅箔10を設けてビルドアップ配線層42を形成するように描かれているが、コアレス支持体18の両面にキャリア付銅箔10を設けて当該両面に対してビルドアップ配線層42を形成するのが望ましい。 Hereinafter, embodiments of the method of the present invention will be described with reference to the process diagrams shown in FIGS. It should be noted that although the modes shown in FIGS. 1 and 2 are illustrated so that the copper foil with carrier 10 is provided on one surface of the coreless support 18 to form the build-up wiring layer 42 for simplification of description, It is desirable to provide the copper foil 10 with a carrier on both surfaces of the support 18 and form the build-up wiring layer 42 on the both surfaces.

(a)銅箔の用意
銅箔16は、上述のとおり、入射光に対する8°拡散反射率SCIが41%以下である表面を有する。そのような処理表面は銅箔16の一方の側(図1のようなキャリア付銅箔10の場合には剥離層14と反対側(すなわちキャリア付銅箔10の最表面))に設けられるのが典型的であるが、両側に設けられてもよい。8°拡散反射率SCIの評価に用いられる入射光は、外観画像検査に使用される光源波長のピーク領域内の波長を有するのが好ましい。また、前述のように外観画像検査は波長635nmにピーク領域を有する光源を用いて行われるのが好ましい。したがって、8°拡散反射率SCIの評価に用いられる入射光の波長は635nmであるのが好ましい。入射光(例えば波長635nmの入射光)に対する8°拡散反射率SCIが41%以下であり、好ましくは20%以下、さらに好ましくは15%以下である。入射光に対する8°拡散反射率SCIは、市販の分光色彩計(例えば、日本電色工業株式会社製、SD7000)を用いてJISZ8722(2012)に準拠して測定することができる。このような8°拡散反射率SCIが低い処理表面は、入射光(例えば波長635nmの入射光)を拡散反射成分が少ない面であることが好ましい。換言すれば、8°拡散反射率SCIが低い処理表面は、入射光(例えば波長635nmの入射光)を拡散反射する平坦成分領域が少ない表面を有することにより好ましく実現することができる。また、外観画像検査における精度向上のためには、銅箔の表面は、銅、又は銅と亜鉛、スズ、コバルト、ニッケル、クロム及びモリブデンから選択される少なくとも一種との合金であることが好ましく、より好ましくは、粗面を有する銅表面であることが拡散反射率を低く保つ観点で好ましい。
(A) Preparation of Copper Foil As described above, the copper foil 16 has a surface having an 8° diffuse reflectance SCI of 41% or less for incident light. Such a treated surface is provided on one side of the copper foil 16 (in the case of the carrier-attached copper foil 10 as shown in FIG. 1, the side opposite to the release layer 14 (ie, the outermost surface of the carrier-attached copper foil 10)). Are typical, but may be provided on both sides. The incident light used to evaluate the 8° diffuse reflectance SCI preferably has a wavelength within the peak region of the light source wavelength used for appearance image inspection. Further, as described above, it is preferable that the appearance image inspection is performed using a light source having a peak region at a wavelength of 635 nm. Therefore, the wavelength of the incident light used for the evaluation of the 8° diffuse reflectance SCI is preferably 635 nm. The 8° diffuse reflectance SCI for incident light (for example, incident light having a wavelength of 635 nm) is 41% or less, preferably 20% or less, and more preferably 15% or less. The 8° diffuse reflectance SCI for incident light can be measured in accordance with JIS Z8722 (2012) using a commercially available spectral colorimeter (for example, SD7000 manufactured by Nippon Denshoku Industries Co., Ltd.). It is preferable that such a treated surface having a low 8° diffuse reflectance SCI has a small diffuse reflection component for incident light (for example, incident light having a wavelength of 635 nm). In other words, the treated surface having a low 8° diffuse reflectance SCI can be preferably realized by having a surface having a small flat component region that diffuses and reflects incident light (for example, incident light having a wavelength of 635 nm). Further, in order to improve accuracy in appearance image inspection, the surface of the copper foil is preferably copper or an alloy of copper and at least one selected from zinc, tin, cobalt, nickel, chromium and molybdenum, More preferably, a copper surface having a rough surface is preferable from the viewpoint of keeping the diffuse reflectance low.

銅箔16は、上記8°拡散反射率SCIを有すること以外は、キャリア付銅箔に採用される公知の構成であってよく特に限定されない。例えば、銅箔16は、無電解めっき法及び電解めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよいが、上述した略粒状の表面を得るには、電解めっきで形成したものであることが好ましい。銅箔16の好ましい厚さは0.05μm〜7μmであり、より好ましくは0.075μm〜5μm、さらに好ましくは0.09μm〜4μmである。 The copper foil 16 is not particularly limited and may have a known configuration adopted for a copper foil with a carrier, except that it has the above-mentioned 8° diffuse reflectance SCI. For example, the copper foil 16 may be formed by a wet film forming method such as an electroless plating method and an electrolytic plating method, a dry film forming method such as sputtering and chemical vapor deposition, or a combination thereof. In order to obtain a granular surface, it is preferably formed by electrolytic plating. The thickness of the copper foil 16 is preferably 0.05 μm to 7 μm, more preferably 0.075 μm to 5 μm, still more preferably 0.09 μm to 4 μm.

銅箔16は、処理表面が粒子状の粗面(すなわち複数ないし多数の粒子で構成される凹凸からなる粗面)を有するのがさらに好ましい。こうすることで入射光(好ましくは波長635nmの入射光)に対する8°拡散反射率SCIを41%以下にしやすくするとともにフォトレジストパターン20との密着性を向上することができる。粗化粒子は画像解析による平均粒径Dが0.04〜0.53μmであるのが好ましく、より好ましくは0.08〜0.13μmであり、さらに好ましくは0.09〜0.12μmである。上記好適範囲内であると、粗化面に適度な粗さを持たせてフォトレジストとの優れた密着性を確保しながら、フォトレジスト現像時にフォトレジストの不要領域の開口性を良好に実現することができ、その結果、十分に開口しきれなかったフォトレジストに起因してめっきされにくくなることで生じうるパターンめっき22のライン欠損を効果的に防止することができる。したがって、上記好適範囲内であるとフォトレジスト現像性とパターンめっき性に優れるといえ、それ故、配線パターン24の微細形成に適する。なお、粗化粒子の画像解析による平均粒径Dは、走査型電子顕微鏡(SEM)の一視野に粒子が所定数(例えば1000〜3000個)入る倍率にて像を撮影し、その像に対して市販の画像解析ソフトで画像処理を行うことにより測定するのが好ましく、例えば任意に選択した200個の粒子を対象とし、それら粒子の平均直径を平均粒径Dとして採用すればよい。 It is further preferable that the treated surface of the copper foil 16 has a grainy rough surface (that is, a rough surface composed of irregularities composed of a plurality of or a large number of particles). By doing so, the 8° diffuse reflectance SCI for incident light (preferably incident light having a wavelength of 635 nm) can be easily made 41% or less, and the adhesion with the photoresist pattern 20 can be improved. The average particle diameter D of the roughened particles by image analysis is preferably 0.04 to 0.53 μm, more preferably 0.08 to 0.13 μm, and further preferably 0.09 to 0.12 μm. .. Within the above preferred range, the roughened surface is provided with appropriate roughness to ensure excellent adhesion with the photoresist, and at the same time, the opening property of the unnecessary region of the photoresist is favorably realized during the photoresist development. As a result, it is possible to effectively prevent a line defect of the pattern plating 22 that may occur due to the difficulty of plating due to the photoresist that has not been sufficiently opened. Therefore, it can be said that the photoresist developability and the pattern plating property are excellent when it is within the above-mentioned preferable range, and therefore, it is suitable for fine formation of the wiring pattern 24. The average particle diameter D obtained by image analysis of the roughened particles is determined by taking an image at a magnification such that a predetermined number (for example, 1000 to 3000 particles) of particles are included in one visual field of a scanning electron microscope (SEM). It is preferable that the measurement is performed by image processing using commercially available image analysis software. For example, 200 particles selected arbitrarily can be used, and the average diameter of these particles can be adopted as the average particle diameter D.

また、銅箔16の処理表面において、粗化粒子は画像解析による粒子密度ρが4〜200個/μmであるのが好ましく、より好ましくは40〜170個/μm、70〜100個/μmである。また、銅箔表面の粗化粒子が緻密で密集している場合にはフォトレジストの現像残渣が発生しやすいが、上記好適範囲内であるとそのような現像残渣が発生しにくく、それ故、フォトレジストパターン20の現像性にも優れる。したがって、上記好適範囲内であると配線パターン24の微細形成に適するといえる。なお、粗化粒子の画像解析による粒子密度ρは、走査型電子顕微鏡(SEM)の一視野に粒子が所定数(例えば1000〜3000個)入る倍率にて像を撮影し、その像に対して市販の画像解析ソフトを用いて画像処理を行うことにより測定するのが好ましく、例えば粒子200個が入る視野においてそれらの粒子個数(例えば200個)を視野面積で除算した値を粒子密度ρとして採用すればよい。Further, on the treated surface of the copper foil 16, the roughened particles preferably have a particle density ρ by image analysis of 4 to 200 particles/μm 2 , and more preferably 40 to 170 particles/μm 2 , 70 to 100 particles/μm 2 . μm 2 . Further, when the roughened particles on the surface of the copper foil are dense and dense, a development residue of the photoresist is likely to occur, but when it is within the preferable range, such a development residue is less likely to occur, and therefore, The developability of the photoresist pattern 20 is also excellent. Therefore, it can be said that it is suitable for fine formation of the wiring pattern 24 within the preferable range. The particle density ρ obtained by image analysis of the roughened particles is determined by taking an image at a magnification such that a predetermined number of particles (for example, 1000 to 3000) are included in one visual field of a scanning electron microscope (SEM). It is preferable to measure by performing image processing using commercially available image analysis software. For example, a value obtained by dividing the number of particles (for example, 200) in a visual field containing 200 particles by the visual field area is adopted as the particle density ρ. do it.

上述したような配線パターン24の微細形成に適した粗化面性状を規定するための別の指標として、鏡面光沢度Gs(85°)が挙げられる。この場合、処理表面の鏡面光沢度Gs(85°)が20〜100であるのが好ましく、より好ましくは30〜90であり、さらに好ましくは40〜80である。なお、粗化粒子の画像解析による鏡面光沢度Gs(85°)はJIS Z 8741−1997(鏡面光沢度−測定方法)に準拠して市販の光沢度計を用いて測定することができる。 Specular gloss Gs (85°) is another index for defining the roughened surface property suitable for the fine formation of the wiring pattern 24 as described above. In this case, the specular gloss Gs (85°) of the treated surface is preferably 20 to 100, more preferably 30 to 90, and further preferably 40 to 80. The specular gloss Gs (85°) by image analysis of the roughened particles can be measured using a commercially available gloss meter according to JIS Z 8741-1997 (specular gloss-measurement method).

銅箔の表面は、上述した粗化粒子を形成した後、ニッケル−亜鉛/クロメート処理等の防錆処理や、シランカップリング剤によるカップリング処理等を施すこともできる。これらの表面処理により銅箔表面の化学的安定性の向上や、絶縁層積層時の密着性の向上を図ることができる。 After forming the above-mentioned roughened particles, the surface of the copper foil may be subjected to rust-preventing treatment such as nickel-zinc/chromate treatment, coupling treatment with a silane coupling agent, and the like. By these surface treatments, it is possible to improve the chemical stability of the copper foil surface and the adhesion when the insulating layers are laminated.

銅箔16はキャリア付銅箔10の形態で供されるのが好ましい。この場合、キャリア付銅箔10は、キャリア層12、剥離層14及び銅箔16をこの順に備えてなるのが好ましい。この場合、銅箔16は極薄銅箔の形態であることができる。 The copper foil 16 is preferably provided in the form of the copper foil 10 with a carrier. In this case, the copper foil with carrier 10 preferably comprises a carrier layer 12, a release layer 14 and a copper foil 16 in this order. In this case, the copper foil 16 can be in the form of a very thin copper foil.

キャリア層12は、銅箔16を支持してそのハンドリング性を向上させるための層(典型的には箔)である。キャリア層の例としては、アルミニウム箔、銅箔、ステンレス(SUS)箔、樹脂フィルム、表面をメタルコーティングした樹脂フィルム等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリア層の厚さは典型的には250μm以下であり、好ましくは12μm〜200μmである。 The carrier layer 12 is a layer (typically a foil) for supporting the copper foil 16 and improving its handleability. Examples of the carrier layer include an aluminum foil, a copper foil, a stainless (SUS) foil, a resin film, a resin film having a metal coated on its surface, and the like, and a copper foil is preferable. The copper foil may be either a rolled copper foil or an electrolytic copper foil. The thickness of the carrier layer is typically 250 μm or less, preferably 12 μm to 200 μm.

剥離層14は、キャリア箔の引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリア箔と銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリア箔の一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3−ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア、1H−1,2,4−トリアゾール及び3−アミノ−1H−1,2,4−トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2−ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリア箔の少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリア箔の表面に溶液中で吸着されること等により行えばよい。キャリア箔を剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア箔表面への固定は、剥離層成分含有溶液の乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm〜1μmであり、好ましくは5nm〜500nmである。なお、剥離層14とキャリア箔との剥離強度は7gf/cm〜50gf/cmであることが好ましく、より好ましくは10gf/cm〜40gf/cm、より好ましくは15gf/cm〜30gf/cmである。 The peeling layer 14 has a function of weakening the peeling strength of the carrier foil, ensuring stability of the strength, and suppressing mutual diffusion that may occur between the carrier foil and the copper foil during press molding at high temperature. It is a layer. The release layer is generally formed on one surface of the carrier foil, but may be formed on both surfaces. The release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Examples of the nitrogen-containing organic compound include a triazole compound and an imidazole compound. Among them, the triazole compound is preferable because the peelability is easily stabilized. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole and 3-amino-. 1H-1,2,4-triazole and the like can be mentioned. Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, and 2-benzimidazole thiol. Examples of carboxylic acids include monocarboxylic acids and dicarboxylic acids. On the other hand, examples of the inorganic component used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate treatment film. The release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier foil and adsorbing the release layer component onto the surface of the carrier foil in the solution. When the carrier foil is brought into contact with the release layer component-containing solution, this contact may be performed by immersing in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like. In addition, a method of forming a film of the release layer component by a vapor phase method such as vapor deposition or sputtering can also be adopted. The release layer component may be fixed to the carrier foil surface by drying the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like. The thickness of the release layer is typically 1 nm to 1 μm, preferably 5 nm to 500 nm. The peel strength between the peeling layer 14 and the carrier foil is preferably 7 gf/cm to 50 gf/cm, more preferably 10 gf/cm to 40 gf/cm, and further preferably 15 gf/cm to 30 gf/cm.

所望により、剥離層14とキャリア層12及び/又は銅箔16の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。このような補助金属層をキャリア層12の表面側及び/又は銅箔16の表面側に形成することで、高温又は長時間の熱間プレス成形時にキャリア層12と銅箔16の間で起こりうる相互拡散を抑制し、キャリア層の引き剥がし強度の安定性を担保することができる。補助金属層の厚さは、0.001〜3μmとするのが好ましい。 If desired, another functional layer may be provided between the release layer 14 and the carrier layer 12 and/or the copper foil 16. Examples of such other functional layers include auxiliary metal layers. The auxiliary metal layer preferably comprises nickel and/or cobalt. By forming such an auxiliary metal layer on the surface side of the carrier layer 12 and/or the surface side of the copper foil 16, it may occur between the carrier layer 12 and the copper foil 16 during hot press molding at high temperature or for a long time. Mutual diffusion can be suppressed, and stability of peeling strength of the carrier layer can be secured. The thickness of the auxiliary metal layer is preferably 0.001 to 3 μm.

(b)積層体の形成
所望により、工程(b)として、フォトレジストパターンの形成に先立ち、銅箔16又はキャリア付銅箔10をコアレス支持体18の片面又は両面に積層して積層体を形成してもよい。この積層は、通常のプリント配線板製造プロセスにおいて銅箔とプリプレグ等との積層に採用される公知の条件及び手法に従って行えばよい。コアレス支持体18は、典型的には樹脂、好ましくは絶縁性樹脂を含んでなる。コアレス支持体18はプリプレグ及び/又は樹脂シートであるのが好ましく、より好ましくはプリプレグである。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸又は積層させた複合材料の総称である。プリプレグに含浸される絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、コアレス支持体18には熱膨脹係数を下げ、剛性を上げる等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。コアレス支持体18の厚さは特に限定されないが、3〜1000μmが好ましく、より好ましくは5〜400μmであり、さらに好ましくは10〜200μmである。
(B) Formation of Laminated Body In step (b), prior to the formation of the photoresist pattern, the copper foil 16 or the copper foil 10 with a carrier is laminated on one side or both sides of the coreless support 18 to form a laminated body, if desired. You may. This lamination may be performed according to known conditions and methods adopted for laminating a copper foil and a prepreg or the like in a normal printed wiring board manufacturing process. The coreless support 18 typically comprises a resin, preferably an insulating resin. The coreless support 18 is preferably a prepreg and/or a resin sheet, more preferably a prepreg. A prepreg is a general term for a composite material obtained by impregnating or laminating a synthetic resin on a base material such as a synthetic resin plate, a glass plate, a glass woven cloth, a glass non-woven cloth, and paper. Preferable examples of the insulating resin with which the prepreg is impregnated include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, and phenol resin. In addition, examples of the insulating resin forming the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin. Further, the coreless support 18 may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of decreasing the coefficient of thermal expansion and increasing the rigidity. The thickness of the coreless support 18 is not particularly limited, but is preferably 3 to 1000 μm, more preferably 5 to 400 μm, and further preferably 10 to 200 μm.

(c)フォトレジストパターンを形成
この工程(c)では、銅箔16の表面にフォトレジストパターン20を形成する。フォトレジストパターン20の形成は、ネガレジスト及びポジレジストのいずれの方式で行ったもよく、フォトレジストはフィルムタイプ及び液状タイプのいずれであってもよい。また、現像液としては炭酸ナトリウム、水酸化ナトリウム、アミン系水溶液等の現像液であってよく、プリント配線板の製造に一般的に用いられる各種手法及び条件に従い行えばよく特に限定されない。
(C) Forming Photoresist Pattern In this step (c), a photoresist pattern 20 is formed on the surface of the copper foil 16. The photoresist pattern 20 may be formed by either a negative resist or a positive resist, and the photoresist may be a film type or a liquid type. Further, the developing solution may be a developing solution such as sodium carbonate, sodium hydroxide, an amine-based aqueous solution, etc., and it is not particularly limited as long as it is carried out according to various methods and conditions generally used for manufacturing a printed wiring board.

(d)電気銅めっき
この工程(d)では、フォトレジストパターン20が形成された銅箔16に電気銅めっき22を施す。電気銅めっき22の形成は、例えば硫酸銅めっき液やピロリン酸銅めっき液等のプリント配線板の製造に一般的に用いられる各種パターンめっき手法及び条件に従い行えばよく特に限定されない。
(D) Electrolytic Copper Plating In this step (d), electrolytic copper plating 22 is applied to the copper foil 16 on which the photoresist pattern 20 is formed. The formation of the electrolytic copper plating 22 may be carried out according to various pattern plating methods and conditions generally used for manufacturing a printed wiring board such as a copper sulfate plating solution or a copper pyrophosphate plating solution, and is not particularly limited.

(e)フォトレジストパターンの剥離
この工程(e)では、フォトレジストパターン20を剥離して配線パターン24を形成する。フォトレジストパターン20の剥離は、水酸化ナトリウム水溶液や、アミン系溶液ないしその水溶液等が採用され、プリント配線板の製造に一般的に用いられる各種剥離手法及び条件に従い行えばよく特に限定されない。こうして、銅箔16の表面には第一配線層26からなる配線部(ライン)が間隙部(スペース)を隔てて配列された配線パターン24が直接形成されることになる。例えば、回路の微細化のためには、ライン/スペース(L/S)が13μm以下/13μm以下(例えば12μm/12μm、10μm/10μm、5μm/5μm、2μm/2μm)といった程度にまで高度に微細化された配線パターンを形成することが好ましく、このような微細回路に対しても本発明の方法によれば次の工程(f)において高精度に外観画像検査を行うことができる。
(E) Stripping of photoresist pattern In this step (e), the photoresist pattern 20 is stripped to form the wiring pattern 24. The photoresist pattern 20 can be peeled off by using an aqueous sodium hydroxide solution, an amine-based solution or an aqueous solution thereof, etc., and may be carried out according to various peeling methods and conditions generally used for manufacturing a printed wiring board, and is not particularly limited. In this way, the wiring pattern 24 in which the wiring portions (lines) formed of the first wiring layer 26 are arranged with the gap portions (spaces) arranged is directly formed on the surface of the copper foil 16. For example, in order to miniaturize the circuit, the line/space (L/S) is highly fine as much as 13 μm or less/13 μm or less (for example, 12 μm/12 μm, 10 μm/10 μm, 5 μm/5 μm, 2 μm/2 μm). It is preferable to form a patterned wiring pattern, and the appearance image inspection can be performed with high accuracy even in such a fine circuit in the next step (f) according to the method of the present invention.

(f)外観画像検査
この工程(f)では、配線パターン24が形成された銅箔16に対して、配線パターン24の外観画像検査を行う。この外観画像検査により、配線パターンの位置及び形状の正確性を確認して、所期の正確性を有する配線パターン24を備えた積層体を選別することができる。外観画像検査が光学式自動外観検査(AOI)により行われるのが好ましい。外観画像検査については図3等を参照しながら前述したとおりであるが、外観画像検査は波長635nmにピーク領域を有する光源を用いて行われるのが好ましい。この波長であると、配線パターンの欠損、ショート等を示す画像を認識しやすいとの利点があるためである。特に、銅箔16上に直接形成される配線パターン24を構成する第一配線層26である銅めっきの表面は赤色半導体光を反射しやすいという特性を有する。このため、外観画像検査において高いコントラストを得るためには、銅箔16の表面は、第一配線層26とは対照的に上記赤色半導体光に対する反射が少ないことが求められる。この点、入射光(好ましくは波長635nmの入射光)に対する8°拡散反射率SCIが41%以下である銅箔16は非常に有利であることは前述したとおりである。
(F) Appearance image inspection In this step (f), the appearance image inspection of the wiring pattern 24 is performed on the copper foil 16 on which the wiring pattern 24 is formed. By this appearance image inspection, it is possible to confirm the accuracy of the position and shape of the wiring pattern, and to select the laminate having the wiring pattern 24 having the desired accuracy. The visual image inspection is preferably performed by an optical automatic visual inspection (AOI). The appearance image inspection is as described above with reference to FIG. 3, etc., but the appearance image inspection is preferably performed using a light source having a peak region at a wavelength of 635 nm. This is because this wavelength has an advantage that it is easy to recognize an image showing a wiring pattern loss, a short circuit, or the like. In particular, the surface of the copper plating, which is the first wiring layer 26 that forms the wiring pattern 24 directly formed on the copper foil 16, has a characteristic that red semiconductor light is easily reflected. Therefore, in order to obtain a high contrast in the appearance image inspection, the surface of the copper foil 16 is required to reflect less of the red semiconductor light as opposed to the first wiring layer 26. In this respect, as described above, the copper foil 16 having an 8° diffuse reflectance SCI of 41% or less for incident light (preferably incident light having a wavelength of 635 nm) is very advantageous.

外観画像検査は、例えば図3に概念的に示されるように、配線パターン24が形成された基板にリング状光源50から赤色半導体光(例えば波長635nmの光)を照射し、第一配線層26からの反射光と銅箔16からの反射光を受光部52で受光して、得られた輝度データを予め設定された閾値に照らして間隙部(スペース)と配線部(ライン)に判別して例えば図4に示されるような二値化画像を形成し、この二値化画像と図5に示されるような設計データ由来の画像とに基づくパターンマッチングにより配線パターン24の位置及び形状の正確性を評価することにより行われる。そして、このときに用いられる閾値は、初期設定において、配線パターン24が形成された基板表面(銅箔16上に第一配線層26が直接形成された表面)の全面ないし予め設定した抜き取り検査部位を予めスキャンし、得られた輝度データを積算して図6に示されるような輝度ヒストグラム(横軸を輝度(例えば256階層軸)、縦軸を積算量)を作成し、輝度ヒストグラムのスペース(間隙部)由来のピークPとライン(配線部)由来のピークPの間において、それぞれのピーク末端間(間隙部に相当するピークの終端と配線部に相当するピークの開始点の間)の中央値として決定すればよい。かかる外観画像検査の結果、所期の基準を満たさない積層体を除外し、所期の正確性を有する配線パターン24を備えた積層体を選別して後続の任意工程に適宜に付すればよい。In the appearance image inspection, for example, as conceptually shown in FIG. 3, the substrate on which the wiring pattern 24 is formed is irradiated with red semiconductor light (for example, light having a wavelength of 635 nm) from the ring-shaped light source 50, and the first wiring layer 26. The light received from the copper foil 16 and the light reflected from the copper foil 16 are received by the light receiving portion 52, and the obtained brightness data is compared with a preset threshold value to discriminate between the gap portion (space) and the wiring portion (line). For example, a binarized image as shown in FIG. 4 is formed, and pattern matching based on this binarized image and an image derived from design data as shown in FIG. It is done by evaluating. In the initial setting, the threshold value used at this time is the entire surface of the substrate on which the wiring pattern 24 is formed (the surface where the first wiring layer 26 is directly formed on the copper foil 16) or a preset sampling inspection site. Is prescanned and the obtained brightness data is integrated to create a brightness histogram as shown in FIG. 6 (a horizontal axis represents brightness (for example, 256 hierarchical axes), a vertical axis represents an integrated amount), and a space in the brightness histogram ( Between peaks P S originating from the gap) and peaks P L originating from the line (wiring), between the respective peak ends (between the end of the peak corresponding to the gap and the starting point of the peak corresponding to the wiring). It may be determined as the median value of. As a result of the appearance image inspection, the laminates that do not meet the desired standard are excluded, and the laminates having the wiring pattern 24 having the desired accuracy are selected and appropriately subjected to the subsequent optional steps. ..

(g)ビルドアップ配線層の形成
所望により、工程(g)として、外観画像検査後の銅箔16上にビルドアップ配線層42を形成してビルドアップ配線層付積層体を作製するのが好ましい。例えば、銅箔16上に既に形成されている第一配線層26に加え、絶縁層28及び第二配線層38が順に形成されてビルドアップ配線層42とされうる。第二配線層34以降のビルドアップ層の形成方法についての工法は特に限定されず、サブトラクティブ法、MSAP(モディファイド・セミ・アディティブ・プロセス)法、SAP(セミアディティブ)法、フルアディティブ法等が使用可能である。例えば、樹脂層及び銅箔に代表される金属箔を同時にプレス加工で張り合わせる場合は、ビアホール形成及びパネルめっき等の層間導通手段の形成と組み合わせて、当該パネルめっき層及び金属箔をエッチング加工して、配線パターンを形成することができる。また、銅箔16の表面に樹脂層のみをプレス又はラミネート加工により張り合わせる場合は、その表面にセミアディティブ法で配線パターンを形成することもできる。
(G) Formation of Build-up Wiring Layer If desired, in step (g), it is preferable to form the build-up wiring layer 42 on the copper foil 16 after the visual image inspection to manufacture a laminate with a build-up wiring layer. .. For example, in addition to the first wiring layer 26 already formed on the copper foil 16, the insulating layer 28 and the second wiring layer 38 may be sequentially formed to form the buildup wiring layer 42. The method for forming the build-up layer after the second wiring layer 34 is not particularly limited, and a subtractive method, a MSAP (modified semi-additive process) method, a SAP (semi-additive) method, a full-additive method, etc. may be used. It can be used. For example, when a resin layer and a metal foil typified by a copper foil are laminated at the same time by press working, the panel plating layer and the metal foil are subjected to etching processing in combination with formation of an interlayer conduction means such as via hole formation and panel plating. Thus, a wiring pattern can be formed. When only the resin layer is attached to the surface of the copper foil 16 by pressing or laminating, a wiring pattern can be formed on the surface by a semi-additive method.

上記工程を必要に応じて繰り返して、ビルドアップ配線層付積層体を得る。この工程では樹脂層と配線パターンを含む配線層とを交互に積層配置したビルドアップ配線層を形成して、第n配線層40(nは2以上の整数)まで形成されたビルドアップ配線層付積層体を得るのが好ましい。この工程の繰り返しは所望の層数のビルドアップ配線層が形成されるまで行えばよい。この段階で、必要に応じて、外層面にソルダーレジストや、ピラー等の実装用のバンプ等を形成してもよい。また、ビルドアップ配線層の最外層面は後の多層配線板の加工工程(i)で外層配線パターンを形成してもよい。 The above steps are repeated as needed to obtain a laminate with a buildup wiring layer. In this step, a buildup wiring layer in which a resin layer and a wiring layer including a wiring pattern are alternately laminated is formed, and a buildup wiring layer is formed up to the nth wiring layer 40 (n is an integer of 2 or more). It is preferred to obtain a laminate. This process may be repeated until a desired number of buildup wiring layers are formed. At this stage, a solder resist, bumps for mounting pillars or the like may be formed on the outer layer surface, if necessary. Further, the outermost layer surface of the build-up wiring layer may be formed with an outer layer wiring pattern in a subsequent step (i) of processing a multilayer wiring board.

(h)ビルドアップ配線層付積層体の分離
所望により、工程(h)として、ビルドアップ配線層付積層体を剥離層14で分離してビルドアップ配線層42を含む多層配線板44を得るのが好ましい。この分離は、銅箔16及び/又はキャリア層12を引き剥がすことにより行うことができる。
(H) Separation of Laminate with Build-up Wiring Layer If desired, in step (h), the laminate with a build-up wiring layer is separated by the release layer 14 to obtain a multilayer wiring board 44 including the build-up wiring layer 42. Is preferred. This separation can be performed by peeling off the copper foil 16 and/or the carrier layer 12.

(i)多層配線板の加工
所望により、工程(i)として、多層配線板44を加工してプリント配線板46を得るのが好ましい。この工程では、上記分離工程により得られた多層配線板44を用いて、所望の多層プリント配線板に加工する。多層配線板44から多層プリント配線板46への加工方法は公知の種々の方法を採用すればよい。例えば、多層配線板44の外層にある銅箔16をエッチングして外層回路配線を形成して、多層プリント配線板を得ることができる。また、多層配線板44の外層にある銅箔16を、完全にエッチング除去し、そのままの状態で多層プリント配線板46として使用することもできる。さらに、多層配線板44の外層にある銅箔16を、完全にエッチング除去し、露出した樹脂層の表面に、導電性ペーストで回路形状を形成する又はセミアディティブ法等で外層回路を直接形成する等して多層プリント配線板とすることも可能である。さらに、多層配線板44の外層にある銅箔16を、完全にエッチング除去するとともに第一配線層26をソフトエッチングすることで、凹部の形成された第一配線層26を得て、これを実装用のパッドとなすことも可能である。
(I) Processing of Multilayer Wiring Board If desired, in step (i), it is preferable to process the multilayer wiring board 44 to obtain a printed wiring board 46. In this step, the multilayer wiring board 44 obtained in the above separating step is used to form a desired multilayer printed wiring board. As a processing method from the multilayer wiring board 44 to the multilayer printed wiring board 46, various known methods may be adopted. For example, the copper foil 16 on the outer layer of the multilayer wiring board 44 can be etched to form the outer layer circuit wiring to obtain a multilayer printed wiring board. Further, the copper foil 16 on the outer layer of the multilayer wiring board 44 can be completely removed by etching and used as it is as the multilayer printed wiring board 46. Further, the copper foil 16 on the outer layer of the multilayer wiring board 44 is completely removed by etching, and a circuit shape is formed on the exposed surface of the resin layer with a conductive paste or an outer layer circuit is directly formed by a semi-additive method or the like. It is also possible to make a multilayer printed wiring board by doing the same. Further, the copper foil 16 on the outer layer of the multilayer wiring board 44 is completely removed by etching and the first wiring layer 26 is soft-etched to obtain the first wiring layer 26 having the recessed portion, and the first wiring layer 26 is mounted. It can also be used as a pad for.

本発明を以下の例によってさらに具体的に説明する。なお、以下に示される例は、所定の処理表面を備えた銅箔がプリント配線板の製造過程において外観画像検査や微細回路形成等に有利であること等の利点を実証するための例である。 The present invention will be described more specifically by the following examples. In addition, the example shown below is an example for demonstrating advantages such as a copper foil having a predetermined treated surface being advantageous for appearance image inspection and fine circuit formation in a manufacturing process of a printed wiring board. ..

例1
(1)キャリア用電解銅箔の製造
銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、陰極に表面粗さRaが0.20μmのチタン製の回転電極ドラムを用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、厚さ12μmのキャリア用電解銅箔A(以下、銅箔Aという)を得た。
(※ここで形成された銅箔Aに対して、後述の工程で加工を施す面について、電解時に陰極ドラムと接していた側を「ドラム面側」と、電解液と接していた側を「電解液面側」と称するものとする。)
Example 1
(1) Production of Electrolytic Copper Foil for Carrier Using a sulfuric acid-acidified copper sulfate solution having the composition shown below as a copper electrolytic solution, a rotary electrode drum made of titanium having a surface roughness Ra of 0.20 μm was used as a cathode, and an anode was used as an anode. Was electrolyzed using DSA (dimension-stable anode) at a solution temperature of 45° C. and a current density of 55 A/dm 2 to obtain an electrolytic copper foil A for carrier (hereinafter referred to as copper foil A) having a thickness of 12 μm.
(*For the copper foil A formed here, the side that was in contact with the cathode drum during electrolysis was the "drum surface side" and the side that was in contact with the electrolyte was " This shall be referred to as the "electrolyte surface side".)

(2)有機剥離層の形成
酸洗処理された銅箔Aのドラム面側を、CBTA(カルボキシベンゾトリアゾール)1000重量ppm、フリー硫酸濃度150g/L及び銅濃度10g/Lを含むCBTA水溶液に、液温30℃で30秒間浸漬して引き上げた。こうしてCBTA成分を銅箔Aのドラム面側に吸着させて、CBTA層を有機剥離層として形成させた。
(2) Formation of organic release layer The drum surface side of the copper foil A that has been subjected to pickling is treated with a CBTA aqueous solution containing 1000 ppm by weight of CBTA (carboxybenzotriazole), a free sulfuric acid concentration of 150 g/L and a copper concentration of 10 g/L. The liquid was immersed at a liquid temperature of 30° C. for 30 seconds and pulled up. In this way, the CBTA component was adsorbed on the drum surface side of the copper foil A, and the CBTA layer was formed as an organic release layer.

(3)極薄銅箔の形成
有機剥離層を形成した銅箔Aのドラム面側に対して酸性硫酸銅溶液中で、電流密度8A/dmで厚さ3μmの極薄銅箔を有機剥離層上に形成した。
(3) Formation of ultra-thin copper foil Organic peeling of an ultra-thin copper foil with a current density of 8 A/dm 2 and a thickness of 3 μm is performed on the drum surface side of the copper foil A on which the organic release layer is formed, in an acidic copper sulfate solution. Formed on a layer.

(4)粗化処理
キャリア用電解銅箔Aのドラム面側に形成された極薄銅箔に対して、以下の3段階のプロセスで粗化処理を行った。
‐ 粗化処理の1段目は、粗化処理用銅電解溶液(銅濃度:11g/L、フリー硫酸濃度:220g/L、9−フェニルアクリジン濃度:0mg/L、塩素濃度:0mg/L、溶液温度:25℃)にて電解(電流密度:10A/dm)し、水洗することにより行った。
‐ 粗化処理の2段目は、粗化処理用銅電解溶液(銅濃度:65g/L、フリー硫酸濃度:150g/L、9−フェニルアクリジン濃度:0mg/L、塩素濃度:0mg/L、溶液温度:45℃)にて電解(電流密度:15A/dm)し、水洗することにより行った。
‐ 粗化処理の3段目は、粗化処理用銅電解溶液(銅濃度:13g/L、フリー硫酸濃度:50g/L、9−フェニルアクリジン濃度:140mg/L、塩素濃度:35mg/l、溶液温度:30℃)にて電解(電流密度:50A/dm)し、水洗することにより行った。
(4) Roughening treatment The ultrathin copper foil formed on the drum surface side of the electrolytic copper foil A for carrier was subjected to a roughening treatment in the following three steps.
-The first stage of the roughening treatment is a copper electrolytic solution for roughening treatment (copper concentration: 11 g/L, free sulfuric acid concentration: 220 g/L, 9-phenylacridine concentration: 0 mg/L, chlorine concentration: 0 mg/L, Electrolysis (current density: 10 A/dm 2 ) was performed at a solution temperature: 25° C., and washing was performed with water.
-The second stage of the roughening treatment is a copper electrolytic solution for roughening treatment (copper concentration: 65 g/L, free sulfuric acid concentration: 150 g/L, 9-phenylacridine concentration: 0 mg/L, chlorine concentration: 0 mg/L, Electrolysis (current density: 15 A/dm 2 ) was performed at a solution temperature: 45° C., and washing was performed with water.
-The third stage of the roughening treatment is a copper electrolytic solution for roughening treatment (copper concentration: 13 g/L, free sulfuric acid concentration: 50 g/L, 9-phenylacridine concentration: 140 mg/L, chlorine concentration: 35 mg/l, Electrolysis (current density: 50 A/dm 2 ) at a solution temperature: 30° C.) and washing with water were performed.

(5)防錆処理
粗化処理後の電解銅箔の両面に、無機防錆処理及びクロメート処理からなる防錆処理を行った。まず、無機防錆処理として、ピロリン酸浴を用い、ピロリン酸カリウム濃度80g/L、亜鉛濃度0.2g/L、ニッケル濃度2g/L、液温40℃、電流密度0.5A/dmで亜鉛−ニッケル合金防錆処理を行った。次いで、クロメート処理として、亜鉛−ニッケル合金防錆処理の上に、更にクロメート層を形成した。このクロメート処理は、クロム酸濃度が1g/L、pH11、溶液温度25℃、電流密度1A/dmで行った。
(5) Rust prevention treatment Both surfaces of the electrolytic copper foil after the roughening treatment were subjected to rust prevention treatment consisting of inorganic rust prevention treatment and chromate treatment. First, as an inorganic anticorrosion treatment, a pyrophosphate bath was used with a potassium pyrophosphate concentration of 80 g/L, a zinc concentration of 0.2 g/L, a nickel concentration of 2 g/L, a liquid temperature of 40° C., and a current density of 0.5 A/dm 2 . A zinc-nickel alloy anticorrosion treatment was performed. Then, as a chromate treatment, a chromate layer was further formed on the zinc-nickel alloy anticorrosion treatment. This chromate treatment was performed at a chromic acid concentration of 1 g/L, a pH of 11, a solution temperature of 25° C., and a current density of 1 A/dm 2 .

(6)シランカップリング剤処理
上記防錆処理が施された銅箔を水洗し、その後直ちにシランカップリング剤処理を行い、粗化面の防錆処理層上にシランカップリング剤を吸着させた。このシランカップリング剤処理は、純水を溶媒とし、3−アミノプロピルトリメトキシシラン濃度が3g/Lの溶液を用い、この溶液をシャワーリングにて黒色粗化面に吹き付けて吸着処理することにより行った。シランカップリング剤の吸着後、最終的に電熱器により水分を気散させ、キャリア付表面処理銅箔を得た。
(6) Silane Coupling Agent Treatment The above-mentioned rustproof copper foil was washed with water, and immediately thereafter, a silane coupling agent treatment was performed to adsorb the silane coupling agent on the rustproofing layer on the roughened surface. .. This silane coupling agent treatment uses pure water as a solvent and a solution having a concentration of 3-aminopropyltrimethoxysilane of 3 g/L. The solution is sprayed onto the black roughened surface by showering to perform adsorption treatment. went. After adsorption of the silane coupling agent, moisture was finally diffused by an electric heater to obtain a surface-treated copper foil with a carrier.

例2〜4及び6
上述の3段階プロセスの粗化処理の代わりに、表1に示される条件で2段階プロセスの粗化処理を行ったこと以外は、例1と同様にしてキャリア付表面処理銅箔の作製を行った。
Examples 2-4 and 6
A surface-treated copper foil with a carrier was produced in the same manner as in Example 1 except that the roughening treatment in the two-step process was performed under the conditions shown in Table 1 instead of the roughening treatment in the three-step process. It was

例5
銅箔Aの電解液面側に、例1と同様の手順により、有機剥離層及び厚さ3μmの極薄銅箔を形成した。次いで、極薄銅箔の表面に対して、以下に示される組成の粗化用銅電解溶液を用い、溶液温度30℃、電流密度50A/dmの条件で電解して、1段階プロセスの粗化を行った。
<粗化用銅電解溶液の組成>
‐ 銅濃度:15g/L
‐ フリー硫酸濃度:55g/L
‐ 9−フェニルアクリジン濃度:140mg/L
‐ 塩素濃度:35mg/L
‐ ビス(3−スルホプロピル)ジスルフィド濃度:100ppm
Example 5
An organic release layer and an ultrathin copper foil having a thickness of 3 μm were formed on the electrolytic solution surface side of the copper foil A by the same procedure as in Example 1. Next, using a roughening copper electrolytic solution having the composition shown below on the surface of the ultra-thin copper foil, electrolysis was performed under the conditions of a solution temperature of 30° C. and a current density of 50 A/dm 2 , and the roughening of the one-step process was performed. Was made.
<Composition of roughening copper electrolytic solution>
-Copper concentration: 15g/L
-Free sulfuric acid concentration: 55g/L
-9-Phenylacridine concentration: 140 mg/L
-Chlorine concentration: 35mg/L
-Bis(3-sulfopropyl)disulfide concentration: 100 ppm

こうして黒色粗化された処理表面上に例1と同様の手順で防錆処理及びシランカップリング処理を行い、キャリア付表面処理銅箔を作製した。 The treated surface thus roughened in black was subjected to rust-prevention treatment and silane coupling treatment in the same procedure as in Example 1 to prepare a surface-treated copper foil with carrier.

例7(比較)
粗化処理を行わなかったこと以外は例5と同様にして、銅箔Aの電解液面側に極薄銅箔が形成されたキャリア付表面処理銅箔を作製した。
Example 7 (comparison)
A surface-treated copper foil with a carrier was prepared in the same manner as in Example 5 except that the roughening treatment was not performed, and an ultrathin copper foil was formed on the electrolytic solution surface side of the copper foil A.

表面処理銅箔の表面性状に関する評価
例1〜7において作製された表面処理銅箔の処理表面(電解銅箔の析出面側)に対して以下の評価を行った。評価結果は表2に示されるとおりであった。
Evaluation of Surface Properties of Surface-Treated Copper Foil The following evaluation was performed on the treated surface of the surface-treated copper foil produced in Examples 1 to 7 (deposited surface of electrolytic copper foil). The evaluation results are as shown in Table 2.

<光学特性>
(635nmでの8°拡散反射率SCI)
表面処理銅箔の処理表面に対して、波長635nmの入射光に対する8°拡散反射率SCIを、分光色彩計(日本電色工業株式会社製、SD7000)を用いてJIS Z 8722(2012)(色の測定方法−反射及び透過物体色)に準拠して測定した。
<Optical properties>
(8° diffuse reflectance SCI at 635 nm)
For the treated surface of the surface-treated copper foil, 8° diffuse reflectance SCI for incident light with a wavelength of 635 nm was measured using a spectrocolorimeter (SD7000, manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS Z 8722 (2012) (color). Measurement method-Reflection and transmission object color).

<粗化面性状>
(平均粒径D及び粒子密度ρ)
表面処理銅箔の処理表面に対して傾斜角0°とし、走査型電子顕微鏡(SEM)の一視野に粒子が1000〜3000個入る倍率にて像を撮影し、その像に対して画像処理にて粒子密度ρ及び平均粒径Dを求めた。画像処理は、画像解析ソフト(マウンテック社製、Mac−VIEW)を用いた。測定は任意に選択した200個の粒子を対象とし、粒子の平均直径を「平均粒径D」とし、粒子個数(すなわち200個)を視野面積で除算した値を「粒子密度ρ」とした。
<Roughened surface properties>
(Average particle diameter D and particle density ρ)
An angle of inclination of 0° with respect to the treated surface of the surface-treated copper foil is taken, and an image is taken at a magnification that 1000 to 3000 particles are included in one field of a scanning electron microscope (SEM), and the image is subjected to image processing. Then, the particle density ρ and the average particle diameter D were obtained. For image processing, image analysis software (Mac-VIEW, manufactured by Mountech Co., Ltd.) was used. The measurement was performed on 200 particles arbitrarily selected, the average diameter of the particles was defined as “average particle diameter D”, and the value obtained by dividing the number of particles (that is, 200 particles) by the visual field area was defined as “particle density ρ”.

(光沢度Gs(85°))
表面処理銅箔の処理表面に対して光沢度計(日本電色工業株式会社製、PG−1M)を用い、JIS Z 8741(1997)(鏡面光沢度−測定方法)に準拠して角度85°の光沢度を測定した。
(Glossiness Gs (85°))
Using a gloss meter (PG-1M, manufactured by Nippon Denshoku Industries Co., Ltd.) for the treated surface of the surface-treated copper foil, an angle of 85° according to JIS Z 8741 (1997) (specular gloss-measurement method). The glossiness of was measured.

コアレス支持体配線層の製造性に関する評価
例1〜7において作製された表面処理銅箔を用いて、コアレス支持体への積層、フォトレジスト加工、パターンめっき、及びフォトレジスト剥離等を順に施し、所定の配線パターンで第一配線層が表面処理銅箔上に形成された積層体を作製した。具体的には以下のようにして行った。
Using the surface-treated copper foils manufactured in Evaluation Examples 1 to 7 regarding the manufacturability of the coreless support wiring layer, lamination on the coreless support, photoresist processing, pattern plating, photoresist peeling, etc. were performed in order, and the predetermined A laminated body in which the first wiring layer was formed on the surface-treated copper foil with the wiring pattern of No. 3 was produced. Specifically, it carried out as follows.

(1)コアレス積層体への積層
ガラスクロス入りビスマレイミド・トリアジン樹脂からなるプリプレグ(三菱ガス化学社製、GHPL−830NS、厚さ45μm)を4枚重ねてコアレス支持体とした、このコアレス支持体の両面に例1〜7で作製されたキャリア付銅箔をその極薄銅箔を外側にしてプレス積層してコアレス積層体を作製した。このプレス積層は、プレス温度:220℃、プレス時間:90分、圧力:40MPaで行った。
(1) Lamination to coreless laminate This coreless support was made by stacking four prepregs (GHPL-830NS, manufactured by Mitsubishi Gas Chemical Co., Inc., GHPL-830NS, thickness 45 μm) made of glass cloth-containing bismaleimide triazine resin to form a coreless support. The copper foil with a carrier produced in Examples 1 to 7 was press-laminated on both sides with the ultrathin copper foil on the outside to produce a coreless laminate. This press lamination was performed at a press temperature of 220° C., a press time of 90 minutes and a pressure of 40 MPa.

(2)微細配線パターンサンプルの作製
フォトレジスト密着性の評価用に、上述の現像工程までの製造工程を行った直径7μm(ピッチ14μm)のフォトレジストの円柱状パターンを作製した状態のサンプルを用意した。また、外観画像検査特性評価用及び配線パターン形成性評価用に、上述のフォトレジスト剥離工程までの製造工程を行った、ライン/スペース(L/S)が8μm/8μm及び7μm/7μmの配線パターンを含むサンプルを用意した。フォトレジスト塗布、電気銅めっき、及びフォトレジストの剥離の具体的手順は以下のとおりとした。
(2) Preparation of fine wiring pattern sample For evaluation of photoresist adhesion, a sample in a state where a columnar pattern of a photoresist having a diameter of 7 μm (pitch 14 μm), which has been subjected to the manufacturing steps up to the developing step described above, is prepared did. In addition, a wiring pattern having a line/space (L/S) of 8 μm/8 μm and 7 μm/7 μm, which has been subjected to the manufacturing steps up to the photoresist stripping step described above, for appearance image inspection characteristic evaluation and wiring pattern formability evaluation. A sample including was prepared. The specific procedures for photoresist coating, electrolytic copper plating, and photoresist stripping were as follows.

(フォトレジスト塗布)
極薄銅箔層上にネガ型フォトレジスト(日立化成工業社製、RY3625)を積層し、露光(20mJ/cm)及び現像(8%炭酸ナトリウム水溶液、30℃シャワー方式)を行った。
(Photoresist application)
A negative photoresist (RY3625, manufactured by Hitachi Chemical Co., Ltd.) was laminated on the ultrathin copper foil layer, and exposure (20 mJ/cm 2 ) and development (8% sodium carbonate aqueous solution, 30° C. shower system) were performed.

(電気銅めっき)
現像処理によりパターニングが施された極薄銅箔層上に、硫酸銅めっき液により10μmの厚さで電気銅めっきを形成した。
(Electrolytic copper plating)
On the ultra-thin copper foil layer patterned by the development treatment, electrolytic copper plating was formed with a copper sulfate plating solution to a thickness of 10 μm.

(フォトレジストの剥離)
フォトレジスト剥離液(三菱ガス化学社製、R−100S)を用いて、60℃で5分間かけてフォトレジストの剥離を行った。
(Removal of photoresist)
A photoresist stripping solution (R-100S manufactured by Mitsubishi Gas Chemical Co., Inc.) was used to strip the photoresist at 60° C. for 5 minutes.

この回路形成におけるフォトレジスト密着性及びフォトレジスト解像性と、最終的に得られた第一配線層付き積層体の外観画像検査特性について、以下のとおり評価を行った。結果は表2に示されるとおりであった。 The photoresist adhesion and photoresist resolution in this circuit formation and the appearance image inspection characteristics of the finally obtained laminate with the first wiring layer were evaluated as follows. The results are shown in Table 2.

<外観画像検査特性>
(256階層ピーク間距離)
光源として635nmの赤色LEDを備えた、光学式自動外観検査(AOI)装置(大日本スクリーン製造社製、製品名:PI9500)を用意した。配線パターンが施された積層体表面をスキャンして図6に示されるような輝度ヒストグラムを作成し、図6に示されるように256階層軸におけるスペース(間隙部)のピークPの高階層側の立ち上がり位置と、ライン(配線部)のピークPの低階層側の立ち上がり位置との距離(すなわち256階層ピーク間距離D)を測定した。得られた値は表2に示されるとおりであった。
<Appearance image inspection characteristics>
(Distance between peaks in 256 layers)
An optical automatic visual inspection (AOI) device (manufactured by Dainippon Screen Mfg. Co., product name: PI9500) equipped with a 635 nm red LED as a light source was prepared. The surface of the laminated body provided with the wiring pattern is scanned to create a luminance histogram as shown in FIG. 6, and as shown in FIG. 6, the space (gap portion) peak P S on the 256-layer axis is on the higher layer side. Of the peak P L of the line (wiring portion) to the rising position on the lower layer side (that is, the peak-to-peak distance D of 256 layers) was measured. The values obtained were as shown in Table 2.

(視認性)
また、配線パターンの視認性を以下の手順により評価した。配線パターンが施された積層体表面をスキャンして図6に示されるような輝度ヒストグラムを作成し、スペースと配線を識別可能とする閾値を設けた。この閾値の値は、輝度ヒストグラムのスペース(間隙部)由来のピークPとライン(配線部)由来のピークPの間において、それぞれのピーク末端間(間隙部に相当するピークの終端と配線部に相当するピークの開始点の間)の中央値とした。この閾値を基づいて配線パターンが形成された回路表面をスキャンしてラインとスペースを識別して、設計データとのパターンマッチングを行い、以下の4段階の基準により格付け評価した。
‐AA:図4に示されるように設計どおりに非常に正確にライン/スペース像(以下、L/S像)が得られたもの
‐A:概ね正確にL/S像が得られたもの、
‐B:許容可能な程度にL/S像が得られたもの、
‐C:図7に示されるようにライン及びスペースの識別が困難であったもの
(Visibility)
The visibility of the wiring pattern was evaluated by the following procedure. The surface of the laminated body provided with the wiring pattern was scanned to create a luminance histogram as shown in FIG. 6, and a threshold value was set so that the space and the wiring could be identified. The value of this threshold value is between the peaks P S derived from the space (gap) of the luminance histogram and the peak P L derived from the line (wiring part) between the respective peak ends (the end of the peak corresponding to the gap and the wiring). (Between the start points of the peaks corresponding to the parts). The circuit surface on which the wiring pattern was formed was scanned based on this threshold to identify lines and spaces, pattern matching was performed with the design data, and the rating was evaluated according to the following four-stage criteria.
-AA: A line/space image (hereinafter, L/S image) was obtained very accurately as designed as shown in FIG. 4-A: A L/S image was obtained almost accurately,
-B: an L/S image obtained to an acceptable level,
-C: It was difficult to identify lines and spaces as shown in FIG.

参考までに例2で得られた像(A評価)を図4に示す。 For reference, the image (evaluation A) obtained in Example 2 is shown in FIG.

評価結果を表2に示す。表2に示される256階層ピーク間距離と視認性評価結果との比較から、256階層ピーク間距離が長いほど配線パターンの視認性に優れ、配線パターンの位置及び形状の正確性を確認するための外観画像検査により適していることが分かる。また、表2に示される256階層ピーク間距離との関係を勘案すると、256階層ピーク間距離は、85以上が好ましく、より好ましくは100以上であり、さらに好ましくは110以上であるといえる。 The evaluation results are shown in Table 2. From the comparison between the 256-layer peak-to-peak distance and the visibility evaluation result shown in Table 2, the longer the 256-tier peak-to-peak distance, the better the visibility of the wiring pattern, and the accuracy of the position and shape of the wiring pattern. It can be seen that it is more suitable for visual image inspection. Further, in consideration of the relationship with the peak-to-peak distance between 256 layers shown in Table 2, it can be said that the peak-to-peak distance between 256 layers is preferably 85 or more, more preferably 100 or more, and further preferably 110 or more.

<回路形成特性>
(配線パターン形成性評価)
配線パターン形成性評価は以下のようにして行った。様々なライン/スペース(L/S)で形成された20本(長さ10mm)のラインを含む配線パターンに対し、ライン/スペース(L/S)が8μm/8μm及び7μm/7μmの配線パターンの各々について、現像残渣がなく、かつ、電気銅めっきがパターンとして形成されているかどうかという観点を踏まえながら、以下の3段階で評価した。
‐A:電気めっき不良部が無い
‐B:20本のライン中2本以下の電気めっき不良部がある
‐C:20本のライン中3本以上の電気めっき不良部がある
<Circuit formation characteristics>
(Evaluation of wiring pattern formability)
The wiring pattern formability was evaluated as follows. For wiring patterns including 20 lines (10 mm in length) formed by various lines/spaces (L/S), wiring patterns with line/space (L/S) of 8 μm/8 μm and 7 μm/7 μm Each of these was evaluated in the following three grades, taking into consideration whether or not there is no development residue and the electrolytic copper plating is formed as a pattern.
-A: There is no defective electroplating part-B: There are two or less defective electroplating parts in 20 lines-C: There are three or more defective electroplating parts in 20 lines

そして、上記4種のL/Sの評価結果を踏まえた総合評価を、以下の4段階の基準により格付け評価した。
‐AA:非常に良い
‐A:良い
‐B:許容可能
‐C:劣る
Then, the overall evaluation based on the above-mentioned four types of L/S evaluation results was rated and evaluated according to the following four-stage criteria.
-AA: Very good-A: Good-B: Acceptable-C: Poor

(フォトレジスト密着性・剥離性)
フォトレジストの密着性・剥離性に関する評価は、上述したフォトレジストの円柱状パターン200箇所における、現像によるレジスト密着不良部(レジスト飛び)の発生頻度ないしパターン間レジスト残渣不良の発生状況を、以下の3段階の基準で格付け評価することにより行った。
‐A:10か所未満
‐B:不良箇所が10か所以上50か所未満
‐C:不良箇所が50か所より多い
‐D:パターン間にレジスト残渣が発生し、独立した円柱状パターンが形成されていない
(Photoresist adhesion/peelability)
The evaluation of the adhesiveness/peelability of the photoresist is performed by measuring the frequency of occurrence of resist adhesion defective portions (resist skips) due to development or the occurrence status of inter-pattern resist residue defects at 200 locations of the above-mentioned photoresist columnar pattern. The evaluation was performed based on a rating of 3 levels.
-A: Less than 10 places-B: 10 or more and less than 50 defective places-C: More than 50 defective places-D: A resist residue is generated between the patterns, and an independent columnar pattern is formed. Not formed

Claims (16)

プリント配線板の製造方法であって、
入射光に対する8°拡散反射率SCIが41%以下である処理表面を有してなる銅箔を用意する工程と、
前記銅箔の前記処理表面にフォトレジストパターンを形成する工程と、
前記フォトレジストパターンが形成された前記銅箔に電気銅めっきを施す工程と、
前記フォトレジストパターンを剥離して配線パターンを形成する工程と、
前記配線パターンが形成された前記銅箔に対して、配線パターンの外観画像検査を行う工程と、
を含む、方法。
A method of manufacturing a printed wiring board, comprising:
A step of preparing a copper foil having a treated surface having an 8° diffuse reflectance SCI of 41% or less for incident light;
Forming a photoresist pattern on the treated surface of the copper foil;
A step of performing electrolytic copper plating on the copper foil on which the photoresist pattern is formed,
A step of peeling the photoresist pattern to form a wiring pattern,
A step of performing an appearance image inspection of the wiring pattern on the copper foil on which the wiring pattern is formed,
Including the method.
前記入射光が、前記外観画像検査に使用される光源波長のピーク領域内の波長を有する、請求項1に記載の方法。 The method according to claim 1, wherein the incident light has a wavelength within a peak region of a light source wavelength used for the appearance image inspection. 前記外観画像検査が波長635nmにピーク領域を有する光源を用いて行われる、請求項1又は2に記載の方法。 The method according to claim 1, wherein the appearance image inspection is performed using a light source having a peak region at a wavelength of 635 nm. 前記入射光の波長が635nmである、請求項1〜3のいずれか一項に記載の方法。 The method according to claim 1, wherein the incident light has a wavelength of 635 nm. 前記8°拡散反射率SCIが20%以下である、請求項1〜4のいずれか一項に記載の方法。 The method according to claim 1, wherein the 8° diffuse reflectance SCI is 20% or less. 前記処理表面に複数の粗化粒子で構成される凹凸からなる粗面が形成されている、請求項1〜5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the treated surface has a roughened surface formed of unevenness formed of a plurality of roughened particles . 前記粗化粒子の画像解析による平均粒径Dが0.04〜0.53μmであり、前記粗化粒子の画像解析による粒子密度ρが4〜200個/μmである、請求項6に記載の方法。 The average particle diameter D by image analysis of the roughened particles is 0.04 to 0.53 μm, and the particle density ρ by image analysis of the roughened particles is 4 to 200 particles/μm 2. the method of. 前記処理表面の鏡面光沢度Gs(85°)が20〜100である、請求項1〜7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the specular gloss Gs (85°) of the treated surface is 20 to 100. 前記銅箔が0.05〜7μmの厚さを有する、請求項1〜8のいずれか一項に記載の方法。 The method according to claim 1, wherein the copper foil has a thickness of 0.05 to 7 μm. 前記外観画像検査が光学式自動外観検査(AOI)により行われる、請求項1〜9のいずれか一項に記載の方法。 The method according to claim 1, wherein the visual appearance inspection is performed by an optical automatic visual inspection (AOI). 前記銅箔がキャリア付銅箔の形態で供され、該キャリア付銅箔が、キャリア層、剥離層及び前記銅箔をこの順に備えてなる、請求項1〜10のいずれか一項に記載の方法。 The copper foil is provided in the form of a carrier-attached copper foil, and the carrier-attached copper foil comprises a carrier layer, a release layer, and the copper foil in this order. Method. 前記フォトレジストパターンの形成に先立ち、前記銅箔をコアレス支持体の片面又は両面に積層して積層体を形成する工程をさらに含む、請求項1〜10のいずれか一項に記載の方法。 Wherein prior to forming the photoresist pattern, further comprising a copper foil forming a laminate by laminating on one side or both sides of the coreless substrate, the method according to any one of claims 1-10. 前記フォトレジストパターンの形成に先立ち、前記キャリア付銅箔をコアレス支持体の片面又は両面に積層して積層体を形成する工程をさらに含む、請求項11に記載の方法。The method according to claim 11, further comprising a step of laminating the copper foil with a carrier on one side or both sides of a coreless support to form a laminated body, prior to the formation of the photoresist pattern. 前記外観画像検査後の前記銅箔上にビルドアップ配線層を形成してビルドアップ配線層付積層体を作製する工程をさらに含む、請求項1〜13のいずれか一項に記載の方法。 Further comprising a method according to any one of claims 1 to 13, steps of manufacturing a build-up wiring layer with laminate to form a build-up wiring layer on the copper foil after the appearance image inspection. 前記銅箔がキャリア付銅箔の形態で供され、該キャリア付銅箔がキャリア層、剥離層及び前記銅箔をこの順に備えてなる場合、前記ビルドアップ配線層付積層体を前記剥離層で分離して前記ビルドアップ配線層を含む多層配線板を得る工程をさらに含む、請求項14に記載の方法。 When the copper foil is provided in the form of a copper foil with a carrier, and the copper foil with a carrier comprises a carrier layer, a peeling layer and the copper foil in this order, the build-up wiring layer-carrying laminate is the peeling layer. The method according to claim 14 , further comprising the step of separating to obtain a multilayer wiring board including the build-up wiring layer. 前記銅箔又は前記多層配線板を加工してプリント配線板を得る工程をさらに含む、請求項15に記載の方法。 The method according to claim 15 , further comprising a step of processing the copper foil or the multilayer wiring board to obtain a printed wiring board.
JP2016563627A 2014-12-08 2015-12-01 Method for manufacturing printed wiring board Active JP6734785B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014248426 2014-12-08
JP2014248426 2014-12-08
PCT/JP2015/083727 WO2016093109A1 (en) 2014-12-08 2015-12-01 Method of manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JPWO2016093109A1 JPWO2016093109A1 (en) 2017-09-14
JP6734785B2 true JP6734785B2 (en) 2020-08-05

Family

ID=56107298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016563627A Active JP6734785B2 (en) 2014-12-08 2015-12-01 Method for manufacturing printed wiring board

Country Status (5)

Country Link
JP (1) JP6734785B2 (en)
KR (1) KR102402300B1 (en)
CN (1) CN107003257B (en)
TW (1) TWI617229B (en)
WO (1) WO2016093109A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532322B (en) * 2015-04-28 2019-07-16 三井金属矿业株式会社 Roughening treatment copper foil and printed circuit board
US9955588B1 (en) * 2016-11-28 2018-04-24 Chang Chun Petrochemical Co., Ltd. Multilayer carrier foil
JP6816551B2 (en) * 2017-02-17 2021-01-20 昭和電工マテリアルズ株式会社 Thermosetting resin composition for coreless substrates, prepregs for coreless substrates, coreless substrates, coreless substrate manufacturing methods and semiconductor packages
CN107454762A (en) * 2017-09-14 2017-12-08 桐城市闲产网络服务有限公司 A kind of preparation method of computer circuit board
CN112586098B (en) * 2018-09-28 2021-09-21 三井金属矿业株式会社 Method for manufacturing multilayer wiring board
JP6634184B1 (en) * 2019-09-30 2020-01-22 株式会社フジクラ Flexible printed wiring board and method of manufacturing the same
KR102349377B1 (en) * 2019-12-19 2022-01-12 일진머티리얼즈 주식회사 Surface-treated copper foil, preparing method thereof, copper foil laminate including the same, and printed wiring board including the same
WO2024116475A1 (en) * 2022-11-28 2024-06-06 福田金属箔粉工業株式会社 Surface-treated copper foil, and copper clad laminate and printed wiring board each using said surface-treated copper foil
KR20240125053A (en) 2022-11-28 2024-08-19 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Surface-treated copper foil and copper-clad laminate using the surface-treated copper foil and printed wiring board

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284690A (en) * 1991-03-13 1992-10-09 Furukawa Saakitsuto Foil Kk Copper foil for inner layer circuit of multilayer printed circuit board and manufacture thereof
JP3267604B2 (en) * 1990-06-08 2002-03-18 住友ベークライト株式会社 Multilayer printed wiring board
TW208110B (en) * 1990-06-08 1993-06-21 Furukawa Circuit Foil Kk
JPH04235337A (en) * 1991-01-10 1992-08-24 Fujitsu Ltd Inspecting method for multilayered printed wiring board
WO2000018199A1 (en) * 1998-09-18 2000-03-30 Vantico Ag Method for producing etched circuits
SG100612A1 (en) * 1998-10-21 2003-12-26 Mitsui Mining & Smelting Co Novel composite foil, process for producing the same and copper-clad laminate
JP3370624B2 (en) * 1999-08-24 2003-01-27 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil
US6871396B2 (en) * 2000-02-09 2005-03-29 Matsushita Electric Industrial Co., Ltd. Transfer material for wiring substrate
JP3261119B2 (en) * 2000-05-16 2002-02-25 三井金属鉱業株式会社 Manufacturing method of printed wiring board
US7026059B2 (en) * 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
JP2002164390A (en) * 2000-11-28 2002-06-07 Hitachi Cable Ltd Tape carrier and its manufacturing method
JP2003060356A (en) * 2001-08-09 2003-02-28 Ngk Spark Plug Co Ltd Manufacturing method of multilayer printed wiring board
JP3977790B2 (en) * 2003-09-01 2007-09-19 古河サーキットフォイル株式会社 Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
JP2007010355A (en) * 2005-06-28 2007-01-18 Toshiba Corp Optical inspection method for printed wiring board and pattern inspection device for printed wiring board
TW200718347A (en) * 2005-07-14 2007-05-01 Mitsui Mining & Smelting Co Blackening surface treated copper foil and electromagnetic wave shielding conductive mesh for front panel of plasma display using the blackening surface treated copper foil
JP4958045B2 (en) * 2006-10-27 2012-06-20 三井金属鉱業株式会社 Surface-treated copper foil for producing flexible copper-clad laminate and flexible copper-clad laminate obtained using the surface-treated copper foil
WO2008102266A2 (en) * 2007-02-23 2008-08-28 Infermata Systems Ltd. Method and apparatus for rapid fabrication of functional printed circuit board
KR101351928B1 (en) * 2007-12-28 2014-01-21 일진머티리얼즈 주식회사 Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
KR101042102B1 (en) * 2009-06-17 2011-06-16 주식회사 코리아써키트 Method of manufacturing carrier board and method of manufacturing buried printed circuit board using the carrier
WO2011037121A1 (en) * 2009-09-25 2011-03-31 宇部興産株式会社 Method for inspecting surface of resin substrate having metal pattern formed thereon, and method for manufacturing the resin substrate
CN201707302U (en) * 2010-04-12 2011-01-12 深南电路有限公司 AOI defect detection system
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
CN101977480B (en) * 2010-10-14 2013-06-05 惠州中京电子科技股份有限公司 Manufacturing process of fine circuits of printed circuit board
CN102495071B (en) * 2011-12-19 2014-04-16 深圳市景旺电子股份有限公司 AOI (Automated Optic Inspection) system and inspection method thereof
JP6089662B2 (en) 2012-12-12 2017-03-08 凸版印刷株式会社 Coreless wiring board manufacturing method and manufacturing apparatus
MY181562A (en) * 2013-02-28 2020-12-29 Mitsui Mining & Smelting Co Ltd Black color surface-treated copper foil, method of manufacturing black color surface-treated copper foil, copper-clad laminate and flexible printed wiring board

Also Published As

Publication number Publication date
CN107003257A (en) 2017-08-01
TWI617229B (en) 2018-03-01
KR20170092519A (en) 2017-08-11
KR102402300B1 (en) 2022-05-27
JPWO2016093109A1 (en) 2017-09-14
TW201633873A (en) 2016-09-16
CN107003257B (en) 2020-07-03
WO2016093109A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
JP6734785B2 (en) Method for manufacturing printed wiring board
JP6945523B2 (en) Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them.
KR102480377B1 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
TWI587757B (en) Copper foil, copper foil with carrier foil, and copper clad laminate
JP7453154B2 (en) Surface treated copper foil, copper foil with carrier, copper clad laminates and printed wiring boards
JP6430092B1 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
WO2016158775A1 (en) Roughened copper foil, copper foil provided with carrier, copper-clad laminated sheet, and printed wiring board
WO2019188712A1 (en) Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board
WO2017141985A1 (en) Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate
TWI756039B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
TWI650240B (en) Printed circuit board manufacturing method
CN108029202B (en) Method for manufacturing printed circuit board
JP6827083B2 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP6622444B1 (en) Manufacturing method of multilayer wiring board
TWI853007B (en) Metal foil for printed wiring board, carrier metal foil and metal-clad laminate, and method for producing printed wiring board using the same
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200710

R150 Certificate of patent or registration of utility model

Ref document number: 6734785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250