JP6732189B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP6732189B2
JP6732189B2 JP2016206963A JP2016206963A JP6732189B2 JP 6732189 B2 JP6732189 B2 JP 6732189B2 JP 2016206963 A JP2016206963 A JP 2016206963A JP 2016206963 A JP2016206963 A JP 2016206963A JP 6732189 B2 JP6732189 B2 JP 6732189B2
Authority
JP
Japan
Prior art keywords
thin plate
bonding
solder
metal
solder thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016206963A
Other languages
Japanese (ja)
Other versions
JP2018067679A (en
Inventor
秀和 谷澤
秀和 谷澤
佐藤 伸二
伸二 佐藤
史樹 加藤
史樹 加藤
佐藤 弘
弘 佐藤
健一 孝井
健一 孝井
弘樹 高橋
弘樹 高橋
村上 善則
善則 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nissan Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Sanken Electric Co Ltd
Marelli Corp
Original Assignee
Fuji Electric Co Ltd
Nissan Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Sanken Electric Co Ltd
Marelli Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nissan Motor Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Sanken Electric Co Ltd, Marelli Corp filed Critical Fuji Electric Co Ltd
Priority to JP2016206963A priority Critical patent/JP6732189B2/en
Priority to PCT/JP2017/034445 priority patent/WO2018074146A1/en
Publication of JP2018067679A publication Critical patent/JP2018067679A/en
Application granted granted Critical
Publication of JP6732189B2 publication Critical patent/JP6732189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/06Soldering, e.g. brazing, or unsoldering making use of vibrations, e.g. supersonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Description

本発明は、Zn−Al酸化膜を使用した選択的はんだ接合構造を含む半導体装置及びその製造方法に関し、特に、高耐熱パワー半導体チップの電極と配線とを接合した半導体装置及びその製造方法に関する。 The present invention relates to a semiconductor device including a selective solder joint structure using a Zn—Al oxide film and a manufacturing method thereof, and more particularly to a semiconductor device in which electrodes and wirings of a high heat resistant power semiconductor chip are bonded and a manufacturing method thereof.

従来、縦型半導体チップの電極に外部配線を接続するために、ハンダ合金が使われている。すなわち、金属製の基板の上に板状のハンダを乗せ、その上に、裏面に1つの電極をもつ縦型半導体チップを乗せて加熱し、ハンダを溶かして冷却して固化させ、接合を成立させる。これにより、縦型半導体チップはハンダ層を介して基板上に接合される。 Conventionally, a solder alloy has been used to connect an external wiring to an electrode of a vertical semiconductor chip. That is, a plate-shaped solder is placed on a metal substrate, a vertical semiconductor chip having one electrode on the back surface is placed on the substrate and heated, and the solder is melted and cooled to solidify to form a bond. Let As a result, the vertical semiconductor chip is bonded onto the substrate via the solder layer.

Si半導体素子の場合、Siの物性からその動作の安全性を保障できる上限温度はおよそ150℃とされており、これに従って接続に使われるハンダ合金はこのような上限温度でも溶けず、所定の範囲の温度変化を繰り返し経験しても電気的、機械的特性に問題の生じない材料や厚みやその他諸条件が選択され使われてきた。その結果として従来、融点が前記した温度よりも100℃以上高いものが選択されている。 In the case of a Si semiconductor element, the upper limit temperature that can guarantee the safety of its operation is about 150° C. due to the physical properties of Si, and accordingly, the solder alloy used for connection does not melt even at such an upper limit temperature and falls within a predetermined range. Materials, thicknesses and other conditions have been selected and used so that there is no problem in electrical and mechanical properties even after repeated temperature changes. As a result, conventionally, one having a melting point higher than the above temperature by 100° C. or more has been selected.

ところで、SiCなどワイドバンドギャップ半導体で作られた半導体素子は250℃を超える温度でも動作可能であるが、この特性を活かすためには実装に用いるハンダ材の特性もこれに応じたものでなければならない。しかしながら、従来よりも大きな温度差を繰り返し経験しても、長期にわたって信頼性を確保できる材料は限られる。一例としてAu系合金ハンダがあるが高価である。他の例としてZn系合金ハンダがあるが、大気中ではこの合金の表面には金属酸化物による皮膜(以下、「酸化皮膜」という)が形成され、これが接合形成の妨げになる。 By the way, a semiconductor element made of a wide bandgap semiconductor such as SiC can operate even at a temperature exceeding 250° C. However, in order to make full use of this characteristic, the characteristics of the solder material used for mounting must be in conformity therewith. It doesn't happen. However, even if a temperature difference larger than before is repeatedly experienced, the materials that can ensure reliability for a long time are limited. Au-based alloy solder is an example, but it is expensive. As another example, there is Zn-based alloy solder, but in the atmosphere, a film of a metal oxide (hereinafter, referred to as “oxide film”) is formed on the surface of this alloy, which hinders the formation of a bond.

例えば、特許文献2においては、このような問題に対する対処法として、Zn−Bi系合金ハンダを接合材として用いるにあたり、酸化皮膜の形成前に保護被覆膜を表面に与えて表面酸化の進行を抑制する方法を開示している。さらにこの保護被覆膜は、ハンダの溶融工程においては速やかに消失し、良好な接合を与える。 For example, in Patent Document 2, as a method of coping with such a problem, when Zn-Bi alloy solder is used as a bonding material, a protective coating film is applied to the surface before the formation of an oxide film to promote the progress of surface oxidation. A method of suppressing is disclosed. Furthermore, this protective coating film disappears promptly in the solder melting process, and provides good bonding.

また、特許文献3においては、半導体チップと金属基板の間に酸化皮膜に被覆されたZn−Alハンダ板を挟み、この構造に荷重をかけながら加熱することで、溶融したハンダの内圧によって酸化皮膜を破ることによって、溶融ハンダを半導体チップ裏面の金属電極ならびに金属基板と濡れさせて、接合を形成する方法を開示している。 Further, in Patent Document 3, a Zn-Al solder plate covered with an oxide film is sandwiched between a semiconductor chip and a metal substrate, and heating is performed while applying a load to this structure, whereby the oxide film is formed by the internal pressure of the molten solder. By breaking the molten solder with the metal electrode and the metal substrate on the back surface of the semiconductor chip to form a bond.

特開2011−254048号公報JP, 2011-254048, A 特開2014−195831号公報JP, 2014-195831, A 特開2013−030607号公報JP, 2013-030607, A

しかしながら、特許文献2の手法においては、酸化防止用の被覆膜として特殊な物質を要し、さらにプリフォームした板ハンダの再整形や搬送時の傷などにより被覆膜によって保護されない部分が発生し性能が劣化する可能性に注意しなければならない。 However, in the method of Patent Document 2, a special substance is required as a coating film for anti-oxidation, and there is a portion that is not protected by the coating film due to reshaping of preformed plate solder or damage during transportation. However, it should be noted that the performance may deteriorate.

また、特許文献3の方法では、接合形成時に相応の荷重をかける特殊な装置を必要とする。 Further, the method of Patent Document 3 requires a special device that applies a corresponding load when forming the joint.

本発明は、かかる課題を解決するためになされたもので、Zn系合金ハンダを使いつつ、特殊な被覆膜や荷重印加装置を用いず、工業的に簡便な手法によってZn系合金ハンダを利用できるようにするとともに、これまで接合に対する障害とみなされてきた酸化皮膜の存在を積極的に活用し、大きな温度変化を繰り返し経験しても電気的機械的に接合の特性が維持できる構造を有する半導体装置とその製造方法を提供するものである。 The present invention has been made to solve the above problems, and uses a Zn-based alloy solder by an industrially simple method without using a special coating film or a load applying device while using the Zn-based alloy solder. In addition to making it possible, it has a structure that can positively utilize the existence of an oxide film, which has been regarded as an obstacle to bonding until now, and that the characteristics of bonding can be maintained electromechanically even after repeated large temperature changes. A semiconductor device and a method for manufacturing the same are provided.

本発明による半導体装置には、金属電極が形成された半導体チップと外部配線である金属板とが、Zn−Al系合金からなるハンダ薄板を介して接合され、前記ハンダ薄板は、角を丸めた四角形をなす第1の接合領域にて前記金属電極と接合するとともに、前記第1の接合領域に対向する主面上の第2の接合領域にて前記金属板と接合し、前記第1の接合領域と前記第2の接合領域の表面が酸化皮膜で被覆されていることを特徴とするものがある。これにより、温度変化によって応力が最も集中する、半導体チップの角部に隣接するハンダ薄板への応力を緩和し、接続信頼性が向上する。 In the semiconductor device according to the present invention, a semiconductor chip on which a metal electrode is formed and a metal plate that is an external wiring are joined via a solder thin plate made of a Zn-Al alloy, and the solder thin plate has rounded corners. The first bonding area is bonded to the metal electrode in a quadrangular first bonding area, and is bonded to the metal plate in a second bonding area on the main surface facing the first bonding area. There is a feature that the surface of the area and the surface of the second bonding area is covered with an oxide film. As a result, the stress on the solder thin plate adjacent to the corner of the semiconductor chip, where the stress is most concentrated due to the temperature change, is relaxed, and the connection reliability is improved.

また、上記した発明において、前記ハンダ薄板は、その平面形状が円形もしくは角を丸めた四角形をなすように構成してもよい。これによって、ハンダ薄板の形状を予め上記半導体チップの角部を避けた形状にしておくため、そもそも半導体チップの角部へのハンダ薄板の接触が起こらない。 Further, in the above-mentioned invention, the solder thin plate may be configured such that the planar shape thereof is a circle or a quadrangle with rounded corners. As a result, the shape of the solder thin plate is set in advance so as to avoid the corners of the semiconductor chip, so that the solder thin plate does not come into contact with the corners of the semiconductor chip in the first place.

また、本発明による半導体装置は、半導体チップの一主面に形成された第1の金属電極(たとえば主電極)及び第2の金属電極(たとえば制御電極)と、外部配線である第1の金属板(ここでは主電極用)及び第2の金属板(ここでは制御電極用)とが接合された構成であって、前記第1の電極(主電極)は前記第1の金属板(主電極用配線)と、前記第2の電極(制御電極)は前記第2の金属板(制御電極用配線)と、それぞれZn−Al系合金からなるハンダ薄板を介して接合され、各ハンダ薄板のうち接合に寄与していない側面が酸化皮膜で被覆されていることを特徴とする構成がある。これによって、主電極と制御電極に対して、酸化皮膜によって両電極が短絡する可能性を回避でき、きわめて隣接して接合領域を設けることができるため、主電極の面積に最大限、接合領域を形成することができるとともに、主電極用と制御電極用のハンダ薄板が近接しても短絡することがなくなる。 Further, the semiconductor device according to the present invention includes a first metal electrode (for example, a main electrode) and a second metal electrode (for example, a control electrode) formed on one main surface of a semiconductor chip, and a first metal that is an external wiring. A plate (here, for the main electrode) and a second metal plate (here, for the control electrode) are joined together, wherein the first electrode (main electrode) is the first metal plate (main electrode). Wiring) and the second electrode (control electrode) are joined to the second metal plate (control electrode wiring) via solder thin plates made of Zn-Al alloy, respectively. There is a configuration characterized in that the side surface that does not contribute to bonding is covered with an oxide film. As a result, the possibility of short-circuiting the main electrode and the control electrode due to the oxide film can be avoided, and the bonding area can be provided very adjacent to each other. It can be formed, and short-circuiting does not occur even if the solder thin plates for the main electrode and the control electrode come close to each other.

また、上記の構成においてさらに、一般のトランジスタチップのように第2の金属電極(制御電極)が一部に棒状の領域をもち、第1の金属電極(主電極)がその棒状領域を囲うように配置されている場合に、主電極用の第1のハンダ薄板は第2の金属電極(制御電極)に属する棒状領域の上を跨いで存在し、それでも棒状領域を含めた第2の金属電極(制御電極)と主電極に接続する第1のハンダ薄板との間には酸化皮膜が介在している、構成もある。これによって主電極と制御電極のそれぞれに連絡するハンダ領域の面積が最大化でき、半導体チップの主電流を流れる電流に対して実装構造の電気伝導度が向上する。また、酸化皮膜があることから、たとえ半導体チップ上の制御電極につながるランナーが保護膜なしで存在していても、その上に跨って主電極用のハンダ薄板を形成でき、さらに半導体実装構造の実装抵抗低減に貢献する。 Further, in the above structure, the second metal electrode (control electrode) partially has a rod-shaped region like the general transistor chip, and the first metal electrode (main electrode) surrounds the rod-shaped region. , The first solder thin plate for the main electrode exists over the rod-shaped region belonging to the second metal electrode (control electrode), and the second metal electrode including the rod-shaped region is still present. There is also a configuration in which an oxide film is interposed between the (control electrode) and the first solder thin plate connected to the main electrode. As a result, the areas of the solder regions communicating with the main electrode and the control electrode can be maximized, and the electrical conductivity of the mounting structure is improved with respect to the current flowing through the main current of the semiconductor chip. In addition, since there is an oxide film, even if the runner connected to the control electrode on the semiconductor chip is present without a protective film, it is possible to form a solder thin plate for the main electrode over the runner. Helps reduce mounting resistance.

さらに、本発明による金属電極が形成された半導体チップと金属板とを、Zn−Al系合金からなるハンダ薄板を介して接合する半導体装置の製造方法は、前記半導体チップの前記金属電極と前記ハンダ薄板の第1の面とを超音波接合して第1の接合領域を形成する半導体チップ接合工程と、前記金属板と前記ハンダ薄板の前記第1の面に対向する第2の面とを超音波接合して第2の接合領域を形成する金属板接合工程と、少なくとも前記ハンダ薄板を加熱して溶融させて、前記第1の接合領域と前記第2の接合領域とに合金領域を形成する合金化工程と、含むことを特徴とする。これにより、接合したい領域の酸化皮膜を破砕して予め金属同士を接合させておくため、あとは加熱のみによって金属同士が接合する。また、接合させたい領域だけ酸化皮膜を破砕して先に金属同士を接合させておくため、所望の位置に、所望の形状で強固な接合領域を形成できる。 Further, according to the present invention, a method for manufacturing a semiconductor device, in which a semiconductor chip having a metal electrode formed thereon and a metal plate are joined together via a solder thin plate made of a Zn--Al alloy, is a method for manufacturing the metal electrode of the semiconductor chip and the solder. The semiconductor chip bonding step of ultrasonically bonding the first surface of the thin plate to form the first bonding region, and the metal plate and the second surface of the solder thin plate facing the first surface are superposed. A metal plate joining step of sonic joining to form a second joining region, and at least the solder thin plate is heated and melted to form an alloy region in the first joining region and the second joining region. And an alloying step. As a result, the oxide film in the region to be joined is crushed and the metals are joined in advance, so that the metals are joined only by heating. Further, since the oxide film is crushed only in the region to be bonded and the metals are bonded to each other first, a strong bonding region having a desired shape and a desired shape can be formed at a desired position.

本発明の第1の実施形態による半導体チップの実装構造を説明する断面図である。FIG. 3 is a cross-sectional view illustrating the mounting structure of the semiconductor chip according to the first embodiment of the present invention. 図1の構造の平面透視図である。2 is a perspective plan view of the structure of FIG. 1. FIG. 図1の構造の製造プロセスを説明する断面図である。FIG. 7 is a cross-sectional view illustrating the manufacturing process of the structure of FIG. 1. 図1の構造の製造プロセスを説明する断面図である。FIG. 7 is a cross-sectional view illustrating the manufacturing process of the structure of FIG. 1. 図1の構造の製造プロセスを説明する断面図である。FIG. 7 is a cross-sectional view illustrating the manufacturing process of the structure of FIG. 1. 図1の構造の製造プロセスを説明する断面図である。FIG. 7 is a cross-sectional view illustrating the manufacturing process of the structure of FIG. 1. 図1の構造の製造プロセスの変形例を説明する断面図である。FIG. 9 is a cross-sectional view illustrating a modified example of the manufacturing process of the structure of FIG. 1. 本発明の第1の実施形態による変形例の構造の平面透視図である。It is a plane perspective view of the structure of the modification by the 1st Embodiment of this invention. 図8の構造の断面図である。9 is a cross-sectional view of the structure of FIG. 本発明の第1の実施形態の他の変形例による構造の平面透視図である。FIG. 9 is a plan perspective view of a structure according to another modification of the first embodiment of the present invention. 本発明の第1の実施形態のさらに他の変形例による構造の平面透視図である。FIG. 8 is a plan perspective view of a structure according to still another modification of the first embodiment of the present invention. 本発明の第2の実施形態による半導体チップの実装構造を説明する断面図である。It is sectional drawing explaining the mounting structure of the semiconductor chip by the 2nd Embodiment of this invention. 図12の構造の製造プロセスを説明する断面図である。FIG. 13 is a cross-sectional view illustrating the manufacturing process of the structure of FIG. 12. 図12の構造の製造プロセスを説明する断面図である。FIG. 13 is a cross-sectional view illustrating the manufacturing process of the structure of FIG. 12. 図12の構造の製造プロセスを説明する断面図である。FIG. 13 is a cross-sectional view illustrating the manufacturing process of the structure of FIG. 12. 図12の構造の製造プロセスを説明する断面図である。FIG. 13 is a cross-sectional view illustrating the manufacturing process of the structure of FIG. 12. 本発明の第3の実施形態を説明する平面透視図である。It is a plane perspective view explaining the 3rd Embodiment of this invention. 図17の構造の断面図である。18 is a cross-sectional view of the structure of FIG.

以下、本発明の第1の実施形態による半導体装置について、図1乃至図11を使って説明する。 Hereinafter, the semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の第1の実施形態による半導体装置を示す構造断面図である。図中、1dは金属板で、少なくとも最表面はAl、Ag、Au、Cu、Niなどが可能である。すなわち、1dは図のように分厚い金属板でもよいし、図示しない別の金属板状上に形成された薄膜でもよい。2dはハンダ薄板でAl−Zn系の合金からなる。3dはハンダを構成する金属が自然酸化して出来た酸化皮膜で、ハンダ薄板2dが大気と触れる部分にすべて存在する。4は半導体チップ、5dは半導体チップ4の裏面電極である。裏面電極5dはハンダ薄板2dを介して金属板1dに電気的かつ機械的に接続されている。また図中、半導体チップ4の角部においては、ハンダ薄板2dとの間には空隙6が存在する。 FIG. 1 is a structural sectional view showing a semiconductor device according to the first embodiment of the present invention. In the figure, 1d is a metal plate, and at least the outermost surface can be made of Al, Ag, Au, Cu, Ni or the like. That is, 1d may be a thick metal plate as shown or a thin film formed on another metal plate (not shown). 2d is a thin solder plate made of an Al-Zn alloy. 3d is an oxide film formed by natural oxidation of the metal that constitutes the solder, and is present in all parts of the solder thin plate 2d that come into contact with the atmosphere. Reference numeral 4 is a semiconductor chip, and 5d is a back surface electrode of the semiconductor chip 4. The back surface electrode 5d is electrically and mechanically connected to the metal plate 1d through the solder thin plate 2d. Further, in the figure, at the corner portion of the semiconductor chip 4, there is a gap 6 between the solder thin plate 2d.

図2は、本発明の第1の実施形態による半導体装置であって、図1の構造を上から見た平面図である。なお、図2の線分A−Aを含み、紙面に垂直な面で切った断面図の端部が図1である。すなわち、図1の左側に示した半導体チップ4の端部は角部に相当する。本構造において、半導体チップ4の四隅にはハンダ薄板2dと裏面電極6dとが空隙6によって隔たった領域が存在する。図2では、裏面電極5dとハンダ薄板2dが接合している領域と空隙6との境界60を一点鎖線で模式的に示した。このように接合境界60が半導体チップの角部付近にて接合境界が大きな曲率半径をもっていると、温度変化によってこの界面に生じる応力は緩和され、ハンダ薄板にクラックが入る確率を低める。 FIG. 2 is a plan view of the semiconductor device according to the first embodiment of the present invention when the structure of FIG. 1 is viewed from above. Note that FIG. 1 is the end of the cross-sectional view including the line segment AA of FIG. 2 and taken along a plane perpendicular to the paper surface. That is, the end portion of the semiconductor chip 4 shown on the left side of FIG. 1 corresponds to a corner portion. In this structure, at the four corners of the semiconductor chip 4, there are regions in which the solder thin plate 2d and the back surface electrode 6d are separated by the space 6. In FIG. 2, a boundary 60 between the region where the back surface electrode 5d and the solder thin plate 2d are joined and the void 6 is schematically shown by a chain line. Thus, when the bonding boundary 60 has a large radius of curvature near the corner of the semiconductor chip, the stress generated at this interface due to the temperature change is relaxed, and the probability of cracking in the thin solder plate is reduced.

次に、このような構造を成立させるための製造方法を、図3乃至図7を使って説明する。まず、図3のように半導体チップ4の裏面を上にして倒立させ、上になった裏面電極5dの表面にハンダ薄板20dを配置する。ところで、Al−Zn系合金のこのハンダ薄板20dの表面には、大気に触れた時点で酸化皮膜3dが存在し、このまま融点以上に加熱しても酸化皮膜が破れず、裏面金属5dがAl−Zn系合金と濡れる金属であっても両者は接合しない。そこで、この状態で超音波ボンダーを使ってハンダ薄板20dを裏面金属5dに超音波接合しておく(半導体チップ接合工程)。図4はこのプロセスを示したもので、図中、符号11は超音波を印加するボンディング治具、8dは超音波印加によって局所的に酸化皮膜3dが破砕され、金属同士が超音波接合によって一部合金化した領域である。なお、この領域にあった酸化皮膜3dは粉砕されてこの領域付近に存在するが、電気伝導や接合強度には影響しない。 Next, a manufacturing method for establishing such a structure will be described with reference to FIGS. First, as shown in FIG. 3, the back surface of the semiconductor chip 4 is turned upside down, and the solder thin plate 20d is placed on the back surface of the back surface electrode 5d. By the way, an oxide film 3d exists on the surface of this solder thin plate 20d of Al-Zn alloy when exposed to the atmosphere. Even if the oxide film 3d is heated above its melting point, the oxide film is not broken, and the back surface metal 5d is Al-. Even a Zn-based alloy and a wettable metal do not bond to each other. Therefore, in this state, the solder thin plate 20d is ultrasonically bonded to the back surface metal 5d using an ultrasonic bonder (semiconductor chip bonding step). FIG. 4 shows this process. In the figure, reference numeral 11 is a bonding jig for applying ultrasonic waves, 8d is the crushing of the oxide film 3d locally by the application of ultrasonic waves, and the metals are bonded by ultrasonic bonding. This is a partially alloyed region. Although the oxide film 3d in this area is crushed and exists in the vicinity of this area, it does not affect the electric conduction or the bonding strength.

次に、図5に示すように、この半導体チップ4とハンダ薄板20dが結合した構造体を、もとの正立の姿勢に戻し、今度はハンダ薄板20dが金属板1dと対面するように配置する。この時点で半導体チップ4とハンダ薄板20dは結合しているので位置ズレの心配はない。そして、図6のように両者を超音波接合する(金属板接合工程)。図中、符号12は半導体チップ4を固定して超音波を印加するボンディング治具、9dはこの第2回目の超音波印加によって局所的に酸化皮膜3dが破れ、金属同士が合金化した領域である。この工程で使用する装置は、超音波接合によるフリップチップボンディングする際と同様のものである。なお、この領域にあった酸化皮膜3dは粉砕されてこの領域付近に存在するが、電気伝導や接合強度には影響しない。 Next, as shown in FIG. 5, the structure in which the semiconductor chip 4 and the solder thin plate 20d are combined is returned to the original upright posture, and this time, the solder thin plate 20d is arranged so as to face the metal plate 1d. To do. At this point, the semiconductor chip 4 and the solder thin plate 20d are joined together, so there is no risk of misalignment. Then, as shown in FIG. 6, both are ultrasonically bonded (metal plate bonding step). In the figure, reference numeral 12 is a bonding jig for fixing the semiconductor chip 4 and applying ultrasonic waves, and 9d is a region where the oxide film 3d is locally broken by the second ultrasonic wave application and the metals are alloyed. is there. The device used in this step is the same as that used for flip-chip bonding by ultrasonic bonding. Although the oxide film 3d in this area is crushed and exists in the vicinity of this area, it does not affect the electric conduction or the bonding strength.

次に、上記のとおり半導体チップ4とハンダ薄板20dと金属板1dとを超音波接合した構造体をAl−Zn系合金の融点以上に加熱してやると、ハンダ薄板20dの内部は液状になり、超音波接合した領域8d、9d(図6参照)は、金属板1dや裏面金属5dの一部と合金化反応が進み、固化した際には強固な接合が成立している(合金化工程)。そして、あらかじめ超音波接合した領域以外は酸化皮膜3dの存在により図1に示すように、周囲に進展することはない。このように、本発明によれば、特別な物質や加圧装置を用いずともAl−Zn系合金を使って半導体チップを金属板に接合することができる。 Next, when the structure obtained by ultrasonically bonding the semiconductor chip 4, the solder thin plate 20d, and the metal plate 1d as described above is heated to a temperature higher than the melting point of the Al-Zn alloy, the inside of the solder thin plate 20d becomes liquid and The regions 8d and 9d (see FIG. 6) that have been sonic bonded proceed with an alloying reaction with a part of the metal plate 1d and the back surface metal 5d, and when solidified, a strong bond is established (alloying step). And, as shown in FIG. 1, the oxide film 3d does not propagate to the surroundings except for the region which is ultrasonically bonded in advance. As described above, according to the present invention, the semiconductor chip can be bonded to the metal plate by using the Al—Zn based alloy without using a special substance or a pressure device.

なお、上記のプロセスではハンダ薄板20dをまず半導体チップ4の裏面に超音波接合したが、図7に示すようにハンダ薄板20dを先に金属板1dに超音波接合してから、図6のプロセスを実施しても当然構わないし、最初から図6のように部材を重ね合わせて、一括して超音波接合しても構わない。 In the above process, the solder thin plate 20d is ultrasonically bonded to the back surface of the semiconductor chip 4 first. However, as shown in FIG. 7, the solder thin plate 20d is ultrasonically bonded to the metal plate 1d first, and then the process of FIG. It goes without saying that it is also possible to carry out the above, or the members may be superposed from the beginning as shown in FIG.

また、図1中の空隙6は、図4で示した第1回目の超音波接合工程において、図2に1点鎖線で示した境界の内側だけ超音波接合するようにしておくことで形成することができる。 The void 6 in FIG. 1 is formed by performing ultrasonic bonding only inside the boundary indicated by the alternate long and short dash line in FIG. 2 in the first ultrasonic bonding step shown in FIG. be able to.

また、図2ではハンダ薄板2dのサイズを半導体チップ4とほぼ同じに示したが、例えば図8のようにハンダ薄板2dが半導体チップ4より大きくても構わない。その場合、図中の線分A−Aを含んで紙面に垂直な断面構造は、前述した酸化皮膜3dの存在のため、図9のような形状になる。 Although the size of the solder thin plate 2d is shown to be substantially the same as that of the semiconductor chip 4 in FIG. 2, the solder thin plate 2d may be larger than the semiconductor chip 4 as shown in FIG. In that case, the cross-sectional structure including the line segment AA in the drawing and perpendicular to the paper surface has a shape as shown in FIG. 9 due to the existence of the oxide film 3d described above.

また、空隙6を形成したい領域に、そもそもハンダ薄板2dが近接しないよう、図10に示すようにハンダ薄板2dの形状を円形、もしくは図11に示すように角部を丸めた四角形にしておくこともできる。 Also, in order to prevent the solder thin plate 2d from approaching the region where the void 6 is to be formed, the shape of the solder thin plate 2d should be circular as shown in FIG. 10 or a square with rounded corners as shown in FIG. Can also

次に、本発明の第2の実施形態による半導体装置ついて、図12乃至図16を使って説明する。 Next, the semiconductor device according to the second embodiment of the present invention will be explained with reference to FIGS.

図12は、半導体チップ4の表面に存在する主電極5sと制御電極5gが、それぞれに対応するハンダ薄板2s、2gを介して、絶縁板7の表面に張り付けられ配線の役割を果たす金属板1s、1gに接続している構造である。このような構造を、組立工程中に一度溶融してから固化する接合材を使う場合、合金が溶融した時点で図中のハンダ薄板2sと2gとが短絡する可能性がある。そのため一般には、ハンダ薄板2sと2gの距離を、ハンダ厚みより十分離しておく方策が取られていた。しかし、実際の半導体チップ4の表面で主電極5sと制御電極5gを隔てるパッシベーション膜(図13乃至図16の符号10参照)の幅はせいぜい数十μmであるのに対し。ハンダ厚みは50μm以上あるので、この場合、ハンダ薄板2sと2gの距離は最低でも300μm以上は隔てることになる。しかし、そのような施策は半導体チップの電気特性を損なう方向に働く。 In FIG. 12, the main electrode 5s and the control electrode 5g existing on the surface of the semiconductor chip 4 are attached to the surface of the insulating plate 7 via the corresponding solder thin plates 2s and 2g, and the metal plate 1s plays the role of wiring. It is a structure connected to 1g. In the case of using a bonding material having such a structure, which is once melted and then solidified during the assembly process, the solder thin plates 2s and 2g in the figure may be short-circuited when the alloy is melted. Therefore, in general, a measure has been taken to keep the distance between the solder thin plates 2s and 2g sufficiently separated from the solder thickness. However, the width of the passivation film (see reference numeral 10 in FIGS. 13 to 16) separating the main electrode 5s and the control electrode 5g on the surface of the actual semiconductor chip 4 is several tens of μm at most. Since the solder thickness is 50 μm or more, in this case, the distance between the solder thin plates 2s and 2g is at least 300 μm or more. However, such measures tend to impair the electrical characteristics of semiconductor chips.

一方、Al−Zn系合金からなるハンダの場合、図12に示すようにそれぞれのハンダ薄板の表面には強固な酸化皮膜3s、3gが形成され、ハンダが溶融しても容易には破れない。この性質を利用し、本発明では半導体チップ4上の金属と配線金属とは接続しつつ、上記の短絡は起きにくいため、両者を近接させて配置することが可能で、半導体チップの電気特性を十分に生かした実装構造を実現できる。 On the other hand, in the case of solder composed of Al-Zn alloy, strong oxide films 3s and 3g are formed on the surface of each solder thin plate as shown in FIG. 12, and the solder is not easily broken even if melted. Utilizing this property, in the present invention, the metal on the semiconductor chip 4 and the wiring metal are connected to each other, but the above-mentioned short circuit is unlikely to occur. Therefore, it is possible to dispose the both close to each other, and to improve the electrical characteristics of the semiconductor chip. It is possible to realize a fully utilized mounting structure.

次に、図12に示す半導体装置の製造方法の一例について、図13乃至図16を使って説明する。まず図13のように、半導体チップ4の表面電極5s、5gの上に、成形したハンダ薄板20s、20gをそれぞれ配置し、図14のように超音波ボンダーの治具11にて荷重と超音波を印加し、接合箇所8s、8gを形成する(半導体チップ接合工程)。この超音波印加によって局所的に酸化皮膜3s、3gは粉砕され、金属同士が超音波印加による摩擦熱によって合金化する。 Next, an example of a method for manufacturing the semiconductor device illustrated in FIG. 12 is described with reference to FIGS. First, as shown in FIG. 13, the molded solder thin plates 20s and 20g are respectively placed on the surface electrodes 5s and 5g of the semiconductor chip 4, and the load and the ultrasonic wave are applied by the jig 11 of the ultrasonic bonder as shown in FIG. Is applied to form joints 8s and 8g (semiconductor chip joining step). By this ultrasonic wave application, the oxide films 3s and 3g are locally crushed, and the metals are alloyed by the frictional heat applied by the ultrasonic wave application.

次に図15のように上記の構造体を倒立させて絶縁板7上に形成された金属配線1s、1gと対向するように配置し、図16に示すように超音波ボンダーの治具11にて荷重と超音波を印加し、接合箇所9s、9gを形成する(金属板接合工程)。 Next, as shown in FIG. 15, the above structure is inverted and arranged so as to face the metal wirings 1s and 1g formed on the insulating plate 7, and the jig 11 of the ultrasonic bonder is placed as shown in FIG. Are applied to apply a load and ultrasonic waves to form joints 9s and 9g (metal plate joining step).

次に、上記のとおり半導体チップ4と絶縁板7とをハンダ薄板2s、2gを介して超音波接合した構造体をAl−Zn系合金の融点以上に加熱してやると、ハンダ薄板の内部は液状になり、超音波接合した領域8s、8g、9s、9g(図16参照)は合金化反応が進み、それぞれハンダ薄板2s、2gと一体化し、固化した際には強固な接合が成立している(合金化工程)。そして、図12に示すように酸化皮膜3s、3gの存在により超音波接合した領域以外は流れ出ることはなく、ハンダ薄板の端部は樽型の断面形状になり、3sと3gが近接しても、短絡することはない。ちなみに、共晶系のAl−Znハンダの場合、酸化皮膜はもっぱらアルミナである。このように、本発明によれば、特別な物質や加圧装置を用いずともAl−Zn系合金を使って半導体チップを金属板に接合することができる。 Next, when the structure obtained by ultrasonically bonding the semiconductor chip 4 and the insulating plate 7 through the solder thin plates 2s and 2g as described above is heated to a temperature higher than the melting point of the Al-Zn alloy, the inside of the solder thin plate becomes liquid. Then, the alloying reaction proceeds in the ultrasonically bonded regions 8s, 8g, 9s, 9g (see FIG. 16), and they are integrated with the solder thin plates 2s, 2g, respectively, and when they are solidified, a strong bonding is established ( Alloying process). Then, as shown in FIG. 12, the oxide films 3s and 3g do not flow out except for the ultrasonically bonded region, and the end of the solder thin plate has a barrel-shaped cross-sectional shape, and even if 3s and 3g come close to each other. , Never short circuit. Incidentally, in the case of eutectic Al-Zn solder, the oxide film is exclusively alumina. As described above, according to the present invention, the semiconductor chip can be bonded to the metal plate by using the Al—Zn based alloy without using a special substance or a pressure device.

また、一般の電力用トランジスタチップの表面電極パターンは図17のようになっていて、制御信号を素早くチップ内に行き渡らせるため、制御電極5gに接続された細長いランナー50gが、主電極5sの中央に延在するものがある。また、図17中の線分B−Bを含み紙面に垂直な断面で、図12に対応した実装断面構造が図18である。ハンダ薄板2sの表面には酸化皮膜3sが存在するので、この図に示すようにハンダ薄板2sがランナー50gを跨いでいても短絡することはないことを利用し、仮に図中のようにランナー50gが絶縁膜で被覆されていなくても、主電極用ハンダ薄板2sを図17中の破線のように、ランナー50gを跨いで存在させ、トランジスタチップの電気的性能を最大限に引き出すことができる。もちろん、ランナー50gが別途の絶縁膜によって覆われていてもこの構造は成立する。 In addition, the surface electrode pattern of a general power transistor chip is as shown in FIG. 17, and in order to quickly spread the control signal in the chip, the elongated runner 50g connected to the control electrode 5g is located at the center of the main electrode 5s. Some extend to. Further, FIG. 18 shows a mounting cross-sectional structure corresponding to FIG. 12, which is a cross section including a line segment BB in FIG. 17 and perpendicular to the paper surface. Since the oxide film 3s is present on the surface of the solder thin plate 2s, as shown in this figure, even if the solder thin plate 2s straddles the runner 50g, there is no short circuit. Even if is not covered with an insulating film, the main electrode solder thin plate 2s can be present across the runner 50g as shown by the broken line in FIG. 17, and the electrical performance of the transistor chip can be maximized. Of course, this structure is established even if the runner 50g is covered with a separate insulating film.

以上、本発明による半導体装置及びその製造方法の実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は特許請求の範囲に合致すれば、他の構成でも本発明の権利範囲に属する。 Although the embodiments of the semiconductor device and the method for manufacturing the same according to the present invention and the modifications based on the same have been described above, the present invention is not necessarily limited to these, and those skilled in the art can understand the gist of the present invention or the patent. Other configurations are within the scope of the present invention as long as they match the scope of the claims.

1d、1s、1g 金属板
2d、2s、2g、20d、20s、20g ハンダ薄板
3d、3s、3g 酸化皮膜
4 半導体チップ
5d (半導体チップの)裏面金属
5s (半導体チップの)主電極
5g (半導体チップの)制御電極
50g ランナー
6 空隙
60 境界
7 絶縁板
8d、8s、8g 半導体チップとハンダ薄板との間の超音波接合箇所
9d、9s、9g 金属板あるいは絶縁板とハンダ薄板との間の超音波接合箇所
11、12 ボンディング治具


1d, 1s, 1g Metal plate 2d, 2s, 2g, 20d, 20s, 20g Solder thin plate 3d, 3s, 3g Oxide film 4 Semiconductor chip 5d Backside metal 5s (semiconductor chip) Main electrode 5g (semiconductor chip) Control electrode 50g runner 6 void 60 boundary 7 insulating plate 8d, 8s, 8g ultrasonic bonding between semiconductor chip and solder thin plate 9d, 9s, 9g ultrasonic wave between metal plate or insulating plate and solder thin plate Bonding points 11 and 12 Bonding jig


Claims (5)

金属電極が形成された半導体チップと金属板とが、Zn−Al系合金からなるハンダ薄板を介して接合された半導体装置であって、
前記ハンダ薄板は、角を丸めた四角形をなす第1の接合領域にて前記金属電極と接合するとともに、前記第1の接合領域に対向する主面上の第2の接合領域にて前記金属板と接合し、前記第1の接合領域と前記第2の接合領域の表面が酸化皮膜で被覆されていることを特徴とする半導体装置。
A semiconductor device in which a semiconductor chip on which a metal electrode is formed and a metal plate are bonded via a solder thin plate made of a Zn-Al-based alloy,
The solder thin plate is bonded to the metal electrode at a first bonding region having a square shape with rounded corners, and the metal plate is bonded at a second bonding region on a main surface facing the first bonding region. And a surface of the first bonding region and the second bonding region are covered with an oxide film.
前記ハンダ薄板は、その平面形状が円形もしくは角を丸めた四角形をなしていることを特徴とする請求項1記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the solder thin plate has a planar shape of a circle or a quadrangle with rounded corners. 半導体チップの一主面に形成された第1の金属電極及び第2の金属電極と、第1の金属板及び第2の金属板とが接合された半導体装置であって、
前記第1の電極は前記第1の金属板とZn−Al系合金からなる第1のハンダ薄板を介して接合され、前記第1のハンダ薄板のうち前記接合に寄与していない側面が酸化皮膜で被覆されており、
前記第2の電極は前記第2の金属板とZn−Al系合金からなる第2のハンダ薄板を介して接合され、前記第2のハンダ薄板のうち前記接合に寄与していない側面が酸化皮膜で被覆されていることを特徴とする半導体装置。
A semiconductor device in which a first metal electrode and a second metal electrode formed on one main surface of a semiconductor chip are joined to a first metal plate and a second metal plate,
The first electrode is bonded to the first metal plate via a first solder thin plate made of a Zn-Al alloy, and a side surface of the first solder thin plate that does not contribute to the bonding is an oxide film. Is covered with
The second electrode is bonded to the second metal plate via a second solder thin plate made of a Zn-Al alloy, and a side surface of the second solder thin plate that does not contribute to the bonding is an oxide film. A semiconductor device characterized by being covered with.
前記第2の金属電極は一部に棒状の領域を有し、前記第1の金属電極は前記棒状領域を囲うように配置されていて、前記第1のハンダ薄板は前記第2の金属電極に属する前記棒状領域を跨いで存在し、前記棒状領域を含め前記第2の金属電極と前記第1のハンダ薄板との間には酸化皮膜が介在している、ことを特徴とする請求項3記載の半導体装置。 The second metal electrode has a rod-shaped region in a part thereof, the first metal electrode is arranged so as to surround the rod-shaped region, and the first solder thin plate serves as the second metal electrode. The oxide film is present across the rod-shaped region to which it belongs, and an oxide film is interposed between the second metal electrode and the first solder thin plate including the rod-shaped region. Semiconductor device. 金属電極が形成された半導体チップと金属板とを、Zn−Al系合金からなるハンダ薄板を介して接合する半導体装置の製造方法であって、
前記半導体チップの前記金属電極と前記ハンダ薄板の第1の面とを超音波接合して第1の接合領域を形成する半導体チップ接合工程と、
前記金属板と前記ハンダ薄板の前記第1の面に対向する第2の面とを超音波接合して第2の接合領域を形成する金属板接合工程と、
少なくとも前記ハンダ薄板を加熱して溶融させて、前記第1の接合領域と前記第2の接合領域とに合金領域を形成する合金化工程とを、含むことを特徴とする半導体装置の製造方法。

A method of manufacturing a semiconductor device, comprising: joining a semiconductor chip having a metal electrode formed thereon and a metal plate via a solder thin plate made of a Zn-Al alloy;
A semiconductor chip bonding step of ultrasonically bonding the metal electrode of the semiconductor chip and the first surface of the solder thin plate to form a first bonding region;
A metal plate bonding step of ultrasonically bonding the metal plate and a second surface of the solder thin plate facing the first surface to form a second bonding region;
A method of manufacturing a semiconductor device, comprising at least an alloying step of heating and melting the solder thin plate to form an alloy region in the first bonding region and the second bonding region.

JP2016206963A 2016-10-21 2016-10-21 Semiconductor device and manufacturing method thereof Active JP6732189B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016206963A JP6732189B2 (en) 2016-10-21 2016-10-21 Semiconductor device and manufacturing method thereof
PCT/JP2017/034445 WO2018074146A1 (en) 2016-10-21 2017-09-25 Semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206963A JP6732189B2 (en) 2016-10-21 2016-10-21 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018067679A JP2018067679A (en) 2018-04-26
JP6732189B2 true JP6732189B2 (en) 2020-07-29

Family

ID=62018556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206963A Active JP6732189B2 (en) 2016-10-21 2016-10-21 Semiconductor device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6732189B2 (en)
WO (1) WO2018074146A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803834B2 (en) * 2007-11-02 2011-10-26 国立大学法人茨城大学 Zn-Al eutectoid alloy bonding material, method for producing Zn-Al eutectoid alloy bonding material, bonding method using Zn-Al eutectoid alloy bonding material, and Zn-Al eutectoid alloy bonding material Semiconductor device
JP6590336B2 (en) * 2015-06-03 2019-10-16 国立大学法人茨城大学 High heat-resistant solder junction semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018067679A (en) 2018-04-26
WO2018074146A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6433590B2 (en) Power semiconductor device manufacturing method and power semiconductor device
JP6352009B2 (en) Semiconductor device
JP6033011B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
JP6320556B2 (en) Power module
WO2012157583A1 (en) Semiconductor device and manufacturing method thereof
JP6479036B2 (en) Semiconductor device and method of manufacturing the same
JP2002289768A (en) Semiconductor device and its manufacturing method
JP2009016583A (en) Semiconductor device, and method of manufacturing the same
CN115274465A (en) Power semiconductor device
JP6366723B2 (en) Semiconductor device and manufacturing method thereof
US12040301B2 (en) Semiconductor device
JP5708961B2 (en) Manufacturing method of semiconductor device
JP2021145143A (en) Semiconductor device
JP6091443B2 (en) Semiconductor module
JP6104098B2 (en) Power semiconductor device and manufacturing method thereof
JP6008750B2 (en) Semiconductor device
JP6732189B2 (en) Semiconductor device and manufacturing method thereof
JP6129090B2 (en) Power module and method for manufacturing power module
JP4718809B2 (en) Electronic device, semiconductor device using the same, and method for manufacturing semiconductor device
JP2016181607A (en) Semiconductor device and manufacturing method of the same
JP2018085421A (en) Semiconductor device
JP5733466B2 (en) Manufacturing method of semiconductor device
JP5418654B2 (en) Semiconductor device
JP2016134547A (en) Semiconductor device
JP7017098B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6732189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250