JP6731308B2 - Valuable material recovery method and valuable resource recovery device - Google Patents

Valuable material recovery method and valuable resource recovery device Download PDF

Info

Publication number
JP6731308B2
JP6731308B2 JP2016153713A JP2016153713A JP6731308B2 JP 6731308 B2 JP6731308 B2 JP 6731308B2 JP 2016153713 A JP2016153713 A JP 2016153713A JP 2016153713 A JP2016153713 A JP 2016153713A JP 6731308 B2 JP6731308 B2 JP 6731308B2
Authority
JP
Japan
Prior art keywords
filtration
valuable resource
valuable
water
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016153713A
Other languages
Japanese (ja)
Other versions
JP2018020290A (en
Inventor
佳介 瀧口
佳介 瀧口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2016153713A priority Critical patent/JP6731308B2/en
Publication of JP2018020290A publication Critical patent/JP2018020290A/en
Application granted granted Critical
Publication of JP6731308B2 publication Critical patent/JP6731308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、外圧式中空糸膜モジュールを用いた有価物回収方法及び有価物回収装置の技術に関する。 The present invention relates to the technology of a valuable resource recovery method and a valuable resource recovery device using an external pressure type hollow fiber membrane module.

有価物の回収方法としては、浸漬型の中空糸膜を利用した吸引ろ過による方法(例えば、特許文献1参照)が知られている。また、フッ素の回収方法として、フッ化カルシウム及び炭酸カルシウムをケーキろ過し、膜上に堆積したケーキを洗浄水によって剥離して回収する方法が知られている(例えば、特許文献2参照)。 As a method of recovering valuable materials, a method by suction filtration using an immersion hollow fiber membrane is known (for example, refer to Patent Document 1). Further, as a method of recovering fluorine, a method is known in which calcium fluoride and calcium carbonate are filtered through a cake, and the cake deposited on the film is separated by washing water and recovered (see, for example, Patent Document 2).

特開2011−78950号公報JP, 2011-78950, A 特開2013−188673号公報JP, 2013-188673, A

ところで、浸漬型の中空糸膜は設置面積(所謂フットプリント)が大きくなるという問題があるため、設置面積を抑える点で、外圧式中空糸膜モジュールを用いたろ過方式が望ましい。外圧式とは中空糸膜の外表面から内側へろ過する方式を言う。 By the way, since the immersion type hollow fiber membrane has a problem that the installation area (so-called footprint) becomes large, a filtration method using an external pressure type hollow fiber membrane module is desirable from the viewpoint of suppressing the installation area. The external pressure method refers to a method of filtering from the outer surface of the hollow fiber membrane to the inner side.

また、膜による有価物回収においては、処理水の回収率(被処理水供給量に対して得られる処理水量の比)を高くするにしたがって、膜上に形成される有価物等のケーキにより、膜の目詰まりが起こり、安定的な運転が困難となる。これは、外圧式中空糸膜モジュールを用いた有価物回収においても同様である。 Further, in the recovery of valuables by means of a membrane, as the recovery rate of treated water (ratio of the amount of treated water obtained to the amount of treated water supplied) is increased, the cake of valuables etc. formed on the membrane causes Membrane clogging occurs and stable operation becomes difficult. This also applies to the recovery of valuables using the external pressure type hollow fiber membrane module.

そこで、本発明の目的は、外圧式中空糸膜モジュールを用いたろ過方式において、処理水の回収率を高く維持しながら、膜の目詰まりを抑制しつつ有価物を回収することができる有価物回収方法及び有価物回収装置を提供することにある。 Therefore, an object of the present invention is a filtration method using an external pressure type hollow fiber membrane module, while maintaining a high recovery rate of treated water, it is possible to recover valuable resources while suppressing clogging of the membrane. It is to provide a recovery method and a valuable resource recovery device.

本発明は、外圧式中空糸膜モジュールを用いて有価物を含む被処理水のろ過を行い、中空糸膜に前記有価物を堆積させるろ過処理工程後、前記外圧式中空糸膜モジュールへの前記被処理水の送液を停止させて、前記外圧式中空糸膜モジュールの一次側に気体のみを導入して、前記中空糸膜を洗浄し、当該膜から前記有価物を剥離させる工程を含む気体洗浄処理工程を行い、その後、前記ろ過処理工程に戻る、ろ過−気体洗浄サイクルと、前記ろ過−気体洗浄サイクルを少なくとも1回行い、次の前記ろ過処理工程後に、前記外圧式中空糸膜モジュールの二次側に逆洗水を導入して前記中空糸膜を洗浄し、当該膜から前記有価物を剥離させる逆洗処理工程と、前記気体洗浄処理工程で剥離された有価物及び前記洗浄処理工程で剥離された有価物のうち少なくともいずれか一方の有価物を、当該有価物を含む懸濁液として回収する回収工程と、を備える有価物回収方法である。 The present invention performs filtration of water to be treated containing a valuable substance using an external pressure type hollow fiber membrane module, and after the filtration treatment step of depositing the valuable substance on the hollow fiber membrane, A gas including a step of stopping the feeding of the water to be treated , introducing only gas to the primary side of the external pressure type hollow fiber membrane module, washing the hollow fiber membrane, and peeling the valuable material from the membrane. After performing a washing treatment step and then returning to the filtration treatment step, the filtration-gas washing cycle and the filtration-gas washing cycle are performed at least once, and after the next filtration treatment step, the external pressure type hollow fiber membrane module A backwashing treatment step of introducing backwash water into the secondary side to wash the hollow fiber membrane and peeling the valuable material from the membrane, and the valuable material peeled in the gas washing treatment step and the washing treatment step. In the valuable resource recovery method, there is provided a recovering step of recovering at least one of the valuable materials peeled off in step 1, as a suspension containing the valuable material.

前記有価物回収方法において、前記気体洗浄処理工程を行うタイミングを、被処理水について予め求めた前記ろ過処理工程における膜間差圧上昇速度と、許容膜間差圧上昇値とに基づいて決定することが好ましい。 In the valuable resource recovery method, the timing of performing the gas cleaning treatment step is determined based on the transmembrane pressure rise rate in the filtration treatment step previously obtained for the water to be treated and the allowable transmembrane pressure rise value. It is preferable.

前記有価物回収方法において、前記逆洗処理工程を行うタイミングを、ろ過流量、有価物の濃縮倍率、前記気体洗浄工程について予め設定した排水量及び前記逆洗工程について予め設定した排水量に基づいて決定することが好ましい。 In the valuable resource recovery method, the timing of performing the backwashing step is determined based on the filtration flow rate, the concentration ratio of the valuable resource, the preset amount of drainage for the gas cleaning step, and the preset amount of drainage for the backwash step. It is preferable.

前記有価物回収方法において、前記逆洗処理工程を行うタイミングを、前記中空糸膜の許容SS量、ろ過流量及び被処理水のSS濃度に基づいて決定することが好ましい。 In the valuable resource recovery method, it is preferable that the timing of performing the backwashing process is determined based on the allowable SS amount of the hollow fiber membrane, the filtration flow rate, and the SS concentration of the water to be treated.

前記有価物回収方法において、前記回収工程で得られた有価物を含む懸濁液に対して膜ろ過を行い、有価物を含む濃縮液を回収することが好ましい。 In the valuable resource recovery method, it is preferable to perform membrane filtration on the suspension containing the valuable resource obtained in the recovery step to recover the concentrated liquid containing the valuable resource.

前記有価物が炭素系有価物、シリコン系有価物、金属、又はこれらの混合物である場合に、前記有価物回収方法が好適に適用される。 The valuable resource recovery method is preferably applied when the valuable resource is a carbon valuable material, a silicon valuable material, a metal, or a mixture thereof.

本発明は、外圧式中空糸膜モジュールを用いて有価物を含む被処理水のろ過を行い、中空糸膜に前記有価物を堆積させるろ過処理後、前記外圧式中空糸膜モジュールへの前記被処理水の送液を停止させて、前記外圧式中空糸膜モジュールの一次側に気体のみを導入して、前記中空糸膜を洗浄し、当該膜から前記有価物を剥離させる工程を含む気体洗浄処理を行い、その後、前記ろ過処理に戻る、ろ過−気体洗浄サイクルを行うろ過−気体洗浄手段と、前記ろ過−気体洗浄サイクルを少なくとも1回行い、次の前記ろ過処理後に、前記外圧式中空糸膜モジュールの二次側に逆洗水を導入して前記中空糸膜を洗浄し、当該膜から前記有価物を剥離させる逆洗処理を行う逆洗手段と、前記気体洗浄処理で剥離された有価物及び前記逆洗処理で剥離された有価物のうち少なくともいずれか一方の有価物を、当該有価物を含む懸濁液として回収する回収手段と、を備える有価物回収装置である。 The present invention performs filtration of water to be treated containing a valuable substance using an external pressure type hollow fiber membrane module, and after the filtration treatment for depositing the valuable substance on a hollow fiber membrane, the external pressure type hollow fiber membrane module is subjected to the above-mentioned treatment. Gas cleaning including a step of stopping the feeding of treated water, introducing only gas to the primary side of the external pressure type hollow fiber membrane module, cleaning the hollow fiber membrane, and peeling the valuable material from the membrane After performing the treatment, and then returning to the filtration treatment, a filtration-gas washing means for performing a filtration-gas washing cycle, and performing the filtration-gas washing cycle at least once, and after the next filtration treatment, the external pressure type hollow fiber. Backwash water is introduced into the secondary side of the membrane module to wash the hollow fiber membrane, and a backwash means for performing the backwash treatment for peeling the valuable material from the membrane, and the valuable stripped by the gas washing treatment. And a recovery means for recovering at least one of the valuables separated by the backwashing process as a suspension containing the valuables.

前記有価物回収装置において、前記気体洗浄処理を行うタイミングは、被処理水について予め求めた前記ろ過処理における膜間差圧上昇速度と、許容膜間差圧上昇値とに基づいて決定されることが好ましい。 In the valuable resource recovery device, the timing of performing the gas cleaning process is determined based on the transmembrane pressure increase rate and the allowable transmembrane pressure increase value in the filtration process that are obtained in advance for the water to be treated. Is preferred.

前記有価物回収装置において、前記逆洗処理を行うタイミングは、ろ過流量、有価物の濃縮倍率、前記気体洗浄処理について予め設定した排水量及び前記逆洗処理について予め設定した排水量に基づいて決定されることが好ましい。 In the valuable resource recovery device, the timing of performing the backwashing process is determined based on the filtration flow rate, the concentration ratio of the valuable resource, the preset amount of wastewater for the gas cleaning process, and the preset amount of wastewater for the backwashing process. It is preferable.

前記有価物回収装置において、前記逆洗処理を行うタイミングは、前記中空糸膜における許容SS量、ろ過流量及び被処理水のSS濃度に基づいて決定されることが好ましい。 In the valuable resource recovery device, the timing of performing the backwashing process is preferably determined based on the allowable SS amount in the hollow fiber membrane, the filtration flow rate, and the SS concentration of the water to be treated.

前記有価物回収装置において、前記回収手段で得られた有価物を含む懸濁液に対して膜ろ過を行い、有価物を含む濃縮液を回収する濃縮液回収手段を備えることが好ましい。 In the valuable resource recovery device, it is preferable to provide a concentrated liquid recovery means for performing membrane filtration on the suspension containing the valuable resource obtained by the recovery means to recover a concentrated liquid containing the valuable resource.

前記有価物が炭素系有価物、シリコン系有価物、金属、又はこれらの混合物である場合に、前記有価物回収装置が好適に適用される。 When the valuable resource is a carbon valuable resource, a silicon valuable resource, a metal, or a mixture thereof, the valuable resource recovery device is preferably applied.

本発明によれば、外圧式中空糸膜モジュールを用いたろ過方式において、処理水の回収率を高く維持しながら、膜の目詰まりを抑制しつつ有価物を回収することができる。 According to the present invention, in a filtration system using an external pressure type hollow fiber membrane module, it is possible to collect valuables while suppressing the clogging of the membrane while maintaining a high recovery rate of treated water.

本実施形態に係る有価物回収装置の構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a structure of the valuable resource recovery device which concerns on this embodiment. 本実施形態に係る有価物回収装置の構成の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of a structure of the valuable resource recovery device which concerns on this embodiment. 本実施形態に係る有価物回収装置の構成の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of a structure of the valuable resource recovery device which concerns on this embodiment. 実施例1及び比較例の通水結果を示す図である。It is a figure which shows the water flow result of Example 1 and a comparative example. 実施例2の通水結果を示す図である。It is a figure which shows the water flow result of Example 2.

本発明の実施形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る有価物回収装置の構成の一例を示す概略構成図である。図1に示す有価物回収装置1は、原水槽10と、ろ過−気体洗浄手段の一例としてのろ過−気体洗浄装置(膜モジュール12、コンプレッサ30及び気体供給配管32等から構成)と、逆洗手段の一例として逆洗装置(処理水槽14、ポンプ26及び逆洗水配管28等から構成)と、回収手段の一例としての回収装置(回収槽16及び上部排水管34等から構成)を備える。 FIG. 1 is a schematic configuration diagram showing an example of the configuration of the valuable resource recovery device according to the present embodiment. A valuable resource recovery device 1 shown in FIG. 1 includes a raw water tank 10, a filtration-gas cleaning device (comprising a membrane module 12, a compressor 30, a gas supply pipe 32, etc.) as an example of filtration-gas cleaning means, and backwashing. A backwash device (comprising the treated water tank 14, the pump 26, the backwash water pipe 28, etc.) as an example of the means, and a recovery device (composed of the recovery tank 16, the upper drain pipe 34, etc.) as an example of the recovery means are provided.

図1の有価物回収装置1において、原水槽10の入口には、原水配管18が接続されている。原水槽10の出口と膜モジュール12の一次側被処理水入口とは、ポンプ20を介して原水配管22により接続されている。膜モジュール12の二次側出口と処理水槽14の入口とは、ろ過処理水配管24により接続されている。処理水槽14の逆洗水出口とろ過処理水配管24とは、ポンプ26を介して逆洗水配管28により接続されている。膜モジュール12の一次側気体入口には、コンプレッサ30が気体供給配管32により接続されている。膜モジュール12の一次側上部排水口と回収槽16の入口とは上部排水管34により接続されている。 In the valuable resource recovery device 1 of FIG. 1, a raw water pipe 18 is connected to the inlet of the raw water tank 10. The outlet of the raw water tank 10 and the primary side treated water inlet of the membrane module 12 are connected by a raw water pipe 22 via a pump 20. The secondary outlet of the membrane module 12 and the inlet of the treated water tank 14 are connected by a filtered treated water pipe 24. The backwash water outlet of the treated water tank 14 and the filtered treated water pipe 24 are connected by a backwash water pipe 28 via a pump 26. A compressor 30 is connected to the primary gas inlet of the membrane module 12 by a gas supply pipe 32. An upper drain pipe 34 connects the primary upper drain port of the membrane module 12 and the inlet of the recovery tank 16.

本実施形態に係る有価物回収装置1の動作の一例について説明する。 An example of the operation of the valuable resource recovery device 1 according to this embodiment will be described.

有価物を含む原水(被処理水)は、原水配管18を通して必要に応じて原水槽10に貯留される。被処理水は、ポンプ20によって原水配管22を通して外圧式中空糸膜を備える膜モジュール12の一次側(原水(被処理水)側)に送液される。膜モジュール12において中空糸膜によりろ過処理が行われ、被処理水は中空糸膜の外表面から内側へろ過され、有価物が中空糸膜上に堆積する(ろ過処理工程)。 Raw water (water to be treated) containing valuables is stored in the raw water tank 10 through the raw water pipe 18 as necessary. The treated water is sent by the pump 20 to the primary side (raw water (treated water) side) of the membrane module 12 including the external pressure type hollow fiber membrane through the raw water pipe 22. In the membrane module 12, the hollow fiber membrane is subjected to a filtration treatment, the water to be treated is filtered from the outer surface of the hollow fiber membrane to the inside, and valuables are deposited on the hollow fiber membrane (filtration treatment step).

ろ過処理された処理水は、ろ過処理水配管24を通して処理水槽14へ送液され、貯留される。処理水の少なくとも一部は、逆洗水として後述する逆洗処理に用いられてもよい。 The filtered treated water is sent to and stored in the treated water tank 14 through the filtered treated water pipe 24. At least a part of the treated water may be used as backwash water in the backwash treatment described later.

中空糸膜上に有価物のケーキが形成され、膜モジュール12における膜間差圧が上昇して、膜の洗浄が必要になった場合、例えば、後述するように、被処理水について予め求めた膜間差圧上昇速度と、ろ過処理工程における許容膜間差圧上昇値とに基づいて決定したタイミングで、気体洗浄が行われる。具体的には、ポンプ20による膜モジュール12への被処理水の送液が停止された後、コンプレッサ30が稼働され、空気等の気体が気体供給配管32を通して膜モジュール12の一次側気体入口から供給され、気体により中空糸膜を振動させることによって、中空糸膜から有価物のケーキが剥離され、中空糸膜が洗浄される(気体洗浄処理工程)。 When a cake of valuables is formed on the hollow fiber membrane and the transmembrane pressure difference in the membrane module 12 rises and the membrane needs to be washed, for example, as described below, the water to be treated was previously obtained. The gas cleaning is performed at the timing determined based on the transmembrane pressure increase rate and the allowable transmembrane pressure increase value in the filtration process. Specifically, after the pump 20 stops feeding the water to be treated to the membrane module 12, the compressor 30 is operated and a gas such as air is passed through the gas supply pipe 32 from the primary gas inlet of the membrane module 12. By supplying and vibrating the hollow fiber membrane with gas, the cake of valuables is peeled off from the hollow fiber membrane, and the hollow fiber membrane is washed (gas washing treatment step).

気体洗浄処理後、原水がポンプ20によって原水配管22を通して膜モジュール12の一次側に送液され、上部排水管34を通して排出される。気体洗浄処理により剥離された有価物は、原水と共に上部排水管34を通して排出され、有価物を含む懸濁液として回収槽16にて回収される(回収工程A)。回収工程Aは、コンプレッサ30を稼働させ、膜モジュール12の一次側に気体を供給しながら行ってもよい。なお、原水の代わりに、処理水を用いてもよい。 After the gas cleaning process, the raw water is sent to the primary side of the membrane module 12 by the pump 20 through the raw water pipe 22 and discharged through the upper drain pipe 34. The valuable substance separated by the gas cleaning treatment is discharged together with the raw water through the upper drain pipe 34, and is recovered in the recovery tank 16 as a suspension containing the valuable substance (recovery step A). The recovery step A may be performed while operating the compressor 30 and supplying gas to the primary side of the membrane module 12. The treated water may be used instead of the raw water.

回収工程A後、ろ過処理及び気体洗浄処理のろ過−気体洗浄サイクルに戻る。このようにして、ろ過−気体洗浄サイクル及び回収工程を複数回繰り返した後、次のサイクルにおけるろ過処理後に、逆洗処理を行う。具体的には、ポンプ20により膜モジュール12への被処理水の送液が停止された後、ポンプ26が稼働され、処理水が逆洗水配管28を通して膜モジュール12の二次側から供給され、膜モジュール12の上部排水管34から排水される(逆洗処理工程)。また、本実施形態では、逆洗処理工程により、中空糸膜から剥離された有価物のケーキは、処理水と共に上部排水管34を通して排出され、有価物を含む懸濁液として回収槽16にて回収される(回収工程B)。 After the recovery step A, the process returns to the filtration-gas cleaning cycle of the filtration process and the gas cleaning process. In this way, the filtration-gas cleaning cycle and the recovery process are repeated a plurality of times, and then the backwashing process is performed after the filtering process in the next cycle. Specifically, after the pump 20 stops the feed of the water to be treated to the membrane module 12, the pump 26 is operated and the treated water is supplied from the secondary side of the membrane module 12 through the backwash water pipe 28. , Is drained from the upper drain pipe 34 of the membrane module 12 (backwashing process step). Further, in the present embodiment, the cake of the valuables separated from the hollow fiber membrane by the backwashing process is discharged through the upper drain pipe 34 together with the treated water, and in the recovery tank 16 as a suspension containing the valuables. Collected (collection step B).

本実施形態では、ろ過−気体洗浄サイクル及び回収工程Aを複数回繰り返した後、逆洗処理と共に回収工程Bを行っているがこれに制限されるものではなく、例えば、回収工程A及び回収工程Bは少なくともいずれか一方でよく、また、逆洗処理工程は、ろ過−気体洗浄サイクルを少なくとも1回行った後、次のサイクルにおけるろ過処理工程後に行われればよい。具体的には、ろ過−気体洗浄サイクル及び回収工程Aを少なくとも1回行った後、次のろ過工程後、逆洗処理工程と共に回収工程Bを行ってもよい。また、ろ過−気体洗浄サイクル及び回収工程Aを少なくとも1回行った後、次のろ過工程後に、逆洗処理工程は行うが回収工程Bは行わず(例えば、有価物を含む懸濁液を回収槽16に供給することなく、系外へ排出)、ろ過−気体洗浄サイクルに戻っても良い。また、ろ過−気体洗浄サイクルを少なくとも1回行い、回収工程Aを行わず(例えば、有価物を含む懸濁液を回収槽16に供給しない、又は原水を膜モジュール12に供給しない)、次のろ過工程後、逆洗処理工程と共に回収工程Bを行っても良い。 In the present embodiment, the filtration-gas cleaning cycle and the recovery process A are repeated a plurality of times, and then the backwash process and the recovery process B are performed, but the present invention is not limited to this. For example, the recovery process A and the recovery process. B may be at least one of them, and the backwash treatment step may be performed after performing the filtration-gas washing cycle at least once and after the filtration treatment step in the next cycle. Specifically, after performing the filtration-gas cleaning cycle and the collecting step A at least once, the collecting step B may be performed together with the backwashing step after the next filtering step. In addition, after performing the filtration-gas cleaning cycle and the recovery step A at least once, after the next filtration step, the backwash processing step is performed but the recovery step B is not performed (for example, a suspension containing a valuable resource is recovered. It may be discharged to the outside of the system without being supplied to the tank 16) and returned to the filtration-gas cleaning cycle. Further, the filtration-gas cleaning cycle is performed at least once, and the recovery step A is not performed (for example, the suspension containing the valuable material is not supplied to the recovery tank 16 or the raw water is not supplied to the membrane module 12), and After the filtering step, the collecting step B may be performed together with the backwashing step.

本実施形態では、ろ過−気体洗浄サイクル及び逆洗処理を行うことで、処理水の回収率を高く維持しても(例えば、回収率90%以上)、有価物を含むケーキは膜面から効果的に剥離されるため、膜の目詰まり(膜間差圧の上昇)を抑えることが可能となる。さらに、回収工程Aや回収工程Bにより、膜面から剥離された有価物が回収される。したがって、処理水の回収率を高く維持しながら、膜の目詰まりを抑えつつ、有価物を回収することが可能となる。 In the present embodiment, by performing the filtration-gas cleaning cycle and the backwashing process, even if the recovery rate of the treated water is maintained high (for example, the recovery rate is 90% or more), the cake containing valuables is effective from the film surface. It is possible to suppress clogging of the film (increase in transmembrane pressure difference) because the film is peeled off. Further, in the recovery process A and the recovery process B, the valuable material separated from the film surface is recovered. Therefore, it becomes possible to collect valuables while maintaining a high recovery rate of treated water and suppressing clogging of the membrane.

本実施形態に係る有価物回収装置1は、例えば、炭素繊維、活性炭等の炭素系有価物を含む被処理水、シリカ等のシリコン系有価物を含む被処理水、タングステン、金、銅等の金属を含む被処理水、またはこれらの化合物及び混合物を含む被処理水に対する処理に好適に適用される。なお、処理対象となる有価物を含む被処理水は、上記に制限されるものではなく、例えば、フッ化カルシウム等のフッ素系有価物を含む被処理水の有価物を含む被処理水等が挙げられる。 The valuable resource recovery apparatus 1 according to the present embodiment includes, for example, water to be treated containing carbon-based valuables such as carbon fiber and activated carbon, water to be treated including silicon-based valuables such as silica, tungsten, gold and copper. It is suitably applied to treatment of water to be treated containing a metal or water to be treated containing a compound and a mixture thereof. Incidentally, the water to be treated containing the valuable substance to be treated is not limited to the above, and for example, the treated water containing the valuable substance to be treated water containing the fluorine-based valuable substance such as calcium fluoride is Can be mentioned.

膜モジュール12において用いられる中空糸膜は、例えば、ポリフッ化ビニリデン(PVDF)製等のUF膜である。中空糸膜の孔径は、例えば、0.001μm〜0.003μmの範囲、分画分子量では数千〜数十万Daの範囲であり、膜面積は、例えば、20m〜80mの範囲である。 The hollow fiber membrane used in the membrane module 12 is, for example, a UF membrane made of polyvinylidene fluoride (PVDF) or the like. The pore size of the hollow fiber membrane, for example, the range of 0.001Myuemu~0.003Myuemu, in the range of several thousand to several hundreds of thousand Da in molecular cutoff, membrane area, for example, in the range of 20m 2 ~80m 2 ..

気体洗浄処理工程で用いられる気体は、特に制限はないが、空気等が挙げられ、コスト等の点から、通常は、空気である。 The gas used in the gas cleaning process is not particularly limited, but air or the like can be mentioned, and is usually air from the viewpoint of cost and the like.

気体洗浄処理工程で用いられる気体供給手段としては、特に制限はないが、例えば、コンプレッサ、ブロワ等が挙げられる。 The gas supply means used in the gas cleaning process is not particularly limited, but examples thereof include a compressor and a blower.

[ろ過時間の決め方]
ここで、本実施形態において、ろ過処理工程におけるろ過時間、すなわち、気体洗浄処理を行うタイミングは、例えば、被処理水について予め求めた、ろ過処理工程における膜間差圧が上昇する速度を示す膜間差圧上昇速度と、予め決めた、どこまでの膜間差圧の上昇を許容するかを示す許容膜間差圧上昇値とに基づいて決定することができる。有価物(SS成分)等を含む原水のろ過処理において、処理水の回収率を高く維持しようとすると、膜の細孔内部のファウリングと比較して膜面のケーキ形成が支配的となる。膜面に形成されたケーキのろ過抵抗は、下記式(*1)で示したとおり、比抵抗α、被処理水の粘度、膜面の単位面積あたりのケーキ量およびろ過流束の積で表すことができる。
ケーキのろ過抵抗[Pa]=比抵抗α[m/g]×被処理水の粘度[Pa・s]×単位面積あたりのケーキ量[g/m]×ろ過流束[m/s]・・・(*1)
[How to determine filtration time]
Here, in the present embodiment, the filtration time in the filtration treatment step, that is, the timing at which the gas cleaning treatment is performed is, for example, a membrane that is obtained in advance for the water to be treated and indicates the speed at which the transmembrane pressure difference in the filtration treatment step increases. It can be determined based on the rate of increase in the transmembrane pressure and a predetermined allowable transmembrane pressure increase value indicating how much the transmembrane pressure is allowed to rise. When it is attempted to maintain a high recovery rate of treated water in filtration treatment of raw water containing valuable substances (SS components) and the like, cake formation on the membrane surface becomes dominant as compared with fouling inside pores of the membrane. The filtration resistance of the cake formed on the membrane surface is represented by the product of the specific resistance α, the viscosity of the water to be treated, the amount of cake per unit area of the membrane surface and the filtration flux, as shown in the following formula (*1). be able to.
Cake filtration resistance [Pa] = specific resistance α [m/g] x viscosity of treated water [Pa·s] x cake amount per unit area [g/m 2 ] x filtration flux [m/s]・・(*1)

ここで、比抵抗αは、被処理水が膜面に形成されたケーキを通過する際の、単位ケーキ量あたりの抵抗である。また、単位面積あたりのケーキ量は、下記式(*2)で示したとおり、被処理水のSS濃度と流量と時間の積を膜面積で除することで算出することができる。
単位面積あたりのケーキ量[g/m]=被処理水のSS濃度[g/m]×流量[m/s]×時間[s]/膜面積[m]・・・(*2)
Here, the specific resistance α is a resistance per unit amount of cake when the water to be treated passes through the cake formed on the film surface. Further, the amount of cake per unit area can be calculated by dividing the product of the SS concentration of the water to be treated, the flow rate and the time by the membrane area, as shown in the following formula (*2).
Amount of cake per unit area [g/m 2 ]=SS concentration of treated water [g/m 3 ]×flow rate [m 3 /s]×time [s]/membrane area [m 2 ]...(* 2)

上記式(*1)と上記式(*2)とから、下記式(*3)を得ることができる。
膜間差圧上昇速度[Pa/s]=ケーキのろ過抵抗[Pa]/時間[s]=比抵抗α[m/g]×被処理水の粘度[Pa・s]×被処理水のSS濃度[g/m]×(被処理水のろ過流束)[m/s]・・・(*3)
The following formula (*3) can be obtained from the formula (*1) and the formula (*2).
Transmembrane pressure increase rate [Pa/s] = cake filtration resistance [Pa]/time [s] = specific resistance α [m/g] x treated water viscosity [Pa·s] x treated water SS Concentration [g/m 3 ] x (filtered water flux of treated water) 2 [m 2 /s 2 ]... (*3)

すなわち、比抵抗αがわかれば、膜間差圧上昇速度を求めることができ、上述のとおり、予め設定した許容膜間差圧上昇値と膜間差圧上昇速度とによりろ過時間を算出することができる。 That is, if the specific resistance α is known, the transmembrane pressure increase rate can be obtained, and as described above, the filtration time can be calculated from the preset allowable transmembrane pressure increase value and the transmembrane pressure increase rate. You can

[実機での運転について]
(a)実機では原水濁度を測定することが多いが、有価物等の濁度成分の性状によっては濁度/SS比は異なる。そこで、原水をサンプリングして濁度とSSを測定する。
(濁度/SS比)[度/(mg/L)]=原水濁度[度]/原水SS濃度[mg/L]
→ 原水濁度[度]=原水SS濃度[mg/L]×(濁度/SS比)[度/(mg/L)]
[About actual operation]
(A) Raw water turbidity is often measured with an actual machine, but the turbidity/SS ratio differs depending on the properties of turbidity components such as valuables. Therefore, raw water is sampled to measure turbidity and SS.
(Turbidity/SS ratio) [degree/(mg/L)]=raw water turbidity [degree]/raw water SS concentration [mg/L]
→ Raw water turbidity [degree] = Raw water SS concentration [mg/L] x (turbidity/SS ratio) [degree/(mg/L)]

よって、濁度/SS比を求めることで、原水濁度を測定して、原水SS濃度を求めることができる。 Therefore, by determining the turbidity/SS ratio, the turbidity of the raw water can be measured to determine the SS concentration of the raw water.

(b)ケーキのろ過抵抗α[m/mg]は実機に通水して、測定することもできるが、ラボ試験で簡易的に測定することができる。例えば、定圧ろ過試験を行い、ろ過速度の経時変化を測定する。単位膜面積あたりのろ過速度[m/m/s]の逆数[s/m]を単位膜面積あたりのろ液量[m/m]に対してプロットする。ルース(Ruth)のろ過式より、プロットした傾きからケーキのろ過比抵抗α[m/mg]を算出することができる。すなわち、比抵抗α[m/mg]は式(*4)で算出することができる。なお、K[s/m]は、ろ過定数である。
比抵抗α[m/g]=K[s/m]×ろ過抵抗[Pa]/(被処理水の粘度[Pa・s]×SS濃度[g/m])・・・(*4)
(B) Although the filtration resistance α [m/mg] of the cake can be measured by passing water through an actual machine, it can be simply measured by a laboratory test. For example, a constant pressure filtration test is performed to measure the change in filtration rate over time. The reciprocal [s/m] of the filtration rate [m 3 /m 2 /s] per unit membrane area is plotted against the filtrate amount [m 3 /m 2 ] per unit membrane area. The filtration specific resistance α [m/mg] of the cake can be calculated from the slope plotted by the Ruth filtration formula. That is, the specific resistance α [m/mg] can be calculated by the equation (*4). K[s/m 2 ] is a filtration constant.
Specific resistance α [m/g]=K [s/m 2 ]×filtration resistance [Pa]/(viscosity of treated water [Pa·s]×SS concentration [g/m 3 ])...(*4 )

(c)式(*3)より、原水濁度に応じて膜間差圧上昇速度を算出することができる。これにより、ろ過工程1サイクルあたりの許容膜間差圧上昇値[kPa]を定めれば、原水SS濃度に対して許容膜間差圧上昇に至る時間を算出できる。この時間をろ過工程のろ過時間とし、このろ過時間の経過後に気体洗浄を行えばよい。 The transmembrane pressure increase rate can be calculated according to the raw water turbidity from the equation (c) (*3). Accordingly, by setting the allowable transmembrane pressure difference increase value [kPa] per one cycle of the filtration process, the time required for the permissible transmembrane pressure increase to the raw water SS concentration can be calculated. This time is defined as the filtration time of the filtration step, and gas cleaning may be performed after the lapse of this filtration time.

ろ過処理工程1サイクルあたりの許容膜間差圧上昇値[kPa]は、膜モジュールや配管等の許容圧力等に基づいて決めてもよいし、膜ろ過用のポンプの仕様等に基づいて決めてもよく、特に制限はない。許容膜間差圧上昇値は、例えば、25kPa以下に設定すればよい。許容膜間差圧上昇値が25kPaよりも高いと、膜面に堆積した有価物等が圧密されて気体洗浄での剥離効果が低減する場合がある。許容膜間差圧上昇値は、20kPa以下に設定することがより好ましく、10kPa以下に設定することがさらに好ましい。原水に含まれる有価物等の濁度成分が、圧縮性が高い成分の場合は、許容膜間差圧上昇値を低めの値、例えば10kPa〜25kPaの範囲に設定し、圧縮性が低い成分の場合は、高めの値、例えば25kPa〜50kPaの範囲に設定してもよい。圧縮性が低い成分においても、例えば、10kPa〜25kPaの範囲に設定してもよいが、気体洗浄の回数が多くなり、非効率となる場合がある。 The permissible transmembrane differential pressure increase value [kPa] per one cycle of the filtration treatment step may be determined based on the permissible pressure of the membrane module or the piping, or based on the specifications of the membrane filtration pump or the like. There is no particular limitation. The permissible transmembrane pressure difference increase value may be set to, for example, 25 kPa or less. If the permissible transmembrane differential pressure increase value is higher than 25 kPa, valuables and the like deposited on the film surface may be consolidated and the peeling effect in gas cleaning may be reduced. The allowable transmembrane pressure difference increase value is more preferably set to 20 kPa or less, and further preferably set to 10 kPa or less. When the turbidity component such as valuables contained in the raw water is a component having high compressibility, the allowable transmembrane pressure difference increase value is set to a lower value, for example, in the range of 10 kPa to 25 kPa, In this case, a higher value, for example, a range of 25 kPa to 50 kPa may be set. Even in the case of a component having low compressibility, for example, it may be set in the range of 10 kPa to 25 kPa, but the number of times of gas cleaning increases, which may result in inefficiency.

このように、気体洗浄処理を行うタイミング、すなわちろ過処理工程のろ過時間を、被処理水について予め求めた膜間差圧上昇速度と、予め決めた、ろ過処理工程における許容膜間差圧上昇値とに基づいて決定することができる。 In this way, the timing of performing the gas cleaning process, that is, the filtration time of the filtration process, the transmembrane pressure increase rate that was previously obtained for the water to be treated, and the predetermined permissible transmembrane pressure increase value in the filtration process And can be determined based on.

ろ過工程のろ過時間、すなわち気体洗浄処理を行うタイミングを、さらに、原水濁度、色度、SSのいずれかまたは組み合わせに基づいて決定してもよい。 The filtration time of the filtration step, that is, the timing of performing the gas cleaning treatment may be further determined based on any or a combination of raw water turbidity, chromaticity, and SS.

原水濁度が50度未満の原水(以下、「通常原水」と呼ぶ場合がある)に対して、ろ過時間を短くすると気体洗浄が頻繁に行われるため、気体使用量が増加する。これにより、コンプレッサやブロワ等のランニングコストの増加を招く。一方で、ろ過時間を長くすると、膜表面に堆積した有価物が気体洗浄によって除去されにくくなる。 For raw water having a turbidity of less than 50 degrees (hereinafter, may be referred to as “normal raw water”), if the filtration time is shortened, gas cleaning is performed frequently, and thus the amount of gas used increases. This causes an increase in running costs of the compressor, the blower and the like. On the other hand, if the filtration time is lengthened, the valuable substances deposited on the membrane surface are difficult to remove by gas cleaning.

高濁度原水の場合は、濁度が上昇するにしたがって安定運転するためのろ過時間は短くなっていく。そのため、ろ過時間は一定ではなく原水水質に応じて制御されることが好ましい。 In the case of high turbidity raw water, the filtration time for stable operation becomes shorter as the turbidity increases. Therefore, it is preferable that the filtration time is not constant but controlled according to the raw water quality.

原水水質は、原水濁度、色度、SSのいずれかまたは組み合わせが挙げられるが、オンライン監視が容易である原水濁度によって決定することが好ましい。 The raw water quality may be any one or combination of raw water turbidity, chromaticity, SS, and is preferably determined by raw water turbidity, which is easy to monitor online.

気体洗浄処理工程は、膜モジュール12の一次側の水が排出された状態で行っても、一次側に水(原水又は処理水)が満たされた状態で行っても良い。 The gas cleaning treatment step may be performed in a state where the water on the primary side of the membrane module 12 is discharged or a state in which the primary side is filled with water (raw water or treated water).

ろ過−気体洗浄サイクルを複数回行い、次のろ過処理工程の後で、逆洗工程を行うことが好ましい((ろ過工程→気体洗浄工程)×n回(nは2以上)→ろ過工程→逆洗工程)。これにより、気体洗浄では除去が困難な有価物を含むケーキを膜から剥離することが可能となる。 It is preferable to perform the filtration-gas cleaning cycle a plurality of times and perform the backwashing step after the next filtration treatment step ((filtration step→gas washing step)×n times (n is 2 or more)→filtration step→reverse) Washing step). As a result, it becomes possible to peel the cake containing valuables that is difficult to remove by gas cleaning from the film.

逆洗処理工程において、逆洗と、例えば、気体洗浄、気体同時逆洗、ドレン、フラッシング、気体同時フラッシング等を組み合わせてもよい。例えば、現状の実験結果で最適な逆洗工程とされているのは、ろ過工程→気体洗浄→気体同時逆洗→逆洗→気体同時フラッシング→フラッシングの順序での組み合わせである。 In the backwashing process, backwashing may be combined with, for example, gas cleaning, gas simultaneous backwashing, draining, flushing, gas simultaneous flushing and the like. For example, the most suitable backwash process in the present experimental results is a combination of the order of filtration process→gas cleaning→gas simultaneous backwashing→backwashing→gas simultaneous flushing→flushing.

気体同時逆洗は、コンプレッサ30からの空気等の気体を膜モジュール12の一次側気体入口から供給するとともに、逆洗を行う工程である。例えば、ポンプ26によって逆洗水配管28、ろ過処理水配管24を通して処理水を膜モジュール12の二次側から一次側に導入するとともに、コンプレッサ30により気体供給配管32を通して膜モジュール12の一次側気体入口から気体を供給し、上部排水管34から排出すればよい。気体同時フラッシングは、コンプレッサ30からの空気等の気体を膜モジュール12の一次側気体入口から供給するとともに、フラッシングを行う工程である。例えば、ポンプ20により原水配管22を通して原水等を膜モジュール12の一次側に導入するとともに、コンプレッサ30により気体供給配管32を通して膜モジュール12の一次側気体入口から気体を供給し、上部排水管34から排出すればよい。 The simultaneous gas backwashing is a step of supplying gas such as air from the compressor 30 from the primary side gas inlet of the membrane module 12 and performing backwashing. For example, the pump 26 introduces the treated water from the secondary side of the membrane module 12 to the primary side through the backwash water pipe 28 and the filtered treated water pipe 24, and the compressor 30 passes through the gas supply pipe 32 to the primary side gas of the membrane module 12. Gas may be supplied from the inlet and discharged from the upper drain pipe 34. Simultaneous gas flushing is a step of supplying gas such as air from the compressor 30 from the primary side gas inlet of the membrane module 12 and performing flushing. For example, the pump 20 introduces raw water or the like into the primary side of the membrane module 12 through the raw water pipe 22, and the compressor 30 supplies gas from the primary side gas inlet of the membrane module 12 through the gas supply pipe 32 and the upper drain pipe 34. It should be discharged.

逆洗処理工程を行う判断、すなわち、逆洗を行うタイミングは、例えば、以下のようにして決定される。逆洗タイミング(h)とは、逆洗工程終了後から次の逆洗工程までの時間である。この時間には、ろ過工程と気体洗浄工程を繰り返し行う。なお、気体洗浄タイミング(h)とは、気体洗浄工程終了後から次の気体洗浄工程までの時間である。以下、気体洗浄をASと称する場合がある。 The judgment of performing the backwash process, that is, the timing of performing the backwash is determined as follows, for example. The backwash timing (h) is the time from the end of the backwash process to the next backwash process. During this time, the filtration process and the gas cleaning process are repeated. The gas cleaning timing (h) is the time from the end of the gas cleaning process to the next gas cleaning process. Hereinafter, gas cleaning may be referred to as AS.

逆洗タイミングは、膜ろ過の一般的な30分や1時間のように設定してもよいし、気体洗浄工程により差圧が十分に回復すれば、6時間や12時間と設定してもよい。十分な回復とは、例えば、気体洗浄工程後のろ過工程開始直後の膜間差圧が前記気体洗浄工程前のろ過工程開始直後の膜間差圧と同等であるか否かで判断できる。 The backwashing timing may be set to a general time of 30 minutes or 1 hour for membrane filtration, or may be set to 6 hours or 12 hours if the differential pressure is sufficiently recovered by the gas washing step. .. Sufficient recovery can be determined by, for example, whether the transmembrane pressure difference immediately after the start of the filtration step after the gas cleaning step is equal to the transmembrane pressure difference immediately after the start of the filtration step before the gas cleaning step.

有価物の回収において、所定の濃縮倍率となるよう膜ろ過装置の運転をするケースがある。濃縮倍率は、以下の式(*6)から求められる。
濃縮倍率=1÷(1−水回収率)・・・(*6)
In the recovery of valuables, there are cases in which the membrane filtration device is operated so as to have a predetermined concentration ratio. The concentration ratio is calculated from the following formula (*6).
Concentration factor = 1 / (1-water recovery rate) ... (*6)

以下の式(*7)を用いて、所定の濃縮倍率となるように逆洗タイミングを設定してもよい。
ろ過量×(1−水回収率)=AS排水量+逆洗排水量・・・(*7)
The backwashing timing may be set so as to obtain a predetermined concentration ratio using the following formula (*7).
Filtration amount x (1-water recovery rate) = AS wastewater amount + backwash wastewater amount (*7)

AS排水量(L)は、逆洗工程から次の逆洗工程までのろ過工程−気体洗浄工程の繰り返しの中で気体洗浄工程中に膜ろ過装置から排出された水量の合計である。各気体洗浄工程の排水量は、膜モジュールや配管の保有水量、フラッシング水量等から予め設定される。逆洗排水量は、逆洗工程中に膜ろ過装置から排出される水量であり、膜モジュールや配管の保有水量、フラッシング水量等から予め設定される。 The AS wastewater amount (L) is the total amount of water discharged from the membrane filtration device during the gas cleaning step during the repetition of the filtration step-gas cleaning step from the backwash step to the next backwash step. The amount of waste water in each gas cleaning process is set in advance from the amount of water held in the membrane module and the pipe, the amount of flushing water, and the like. The backwash drainage amount is the amount of water discharged from the membrane filtration device during the backwashing process, and is set in advance from the amount of water held in the membrane module or the pipe, the amount of flushing water, and the like.

ろ過量は、逆洗工程から次の逆洗工程までのろ過工程で膜に供給した量であり、以下の式(*8)から求められる。
ろ過量(L)=ろ過流量(L/h)×逆洗タイミング(h)・・・(*8)
The filtration amount is the amount supplied to the membrane in the filtration steps from the backwash step to the next backwash step, and is calculated from the following formula (*8).
Filtration amount (L) = Filtration flow rate (L/h) x Backwash timing (h)... (*8)

したがって、(*7)は(*8)より、以下の式(*9)に書き換えられる。
逆洗タイミング(h)=(AS排水量(L)+逆洗排水量(L))÷(ろ過流量(L/h)×(1−水回収率))・・・(*9)
Therefore, (*7) is rewritten from (*8) into the following expression (*9).
Backwash timing (h)=(AS wastewater amount (L)+backwash wastewater amount (L))÷(filtration flow rate (L/h)×(1-water recovery rate)) (*9)

(*9)に(*6)を代入すれば、以下の式(*10)が得られる。すなわち、逆洗タイミングは所定の濃縮倍率を設定すれば、ろ過流量に応じて決定できる。
逆洗タイミング(h)=(AS排水量(L)+逆洗排水量(L))÷ろ過流量(L/h)×濃縮倍率・・・(*10)
By substituting (*6) into (*9), the following expression (*10) is obtained. That is, the backwash timing can be determined according to the filtration flow rate by setting a predetermined concentration ratio.
Backwash timing (h)=(AS wastewater amount (L)+backwash wastewater amount (L))÷filtration flow rate (L/h)×concentration factor...(*10)

逆洗処理工程を行う判断、すなわち、逆洗を行うタイミングを、膜面積あたりの中空糸膜の許容SS量(g/m)、ろ過流束(L/m・h)及び原水SS濃度(g/L)に基づいて決定してもよい。これらの関係式は、下式(*11)で表される。
ろ過流束×原水SS濃度×BWタイミング=中空糸膜の許容SS量・・・(*11)
The judgment of performing the backwashing process, that is, the timing of backwashing is based on the permissible hollow fiber membrane SS amount (g/m 2 ) per membrane area, filtration flux (L/m 2 ·h), and raw water SS concentration. It may be determined based on (g/L). These relational expressions are represented by the following expression (*11).
Filtration flux x raw water SS concentration x BW timing = allowable SS amount of hollow fiber membrane (*11)

中空糸膜の許容SS量とは、逆洗を行う際、膜上に堆積するケーキ量(SS量)をどこまで許容するかを示すものである。中空糸膜の許容SS量は、例えば、膜面積、ろ過性能、膜間差圧上昇速度、逆洗水量等から予め設定され、例えば、5〜600g/mの範囲で設定される。 The allowable SS amount of the hollow fiber membrane indicates how much the cake amount (SS amount) deposited on the membrane is allowed when backwashing. The allowable SS amount of the hollow fiber membrane is set in advance from, for example, the membrane area, filtration performance, transmembrane pressure difference increase rate, backwash water amount, etc., and is set in the range of 5 to 600 g/m 2 , for example.

原水SS濃度は、原水をサンプリングして測定した値である。 Raw water SS concentration is a value measured by sampling raw water.

逆洗処理工程を行う判断、すわなち、逆洗を行うタイミングを、処理水の回収率に基づいて決定してもよい。この場合、処理水の回収率が所定値未満とならない頻度で、逆洗工程を行えばよい。例えば、処理水の回収率を98%以上とする場合、ろ過水量、逆洗水量等にもよるが、逆洗工程は6時間毎に行うように設定される。 The judgment of performing the backwashing process, that is, the timing of performing the backwashing may be determined based on the recovery rate of the treated water. In this case, the backwashing process may be performed at a frequency such that the recovery rate of the treated water does not fall below a predetermined value. For example, when the recovery rate of treated water is 98% or more, the backwashing process is set to be performed every 6 hours, although it depends on the amount of filtered water, the amount of backwashing water, and the like.

また、逆洗処理工程を行う判断、すなわち、逆洗を行うタイミングを、ろ過工程におけるろ過時間の合計に基づいて決定してもよい。この場合、ろ過時間の合計が予め定めた時間を超えた場合に、逆洗工程を行えばよい。ろ過時間の合計に基づく決定の場合は、一定の周期ごとに逆洗処理工程を行うため、原水水質によらず回収率を一定に保つことができる。 Further, the judgment of performing the backwashing process, that is, the timing of performing the backwashing may be determined based on the total filtration time in the filtration process. In this case, the backwashing process may be performed when the total filtration time exceeds a predetermined time. In the case of the determination based on the total filtration time, the backwash process is performed at regular intervals, so that the recovery rate can be kept constant regardless of the raw water quality.

また、逆洗処理工程を行う判断、すわなち、逆洗を行うタイミングを、ろ過工程における膜間差圧に基づいて決定してもよい。膜間差圧は、絶対値(気体洗浄後の膜間差圧)を使用してもよいし、ろ過工程中に上昇した値(上昇値)を使用してもよい。いずれにしろ、膜間差圧が設定値を超えた場合に、逆洗処理工程を行えばよいが、膜間差圧の絶対値は逆洗によっても除去されない膜の閉塞物質により上昇していくため、ろ過工程中の上昇値を使用することが好ましいが、ここで、ろ過工程中の上昇値とは、気体洗浄工程または逆洗工程の後にろ過が再開された際の膜間差圧と現在値との差である。 Further, the judgment of performing the backwashing process, that is, the timing of performing the backwashing may be determined based on the transmembrane pressure difference in the filtration process. As the transmembrane pressure difference, an absolute value (transmembrane pressure difference after gas cleaning) may be used, or a value increased during the filtration step (increased value) may be used. In any case, when the transmembrane pressure difference exceeds the set value, the backwash process may be performed, but the absolute value of the transmembrane pressure rises due to the clogging substance of the membrane that is not removed even by the backwash process. Therefore, it is preferable to use the rise value during the filtration step, but here, the rise value during the filtration step means the transmembrane pressure difference at the time when the filtration is restarted after the gas cleaning step or the backwashing step and the current value. It is the difference from the value.

判断に用いる上昇値の設定値は、例えば、逆洗工程において、逆洗の前に気体洗浄を行う場合、気体洗浄後の膜間差圧が、所定の許容膜間差圧(例えば、25kPa)以上とすることができる。 The set value of the rising value used for the determination is, for example, in the backwashing step, when performing gas cleaning before backwashing, the transmembrane pressure difference after gas cleaning is a predetermined permissible transmembrane pressure difference (for example, 25 kPa). The above can be done.

逆洗工程を行う判断は、上記ろ過時間の合計と、ろ過工程における膜間差圧とを組み合わせて行ってもよい。 The judgment of performing the backwashing step may be performed by combining the total of the above filtering times and the transmembrane pressure difference in the filtering step.

図2は、本実施形態に係る有価物回収装置の構成の他の一例を示す概略構成図である。図2に示す有価物回収装置2において、図1に示す有価物回収装置と同様の構成については同一の符号を付し、その説明を省略する。図2に示す有価物回収装置2において、膜モジュール12の一次側上部排水口には上部排水管34が接続され、膜モジュール12の一次側下部排水口と回収槽16の入口とは下部排水管36により接続されている。また、気体供給配管32から分岐した気体供給配管38が上部排水管34に接続されている。 FIG. 2 is a schematic configuration diagram showing another example of the configuration of the valuable resource recovery device according to the present embodiment. In the valuable resource recovery device 2 shown in FIG. 2, the same components as those of the valuable resource recovery device shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In the valuable resource recovery device 2 shown in FIG. 2, the upper drain pipe 34 is connected to the primary upper drain port of the membrane module 12, and the primary lower drain port of the membrane module 12 and the inlet of the recovery tank 16 are lower drain pipes. Connected by 36. A gas supply pipe 38 branched from the gas supply pipe 32 is connected to the upper drain pipe 34.

本実施形態に係る有価物回収装置2の動作の一例について説明する。 An example of the operation of the valuable resource recovery device 2 according to this embodiment will be described.

前述したろ過−気体洗浄サイクル後、膜モジュール12の一次側において、膜から剥離された有価物を含む懸濁液が、下部排水口から下部排水管36を通して排出され、回収槽16に貯留される(回収工程A)。なお、回収工程Aを行わない場合には、例えば、気体洗浄後、原水を膜モジュール12の一次側に供給して、有価物を含む懸濁液を上部排水管34から系外へ排出すればよい。 After the above-described filtration-gas cleaning cycle, on the primary side of the membrane module 12, the suspension containing the valuable substance separated from the membrane is discharged from the lower drain port through the lower drain pipe 36 and stored in the recovery tank 16. (Recovery step A). In the case where the recovery step A is not performed, for example, after washing with gas, raw water may be supplied to the primary side of the membrane module 12 and the suspension containing valuables may be discharged from the upper drain pipe 34 to the outside of the system. Good.

回収工程Aを行う際には、コンプレッサ30を稼働させ、気体を、気体供給配管32,38、上部排水管34を通して、膜モジュール12の一次側上部排水口から供給して、下部排水口から排出させてもよい。このように、膜モジュール12の上部からの気体押し出しにより、有価物を含む懸濁液の回収をよりスムーズに行うことが可能となる。 When performing the recovery step A, the compressor 30 is operated, gas is supplied from the primary side upper drain port of the membrane module 12 through the gas supply pipes 32 and 38, and the upper drain pipe 34, and discharged from the lower drain port. You may let me. In this way, by pushing out the gas from the upper part of the membrane module 12, it becomes possible to recover the suspension containing the valuables more smoothly.

回収工程A後、膜モジュール12の一次側の気体を押し出すブロー工程を行うことが望ましい。具体的には、コンプレッサ30が停止され、原水がポンプ20によって原水配管22を通して膜モジュール12の一次側に送液され、一次側が満水にされる。なお、ブロー工程中において膜モジュール12から溢れだす余剰の原水は、上部排水管34から排出されればよい。なお、上部排水管34から排出される原水には、有価物が含まれるため、上部排水管34から原水槽10に返送することが望ましい。 After the collecting step A, it is desirable to perform a blowing step of pushing out the gas on the primary side of the membrane module 12. Specifically, the compressor 30 is stopped, the raw water is sent by the pump 20 through the raw water pipe 22 to the primary side of the membrane module 12, and the primary side is filled with water. In addition, the excess raw water overflowing from the membrane module 12 during the blowing process may be discharged from the upper drain pipe 34. Since raw water discharged from the upper drain pipe 34 contains valuables, it is desirable to return the raw water from the upper drain pipe 34 to the raw water tank 10.

ろ過−気体洗浄サイクルを少なくとも1回行い、次のろ過処理後に、逆洗処理工程を行う場合には、ポンプ20により膜モジュール12への被処理水の送液が停止された後、ポンプ26が稼働され、処理水が逆洗水配管28を通して膜モジュール12の二次側から供給され、膜モジュールの下部排水管36から排出される(逆洗処理工程)。逆洗により、膜から剥離された有価物を含む処理水(懸濁液)は、下部排水管36を通り、回収槽16にて、回収される(回収工程B)。なお、回収工程Bを行わない場合には、例えば、膜モジュール12の二次側から供給された処理水を膜モジュール12の一次側の上部排水管34から系外へ排出させればよい。 When performing a backwashing process step after performing the filtration-gas cleaning cycle at least once and performing the next filtration process, after the pump 20 stops feeding the water to be treated to the membrane module 12, the pump 26 It is operated and the treated water is supplied from the secondary side of the membrane module 12 through the backwash water pipe 28 and discharged from the lower drain pipe 36 of the membrane module (backwash process step). The treated water (suspension) containing the valuable substance separated from the film by the backwash passes through the lower drain pipe 36 and is collected in the collection tank 16 (collection step B). When the recovery step B is not performed, for example, the treated water supplied from the secondary side of the membrane module 12 may be discharged from the upper drain pipe 34 on the primary side of the membrane module 12 to the outside of the system.

図2に示す有価物回収装置2による回収工程Aは、原水や処理水等を供給することなく有価物を含む懸濁液を回収しているので、回収工程Aのみ、或いは回収工程A及びBを行う場合においては、図1に示す有価物回収装置1と比較して、より濃度の高い有価物を含む懸濁液を得ることが可能となる。 The recovery process A by the valuable resource recovery device 2 shown in FIG. 2 recovers the suspension containing the valuable resource without supplying raw water, treated water, or the like, so only the recovery step A or the recovery steps A and B is performed. In the case of carrying out, it becomes possible to obtain a suspension containing a valuable substance with a higher concentration than the valuable substance recovery device 1 shown in FIG.

図3は、本実施形態に係る有価物回収装置の構成の他の一例を示す概略構成図である。図3に示す有価物回収装置3において、図1及び2に示す有価物回収装置1,2と同様の構成については同一の符号を付し、その説明を省略する。図3に示す有価物回収装置3は、回収槽16に貯留された有価物を含む懸濁液に対して膜ろ過を行い、有価物を含む濃縮液を回収する、回収手段の一例としての回収装置を備えている。回収装置は、膜モジュール40、回収槽42、逆洗水配管28から分岐した逆洗水配管44、ろ過処理水配管46、上部排水管48等から構成されている。 FIG. 3 is a schematic configuration diagram showing another example of the configuration of the valuable resource recovery device according to the present embodiment. In the valuable resource recovery device 3 shown in FIG. 3, the same components as those of the valuable resource recovery devices 1 and 2 shown in FIGS. 1 and 2 are designated by the same reference numerals, and the description thereof will be omitted. The valuable resource recovery device 3 shown in FIG. 3 performs a membrane filtration on the suspension containing the valuable resource stored in the recovery tank 16 and recovers the concentrated liquid containing the valuable resource as an example of recovery means. It is equipped with a device. The recovery device includes a membrane module 40, a recovery tank 42, a backwash water pipe 44 branched from the backwash water pipe 28, a filtered water pipe 46, an upper drain pipe 48, and the like.

図3に示す有価物回収装置3において、回収槽16の出口と膜モジュール40の一次側処理水入口とは、ポンプ50を介して処理水配管52により接続されている。また、膜モジュール40の二次側出口と処理水槽14の入口とは、ろ過処理水配管46により接続されている。膜モジュール40の一次側上部排水口と回収槽42の入口とは上部排水管48により接続されている。また、逆洗水配管28から分岐した逆洗水配管44がろ過処理水配管46に接続されている。 In the valuable resource recovery device 3 shown in FIG. 3, the outlet of the recovery tank 16 and the primary side treated water inlet of the membrane module 40 are connected by a treated water pipe 52 via a pump 50. The secondary outlet of the membrane module 40 and the inlet of the treated water tank 14 are connected by a filtered treated water pipe 46. An upper drain pipe 48 connects the primary upper drain port of the membrane module 40 and the inlet of the recovery tank 42. A backwash water pipe 44 branched from the backwash water pipe 28 is connected to the filtered water pipe 46.

膜モジュール40は、前段の膜モジュール12と同様の構成、すなわち、外圧式中空糸膜モジュールを用いることが好ましい。 The membrane module 40 preferably has the same configuration as the membrane module 12 in the preceding stage, that is, an external pressure type hollow fiber membrane module is used.

本実施形態に係る有価物回収装置3の動作の一例について説明する。 An example of the operation of the valuable resource recovery device 3 according to this embodiment will be described.

前述したように、膜モジュール12においてろ過−気体洗浄サイクルを行った後、膜モジュール12における回収工程Aを行う場合には、例えば、図1の有価物回収装置1と同様に、原水がポンプ20によって原水配管22を通して膜モジュール12の一次側に送液され、原水と共に有価物が上部排水管34を通して排出され、回収槽16にて回収される。或いは、図2の有価物回収装置2と同様に、膜モジュール12の一次側において、膜から剥離された有価物を含む懸濁液が、下部排水口から下部排水管36を通して排出され、回収槽16にて回収される。 As described above, when performing the recovery step A in the membrane module 12 after performing the filtration-gas cleaning cycle in the membrane module 12, for example, as in the valuable resource recovery device 1 in FIG. Is sent to the primary side of the membrane module 12 through the raw water pipe 22, the valuables are discharged together with the raw water through the upper drain pipe 34, and are recovered in the recovery tank 16. Alternatively, similarly to the valuable resource recovery device 2 in FIG. 2, on the primary side of the membrane module 12, the suspension containing the valuable resource separated from the membrane is discharged from the lower drain port through the lower drain pipe 36, and the recovery tank Collected at 16.

ろ過−気体洗浄サイクルを少なくとも1回行い、次のろ過処理後に、膜モジュール12に対して逆洗処理工程を行う場合には、例えば、図1の有価物回収装置1と同様に、ポンプ26が稼働され、処理水が逆洗水配管28を通して膜モジュール12の二次側から供給され、膜モジュール12の一次側の上部排水管34から排出される、或いは、図2の有価物回収装置2と同様に、下部排水管36から排出される。そして、逆洗により、膜から剥離された有価物を含む処理水(懸濁液)は、上部排水管34又は下部排水管36を通り、回収槽16にて回収される(回収工程B)。 When performing the filtration-gas cleaning cycle at least once and performing the backwashing process step on the membrane module 12 after the next filtration process, for example, as in the valuable resource recovery device 1 of FIG. When operated, the treated water is supplied from the secondary side of the membrane module 12 through the backwash water pipe 28 and discharged from the upper drain pipe 34 on the primary side of the membrane module 12, or with the valuable resource recovery device 2 of FIG. Similarly, it is discharged from the lower drain pipe 36. Then, the treated water (suspension) containing the valuable substance separated from the film by the backwash passes through the upper drain pipe 34 or the lower drain pipe 36 and is collected in the collecting tank 16 (collecting step B).

このようにして、回収槽16にて回収された有価物を含む懸濁液は、ポンプ50によって処理水配管52を通して膜モジュール40の一次側に送液され、膜モジュール40によりろ過処理が行われる。ろ過処理されたろ過処理水は、ろ過処理水配管46を通して処理水槽14へ送液され、貯留される。そして、膜モジュール40のろ過膜上に形成された有価物のケーキは、逆洗処理により剥離され、有価物を含む処理水(濃縮液)として回収される。具体的には、ポンプ50により膜モジュール40への被処理水の送液が停止された後、ポンプ26が稼働され、処理水が逆洗水配管28,44を通して、膜モジュール40の二次側から供給され、膜モジュール40の上部排水管48から排出される。逆洗処理により得られた有価物を含む処理水(濃縮液)は、上部排水管48を通して、回収槽42にて回収される。ここでは、逆洗処理により得られた有価物を含む処理水(濃縮液)を回収しているが、これまで説明した通り、膜モジュール40の一次側に気体を供給する気体洗浄処理を行って、有価物を含む懸濁液(濃縮液)を回収槽42にて回収してもよいし、又は両方を行ってもよい。なお、逆洗処理のタイミングや、気体洗浄処理のタイミングは、前段の膜モジュール12と同様にして決定されることが望ましい。 In this way, the suspension containing the valuable material recovered in the recovery tank 16 is sent by the pump 50 to the primary side of the membrane module 40 through the treated water pipe 52, and the membrane module 40 performs a filtration process. .. The filtered treated water that has been filtered is sent to and stored in the treated water tank 14 through the filtered treated water pipe 46. Then, the cake of the valuable material formed on the filtration membrane of the membrane module 40 is peeled off by the backwashing process, and is collected as treated water (concentrated liquid) containing the valuable material. Specifically, after the pump 50 stops the supply of the water to be treated to the membrane module 40, the pump 26 is operated, and the treated water passes through the backwash water pipes 28, 44 and the secondary side of the membrane module 40. From the upper drain pipe 48 of the membrane module 40. Treated water (concentrated liquid) containing valuables obtained by the backwashing process is recovered in the recovery tank 42 through the upper drain pipe 48. Here, the treated water (concentrated liquid) containing valuables obtained by the backwashing process is collected, but as described above, the gas washing process of supplying gas to the primary side of the membrane module 40 is performed. The suspension (concentrated liquid) containing valuables may be recovered in the recovery tank 42, or both may be performed. The timing of the backwashing process and the timing of the gas washing process are preferably determined in the same manner as in the membrane module 12 in the previous stage.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<実施例1>
図1に示す有価物回収装置を用いて試験を行った。膜モジュールに使用した中空糸膜としては、ポリフッ化ビニリデン(PVDF)製の外圧式加圧型UF膜を用いた。中空糸膜の孔径は、0.01μm、膜面積は、4mのものを用いた。
<Example 1>
A test was conducted using the valuable resource recovery device shown in FIG. As the hollow fiber membrane used in the membrane module, an external pressure type UF membrane made of polyvinylidene fluoride (PVDF) was used. The hollow fiber membrane used had a pore diameter of 0.01 μm and a membrane area of 4 m 2 .

当該試験で処理される原水として、炭素繊維製造工程から排出された排水を用いた。当該原水は、有価物としての炭素繊維を含み、有価物濃度(SS濃度)は71mg/Lであった。実施例1では、ろ過フラックス2.0m/dでろ過処理を行い、処理水の回収率を99%に設定して、1時間毎に気体洗浄処理、6時間毎に逆洗水処理を行った。そして、気体洗浄処理及び逆洗水処理後の回収工程により、有価物を含む懸濁液を回収した。 Wastewater discharged from the carbon fiber manufacturing process was used as raw water treated in the test. The raw water contained carbon fiber as a valuable resource, and the valuable resource concentration (SS concentration) was 71 mg/L. In Example 1, the filtration treatment was performed with a filtration flux of 2.0 m/d, the treatment water recovery rate was set to 99%, and the gas washing treatment was performed every 1 hour and the backwashing water treatment was performed every 6 hours. .. Then, the suspension containing the valuables was recovered by the recovery process after the gas cleaning process and the backwashing water process.

<比較例>
比較例では、気体洗浄処理を行わず、6時間毎に逆洗水処理を行い、逆洗水処理後の回収工程により、有価物を含む懸濁液を回収したこと以外は、実施例1と同様の条件で試験を行った。
<Comparative example>
In the comparative example, the gas cleaning process was not performed, the backwashing water treatment was performed every 6 hours, and the suspension containing valuables was recovered in the recovering step after the backwashing water treatment. The test was conducted under similar conditions.

図4に実施例1及び比較例の通水結果を示す。また、表1に、原水の水質、実施例1で得られた処理水及び懸濁液の水質結果を示す。 FIG. 4 shows the water flow results of Example 1 and Comparative Example. In addition, Table 1 shows the water quality of the raw water and the water quality results of the treated water and the suspension obtained in Example 1.

図4に示すように、逆洗処理のみを行った比較例は、膜面に形成された有価物のケーキにより膜間差圧が上昇し、また、逆洗処理を行っても、膜間差圧は回復しなかった。一方、気体洗浄及び逆洗処理を行った実施例1は、試験中において膜間差圧はほとんど上昇することはなかった。すなわち、処理水の高い回収率を維持しながら、膜の目詰まりを抑えることが可能であると言える。また、表1に示す通り、有価物濃度(SS濃度)が71mg/Lである原水に対して、実施例1では、有価物濃度(SS濃度)が6950mg/Lまで濃縮された懸濁液が回収された。これらのことから、実施例1は、比較例1と比較して、高い処理水の回収率を維持しながら、膜の目詰まりを抑えつつ、有価物を回収することができると言える。 As shown in FIG. 4, in the comparative example in which only the backwashing treatment was performed, the transmembrane pressure difference increased due to the cake of valuables formed on the membrane surface, and even when the backwashing treatment was performed, the transmembrane pressure difference was increased. The pressure did not recover. On the other hand, in Example 1 in which the gas cleaning and the back cleaning were performed, the transmembrane pressure difference hardly increased during the test. That is, it can be said that the clogging of the membrane can be suppressed while maintaining a high recovery rate of the treated water. In addition, as shown in Table 1, in Example 1, a suspension obtained by concentrating the valuable resource concentration (SS concentration) to 6950 mg/L was added to the raw water having the valuable resource concentration (SS concentration) of 71 mg/L. Recovered. From these facts, it can be said that Example 1 can collect valuables while maintaining a high recovery rate of treated water and suppressing clogging of the membrane, as compared with Comparative Example 1.

<実施例2>
図2に示す有価物回収装置を用いて試験を行った。当該試験で処理される原水は、有価物としてフッ化カルシウムを含み、有価物濃度(SS濃度)は1400mg/Lであった。実施例2では、ろ過フラックス2.0m/でろ過処理を行い、処理水の回収率を95%に設定して、5分毎に気体洗浄処理、1時間毎に逆洗水処理を行った。そして、気体洗浄処理及び逆洗水処理後の回収工程により、有価物を含む懸濁液を回収した。
<Example 2>
A test was conducted using the valuable resource recovery device shown in FIG. The raw water treated in the test contained calcium fluoride as a valuable resource, and the valuable resource concentration (SS concentration) was 1400 mg/L. In Example 2, the filtration treatment was performed with a filtration flux of 2.0 m/, the recovery rate of the treated water was set to 95%, and the gas cleaning treatment was performed every 5 minutes and the backwashing water treatment was performed every 1 hour. Then, the suspension containing the valuables was recovered by the recovery process after the gas cleaning process and the backwashing water process.

図5に実施例2の通水結果を示す。表2に原水の水質、実施例2で得られた処理水及び懸濁液の水質結果を示す。 FIG. 5 shows the water flow results of Example 2. Table 2 shows the water quality of the raw water and the water quality results of the treated water and the suspension obtained in Example 2.

図5に示すように、5分毎の気体洗浄処理、1時間毎の逆洗水処理を行った実施例2では、1400mg/Lという高濃度の有価物を含む原水に対して、高い処理水の回収率を維持しながら、膜間差圧の上昇を抑えることができた。また、表2に示す通り、有価物濃度(SS濃度)が1400mg/Lの原水に対して、実施例2では、有価物濃度(SS濃度)が12500mg/Lまで濃縮された懸濁液が回収された。これらのことから、実施例2は、処理水の高い回収率を維持しながら、膜の目詰まりを抑えつつ、有価物を回収することができたと言える。また、原水濃度が高い排水処理においては、実施例2の方が、実施例1より、有価物を高濃度に濃縮した懸濁液が安定して得られる。 As shown in FIG. 5, in Example 2 in which the gas cleaning treatment was performed every 5 minutes and the backwashing water treatment was performed every 1 hour, the treated water was higher than the raw water containing a valuable substance of high concentration of 1400 mg/L. It was possible to suppress an increase in transmembrane pressure difference while maintaining the recovery rate of. In addition, as shown in Table 2, in Example 2, a suspension in which the valuable resource concentration (SS concentration) was concentrated to 12500 mg/L was recovered with respect to the raw water having the valuable resource concentration (SS concentration) of 1400 mg/L. Was done. From these, it can be said that Example 2 was able to collect valuables while maintaining a high recovery rate of treated water and suppressing clogging of the membrane. Further, in wastewater treatment with a high concentration of raw water, the suspension obtained by concentrating valuable substances in a high concentration can be obtained more stably in the second embodiment than in the first embodiment.

1〜3 有価物回収装置、10 原水槽、12,40 膜モジュール、14 処理水槽、16,42 回収槽、18,22 原水配管、20,26,50 ポンプ、24,46 ろ過処理水配管、28,44 逆洗水配管、30 コンプレッサ、32,38 気体供給配管、34,48 上部排水管、36 下部排水管、52 処理水配管。 1-3 valuable resource recovery device, 10 raw water tank, 12,40 membrane module, 14 treated water tank, 16,42 recovery tank, 18,22 raw water pipe, 20,26,50 pump, 24,46 filtered treated water pipe, 28 , 44 backwash water pipe, 30 compressor, 32, 38 gas supply pipe, 34, 48 upper drain pipe, 36 lower drain pipe, 52 treated water pipe.

Claims (12)

外圧式中空糸膜モジュールを用いて有価物を含む被処理水のろ過を行い、中空糸膜に前記有価物を堆積させるろ過処理工程後、前記外圧式中空糸膜モジュールへの前記被処理水の送液を停止させて、前記外圧式中空糸膜モジュールの一次側に気体のみを導入して、前記中空糸膜を洗浄し、当該膜から前記有価物を剥離させる工程を含む気体洗浄処理工程を行い、その後、前記ろ過処理工程に戻る、ろ過−気体洗浄サイクルと、
前記ろ過−気体洗浄サイクルを少なくとも1回行い、次の前記ろ過処理工程後に、前記外圧式中空糸膜モジュールの二次側に逆洗水を導入して前記中空糸膜を洗浄し、当該膜から前記有価物を剥離させる逆洗処理工程と、
前記気体洗浄処理工程で剥離された有価物及び前記逆洗処理工程で剥離された有価物のうち少なくともいずれか一方の有価物を、当該有価物を含む懸濁液として回収する回収工程と、を備えることを特徴とする有価物回収方法。
After filtering the treated water containing valuables by using the external pressure type hollow fiber membrane module and depositing the valuables on the hollow fiber membrane, the treated water to the external pressure type hollow fiber membrane module is filtered . A gas cleaning treatment step including a step of stopping the liquid supply, introducing only gas into the primary side of the external pressure type hollow fiber membrane module, cleaning the hollow fiber membrane, and peeling the valuable material from the membrane. Performing, and then returning to the filtration treatment step, a filtration-gas cleaning cycle,
The filtration-gas cleaning cycle is performed at least once, and after the subsequent filtration step, backwash water is introduced to the secondary side of the external pressure type hollow fiber membrane module to wash the hollow fiber membrane, A backwashing process for peeling the valuable material,
And a recovery step of recovering at least one valuable resource from the valuable material peeled in the gas cleaning treatment step and the valuable material peeled in the backwash treatment step as a suspension containing the valuable material. A method for recovering valuable resources, which comprises:
請求項1に記載の有価物回収方法であって、
前記気体洗浄処理工程を行うタイミングを、被処理水について予め求めた前記ろ過処理工程における膜間差圧上昇速度と、許容膜間差圧上昇値とに基づいて決定することを特徴とする有価物回収方法。
The valuable resource recovery method according to claim 1, wherein
A valuable resource characterized in that the timing of performing the gas cleaning treatment step is determined based on the transmembrane pressure rise rate in the filtration treatment step previously obtained for the water to be treated and the allowable transmembrane pressure rise value. Recovery method.
請求項1又は2に記載の有価物回収方法であって、
前記逆洗処理工程を行うタイミングを、ろ過流量、有価物の濃縮倍率、前記気体洗浄工程について予め設定した排水量及び前記逆洗工程について予め設定した排水量に基づいて決定することを特徴とする有価物回収方法。
The valuable resource recovery method according to claim 1 or 2,
A valuable resource characterized in that the timing of performing the backwashing process step is determined based on a filtration flow rate, a concentration ratio of a valuable resource, a wastewater amount preset for the gas cleaning process, and a wastewater amount preset for the backwash process. Recovery method.
請求項1又は2に記載の有価物回収方法であって、
前記逆洗処理工程を行うタイミングを、前記中空糸膜の許容SS量、ろ過流量及び被処理水のSS濃度に基づいて決定することを特徴とする有価物回収方法。
The valuable resource recovery method according to claim 1 or 2,
A valuable resource recovery method characterized in that the timing of performing the backwashing step is determined based on the allowable SS amount of the hollow fiber membrane, the filtration flow rate, and the SS concentration of the water to be treated.
請求項1〜4のいずれか1項に記載の有価物回収方法であって、
前記回収工程で得られた有価物を含む懸濁液に対して膜ろ過を行い、有価物を含む濃縮液を回収することを特徴とする有価物回収方法。
The valuable resource recovery method according to any one of claims 1 to 4,
A valuable resource recovery method, comprising performing membrane filtration on the suspension containing the valuable resource obtained in the recovery step to recover a concentrated liquid containing the valuable resource.
請求項1〜5のいずれか1項に記載の有価物回収方法であって、
前記有価物は、炭素系有価物、シリコン系有価物、金属、又はこれらの混合物であることを特徴とする有価物回収方法。
The valuable resource recovery method according to any one of claims 1 to 5,
The valuable resource is a carbon valuable resource, a silicon valuable resource, a metal, or a mixture thereof, and a valuable resource recovery method.
外圧式中空糸膜モジュールを用いて有価物を含む被処理水のろ過を行い、中空糸膜に前記有価物を堆積させるろ過処理後、前記外圧式中空糸膜モジュールへの前記被処理水の送液を停止させて、前記外圧式中空糸膜モジュールの一次側に気体のみを導入して、前記中空糸膜を洗浄し、当該膜から前記有価物を剥離させる工程を含む気体洗浄処理を行い、その後、前記ろ過処理に戻る、ろ過−気体洗浄サイクルを行うろ過−気体洗浄手段と、
前記ろ過−気体洗浄サイクルを少なくとも1回行い、次の前記ろ過処理後に、前記外圧式中空糸膜モジュールの二次側に逆洗水を導入して前記中空糸膜を洗浄し、当該膜から前記有価物を剥離させる逆洗処理を行う逆洗手段と、
前記気体洗浄処理で剥離された有価物及び前記逆洗処理で剥離された有価物のうち少なくともいずれか一方の有価物を、当該有価物を含む懸濁液として回収する回収手段と、を備えることを特徴とする有価物回収装置。
After filtering the target water containing valuables by using the external pressure type hollow fiber membrane module and depositing the valuables on the hollow fiber membranes, the treated water is sent to the external pressure type hollow fiber membrane module. The liquid is stopped, only gas is introduced into the primary side of the external pressure type hollow fiber membrane module, the hollow fiber membrane is washed, and a gas washing treatment including a step of peeling the valuable material from the membrane is performed, Then, returning to the filtration process, filtration-gas cleaning means for performing a filtration-gas cleaning cycle,
The filtration-gas cleaning cycle is performed at least once, and after the subsequent filtration treatment, backwash water is introduced to the secondary side of the external pressure type hollow fiber membrane module to wash the hollow fiber membrane, Backwashing means for performing backwashing to peel off valuables,
Recovery means for recovering at least one of the valuable material peeled by the gas cleaning treatment and the valuable material peeled by the backwashing treatment as a suspension containing the valuable material. A valuable resource recovery device.
請求項7に記載の有価物回収装置であって、
前記気体洗浄処理を行うタイミングは、被処理水について予め求めた前記ろ過処理における膜間差圧上昇速度と、許容膜間差圧上昇値とに基づいて決定されることを特徴とする有価物回収装置。
The valuable resource recovery device according to claim 7,
The valuables recovery is characterized in that the timing of performing the gas cleaning process is determined based on a transmembrane pressure increase rate and a permissible transmembrane pressure increase value in the filtration process which are previously obtained for the water to be treated. apparatus.
請求項7又は8に記載の有価物回収装置であって、
前記逆洗処理を行うタイミングは、ろ過流量、有価物の濃縮倍率、前記気体洗浄処理について予め設定した排水量及び前記逆洗処理について予め設定した排水量に基づいて決定されることを特徴とする有価物回収装置。
The valuable resource recovery device according to claim 7,
The timing of performing the backwashing process is determined based on a filtration flow rate, a concentration ratio of a valuable resource, a preset wastewater amount for the gas cleaning process, and a preset wastewater amount for the backwashing process. Recovery device.
請求項7又は8に記載の有価物回収装置であって、
前記逆洗処理を行うタイミングは、前記中空糸膜における許容SS量、ろ過流量及び被処理水のSS濃度に基づいて決定されることを特徴とする有価物回収装置。
The valuable resource recovery device according to claim 7,
The valuable resource recovery device is characterized in that the timing of performing the backwashing process is determined based on the allowable SS amount in the hollow fiber membrane, the filtration flow rate, and the SS concentration of the water to be treated.
請求項7〜10のいずれか1項に記載の有価物回収装置であって、
前記回収手段で得られた有価物を含む懸濁液に対して膜ろ過を行い、有価物を含む濃縮液を回収する濃縮液回収手段を備えることを特徴とする有価物回収装置。
The valuable resource recovery device according to any one of claims 7 to 10,
A valuable resource recovery device comprising: a concentrated liquid recovery means for performing membrane filtration on the suspension containing the valuable resource obtained by the recovery means to recover a concentrated liquid containing the valuable resource.
請求項7〜11のいずれか1項に記載の有価物回収装置であって、
前記有価物は、炭素系有価物、シリコン系有価物、金属、又はこれらの混合物であることを特徴とする有価物回収装置。
The valuable resource recovery device according to any one of claims 7 to 11,
The valuable resource recovery apparatus is characterized in that the valuable resource is a carbon valuable resource, a silicon valuable resource, a metal, or a mixture thereof.
JP2016153713A 2016-08-04 2016-08-04 Valuable material recovery method and valuable resource recovery device Active JP6731308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016153713A JP6731308B2 (en) 2016-08-04 2016-08-04 Valuable material recovery method and valuable resource recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153713A JP6731308B2 (en) 2016-08-04 2016-08-04 Valuable material recovery method and valuable resource recovery device

Publications (2)

Publication Number Publication Date
JP2018020290A JP2018020290A (en) 2018-02-08
JP6731308B2 true JP6731308B2 (en) 2020-07-29

Family

ID=61164046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153713A Active JP6731308B2 (en) 2016-08-04 2016-08-04 Valuable material recovery method and valuable resource recovery device

Country Status (1)

Country Link
JP (1) JP6731308B2 (en)

Also Published As

Publication number Publication date
JP2018020290A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2011158559A1 (en) Method for cleaning membrane modules
JP6731308B2 (en) Valuable material recovery method and valuable resource recovery device
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP6616593B2 (en) Membrane cleaning method
JP2015231591A (en) Remote supervisory control system
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JP2003340245A (en) Membrane treatment device and washing method therefor
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JP2009214062A (en) Operation method of immersion type membrane module
JP2013121587A (en) Water treatment method
JP4156984B2 (en) Cleaning method for separation membrane module
JP2006130496A (en) Water treatment device and its operating method
JP2010188250A (en) Water treatment method
JP2012250180A (en) Prediction method for clogging speed of filtration membrane, and filtration system
JP2013034938A (en) Method for washing membrane module
JP2005065541A (en) Liquid filtration apparatus and method for producing clarified sugar solution
JP4917792B2 (en) Method for estimating the degree of contamination of separation membranes used in membrane separation activated sludge equipment.
JP2015123436A (en) Water treatment method
JP7233338B2 (en) Filter membrane cleaning method
JP2002119965A (en) Method for washing reverse osmosis membrane and method for manufacturing extrapure water
JP7213711B2 (en) Water treatment device and water treatment method
JP4605951B2 (en) Membrane filtration system and operation method thereof
JP2013002971A (en) Method of treating radioactive waste water and treating apparatus
JP2019022870A (en) Water treatment device and water treatment method
JP5548378B2 (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6731308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250