JP2012250180A - Prediction method for clogging speed of filtration membrane, and filtration system - Google Patents

Prediction method for clogging speed of filtration membrane, and filtration system Download PDF

Info

Publication number
JP2012250180A
JP2012250180A JP2011124984A JP2011124984A JP2012250180A JP 2012250180 A JP2012250180 A JP 2012250180A JP 2011124984 A JP2011124984 A JP 2011124984A JP 2011124984 A JP2011124984 A JP 2011124984A JP 2012250180 A JP2012250180 A JP 2012250180A
Authority
JP
Japan
Prior art keywords
filtration
membrane
water
treated
clogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011124984A
Other languages
Japanese (ja)
Inventor
Satoshi Yahagi
聡 矢萩
Hideki Kashiwabara
秀樹 柏原
Shuji Mokura
修司 母倉
Ryusuke Nakai
龍資 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011124984A priority Critical patent/JP2012250180A/en
Publication of JP2012250180A publication Critical patent/JP2012250180A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a prediction method for the clogging speed of a membrane capable of predicting the treated amount or operation time for generation of clogging of a membrane based on a measured value, the measured value being obtained by carrying out a measurement on water to be treated, in membrane filtration of water to be treated containing jelly-like suspended components such as seawater, drainage, ballast water, or the like, and also to provide a filtration system capable of carrying out the prediction method.SOLUTION: In membrane filtration, the prediction method for the clogging speed of a filtration membrane includes: measuring the sugar volume in the water to be treated such as seawater or the like; and calculating the clogging speed of a filtration membrane from the measured value, the measurement of the sugar volume being especially carried out by liquid chromatography for concentrated water to be treated, and the filtration system capable of carrying out the prediction method is also provided.

Description

本発明は、海水等の膜濾過おいて、被処理水に関する測定値に基づいて濾過膜の洗浄が必要となる時期の予測を可能にする濾過膜の目詰まり速度の予測方法、及びその予測方法を行うことができる濾過システムに関する。   The present invention relates to a method for predicting the clogging speed of a filtration membrane, which enables prediction of the time when the filtration membrane needs to be washed based on the measurement value relating to the water to be treated in membrane filtration of seawater and the like, and the prediction method thereof It is related with the filtration system which can perform.

海水淡水化や排水処理等においては、海水、排水、バラスト水等の被処理水中に含まれる濁質成分を除去するため、中空糸やメンブレンなどの濾過膜を用いた膜濾過が広く行われている。膜濾過の運転中には、濁質成分により濾過膜の孔が目詰まりし、経時的に処理流量の低下や濾過圧の増大が生じる。   In seawater desalination and wastewater treatment, membrane filtration using filtration membranes such as hollow fibers and membranes is widely performed to remove turbid components contained in treated water such as seawater, wastewater, and ballast water. Yes. During the operation of membrane filtration, pores of the filtration membrane are clogged by turbid components, and the treatment flow rate decreases and the filtration pressure increases over time.

特に、海水中にはプランクトンや微生物が細胞外に分泌するTEP(transparent exopolymer particles:透明細胞外高分子粒子)と呼ばれるゼリー状の粘着性物質が1〜数ppm程度含まれ、これが濾過膜の表面や孔内に粘着して広がり孔を目詰まり(ファウリング)させ、処理流量の低下(濾過圧の増大)を生じさせる場合も多い。そこで、運転中の所定の時期に、孔の目詰まりを解消し処理流量や濾過圧を回復するために、濾過膜の洗浄が必要である。   In particular, seawater contains about 1 to several ppm of a jelly-like adhesive substance called TEP (transparent epoxide polymer particles) that is secreted by plankton and microorganisms outside the cell, and this is the surface of the filtration membrane. In many cases, it sticks to the inside of the hole and spreads to clog the fouling (fouling), resulting in a decrease in processing flow rate (increase in filtration pressure). Therefore, it is necessary to clean the filtration membrane at a predetermined time during operation in order to eliminate clogging of the holes and restore the treatment flow rate and filtration pressure.

濾過膜の洗浄の方法としては、洗浄水を被処理水の流れとは逆方向に流す通水逆洗等を挙げることができる。又、薬液を注入して膜を洗浄する方法(薬液洗浄)や、濾過膜を手もみして洗浄する方法、濾過時の液体の流れとは逆方向に気体を濾過膜に通して洗浄する方法(エアー逆洗)、膜に超音波を印加して洗浄する方法(超音波洗浄)等の物理的洗浄等も採用される。洗浄効率をさらに高めるためにこれらを組合せた洗浄方法も知られている。   Examples of the method for washing the filtration membrane include water backwashing and the like in which the washing water is flowed in the direction opposite to the flow of the water to be treated. Also, a method of cleaning the membrane by injecting a chemical solution (chemical solution cleaning), a method of cleaning the filter membrane by hand, and a method of cleaning by passing gas through the filter membrane in the direction opposite to the flow of the liquid during filtration Physical cleaning such as (air backwashing), a method of washing by applying ultrasonic waves to the film (ultrasonic cleaning), and the like are also employed. In order to further increase the cleaning efficiency, cleaning methods combining these are also known.

例えば、特許文献1には、「中空糸膜利用の濾過器モジュールに機械的な振動を与えつつ、該濾過器モジュールに逆洗水を流してモジュール内の水を揺動し、濾過面に付着した堆積物を剥離させ、系外に流出させるに際し、逆洗水の給排水を適宜切り換えて、モジュール内の水位を中空糸束に沿って変化させることを特徴とする濾過器モジュールの再生方法」(請求項1)が開示されている。   For example, Patent Document 1 states, “While applying mechanical vibration to a filter module using a hollow fiber membrane, backwash water is passed through the filter module to oscillate the water in the module and adhere to the filtration surface. The method for regenerating the filter module is characterized by changing the water level in the module along the hollow fiber bundle by appropriately switching the backwash water supply and drainage when the deposited deposits are peeled off and flowed out of the system. Claim 1) is disclosed.

特開平8−332357号公報JP-A-8-332357

濾過膜の洗浄の時期は、運転中に処理流量や濾過圧の測定を行い、処理流量低下又は濾過圧の増大が所定の値を超えた段階で行うように管理することもできる。しかし、処理流量の低下又は濾過圧の増大が所定の値となる処理量(処理流量の積算値)又は運転時間が予測できれば、その予測される処理量となる時期又は運転時間に、自動的に洗浄を行う方法も考えられる。この方法によれば、運転中での洗浄の管理をより容易にすることができる。   The time for washing the filtration membrane can be controlled so that the treatment flow rate and filtration pressure are measured during operation, and the treatment flow rate is lowered or the filtration pressure is increased at a stage exceeding a predetermined value. However, if the processing amount (integrated value of the processing flow rate) or operation time at which the decrease in the processing flow rate or increase in the filtration pressure becomes a predetermined value can be predicted, the time or the operation time at which the predicted processing amount is reached automatically. A method of cleaning is also conceivable. According to this method, it is possible to more easily manage cleaning during operation.

しかし、処理流量の低下又は濾過圧の増大が所定の値となる(すなわち被処理水中の濁質による膜の目詰まりが生じる)処理量又は運転時間は、被処理水中の濁質の量により変動する。そして、被処理水特に海水中の膜を目詰まりさせる濁質の量は、地域や季節によって大きく異なる。そこで、被処理水中の濁質の量を測定する方法が望まれるが、その濁質の量を正確に測定する方法は見出されていなかった。その結果、被処理水に関する測定により膜の目詰まりが生じる処理量又は運転時間を予測することは困難であるとの問題があった。   However, the treatment amount or operation time in which the decrease in the treatment flow rate or the increase in the filtration pressure becomes a predetermined value (that is, membrane clogging occurs due to the turbidity in the treated water) varies depending on the amount of turbidity in the treated water. To do. The amount of turbidity that clogs the membrane in the water to be treated, particularly seawater, varies greatly depending on the region and season. Therefore, a method for measuring the amount of turbidity in the water to be treated is desired, but a method for accurately measuring the amount of turbidity has not been found. As a result, there has been a problem that it is difficult to predict the treatment amount or operation time at which membrane clogging occurs due to the measurement of the water to be treated.

本発明は、海水、排水、バラスト水等のゼリー状の濁質成分を含む被処理水の膜濾過において、被処理水に関する測定を行い、その測定値に基づいて膜の目詰まりが生じる処理量又は運転時間の予測を可能にする、膜目詰まり速度の予測方法、及びその予測方法を行うことができる濾過システムを提供することを課題とする。   The present invention measures the amount of water to be treated in membrane filtration of water to be treated containing jelly-like turbid components such as seawater, drainage, and ballast water, and the amount of treatment that causes clogging of the membrane based on the measured value Alternatively, it is an object of the present invention to provide a method for predicting a membrane clogging speed that enables prediction of operation time, and a filtration system capable of performing the prediction method.

本発明者は、前記の課題を解決するために鋭意検討した結果、被処理水中の糖量を測定する方法を開発し、この方法により測定された糖量と、濾過膜の目詰まりが生じる処理量又は運転時間との間に強い相関があることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has developed a method for measuring the amount of sugar in the water to be treated, and the amount of sugar measured by this method and the treatment that causes clogging of the filtration membrane. The present invention was completed by finding that there is a strong correlation between the quantity and the operating time.

すなわち、請求項1に記載の発明は、膜濾過において、被処理水中の糖量を測定し、その測定値から濾過膜の目詰まり速度を算出することを特徴とする濾過膜の目詰まり速度の予測方法である。   That is, according to the first aspect of the present invention, in the membrane filtration, the amount of sugar in the water to be treated is measured, and the clogging rate of the filtration membrane is calculated from the measured value. This is a prediction method.

ここで、濾過膜の目詰まり速度とは、膜濾過の運転開始後又は濾過膜の洗浄後、次の洗浄が必要となるまでの間における処理流量の積算値又は運転時間の逆数を言う。具体的には、膜濾過の運転開始後又は濾過膜の洗浄後、再度、処理流束の低下又は濾過圧の増大が所定の値を超えるまでの処理流量の積算値又は運転時間の逆数を意味する。なお、膜の目詰まり速度は、本来は、処理流量の積算値の逆数で表わされるが、次の洗浄までの間の処理流束の変動に大きな差異がない場合は、次の洗浄が必要となるまでの時間は常に一定であるので、その時間の逆数で表わすこともできる。   Here, the clogging speed of the filtration membrane refers to the integrated value of the processing flow rate or the reciprocal of the operation time after the start of the membrane filtration operation or after the filtration membrane is washed until the next washing is necessary. Specifically, it means the integrated value of the treatment flow rate or the reciprocal of the operation time until the decrease in the treatment flux or the increase in the filtration pressure exceeds the predetermined value after the membrane filtration operation is started or after the filtration membrane is washed. To do. The clogging speed of the membrane is originally represented by the reciprocal of the integrated value of the processing flow rate, but if there is no significant difference in the processing flux until the next cleaning, the next cleaning is necessary. Since the time until is always constant, it can be expressed by the reciprocal of the time.

本発明の方法は、濾過膜の目詰まり速度を、被処理水中の糖量の測定値から算出することを特徴とする。本発明者の検討により、被処理水中の糖量の測定値と濾過膜の目詰まり速度は強い相関があることが見出された。すなわち、被処理水中の糖量の測定値が大きいほど濾過膜の目詰まり速度が大きい(目詰まりするまでの時間等が短い)。従って、本発明の方法により、濾過膜の目詰まり速度、すなわち次の洗浄が必要となる時期が予測可能となる。   The method of the present invention is characterized in that the clogging speed of the filtration membrane is calculated from the measured value of the amount of sugar in the water to be treated. According to the study of the present inventors, it has been found that there is a strong correlation between the measured value of the amount of sugar in the treated water and the clogging rate of the filtration membrane. That is, as the measured value of the amount of sugar in the water to be treated increases, the clogging speed of the filtration membrane increases (the time until clogging is shorter). Therefore, the method of the present invention makes it possible to predict the clogging rate of the filtration membrane, that is, the time when the next cleaning is required.

海水、排水、バラスト水中の濁質には、TEP以外にもプランクトン、砂などの無機濁質、たんぱく質などの有機濁質などがある。中でもTEPは、重量測定やTOC測定などでは検出困難な極微量でも、膨潤し膜面を覆うことで急速な目詰まりを引き起こすと考えられていた。そこで、被処理水中のTEP除去が望まれていたが、TEP量を測定することができなかったためTEP除去の研究が非常に難しかった。本発明者は、TEPは大部分が糖類であると言われている点に着目し、糖分析を行うことでTEP量の予測が可能になり、そして、目詰まりの原因が主にTEPである場合(例えば、目詰まりの原因が主にTEPである濾過膜を使用する場合)は、被処理水中の糖量の測定値に基づき目詰まり速度を予測することができると考え検討した。その結果、被処理水中の糖量の測定値と濾過膜の目詰まり速度は強い相関があることを見出したのである。   In addition to TEP, there are inorganic turbidity such as plankton and sand, and organic turbidity such as protein as turbidity in seawater, drainage and ballast water. In particular, TEP was thought to cause rapid clogging by swelling and covering the film surface even in a trace amount that is difficult to detect by weight measurement or TOC measurement. Then, although TEP removal from to-be-processed water was desired, since the amount of TEP was not able to be measured, research of TEP removal was very difficult. The present inventor pays attention to the fact that most of TEP is said to be sugars, and it is possible to predict the amount of TEP by performing sugar analysis, and the cause of clogging is mainly TEP. In the case (for example, when using a filtration membrane in which the cause of clogging is mainly TEP), it was considered that clogging speed can be predicted based on the measured value of the amount of sugar in the water to be treated. As a result, it was found that there is a strong correlation between the measured amount of sugar in the water to be treated and the clogging speed of the filtration membrane.

請求項2に記載の発明は、被処理水が海水であることを特徴とする請求項1に記載の濾過膜の目詰まり速度の予測方法である。   Invention of Claim 2 is a prediction method of the clogging speed | rate of the filtration membrane of Claim 1 characterized by the to-be-processed water being seawater.

本発明の方法は、海水、排水、バラスト水等のようなTEP等のゼリー状の濁質成分を含む被処理水の膜濾過において好適に適用されるが、濾過膜の目詰まりの原因が主にTEPにあると言われている海水の膜濾過において特に有効であり好適に適用される。ここで海水とは、海から直接採取する水のみではなく、バラスト水等の海水をそのまま利用した水も含む意味である。   The method of the present invention is suitably applied in membrane filtration of water to be treated containing jelly-like turbid components such as TEP such as seawater, drainage, ballast water, etc., but the cause of clogging of the filtration membrane is mainly used. In particular, it is effective and suitable for membrane filtration of seawater, which is said to be in TEP. Seawater here means not only water collected directly from the sea but also water that uses seawater such as ballast water as it is.

請求項3に記載の発明は、糖量の測定が、濃縮した被処理水の液体クロマトグラフィーによることを特徴とする請求項1又は請求項2に記載の濾過膜の目詰まり速度の予測方法である。   The invention according to claim 3 is the method for predicting the clogging speed of the filtration membrane according to claim 1 or 2, wherein the sugar amount is measured by liquid chromatography of concentrated water to be treated. is there.

糖量の測定方法としては、被処理水を濃縮し、得られた濃縮サンプルを液体クロマトグラフィー、特にイオンクロマトグラフィーにより分析し、得られたクロマトグラムの糖のピーク強度に基づいて定量する方法を挙げることができる。被処理水の濃縮は、被処理水中の水分の留去や被処理水を凍結乾燥した後の残渣を、少量の純水で再溶解する方法等により行うことができる。   As a method for measuring the amount of sugar, there is a method of concentrating the water to be treated, analyzing the obtained concentrated sample by liquid chromatography, particularly ion chromatography, and quantifying it based on the peak intensity of the sugar in the obtained chromatogram. Can be mentioned. Concentration of the water to be treated can be performed by a method of re-dissolving the residue after distillation of water in the water to be treated or freeze-drying the water to be treated with a small amount of pure water.

イオンクロマトグラフィーによる場合は、液体クロマトグラフィーでの定量に供せられる前に、被処理水中の多糖類を単糖類に変えるための加水分解が行われる。又、他の前処理として、被処理水中の濁質を除去するために濾過や遠心分離、被処理水中に溶解しているイオンを除去するためのイオン交換樹脂による処理等が行われる場合もある。   In the case of ion chromatography, hydrolysis for changing the polysaccharide in the water to be treated into monosaccharide is performed before being subjected to quantification by liquid chromatography. In addition, as other pretreatments, filtration and centrifugation may be performed to remove turbidity in the water to be treated, and treatment with an ion exchange resin may be performed to remove ions dissolved in the water to be treated. .

陰イオン交換樹脂を用いたイオンクロマトグラフィーの場合は、移動相としては、水酸化ナトリウム溶液等を挙げることができる。検出器としては、示唆屈折計等も挙げることができるが、イオンクロマトグラフィーによる場合は、電気化学検出器が好ましく用いられる。   In the case of ion chromatography using an anion exchange resin, examples of the mobile phase include sodium hydroxide solution. As the detector, a suggestive refractometer or the like can be used, but in the case of ion chromatography, an electrochemical detector is preferably used.

請求項4に記載の発明は、糖量の測定が、イオンクロマトグラフィーによる、ラムノース、ガラクトース、グルコース及びマンノースの量の測定であることを特徴とする請求項3に記載の濾過膜の目詰まり速度の予測方法である。   The invention according to claim 4 is characterized in that the amount of sugar is measured by measuring the amount of rhamnose, galactose, glucose and mannose by ion chromatography. This is a prediction method.

本発明者は、これまで分析した海水では、その中に含まれる糖(多糖類)は、ラムノース、ガラクトース、グルコース及びマンノースから形成されていることを見出した。この場合、イオンクロマトグラフィー分析において液体クロマトグラフィーでの定量に供せられる前に行われる加水分解により、海水中に含まれる糖は、ラムノース、ガラクトース、グルコース及びマンノースに変化する。そこで、前記加水分解を行いイオンクロマトグラフィーにより測定したこれらの糖の量の合計を、本発明の方法における糖量の測定値とすることができることを見出し請求項4に記載の発明を完成したのである。   The present inventor has found that in seawater analyzed so far, the sugar (polysaccharide) contained therein is formed from rhamnose, galactose, glucose and mannose. In this case, the sugar contained in seawater changes into rhamnose, galactose, glucose, and mannose by hydrolysis performed before being subjected to quantification by liquid chromatography in ion chromatography analysis. Therefore, the inventors have found that the total amount of these sugars measured by ion chromatography after the hydrolysis can be used as a measurement value of the sugar amount in the method of the present invention, and thus the invention according to claim 4 has been completed. is there.

請求項5に記載の発明は、被処理水の膜濾過装置、被処理水中の糖量の測定手段、前記測定手段による糖量の測定値から濾過膜の目詰まり速度を算出する目詰まり速度予測手段、及び濾過膜洗浄手段を有することを特徴とする濾過システムである。   The invention according to claim 5 is a membrane filtration device for water to be treated, a means for measuring the amount of sugar in the water to be treated, and a clogging rate prediction for calculating the clogging rate of the filtration membrane from the measured value of sugar amount by the measuring means. And a filtration membrane cleaning means.

この発明を構成する被処理水の膜濾過装置としては、海水淡水化や排水処理等において、海水、排水、バラスト水等の被処理水中に含まれる濁質成分を除去するために使用されている従来の膜濾過装置と同様なものを挙げることができ、例えば、中空糸やメンブレンなどの濾過膜を用いた膜濾過装置を挙げることができる。又、濾過膜洗浄手段も、前記のような従来の膜濾過装置に設けられているものを使用することができる。   The membrane filter for water to be treated constituting the present invention is used for removing turbid components contained in the water to be treated such as seawater, drainage, ballast water, etc. in seawater desalination and wastewater treatment. The thing similar to the conventional membrane filtration apparatus can be mentioned, For example, the membrane filtration apparatus using filtration membranes, such as a hollow fiber and a membrane, can be mentioned. Further, the filtration membrane cleaning means may be the one provided in the conventional membrane filtration device as described above.

被処理水中の糖量の測定手段及び目詰まり速度予測手段は、それぞれ、糖量の測定方法及び目詰まり速度の予測方法を実施する手段である。これらの手段は、請求項1〜4に関して説明した糖量の測定方法及び目詰まり速度の予測を行うことができる手段であればよく、特に限定されない。又、複数工程からなる方法を実行するシステムも、この手段に含まれる。例えば、海水をサンプリングする工程、サンプリングした海水を前処理する工程、イオンクロマトグラフィーの測定を行う工程、及びイオンクロマトグラフィーの測定値をデータ処理し、ラムノース、ガラクトース、グルコース及びマンノースの量の合計を算出する工程からなる糖量の測定システムも被処理水中の糖量の測定手段である。   The sugar amount measurement means and the clogging speed prediction means in the water to be treated are means for executing a sugar amount measurement method and a clogging speed prediction method, respectively. These means are not particularly limited as long as the sugar amount measurement method and the clogging speed can be predicted as described in claims 1 to 4. A system for executing a method comprising a plurality of steps is also included in this means. For example, the step of sampling seawater, the step of pre-processing the sampled seawater, the step of measuring ion chromatography, and the data of ion chromatography measurements are processed, and the total amount of rhamnose, galactose, glucose and mannose is calculated. The sugar amount measuring system comprising the calculating step is also a means for measuring the sugar amount in the water to be treated.

請求項5に記載の濾過システムは、被処理水中の、糖量の測定や目詰まり速度の予測(すなわち本発明の方法)を実施し、その予測結果に基づいて、濾過膜の洗浄の時期を判断し、濾過膜洗浄手段により洗浄を行う。従って、目詰まりによる流束の大きな低下を防ぎ、安定的に濾過を行うことができる。なお、「予測結果に基づいて、濾過膜の洗浄の時期を判断」とは、膜濾過実施中、必ずしも常に糖量の測定や目詰まり速度の予測をすることを意味しない。濾過膜の開始時において、糖量の測定や目詰まり速度の予測を行い、そのデータを濾過システムに設置することができる管理手段に入力し、最初の予測後は、糖量の測定や目詰まり速度の予測を行わず、前記データのみに基づいて濾過膜の洗浄の時期の判断を行う場合も含む意味である。   The filtration system according to claim 5 measures the sugar amount in the water to be treated and predicts the clogging speed (that is, the method of the present invention), and determines the timing of cleaning the filtration membrane based on the prediction result. Judgment is performed, and the membrane is cleaned by a filtration membrane cleaning means. Therefore, it is possible to prevent a large decrease in the flux due to clogging and perform stable filtration. Note that “determining when to wash the filtration membrane based on the prediction result” does not necessarily mean always measuring the amount of sugar or predicting the clogging rate during membrane filtration. At the start of the filtration membrane, measure the amount of sugar and predict the clogging rate, and enter the data into a management means that can be installed in the filtration system. This also includes the case where the speed of the membrane is determined based on the data alone without predicting the speed.

本発明の濾過膜の目詰まり速度の予測方法によれば、被処理水中の糖量の測定値に基づき、膜濾過の運転開始後又は濾過膜の洗浄後、濁質による濾過膜の目詰まりが生じ次の膜の洗浄が必要となるまでの間の処理流量の積算値又は運転時間を予測することができ、従って次の洗浄が必要となる時期を予測できるので、膜濾過の運転の管理が容易になる。又、本発明の濾過システムによれば、濾過の洗浄が必要となる時期を高い精度で予測できるので、目詰まりによる流束の大きな低下を防ぎ、安定的に濾過を行うことができる。   According to the method for predicting the clogging rate of the filtration membrane of the present invention, clogging of the filtration membrane due to turbidity is caused after the start of the membrane filtration operation or after the filtration membrane is washed based on the measured value of the amount of sugar in the treated water. The integrated value of the treatment flow rate or the operation time until the next membrane cleaning is required can be predicted, and therefore the time when the next cleaning is required can be predicted. It becomes easy. In addition, according to the filtration system of the present invention, the time when the filtration needs to be washed can be predicted with high accuracy, so that a large decrease in the flux due to clogging can be prevented and stable filtration can be performed.

本発明が適用される膜濾過装置の内部構造を示す模式図である。It is a schematic diagram which shows the internal structure of the membrane filtration apparatus with which this invention is applied. 実施例の膜濾過における「流束/初期流束」の時間変化を示したグラフである。It is the graph which showed the time change of the "flux / initial flux" in the membrane filtration of an Example.

次に、本発明を実施するための形態を具体的に説明する。なお、本発明はこの形態に限定されるものではなく、本発明の趣旨を損なわない限り、他の形態へ変更することができる。   Next, the form for implementing this invention is demonstrated concretely. Note that the present invention is not limited to this form, and can be changed to other forms as long as the gist of the present invention is not impaired.

本発明が適用される膜濾過は、濾過膜を備えるモジュールを使用した膜濾過装置により行うことができる。この膜濾過装置は、モジュールとともに濾過膜の洗浄手段を有する。図1は、本発明が適用される膜濾過装置の一例の内部構造を模式的に示す図である。図1の膜濾過装置は、筒状のケースの中心部にモジュールを備え、このモジュール内に濾過膜としての中空糸膜が複数束ねられた中空糸束(図示されていない)が収容されている。なお、濾過膜の形態は中空糸膜に限定されずメンブレン等の形態も挙げることができるが、より広い膜面積により処理量を増大させるためには中空糸膜が好ましい。   Membrane filtration to which the present invention is applied can be performed by a membrane filtration apparatus using a module equipped with a filtration membrane. This membrane filtration apparatus has a filtration membrane cleaning means together with a module. FIG. 1 is a diagram schematically showing the internal structure of an example of a membrane filtration device to which the present invention is applied. The membrane filtration apparatus of FIG. 1 includes a module at the center of a cylindrical case, and a hollow fiber bundle (not shown) in which a plurality of hollow fiber membranes as a filtration membrane are bundled is accommodated in this module. . In addition, although the form of a filtration membrane is not limited to a hollow fiber membrane, forms, such as a membrane, can also be mentioned, In order to increase a throughput with a wider membrane area, a hollow fiber membrane is preferable.

図1の膜濾過装置は、さらに、濾過膜の洗浄手段として3本のシャワー装置を備え、又図示されていないが、被処理水を供給する手段及び被処理水の流れとは逆の方向から洗浄水を供給する手段を備えている。各シャワー装置は、複数(図中では4つ)のノズルを有し、このノズルから、モジュールすなわち中空糸束の表面にシャワーが吹きつけられ膜の洗浄が行われる。   The membrane filtration device of FIG. 1 further includes three shower devices as filtration membrane cleaning means, and is not shown, but from a direction opposite to the means for supplying the treated water and the flow of the treated water. Means for supplying cleaning water are provided. Each shower device has a plurality of (four in the figure) nozzles, and a shower is sprayed from the nozzles onto the surface of the module, that is, the hollow fiber bundle, to clean the membrane.

従って、図1の膜濾過装置は、本発明の濾過システムにおける被処理水の膜濾過装置、及び濾過膜洗浄手段を有している。本発明の濾過システムはさらに被処理水中の糖量の測定手段、前記測定手段による糖量の測定値から濾過膜の目詰まり速度を算出する目詰まり速度予測手段を有する。   Therefore, the membrane filtration apparatus of FIG. 1 has a membrane filtration apparatus for water to be treated and a filtration membrane cleaning means in the filtration system of the present invention. The filtration system of the present invention further comprises a means for measuring the amount of sugar in the water to be treated, and a clogging rate prediction means for calculating the clogging rate of the filtration membrane from the measured value of the amount of sugar by the measuring means.

海水等の膜濾過を行う場合、海水等の被処理水は筒状のケースとモジュール間に供給され、中空糸膜を通ってモジュール内(中空糸内)から処理液として装置外に排出される。中空糸膜を通る際にTEP等の濁質成分の除去が行われる。この際に、濁質成分による中空糸膜の目詰まりが生じ、処理流量が低下し濾過圧(差圧)が増大する。   When membrane filtration of seawater or the like is performed, water to be treated such as seawater is supplied between the cylindrical case and the module, passes through the hollow fiber membrane, and is discharged from the inside of the module (inside the hollow fiber) as processing liquid to the outside of the apparatus. . When passing through the hollow fiber membrane, turbid components such as TEP are removed. At this time, the hollow fiber membrane is clogged with turbid components, the treatment flow rate is lowered, and the filtration pressure (differential pressure) is increased.

そこで、処理流量(又は濾過圧)を回復するために、中空糸膜の洗浄が行われるが、本発明の方法によれば、被処理水中の糖量の測定値に基づき、次の中空糸膜の洗浄が必要となる時期を予測することができる。中空糸膜の洗浄により、処理流量の回復、差圧の低下が達成され、その後前記と同様にして被処理水の通液が再開される。   Therefore, in order to recover the treatment flow rate (or filtration pressure), the hollow fiber membrane is washed. According to the method of the present invention, the next hollow fiber membrane is based on the measured value of the amount of sugar in the treated water. It is possible to predict the time when the cleaning is required. By washing the hollow fiber membrane, recovery of the treatment flow rate and reduction of the differential pressure are achieved, and then the flow of water to be treated is resumed in the same manner as described above.

TEPのようなゼリー状の濁質成分を含む被処理水の膜濾過では、疎水性の材質からなり、比較的大きい孔径を有する疎水性濾過膜を用いた場合、目詰まりが小さい傾向が見られる。比較的大きい孔径、具体的には1μm程度又はより大きい孔径を有する疎水性濾過膜は、ゼリー状の濁質成分がその表面に粘着しにくく、目詰まりしにくいためと考えられる。又、TEPは1〜200μm程度の粒径の変形するゼリー状の粒子であるため、これを含む被処理水の膜濾過では、ゼリー状の濁質成分が膜表面や孔内に粘着して広がり孔をファウリング(目詰まり)させやすいが、比較的大きい孔径を有する疎水性濾過膜は、膜内部にTEPを引き込んで分離するためと考えられる。又、その結果、膜表面で濁質カットをする膜では十分に除去できないTEPを効率よく除去することができる。   In membrane filtration of water to be treated containing jelly-like turbid components such as TEP, when a hydrophobic filtration membrane made of a hydrophobic material and having a relatively large pore size is used, clogging tends to be small. . A hydrophobic filtration membrane having a relatively large pore size, specifically about 1 μm or larger, is considered to be because the jelly-like turbid component is less likely to stick to the surface and clogging is difficult. In addition, since TEP is a jelly-like particle having a particle size of about 1 to 200 μm, the jelly-like turbid component sticks and spreads on the membrane surface or pores in membrane filtration of water to be treated containing this. It is thought that the hydrophobic filtration membrane having a relatively large pore diameter draws TEP into the inside of the membrane for separation, although it is easy to foul the pores (clogging). As a result, it is possible to efficiently remove TEP that cannot be sufficiently removed by a film that cuts turbidity on the film surface.

ここで疎水性濾過膜とは、より具体的には、疎水性の高分子材料からなり、親水化加工(疎水性の高分子中への親水基の導入等)が施されていない膜であって、濾過膜として使用できるように均一な径の孔を有する膜を言う。疎水性濾過膜を構成する疎水性の高分子材料としては、フッ素樹脂やポリオレフィンを挙げることができる。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等を挙げることができ、ポリオレフィンとしては、ポリエチレンや他のポリ−α−オレフィンを挙げることができる。これらの中でも、フッ素樹脂又はポリエチレンからなる膜が、耐薬品性や機械的強度に優れているので、本発明において疎水性濾過膜として好適に用いられる。   More specifically, the hydrophobic filtration membrane is a membrane made of a hydrophobic polymer material and not subjected to hydrophilization processing (introduction of a hydrophilic group into the hydrophobic polymer). A membrane having pores with a uniform diameter so that it can be used as a filtration membrane. Examples of the hydrophobic polymer material constituting the hydrophobic filtration membrane include a fluororesin and a polyolefin. Examples of the fluororesin include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF). Examples of the polyolefin include polyethylene and other poly-α-olefins. Among these, since the film | membrane which consists of a fluororesin or polyethylene is excellent in chemical resistance and mechanical strength, it is used suitably as a hydrophobic filtration membrane in this invention.

膜濾過1
海水(清水海水)について、目開き2μmの金網で濾過した後、以下に示す仕様であって図1で表わすことができる構造の膜濾過装置を用いての膜濾過を行った(2段濾過)。そのときの「流束/初期流束」の時間変化を図2に示す。
Membrane filtration 1
Seawater (freshwater seawater) was filtered through a wire mesh having an opening of 2 μm, and membrane filtration was performed using a membrane filtration apparatus having the following specifications and the structure shown in FIG. 1 (two-stage filtration). . FIG. 2 shows the time variation of the “flux / initial flux” at that time.

[仕様]
モジュールの直径:40mm
モジュール中の中空糸膜:10本
モジュールの長さ:40cm
中空糸膜:住友電工ファインポリマー社製ポアフロン(PTFE)、
径:2.3mm、孔径:0.1μm(MF膜)
[specification]
Module diameter: 40mm
Hollow fiber membrane in module: 10 modules Length: 40cm
Hollow fiber membrane: Porefluoron (PTFE) manufactured by Sumitomo Electric Fine Polymer,
Diameter: 2.3 mm, hole diameter: 0.1 μm (MF membrane)

膜濾過2
目開き2μmの金網での濾過の代わりに、以下に示す仕様であって図1で表わすことができる構造の膜濾過装置を用いての膜濾過を行った以外は、膜濾過1と同様にして2段濾過を行った。そのときの「流束/初期流束」の時間変化を図2に示す。
Membrane filtration 2
Instead of filtration with a wire mesh having a mesh opening of 2 μm, the membrane filtration was carried out in the same manner as the membrane filtration 1 except that the membrane filtration was carried out using the membrane filtration device having the following specification and the structure shown in FIG. Two-stage filtration was performed. FIG. 2 shows the time variation of the “flux / initial flux” at that time.

[仕様]
モジュールの直径:40mm
モジュール中の中空糸膜:10本
モジュールの長さ:40cm
中空糸膜:住友電工ファインポリマー社製ポアフロン(PTFE)、
径:2.3mm、孔径:2μm
[specification]
Module diameter: 40mm
Hollow fiber membrane in module: 10 modules Length: 40cm
Hollow fiber membrane: Porefluoron (PTFE) manufactured by Sumitomo Electric Fine Polymer,
Diameter: 2.3 mm, hole diameter: 2 μm

膜濾過3
孔径2μmの中空糸膜の代わりに、住友電工ファインポリマー社製の親水ポアフロン
(親水基を、膜を構成する高分子表面に導入したポアフロン)からなる中空糸膜(径:2.3mm、孔径:2μm)を用いた以外は、膜濾過2と同様にして2段濾過を行った。そのときの「流束/初期流束」の時間変化を図2に示す。
Membrane filtration 3
Instead of a hollow fiber membrane having a pore diameter of 2 μm, a hollow fiber membrane (diameter: 2.3 mm, pore diameter: made of Sumitomo Electric Fine Polymer's hydrophilic poreflon (poreflon having a hydrophilic group introduced on the polymer surface constituting the membrane). Two-stage filtration was performed in the same manner as the membrane filtration 2 except that 2 μm) was used. FIG. 2 shows the time variation of the “flux / initial flux” at that time.

膜濾過4
目開き2μmの金網での濾過を行わなかった以外は、膜濾過1と同様にして濾過を行った。そのときの「流束/初期流束」の時間変化を図2に示す。
Membrane filtration 4
Filtration was carried out in the same manner as in membrane filtration 1 except that filtration through a wire mesh having an opening of 2 μm was not performed. FIG. 2 shows the time variation of the “flux / initial flux” at that time.

膜濾過1〜4での2段目のMF膜による膜濾過に供せられた処理水(膜濾過1〜3では、1段目の濾過後の処理水、膜濾過4では海水。以下「試料」と言う。)中の糖量を以下に示す分析試験方法により測定した。その結果を表1に示す。   Treated water used for membrane filtration by the second-stage MF membrane in membrane filtration 1 to 4 (treated water after first-stage filtration in membrane filtration 1 to 3, and seawater in membrane filtration 4. ) Was measured by the analytical test method shown below. The results are shown in Table 1.

(分析試験方法)
1.試料の濃縮
膜濾過1〜4のそれぞれの試料100mLを凍結乾燥した後、純水を用いて洗い込み正確に10mLとし濃縮試料を得た。
(Analytical test method)
1. Sample Concentration After 100 mL of each sample of membrane filtration 1 to 4 was lyophilized, it was washed with pure water to make exactly 10 mL to obtain a concentrated sample.

2.糖分析
(1)試料溶液の調整
1.にて調整した濃縮試料1mLと4mol/Lトリフルオロ酢酸1mLを混合し、減圧封管後、100℃で3時間加熱し、加水分解(多糖類→単糖類)を行った。
2. Sugar analysis (1) Preparation of sample solution 1 mL of the concentrated sample prepared in step 1 and 1 mL of 4 mol / L trifluoroacetic acid were mixed, and after sealed under reduced pressure, heated at 100 ° C. for 3 hours to perform hydrolysis (polysaccharide → monosaccharide).

室温まで放冷後、遠心エバポレーターにて溶媒を留去した。残渣に水1mLを正確に加えて、分散、溶解を促進するため超音波を照射した。得られた溶液を、イオン交換樹脂(AG4−X4)入りフィルターユニット(孔径:0.45μm)に入れ、1分間遠心分離(10,000rpm)を行い試料溶液とした。   After cooling to room temperature, the solvent was distilled off with a centrifugal evaporator. 1 mL of water was accurately added to the residue, and ultrasonic waves were applied to promote dispersion and dissolution. The obtained solution was put into a filter unit (pore size: 0.45 μm) containing an ion exchange resin (AG4-X4), and centrifuged (10,000 rpm) for 1 minute to obtain a sample solution.

以下、膜濾過1での試料を「金網透過水」、膜濾過2での試料を「疎水性膜透過水」、膜濾過3での試料を「親水性膜透過水」、膜濾過3での試料を「海水」と表わす。   Hereinafter, the sample in the membrane filtration 1 is “wire mesh permeate”, the sample in the membrane filtration 2 is “hydrophobic membrane permeate”, the sample in the membrane filtration 3 is “hydrophilic membrane permeate”, and the membrane filtration 3 The sample is represented as “seawater”.

(2)標準溶液の調製
ラムノース、ガラクトース、グルコース及びマンノースのそれぞれ約10mgに水を加えて正確に50mLとした。この溶液5mLを正確にとり、水を加えて正確に50mLとし、標準原液とした。標準原液を水で正確に希釈し、標準溶液1(各約0.2μg/mL)、標準溶液2(各約1μg/mL)、標準溶液3(各約5μg/mL)を調製した。
(2) Preparation of standard solution Water was added to about 10 mg each of rhamnose, galactose, glucose and mannose to make exactly 50 mL. 5 mL of this solution was accurately taken, and water was added to make exactly 50 mL to obtain a standard stock solution. The standard stock solution was accurately diluted with water to prepare standard solution 1 (about 0.2 μg / mL each), standard solution 2 (about 1 μg / mL each), and standard solution 3 (about 5 μg / mL each).

(3)糖の定量
それぞれの試料溶液、標準溶液1〜3、及び試料溶液と標準溶液1〜3のそれぞれを混合した溶液について、以下に示す測定条件にてイオンクロマトグラフィーの分析を行い、各試料溶液中の糖の同定及び定量を実施した。その定量結果を、表1に示す。
(3) Quantification of sugar For each sample solution, standard solutions 1 to 3, and a solution obtained by mixing each of the sample solution and standard solutions 1 to 3, ion chromatography analysis was performed under the following measurement conditions. Identification and quantification of sugars in the sample solution was performed. The quantitative results are shown in Table 1.

(測定条件)
糖分析計:日本ダイオネクス社製 ICS−3000
検出器:電気化学検出器
カラム:CarboPac PA10(4mmI.D.×250mm)
カラム温度:25℃付近の一定温度
移動相A:10mmol/L 水酸化ナトリウム溶液
移動層B:200mmol/L 水酸化ナトリウム溶液
注入量:25μL、流量:1mL
・グラジエント条件:移動相Aを40分→移動相Bを10分→移動相Aを10分
(Measurement condition)
Sugar analyzer: ICS-3000 manufactured by Nippon Dionex
Detector: Electrochemical detector Column: CarboPac PA10 (4 mm ID x 250 mm)
Column temperature: constant temperature around 25 ° C. Mobile phase A: 10 mmol / L sodium hydroxide solution Mobile layer B: 200 mmol / L sodium hydroxide solution Injection volume: 25 μL, flow rate: 1 mL
Gradient condition: mobile phase A for 40 minutes → mobile phase B for 10 minutes → mobile phase A for 10 minutes

Figure 2012250180
Figure 2012250180

表1中の「合計」とは、ラムノース量、ガラクトース量、グルコース量、マンノース量の測定値の合計量である。又、「糖の除去率」とは、この合計量についての、「海水」に対する減少率を表わす。表1から明らかなように、疎水性膜透過水は、親水性膜透過水や金網透過水に比べて、糖量測定値(合計量)が小さく、糖の除去率が大きい(疎水性膜により糖がよく除去されている)ことが示されている。   “Total” in Table 1 is the total amount of measured values of rhamnose amount, galactose amount, glucose amount, and mannose amount. The “sugar removal rate” represents the rate of decrease with respect to “seawater” with respect to this total amount. As is clear from Table 1, the hydrophobic membrane permeated water has a smaller measured sugar amount (total amount) and a larger sugar removal rate than the hydrophilic membrane permeated water and the wire mesh permeated water (depending on the hydrophobic membrane). Sugar is well removed).

又、図2より、疎水性濾過膜により一段目の濾過を行った膜濾過2(疎水性膜透過水の濾過)では、親水性濾過膜により一段目の濾過を行った膜濾過3(親水性膜透過水の濾過)や金網により一段目の濾過を行った膜濾過1(金網透過水の濾過)に比べて、運転中の流束の低下が小さいこと、従って、濾過膜の目詰まり速度が小さく、洗浄頻度が小さくてよいことが示されている。すなわち、表1の結果及び図2の結果より、糖の含有量(糖量)と濾過膜の目詰まり速度は大きな相関があり、糖量の測定により、濾過膜の目詰まり速度が予測できることが示されている。   Further, from FIG. 2, membrane filtration 2 (hydrophobic membrane permeated water filtration) in which the first-stage filtration was performed with a hydrophobic filtration membrane, membrane filtration 3 (hydrophilicity) in which the first-stage filtration was performed with a hydrophilic filtration membrane. Compared with membrane filtration 1 (filtration of the permeated water of the membrane) and membrane filtration 1 (filtration of the permeated water of the metal mesh) performed by the first stage filtration, the decrease in the flux during operation is small, and therefore the clogging speed of the filtration membrane is reduced. It is shown that the cleaning frequency may be small. That is, from the results of Table 1 and FIG. 2, the sugar content (sugar content) and the clogging speed of the filtration membrane have a large correlation, and the clogging speed of the filtration membrane can be predicted by measuring the sugar content. It is shown.

Claims (5)

膜濾過において、被処理水中の糖量を測定し、その測定値から濾過膜の目詰まり速度を算出することを特徴とする濾過膜の目詰まり速度の予測方法。   In membrane filtration, a method for predicting the clogging rate of a filtration membrane, comprising measuring the amount of sugar in the water to be treated and calculating the clogging rate of the filtration membrane from the measured value. 被処理水が海水であることを特徴とする請求項1に記載の濾過膜の目詰まり速度の予測方法。   The method for predicting the clogging speed of a filtration membrane according to claim 1, wherein the water to be treated is seawater. 糖量の測定が、濃縮した被処理水の液体クロマトグラフィーによることを特徴とする請求項1又は請求項2に記載の濾過膜の目詰まり速度の予測方法。   The method for predicting the clogging rate of a filtration membrane according to claim 1 or 2, wherein the sugar amount is measured by liquid chromatography of concentrated water to be treated. 糖量の測定が、イオンクロマトグラフィーによる、ラムノース、ガラクトース、グルコース及びマンノースの量の測定であることを特徴とする請求項3に記載の濾過膜の目詰まり速度の予測方法。   The method for predicting the clogging rate of a filtration membrane according to claim 3, wherein the measurement of the amount of sugar is measurement of the amount of rhamnose, galactose, glucose and mannose by ion chromatography. 被処理水の膜濾過装置、被処理水中の糖量の測定手段、前記測定手段による糖量の測定値から濾過膜の目詰まり速度を算出する目詰まり速度予測手段、及び濾過膜洗浄手段を有することを特徴とする濾過システム。   A membrane filtration device for water to be treated, a means for measuring the amount of sugar in the water to be treated, a clogging speed predicting means for calculating a clogging speed of the filtration membrane from a measurement value of the sugar amount by the measuring means, and a filtration membrane washing means A filtration system characterized by that.
JP2011124984A 2011-06-03 2011-06-03 Prediction method for clogging speed of filtration membrane, and filtration system Pending JP2012250180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124984A JP2012250180A (en) 2011-06-03 2011-06-03 Prediction method for clogging speed of filtration membrane, and filtration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124984A JP2012250180A (en) 2011-06-03 2011-06-03 Prediction method for clogging speed of filtration membrane, and filtration system

Publications (1)

Publication Number Publication Date
JP2012250180A true JP2012250180A (en) 2012-12-20

Family

ID=47523517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124984A Pending JP2012250180A (en) 2011-06-03 2011-06-03 Prediction method for clogging speed of filtration membrane, and filtration system

Country Status (1)

Country Link
JP (1) JP2012250180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012061A (en) * 2016-07-21 2018-01-25 水ing株式会社 Membrane obstructiveness evaluation method of reverse osmotic membrane feed water, operation control method of water treatment device using the membrane obstructiveness evaluation method
CN107703038A (en) * 2017-09-19 2018-02-16 中交天津港湾工程研究院有限公司 Geotextile is compressed axially method clogging test device and method
CN109283112A (en) * 2018-09-25 2019-01-29 昆明理工大学 It is a kind of for dissipating the experimental provision of soil body complexity silting mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075754A (en) * 2005-09-15 2007-03-29 Mitsubishi Rayon Co Ltd Method for treating water to be treated
WO2007097269A1 (en) * 2006-02-23 2007-08-30 Asahi Kasei Chemicals Corporation Method of treating wastewater
JP2008229583A (en) * 2007-03-23 2008-10-02 Metawater Co Ltd Method for controlling operation of membrane filtration apparatus
WO2009134996A2 (en) * 2008-05-02 2009-11-05 Nalco Company Method of conditioning a mixed liquor containing nonionic polysaccharides and/or nonionic organic molecules
WO2010067785A1 (en) * 2008-12-09 2010-06-17 東レ株式会社 Method for producing sugar liquid
WO2011016410A1 (en) * 2009-08-06 2011-02-10 住友電気工業株式会社 Water treatment device and water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075754A (en) * 2005-09-15 2007-03-29 Mitsubishi Rayon Co Ltd Method for treating water to be treated
WO2007097269A1 (en) * 2006-02-23 2007-08-30 Asahi Kasei Chemicals Corporation Method of treating wastewater
JP2008229583A (en) * 2007-03-23 2008-10-02 Metawater Co Ltd Method for controlling operation of membrane filtration apparatus
WO2009134996A2 (en) * 2008-05-02 2009-11-05 Nalco Company Method of conditioning a mixed liquor containing nonionic polysaccharides and/or nonionic organic molecules
WO2010067785A1 (en) * 2008-12-09 2010-06-17 東レ株式会社 Method for producing sugar liquid
WO2011016410A1 (en) * 2009-08-06 2011-02-10 住友電気工業株式会社 Water treatment device and water treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012061A (en) * 2016-07-21 2018-01-25 水ing株式会社 Membrane obstructiveness evaluation method of reverse osmotic membrane feed water, operation control method of water treatment device using the membrane obstructiveness evaluation method
JP7033841B2 (en) 2016-07-21 2022-03-11 水ing株式会社 Membrane obstruction evaluation method of reverse osmosis membrane supply water and operation management method of water treatment equipment using the membrane obstruction evaluation method
CN107703038A (en) * 2017-09-19 2018-02-16 中交天津港湾工程研究院有限公司 Geotextile is compressed axially method clogging test device and method
CN109283112A (en) * 2018-09-25 2019-01-29 昆明理工大学 It is a kind of for dissipating the experimental provision of soil body complexity silting mechanism

Similar Documents

Publication Publication Date Title
Zhang et al. Chemical cleaning of fouled PVC membrane during ultrafiltration of algal-rich water
KR101815932B1 (en) Fouling index measuring system of multi-channel using high pressure syringe pump of constant flow operation and membrane filter, and method for the same
JP2016107235A (en) Analysis method for contaminated condition of separation membrane, evaluation method for water quality of filtration object water using the same, and filtration system for performing analysis method for contaminated condition of separation membrane
JP2019206000A (en) Separation membrane contaminated state analytic method, filtration object water quality evaluation method using the method, and filtration system for performing separation membrane contaminated state analytic method
JP2016083646A (en) Diagnostic method and diagnostic device of ultrafiltration membrane and production system of ultrapure water
JP2012250180A (en) Prediction method for clogging speed of filtration membrane, and filtration system
JP2012196590A (en) Filtration membrane, cleaning means of filtration membrane, and selection method of pretreat means
Lee et al. Analysis of local fouling in a pilot-scale submerged hollow-fiber membrane system for drinking water treatment by membrane autopsy
Abbasi-Garravand et al. Identification of the type of foulants and investigation of the membrane cleaning methods for PRO processes in osmotic power application
JP2001000842A (en) Module for thickening pathogenic protozoa and method for thickening the same
Wypysek et al. In-situ investigation of wetting patterns in polymeric multibore membranes via magnetic resonance imaging
JP5633540B2 (en) Separation membrane for seawater desalination pretreatment, seawater desalination pretreatment device, seawater desalination device, and seawater desalination method
JP2018008192A (en) Foulant quantification method
JP6052866B2 (en) Water treatment method
JP5019276B2 (en) Seawater desalination apparatus and seawater desalination method
US20130092618A1 (en) Separation membrane, water treatment unit and water treatment apparatus
JP4385704B2 (en) Reverse osmosis membrane feed water evaluation method and water treatment device operation management method
JP2008522143A (en) Electrokinetic method for determining the electrostatic charge state of a porous membrane during filtration and its use
JP2007240304A (en) Fractionation apparatus
Norafifah et al. A study of operational factors for reducing the fouling of hollow fiber membranes during wastewater filtration
Beicha et al. Dynamic ultrafiltration model based on concentration polarization-cake layer interplay
US20130081997A1 (en) Separation membrane for seawater desalination pretreatment, seawater desalination pretreatment device, seawater desalination apparatus, and seawater desalination method
Peiris et al. Characterization of hydraulically reversible and irreversible fouling species in ultrafiltration drinking water treatment systems using fluorescence EEM and LC–OCD measurements
Vatsa et al. Nanofiltration: principles, process modeling, and applications
JP6731308B2 (en) Valuable material recovery method and valuable resource recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150309