JP2019206000A - Separation membrane contaminated state analytic method, filtration object water quality evaluation method using the method, and filtration system for performing separation membrane contaminated state analytic method - Google Patents

Separation membrane contaminated state analytic method, filtration object water quality evaluation method using the method, and filtration system for performing separation membrane contaminated state analytic method Download PDF

Info

Publication number
JP2019206000A
JP2019206000A JP2019124925A JP2019124925A JP2019206000A JP 2019206000 A JP2019206000 A JP 2019206000A JP 2019124925 A JP2019124925 A JP 2019124925A JP 2019124925 A JP2019124925 A JP 2019124925A JP 2019206000 A JP2019206000 A JP 2019206000A
Authority
JP
Japan
Prior art keywords
separation membrane
membrane
fluorescence
water
feem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019124925A
Other languages
Japanese (ja)
Other versions
JP6768889B2 (en
Inventor
吉英 貝谷
Yoshifusa Kaitani
吉英 貝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2019124925A priority Critical patent/JP6768889B2/en
Publication of JP2019206000A publication Critical patent/JP2019206000A/en
Application granted granted Critical
Publication of JP6768889B2 publication Critical patent/JP6768889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a method for analyzing the state of contamination of a separation membrane that enables simple and rapid analysis without being affected by water to be filtered in water treatment.SOLUTION: A method for analyzing the state of contamination of a separation membrane comprises: a filtering step of providing a separation membrane 14 in a flow path 3 of filtration target water 1 in water treatment and filtering the filtration target water 1 through the separation membrane 14; a light irradiation step of irradiating the separation membrane 14 with excitation light from a spectrophotometer 20 used for fluorescence spectroscopy; a fluorescence spectroscopy step of causing the spectrophotometer 20 to receive fluorescence from the separation membrane 14 for spectroscopy; an FEEM creation step of creating a three-dimensional excitation fluorescence matrix spectrum (FEEM) on the basis of information about the wavelength of the excitation light and the wavelength of fluorescence used in spectroscopy; and an FEEM analysis step of analyzing the contamination state of the separation membrane 14 on the basis of the relationship between the integrated value of the fluorescence intensity and the total amount of filtered water in a predetermined region of the created FEEM. There are also provided a water quality evaluation method and filtration system for water to be filtered.SELECTED DRAWING: Figure 1

Description

本発明は、水処理におけるろ過対象水のろ過に用いた分離膜の汚染状態分析方法、その方法を用いるろ過対象水の水質評価方法、及び分離膜の汚染状態分析方法を行うためのろ過システムに関する。   The present invention relates to a method for analyzing the state of contamination of a separation membrane used for filtering water to be filtered in water treatment, a method for evaluating the quality of water to be filtered using the method, and a filtration system for performing a method for analyzing the state of contamination of a separation membrane. .

種々の分野における水処理において分離膜によるろ過処理が実施されている。   Filtration treatment using a separation membrane is performed in water treatment in various fields.

水処理における近代的な膜ろ過がいち早く行われたのは、海水淡水化を目的として開発された逆浸透膜(RO膜)の実用化である。その後、分離膜を利用したろ過処理は、半導体製造産業における低圧RO膜などの超純水製造設備に展開し、現在は、下水処理や産業排水処理における膜分離活性汚泥法(MBR)、上水道事業における浄水処理設備において分離膜が導入されるようになっている。   Modern membrane filtration in water treatment was first performed in the practical application of a reverse osmosis membrane (RO membrane) developed for the purpose of seawater desalination. Later, filtration using separation membranes was expanded to ultrapure water production facilities such as low-pressure RO membranes in the semiconductor manufacturing industry. Currently, the membrane separation activated sludge process (MBR) in sewage treatment and industrial wastewater treatment, waterworks business Separation membranes are introduced in the water purification treatment facility.

このような分離膜を使用する水処理設備では、分離膜への供給水側膜面や膜細孔内に供給水中に含まれる成分の付着や析出が生じて分離膜の透水性能が低下する現象、すなわち、膜ファウリングが問題となる。   In such a water treatment facility using a separation membrane, a phenomenon occurs in which the water permeability of the separation membrane deteriorates due to adhesion or precipitation of components contained in the feed water on the surface of the feed water side membrane or in the pores of the separation membrane. That is, membrane fouling becomes a problem.

膜ファウリングの抑制方法の開発に向けて、これまでに膜ファウリング原因物質やファウリング機構の解明に関して様々な研究が実施されている。膜ファウリングの原因物質については、2000〜2010年頃に供給水中の親水性成分である高分子の多糖様物質が重要な汚染物質である事が明らかになっている。また、膜ファウリングの進行に関しては、1)有機物の初期吸着と細孔閉塞、2)ゲル層の堆積、3)ケーキ層の堆積、の順に膜ファウリングが進行し、高分子多糖類は初期の吸着汚染期において膜と水素結合により選択的に吸着する事が明らかになっている。   Various studies have been conducted on the elucidation of membrane fouling-causing substances and fouling mechanisms so far toward the development of methods for suppressing membrane fouling. As for the causative substance of membrane fouling, it has been clarified that the high-molecular polysaccharide-like substance which is a hydrophilic component in the feed water is an important contaminant around 2000-2010. As for the progress of membrane fouling, membrane fouling progresses in the following order: 1) initial adsorption and pore clogging of organic matter, 2) deposition of gel layer, 3) deposition of cake layer. It is clarified that it is selectively adsorbed by the membrane and hydrogen bond during the adsorption contamination period.

このように、明らかになってきた膜ファウリングの原因物質や膜ファウリングの進行のメカニズムに基づき、膜ファウリングの進行状態を評価し、予測する方法が提案されはじめている。   As described above, methods for evaluating and predicting the progress of membrane fouling based on the causative substances of membrane fouling and the mechanism of membrane fouling progress have been proposed.

例えば、特許文献1では、分離膜に供給される供給水の水質を蛍光センサで計測し、同時に分離膜によるろ過処理前後の水の差圧を計測し、これらの計測されたデータに基づいて分離膜のファウリングの兆候を検出し、あるいは発生している膜ファウリングの要因を推定する方法が開示されている。   For example, in Patent Document 1, the quality of the supplied water supplied to the separation membrane is measured with a fluorescence sensor, and simultaneously, the differential pressure of water before and after filtration by the separation membrane is measured, and separation is performed based on these measured data. Disclosed is a method for detecting signs of membrane fouling or estimating the factors of membrane fouling that has occurred.

特許文献1の方法によれば、膜ファウリングの兆候を検出し、あるいは発生している膜ファウリングの要因を推定可能となるので、膜ファウリングの要因に応じた対策を早期に講じることが可能となる。   According to the method of Patent Document 1, it is possible to detect a sign of membrane fouling or to estimate the factor of membrane fouling that has occurred. Therefore, it is possible to take early measures according to the factor of membrane fouling. It becomes possible.

また、膜ファウリング物質同定のための分析手法としては、実際に閉塞した膜から薬品により閉塞成分を抽出する方法や、FTIR法を用いて膜表面堆積物を直接測定する方法が提案されている。   In addition, as analysis methods for identifying membrane fouling substances, methods for extracting clogging components from drugs that have actually been clogged with chemicals and methods for directly measuring film surface deposits using the FTIR method have been proposed. .

特開2014−136210号公報JP, 2014-136210, A

しかしながら、特許文献1の方法によれば、膜に供給される供給水に含まれる膜ファウリングの原因物質の存在量は極めて微量であり、原因物質が蛍光センサに検出されなくても膜ファウリングが進行する場合も多い。このような場合には誤った膜ファウリングの要因の推定がなされ、したがって誤った膜ファウリングの解消策が選択されることとなってしまう。   However, according to the method of Patent Document 1, the amount of the causative substance of the membrane fouling contained in the supply water supplied to the membrane is extremely small, and the membrane fouling can be performed even if the causative substance is not detected by the fluorescence sensor. Often progresses. In such a case, an erroneous factor of film fouling is estimated, and therefore, a countermeasure for eliminating the erroneous film fouling is selected.

また、薬品による実際に閉塞した分離膜からの閉塞成分(膜ファウリング成分)の抽出によれば、抽出溶媒の調整、所定の時間を要する抽出等、抽出操作に一定の手間と時間を要するうえ、抽出液性状により回収成分及び回収率が変化する。さらに、FTIR法を用いた膜表面堆積物の直接測定によれば、測定にサンプルの含水量が大きく影響する事から、FTIR法による測定には試料の完全乾燥操作が不可欠である。すなわち、薬品による抽出及びFTIR法によれば、複雑な作業が要求され、前処理を含めた分析操作に一定の時間を要する。   Moreover, according to the extraction of the clogging component (membrane fouling component) from the separation membrane that is actually clogged with chemicals, the extraction operation requires a certain amount of time and effort, such as adjustment of the extraction solvent and extraction that requires a predetermined time. The recovered components and the recovery rate vary depending on the properties of the extract. Further, according to the direct measurement of the film surface deposit using the FTIR method, the moisture content of the sample greatly affects the measurement. Therefore, the complete drying operation of the sample is indispensable for the measurement by the FTIR method. That is, according to the chemical extraction and the FTIR method, complicated work is required, and a certain time is required for the analysis operation including the pretreatment.

本発明は、上記課題に鑑みてなされたものであり、その目的は、水処理におけるろ過対象水の影響を受けることなく、簡易且つ迅速な分析を可能とする分離膜の汚染状態分析方法を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a separation membrane contamination state analysis method that enables simple and rapid analysis without being affected by water to be filtered in water treatment. There is to do.

上記目的を達成するための請求項1に記載の発明は、水処理におけるろ過対象水の流路に分離膜が設けられ、該分離膜によりろ過対象水をろ過するろ過工程と、蛍光分光法に用いる分光光度計からの励起光を前記分離膜に照射する光照射工程と、前記分離膜からの蛍光を、前記分光光度計に受光させ、分光させる蛍光分光工程と、前記励起光の波長についての情報及び分光された前記蛍光の波長についての情報に基づき、三次元励起蛍光マトリクススペクトル(FEEM)を作成するFEEM作成工程と、前記作成されたFEEMの所定領域における蛍光強度の積分値と総ろ過水量との関係に基づき前記分離膜の汚染状態を分析するFEEM分析工程と、を含むことを特徴とする。   In order to achieve the above object, the invention according to claim 1 includes a filtration step in which a separation membrane is provided in a flow path of water to be filtered in water treatment, and the filtration target water is filtered by the separation membrane, and fluorescence spectroscopy. A light irradiation step of irradiating the separation film with excitation light from a spectrophotometer to be used; a fluorescence spectroscopy step of causing the spectrophotometer to receive and split the fluorescence from the separation film; and a wavelength of the excitation light FEEM creation step of creating a three-dimensional excitation fluorescence matrix spectrum (FEEM) on the basis of the information and the information about the wavelength of the separated fluorescence, the integrated value of the fluorescence intensity and the total filtered water amount in a predetermined region of the created FEEM And an FEEM analysis step for analyzing the contamination state of the separation membrane based on the relationship between

請求項2に記載の発明は、請求項1に記載の分離膜の汚染状態分析方法において、前記FEEM作成工程は、励起波長Ex(Y軸)、蛍光波長Em(X軸)、蛍光強度(Z軸)で表される三次元スペクトルを蛍光強度に従って等高線図を作成したものであることを特徴とする。   According to a second aspect of the present invention, in the method for analyzing a contamination state of the separation membrane according to the first aspect, the FEEM preparation step includes an excitation wavelength Ex (Y axis), a fluorescence wavelength Em (X axis), and a fluorescence intensity (Z A three-dimensional spectrum represented by (axis) is a contour map created according to the fluorescence intensity.

請求項3に記載の発明は、請求項1又は2に記載の分離膜の汚染状態分析方法において、前記FEEM分析工程は、前記作成されるFEEMのうち、蛍光波長290nm〜330nm及び励起波長220nm〜240nmの範囲に区画される領域AP1、蛍光波長290nm〜320nm及び励起波長265nm〜295nmの範囲に区画される領域P1及び蛍光波長320nm〜395nm及び励起波長245nm〜295nmの範囲に区画される領域P2のうち少なくとも1個の領域の総ろ過水量に対する蛍光強度の積分値、並びに蛍光波長395nm〜480nm及び励起波長250nm〜295nmの範囲に区画される領域H1及び蛍光波長395nm〜520nm及び励起波長300nm〜375nmの範囲に区画される領域H2のうち少なくとも1個の領域の総ろ過水量に対する蛍光強度の積分値をそれぞれ求め、前記領域AP1、P1〜P2の積分値の増加割合に対し、前記領域H1〜H2の積分値の増加割合が大きい場合、膜のファウリングの終期にあると判定することを特徴とする。   According to a third aspect of the present invention, in the method for analyzing a contamination state of the separation membrane according to the first or second aspect, the FEEM analysis step includes a fluorescence wavelength of 290 nm to 330 nm and an excitation wavelength of 220 nm to the FEEM to be created. A region AP1 partitioned into a range of 240 nm, a region P1 partitioned into a range of fluorescence wavelengths of 290 nm to 320 nm and an excitation wavelength of 265 nm to 295 nm, and a region P2 partitioned into a range of fluorescence wavelengths of 320 nm to 395 nm and excitation wavelengths of 245 nm to 295 nm Of these, the integrated value of the fluorescence intensity with respect to the total amount of filtered water in at least one region, and the region H1 divided into the range of the fluorescence wavelength of 395 nm to 480 nm and the excitation wavelength of 250 nm to 295 nm, the fluorescence wavelength of 395 nm to 520 nm, and the excitation wavelength of 300 nm to 375 nm Region H2 divided into ranges When the integral value of the fluorescence intensity with respect to the total amount of filtered water in at least one region is obtained, and the increase rate of the integral value of the regions H1 to H2 is larger than the increase rate of the integral values of the regions AP1 and P1 to P2. , Characterized in that it is determined to be at the end of membrane fouling.

請求項4に記載の発明は、水処理におけるろ過対象水の水質評価方法であって、請求項1〜3の何れか一項に記載の分離膜汚染状態分析方法におけるFEEM作成工程から、該FEEMの前記積分値と、予め既知の膜閉塞指標値との相関関係から検量線を作成する検量線作成工程と、前記膜閉塞指標値が未知のろ過対象水について前記検量線作成工程で用いた前記分離膜の汚染状態分析方法と同じ方法により膜ろ過し該膜ろ過した分離膜のFEEMを作成し、得られたFEEMの積分値を前記作成された検量線に当てはめて膜閉塞指標値を決定する膜閉塞指標値決定工程と、を有することを特徴とする。   Invention of Claim 4 is the water quality evaluation method of the water for filtration in water treatment, Comprising: From the FEEM preparation process in the separation membrane contamination state analysis method as described in any one of Claims 1-3, this FEEM A calibration curve creating step for creating a calibration curve from the correlation between the integral value and a known membrane blockage index value in advance, and the calibration curve creating step used for the filtration target water with the unknown membrane blockage index value Membrane filtration is performed by the same method as the method for analyzing the state of contamination of the separation membrane, and an FEEM of the separation membrane subjected to the membrane filtration is created. The integral value of the obtained FEEM is applied to the created calibration curve to determine the membrane blockage index value. A membrane blockage index value determining step.

請求項5に記載の発明は、水処理におけるろ過対象水の流路に設けられ、該ろ過対象水を導入してろ過する分離膜の汚染状態分析方法を行うための膜ろ過システムであって、前記分離膜の前記ろ過対象水側表面に着脱可能に取り付けられるホルダと、前記ホルダに設けられ、励起光を前記分離膜に照射する励起光照射部と、前記ホルダに設けられ、前記ろ過後の分離膜に対し該励起光を吸収した分離膜から放出された蛍光を分光する蛍光分光部と、蛍光分光法による分析を、前記励起光の励起光波長情報及び前記分光した蛍光波長情報に基づいて、励起波長をY軸、蛍光波長をX軸、蛍光強度をZ軸として表される三次元励起蛍光マトリクススペクトル(FEEM)を作成するFEEM作成部と、を有し、前記作成したFEEMの蛍光波長領域の蛍光強度の積分値変化より、前記分離膜の汚染状態を把握可能とすることを特徴とする。   The invention according to claim 5 is a membrane filtration system for performing a contamination state analysis method for a separation membrane that is provided in a flow path of water to be filtered in water treatment and introduces and filters the water to be filtered. A holder detachably attached to the surface to be filtered of the separation membrane, an excitation light irradiation unit that is provided on the holder and irradiates the separation membrane with excitation light, and is provided on the holder, and after the filtration Based on the excitation light wavelength information of the excitation light and the spectroscopic fluorescence wavelength information, the fluorescence spectroscopic unit that spectrally separates the fluorescence emitted from the separation film that has absorbed the excitation light with respect to the separation membrane A FEEM creation unit for creating a three-dimensional excitation fluorescence matrix spectrum (FEEM) represented by an excitation wavelength as a Y-axis, a fluorescence wavelength as an X-axis, and a fluorescence intensity as a Z-axis, and the fluorescence wavelength of the created FEEM Territory From the integration value change in fluorescence intensity, characterized by enabling grasp the contamination state of the separation membrane.

請求項6に記載の発明は、水処理におけるろ過対象水の流路に設けられ、該ろ過対象水を導入してろ過する分離膜の汚染状態分析方法を行うための膜ろ過システムであって、前記分離膜の前記ろ過対象水側表面に着脱可能に取り付けられるホルダと、前記ホルダに設けられ、近赤外光を前記分離膜に照射する近赤外光照射部と、前記近赤外光を吸収した前記分離膜から放出された光を分光する放出光分光部と、前記分光した放出光波長情報に基づいて、吸光度−分光波長の二次元吸収スペクトルを作成する二次元吸収スペクトル作成部と、を有し、前記二次元吸収スペクトル作成部により、前記分離膜のろ過後の測定による吸収スペクトルAと、分離膜のろ過前の測定による吸収スペクトルAと、による差分の吸収スペクトルを求めて、前記分離膜のろ過により捕捉された物質に由来するスペクトルを得ることにより、前記分離膜の汚染状態を把握可能とすることを特徴とする。 The invention according to claim 6 is a membrane filtration system for performing a contamination state analysis method of a separation membrane that is provided in a flow path of water to be filtered in water treatment and introduces and filters the water to be filtered. A holder detachably attached to the surface of the separation target water of the separation membrane, a near infrared light irradiator provided on the holder for irradiating the separation membrane with near infrared light, and the near infrared light An emission light spectroscopic unit that splits the light emitted from the absorbed separation membrane, a two-dimensional absorption spectrum creation unit that creates a two-dimensional absorption spectrum of absorbance-spectral wavelength based on the spectrally emitted light wavelength information; the a, by the two-dimensional absorption spectrum creating section, the the absorption spectrum a 1 by the measurement after the filtration of the separation membrane, asking the absorption spectrum a 0 by the measurement before filtration of the separation membrane, the absorption spectrum of the by difference By obtaining a spectrum derived from the captured material by filtration of the resulting membrane, characterized by enabling grasp the contamination state of the separation membrane.

請求項7に記載の発明は、請求項5に記載の膜ろ過システムであって、前記ホルダに設けられ、近赤外光を前記分離膜に照射する近赤外光照射部と、前記近赤外光を吸収した前記分離膜から放出された光を受光し、分光する放出光分光部と、前記分光した放出光波長情報に基づいて、吸光度−分光波長の二次元吸収スペクトルを作成する二次元吸収スペクトル作成部と、を有し、前記二次元吸収スペクトル作成部により、前記分離膜のろ過後の測定による吸収スペクトルAと、分離膜のろ過前の測定による吸収スペクトルAと、による差分の吸収スペクトルを求めて、前記分離膜のろ過により捕捉された物質に由来するスペクトルを得ることにより、前記分離膜の汚染状態を把握可能とし、前記蛍光分光法による分析によりタンパク質構造部を検出し、前記ろ過後の分離膜に対して近赤外光を照射する近赤外分光法により糖構造部を検出する、双方の分光法を用いて前記分離膜の汚染状態を把握することを特徴とする。 Invention of Claim 7 is a membrane filtration system of Claim 5, Comprising: The near infrared light irradiation part which is provided in the said holder and irradiates the said separation membrane with near infrared light, The said near red A two-dimensional absorption-spectral wavelength two-dimensional absorption spectrum is created based on the emission light wavelength information obtained by receiving the light emitted from the separation membrane that has absorbed external light and separating the light. has an absorption spectrum creating unit, wherein the the two-dimensional absorption spectrum creation unit, an absorption spectrum a 1 by measurement after filtration of the separation membrane, the absorption spectrum a 0 by the measurement before filtration of the separation membrane, by differential By obtaining a spectrum derived from a substance captured by filtration of the separation membrane, the contamination state of the separation membrane can be grasped, and the analysis by the fluorescence spectroscopy is used to obtain a protein. Detecting the structure and detecting the sugar structure by near-infrared spectroscopy, which irradiates near-infrared light to the filtered separation membrane, and grasping the contamination state of the separation membrane using both spectroscopy methods It is characterized by doing.

本発明によれば、ろ過対象水ではなく分離膜が蛍光分光法及び近赤外分光法の何れか一方又は双方による分析に供されるので、分離膜に供給されるろ過対象水に存在する物質の濃度等に影響されることなく、前準備を含む分離膜の汚染状態の分析が簡易となり、分析時間が短縮される。   According to the present invention, since the separation membrane, not the filtration target water, is subjected to analysis by either or both of fluorescence spectroscopy and near infrared spectroscopy, substances present in the filtration target water supplied to the separation membrane The analysis of the contamination state of the separation membrane including the preparation is simplified and the analysis time is shortened without being affected by the concentration or the like.

本発明の第1実施の形態に係る膜ろ過システム10を示す模式図である。It is a mimetic diagram showing membrane filtration system 10 concerning a 1st embodiment of the present invention. 本実施の形態に係るホルダの分離膜への取付け部位の拡大図である。It is an enlarged view of the attachment site | part to the separation membrane of the holder which concerns on this Embodiment. 本実施の形態に係る蛍光分光法及び近赤外分光法による分離膜の汚染状態分析方法のフローチャートである。It is a flowchart of the contamination state analysis method of the separation membrane by the fluorescence spectroscopy and near infrared spectroscopy which concern on this Embodiment. 三次元励起蛍光マトリクススペクトル(FEEM)を説明する図である。It is a figure explaining a three-dimensional excitation fluorescence matrix spectrum (FEEM). 総ろ過水量の変化に対する蛍光強度(積分値)の変化を示す図である。It is a figure which shows the change of the fluorescence intensity (integral value) with respect to the change of the total filtered water amount. 蛍光強度(算出された積分値)とFP値の相関関係から作成した検量線を示す図である。It is a figure which shows the calibration curve created from the correlation of fluorescence intensity (calculated integral value) and FP value. (A)本実施の形態に係る分離膜の汚染状態分析方法の一の変形例に用いる膜ろ過システムにおける分離膜の配置を示す模式図、及び(B)他の変形例に用いる膜ろ過システムにおける分離膜の配置を示す模式図である。(A) Schematic diagram showing the arrangement of the separation membrane in the membrane filtration system used in one variation of the separation membrane contamination state analysis method according to the present embodiment, and (B) in the membrane filtration system used in another variation It is a schematic diagram which shows arrangement | positioning of a separation membrane. 本発明の第2実施の形態に係る蛍光分光光度計60のブロック図である。It is a block diagram of the fluorescence spectrophotometer 60 which concerns on 2nd Embodiment of this invention. 本発明の第2実施の形態に係る分離膜の汚染状態分析方法を説明する図である。It is a figure explaining the contamination state analysis method of the separation membrane which concerns on 2nd Embodiment of this invention. 本発明の実施例に係るFEEMを示す図である。It is a figure which shows FEEM which concerns on the Example of this invention.

次に、本発明の実施の形態について図に基づいて詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施の形態)
本発明の第1実施の形態に係る分離膜の汚染状態分析方法及び分離膜の汚染状態分析方法を行うための膜ろ過システムを、図1〜図6を参照して説明する。図1は本実施の形態に係る膜ろ過システム10を示す模式図、図2はホルダの分離膜への取付け部位の拡大図、図3は蛍光分光法及び近赤外分光法による分離膜の汚染状態分析方法のフローチャート、図4は三次元励起蛍光マトリクススペクトル(FEEM)を説明する図、図5は総ろ過水量に対する蛍光強度(積分値)の変化を示す図、及び図6は蛍光強度(算出された積分値)とFP値の相関関係から作成した検量線を示す図である。
(First embodiment)
A membrane filtration system for performing a separation membrane contamination state analysis method and a separation membrane contamination state analysis method according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a membrane filtration system 10 according to the present embodiment, FIG. 2 is an enlarged view of a site where a holder is attached to a separation membrane, and FIG. 3 is a diagram showing contamination of the separation membrane by fluorescence spectroscopy and near infrared spectroscopy. FIG. 4 is a diagram for explaining a three-dimensional excitation fluorescence matrix spectrum (FEEM), FIG. 5 is a diagram showing a change in fluorescence intensity (integrated value) with respect to the total amount of filtered water, and FIG. 6 is a fluorescence intensity (calculation). It is a figure which shows the calibration curve created from the correlation of the integrated value) and FP value.

図1に示すように、本実施の形態に係るろ過システム10は、ろ過対象水1が流入する浸漬槽12及び浸漬槽12に浸漬される分離膜14を有する。分離膜14の下流には、この分離膜14によってろ過されたろ液2を下流に送液する送液ポンプ16が設けられており、送液ポンプ16を作動させることで浸漬槽12内のろ過対象水1が分離膜14によりろ過される。したがって、ろ過対象水1の流路3は、図1に示す破線矢印にて概念的に示される。   As shown in FIG. 1, the filtration system 10 according to the present embodiment includes an immersion tank 12 into which the filtration target water 1 flows and a separation membrane 14 immersed in the immersion tank 12. On the downstream side of the separation membrane 14, a liquid feed pump 16 for feeding the filtrate 2 filtered by the separation membrane 14 downstream is provided. By operating the liquid feed pump 16, an object to be filtered in the immersion tank 12. Water 1 is filtered by the separation membrane 14. Therefore, the flow path 3 of the filtration target water 1 is conceptually indicated by a broken line arrow shown in FIG.

膜ろ過の方式としては、ケーシング型と浸漬型のどちらを選択しても良いが、分離膜14への後述するホルダ22、42の取付け易さの点からは浸漬型の膜ろ過方式が好ましく、本実施の形態においては浸漬型の膜ろ過方式を採用している。   As the method of membrane filtration, either a casing type or an immersion type may be selected, but an immersion type membrane filtration method is preferable from the viewpoint of easy attachment of holders 22 and 42 to be described later to the separation membrane 14, In the present embodiment, an immersion type membrane filtration method is employed.

ろ過対象水1としては、海水、河川水、雨水、井水、下水、産業排水等、どのようなものであってもよい。したがって、水処理としては、海水の淡水化処理、半導体製造業における超純水製造処理、上水道事業における浄水処理、下水処理、産業排水処理等、種々の処理を挙げることができる。   As filtration object water 1, what kind of things, such as seawater, river water, rain water, well water, sewage, and industrial drainage, may be used. Accordingly, examples of water treatment include various treatments such as seawater desalination treatment, ultrapure water production treatment in the semiconductor manufacturing industry, water purification treatment in the waterworks business, sewage treatment, and industrial wastewater treatment.

本実施の形態においては、上水道事業における浄水処理に、ろ過対象水1として河川水を用いる場合を例に挙げて説明する。   In the present embodiment, a case where river water is used as the filtration target water 1 in the water purification treatment in the waterworks business will be described as an example.

分離膜14は、平膜、中空糸膜、管状膜等、いずれの膜を用いてもよい。分離膜の材質は、ろ過対象水1の性状に合わせて、そのろ過に使用可能な材質を適宜に選択することができる。しかしながら、後述する蛍光分光法による分析を行う場合は、検出すべき膜ファウリング物質とスペクトルが重複しない材質の分離膜を用いることが好ましい。そのような分離膜の材質としては、PVDF、PTFE、セルロース糸、PVCが挙げられる。本実施の形態においては、分離膜14の材質としてPVDFを用いている。   As the separation membrane 14, any membrane such as a flat membrane, a hollow fiber membrane, and a tubular membrane may be used. The material of the separation membrane can be appropriately selected from materials that can be used for the filtration in accordance with the properties of the water 1 to be filtered. However, in the case of performing analysis by fluorescence spectroscopy, which will be described later, it is preferable to use a separation membrane made of a material whose spectrum does not overlap with the membrane fouling substance to be detected. Examples of the material for such a separation membrane include PVDF, PTFE, cellulose yarn, and PVC. In the present embodiment, PVDF is used as the material of the separation membrane 14.

また、分離膜14としては、外圧式と内圧式のものがあり、特に限定されるものではないが、後述するホルダ22、42の取付け易さという点から外圧式のものが好ましい。本実施の形態においては外圧式の中空糸膜を分離膜14として用いている。   Further, the separation membrane 14 includes an external pressure type and an internal pressure type, and is not particularly limited, but an external pressure type is preferable from the viewpoint of ease of mounting of the holders 22 and 42 described later. In the present embodiment, an external pressure type hollow fiber membrane is used as the separation membrane 14.

さらに、分離膜14の孔径についても特に限定はなく、用途に応じて逆浸透膜(RO)、ナノろ過膜(NF)、限外ろ過膜(UF)及び精密ろ過膜(MF)等から選択することができる。本実施の形態においては、上水道事業における浄水処理という処理の目的から、限外ろ過膜(UF)及び精密ろ過膜(MF)から分離膜14が選択されることが好ましい。   Further, the pore size of the separation membrane 14 is not particularly limited, and is selected from a reverse osmosis membrane (RO), a nanofiltration membrane (NF), an ultrafiltration membrane (UF), a microfiltration membrane (MF), etc. according to the application. be able to. In this Embodiment, it is preferable that the separation membrane 14 is selected from an ultrafiltration membrane (UF) and a microfiltration membrane (MF) from the objective of the process of water purification in a waterworks business.

さらに、膜ろ過システム10は、ろ過対象水1の流路3に設けられた分離膜14のろ過対象水1側表面14aに着脱可能に取り付けられるホルダ22を有する分光蛍光光度計20と、同じく分離膜14のろ過対象水1側表面14aに着脱可能に取り付けられるホルダ42を有する近赤外光分光光度計40と、を有する。   Further, the membrane filtration system 10 is also separated from the spectrofluorometer 20 having the holder 22 that is detachably attached to the filtration target water 1 side surface 14 a of the separation membrane 14 provided in the flow path 3 of the filtration target water 1. A near-infrared light spectrophotometer 40 having a holder 42 detachably attached to the filtration target water 1 side surface 14 a of the membrane 14.

ホルダ22以外に、分光蛍光光度計20は、分光蛍光光度計本体30と、ホルダ22と分光蛍光光度計本体30との間に介在して分光蛍光光度計本体30からの励起光を伝達する励起光伝達手段26(一の光伝達手段)と、同じくホルダ22と分光蛍光光度計本体30との間に介在して励起光を浴びた分離膜14が放出する蛍光を伝達する蛍光伝達手段28(他の光伝達手段)と、を有する。励起光伝達手段26及び蛍光伝達手段28は、これらを保護する保護チューブ24(図2参照)により被覆されている。   In addition to the holder 22, the spectrofluorometer 20 is interposed between the spectrofluorometer main body 30 and the holder 22 and the spectrofluorometer main body 30 to transmit excitation light from the spectrofluorometer main body 30. Fluorescence transmission means 28 (one light transmission means) and fluorescence transmission means 28 that transmits fluorescence emitted from the separation membrane 14 that has been exposed to excitation light and is interposed between the holder 22 and the spectrofluorometer main body 30. Other light transmission means). The excitation light transmission means 26 and the fluorescence transmission means 28 are covered with a protective tube 24 (see FIG. 2) that protects them.

ホルダ22は、図2に示すように、分離膜14への取付け状態において、励起光伝達手段26及び蛍光伝達手段28の分離膜14側端部が固定されるホルダ本体部22aと、該ホルダ本体部22aから一端が突出し、他端に分離膜14を構成する中空糸14bを挟持するための鉤部を有する2本の挟持突起22bを有する。挟持突起22bと中空糸14bの係合状態において、分離膜14と分光蛍光光度計本体30との間での光の送受信が可能となる。   As shown in FIG. 2, the holder 22 includes a holder main body 22 a to which the separation light 14 side ends of the excitation light transmission means 26 and the fluorescence transmission means 28 are fixed, and the holder main body. One end protrudes from the portion 22a, and the other end has two holding protrusions 22b having a flange portion for holding the hollow fiber 14b constituting the separation membrane 14. In the engaged state of the pinching protrusion 22b and the hollow fiber 14b, light can be transmitted and received between the separation membrane 14 and the spectrofluorometer main body 30.

励起光伝達手段26及び蛍光伝達手段28は、それぞれ、励起光及び蛍光を伝達可能なものであればよく、例えば、光ファイバが用いられる。   The excitation light transmission means 26 and the fluorescence transmission means 28 are only required to be able to transmit excitation light and fluorescence, respectively. For example, an optical fiber is used.

分光蛍光光度計本体30は、図1に示すように、励起波長220nm〜600nmの励起光を順次照射可能な光照射部32と、この励起光を吸収した試料が放出する蛍光を受信し、蛍光波長220nm〜650nmに分光する受信・分光部34を有する。さらに、分光蛍光光度計本体30は、FEEM作成部36を有しており、FEEM作成部36、光照射部32及び受信・分光部34は、制御部38により制御される。   As shown in FIG. 1, the spectrofluorometer main body 30 receives a light irradiation unit 32 capable of sequentially irradiating excitation light with an excitation wavelength of 220 nm to 600 nm, and fluorescence emitted by a sample that has absorbed the excitation light, The receiver / spectrometer 34 divides into wavelengths of 220 nm to 650 nm. Further, the spectrofluorometer main body 30 includes an FEEM creation unit 36, and the FEEM creation unit 36, the light irradiation unit 32, and the reception / spectral unit 34 are controlled by a control unit 38.

制御部38は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備えたコンピュータである。制御部38は、ROMに記憶させたプログラムをRAM上に展開して対応する処理をCPUに実行させる。尚、上記プログラムはROMに記憶されている場合に限らず、NVRAM(Non−Volatile Randam Access Memory)に記憶されていればよい。   The control unit 38 is a computer that includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. The control unit 38 develops the program stored in the ROM on the RAM and causes the CPU to execute a corresponding process. Note that the program is not limited to being stored in the ROM, but may be stored in a non-volatile random access memory (NVRAM).

FEEM作成部36は、FEEMを作成することを目的とするプログラムである。本プログラムがRAM上に展開された場合、FEEM作成部36は、光照射部32が照射した励起波長の情報及び受信・分光部34が受信し、分光した蛍光波長の情報に基づき、FEEMを作成する。FEEMとは、図4に示すように、上記励起波長ExをY軸、上記蛍光波長EmをX軸、蛍光の強さ(蛍光強度)をZ軸として表される三次元スペクトルを蛍光強度に従って等高線図に書き変えて作成したものである。   The FEEM creation unit 36 is a program for creating an FEEM. When this program is expanded on the RAM, the FEEM creation unit 36 creates the FEEM based on the information on the excitation wavelength irradiated by the light irradiation unit 32 and the information on the fluorescence wavelength received and dispersed by the reception / spectral unit 34. To do. As shown in FIG. 4, the FEEM is a three-dimensional spectrum represented by contour lines according to the fluorescence intensity, with the excitation wavelength Ex as the Y axis, the fluorescence wavelength Em as the X axis, and the fluorescence intensity (fluorescence intensity) as the Z axis. It was created by rewriting the figure.

次に、近赤外光分光光度計40について説明する。近赤外光分光光度計40は、ホルダ42以外に、近赤外光分光光度計本体50と、ホルダ42と近赤外光分光光度計本体50との間に介在して近赤外光分光光度計本体50からの近赤外光を伝達する近赤外光伝達手段44(一の光伝達手段)と、同じくホルダ42と近赤外光分光光度計本体50との間に介在して試料(分離膜14の中空糸14b)に吸収された光以外の光を伝達する光伝達手段46(他の光伝達手段)と、を有する。近赤外光伝達手段44及び光伝達手段46は、これらを保護する保護チューブ48(図2参照)により被覆されている。   Next, the near infrared spectrophotometer 40 will be described. In addition to the holder 42, the near-infrared light spectrophotometer 40 is interposed between the near-infrared light spectrophotometer main body 50 and the holder 42 and the near-infrared light spectrophotometer main body 50. The sample is interposed between the near-infrared light transmission means 44 (one light transmission means) for transmitting near-infrared light from the photometer main body 50 and the holder 42 and the near-infrared light spectrophotometer main body 50. Light transmission means 46 (other light transmission means) for transmitting light other than the light absorbed by the hollow fiber 14b of the separation membrane 14. The near-infrared light transmission means 44 and the light transmission means 46 are covered with a protective tube 48 (see FIG. 2) that protects them.

ホルダ42は、図2に示すように、分離膜14への取付け状態において、近赤外光伝達手段44及び光伝達手段46の分離膜14側端部が固定されるホルダ本体部42aと、該ホルダ本体部42aから一端が突出し、他端に分離膜14を構成する中空糸14bを挟持するための鉤部を有する2本の挟持突起42bを有する。挟持突起42bと中空糸14bの係合状態において、分離膜14と近赤外光分光光度計本体50との間での光の送受信が可能となる。   As shown in FIG. 2, the holder 42 has a holder main body 42 a to which the separation film 14 side ends of the near-infrared light transmission means 44 and the light transmission means 46 are fixed in the attached state to the separation film 14, One end protrudes from the holder main body part 42a, and the other end has two holding protrusions 42b having a hook part for holding the hollow fiber 14b constituting the separation membrane 14. Light can be transmitted and received between the separation membrane 14 and the near-infrared light spectrophotometer main body 50 in the engaged state of the pinching protrusion 42b and the hollow fiber 14b.

近赤外光伝達手段44及び光伝達手段46は、それぞれ、近赤外光及びその反射光を伝達可能なものであればよく、例えば、光ファイバが用いられる。   The near-infrared light transmission means 44 and the light transmission means 46 are only required to be able to transmit near-infrared light and its reflected light, and for example, an optical fiber is used.

近赤外光分光光度計本体50は、所定波長範囲の近赤外光を照射可能な光照射部52と、この近赤外光を吸収した試料(分離膜の中空糸14b)が放出する光(すなわち、試料が吸収した光以外の光)を受信し、分光する受信・分光部54を有する。さらに、近赤外光分光光度計本体50は、吸収スペクトル作成部56を有しており、吸収スペクトル作成部56、光照射部52及び受信・分光部54は、制御部58により制御される。   The near-infrared light spectrophotometer main body 50 is light emitted from a light irradiation unit 52 that can irradiate near-infrared light in a predetermined wavelength range and a sample (hollow fiber 14b of the separation membrane) that absorbs the near-infrared light. It has a reception / spectral unit 54 that receives (that is, light other than light absorbed by the sample) and separates it. Further, the near-infrared spectrophotometer main body 50 has an absorption spectrum creation unit 56, and the absorption spectrum creation unit 56, the light irradiation unit 52, and the reception / spectral unit 54 are controlled by the control unit 58.

制御部58は、分光蛍光光度計30の制御部38同様、CPU、RAM、ROM等を備えたコンピュータであり、制御部58は、ROMに記憶させたプログラムをRAM上に展開して対応する処理をCPUに実行させる。尚、上記プログラムはROMに記憶されている場合に限らず、NVRAMに記憶されていればよい。   The control unit 58 is a computer including a CPU, a RAM, a ROM, etc., like the control unit 38 of the spectrofluorometer 30. The control unit 58 develops a program stored in the ROM on the RAM and performs a corresponding process. Is executed by the CPU. The program is not limited to being stored in the ROM, but may be stored in the NVRAM.

吸収スペクトル作成部56は、近赤外光の吸収スペクトルを作成することを目的とするプログラムである。本プログラムがRAM上に展開された場合、吸収スペクトル作成部56は、受信・分光部54が受信し、分光した波長の情報に基づき、吸収スペクトルを作成する。   The absorption spectrum creation unit 56 is a program for creating an absorption spectrum of near infrared light. When this program is expanded on the RAM, the absorption spectrum creation unit 56 creates an absorption spectrum based on the wavelength information received and spectrally received by the reception / spectral unit 54.

本実施の形態において吸収スペクトルは、吸光度をY軸、分光した波長をX軸として表される二次元スペクトルであり、浸漬槽12においてろ過対象水1で浸漬された分離膜14のろ過後に測定した吸収スペクトルAと浸漬槽12においてろ過対象水1で浸漬された分離膜14のろ過前に測定した吸収スペクトルAの差分として表される。すなわち、この差分の吸収スペクトルは、ろ過により分離膜14に捕捉された物質に由来するスペクトルを表す。 In the present embodiment, the absorption spectrum is a two-dimensional spectrum represented by the absorbance as the Y axis and the spectral wavelength as the X axis, and was measured after filtration of the separation membrane 14 immersed in the filtration target water 1 in the immersion tank 12. expressed as the difference in the absorption spectrum a 1 and the absorption spectrum a 0 measured prior to filtration dipping bath 12 separation membrane 14 is immersed in the filtered water being 1 in. That is, the difference absorption spectrum represents a spectrum derived from a substance trapped in the separation membrane 14 by filtration.

分光蛍光光度計20及び近赤外光分光光度計40は、常時、分離膜14の汚染状態を分析するものでもよいが、膜ろ過システム10の定期点検時に使用するようなものでもよい。   The spectrofluorometer 20 and the near-infrared spectrophotometer 40 may always analyze the contamination state of the separation membrane 14, but may also be used when the membrane filtration system 10 is regularly checked.

以上の構成を有する膜ろ過システム10による水処理におけるろ過対象水1のろ過に用いた分離膜14の汚染状態分析方法について、図3を参照して以下に説明する。   A method for analyzing the contamination state of the separation membrane 14 used for the filtration of the filtration target water 1 in the water treatment by the membrane filtration system 10 having the above configuration will be described below with reference to FIG.

膜ろ過システム10においては、既にホルダ22が分離膜14の中空糸14bに取り付けられ、同様にホルダ42が分離膜14の中空糸14bに取り付けられており、蛍光分光法及び近赤外分光法による分離膜14の分析が可能な状態となっている。この状態において、分離膜14の汚染状態分析方法の実施に先立ち、膜ろ過システム10の運転が実施される。すなわち、送液ポンプ16の起動により所定量のろ過対象水1(河川水)が分離膜14によってろ過される。   In the membrane filtration system 10, the holder 22 is already attached to the hollow fiber 14 b of the separation membrane 14, and similarly the holder 42 is attached to the hollow fiber 14 b of the separation membrane 14, and is based on fluorescence spectroscopy and near infrared spectroscopy. The separation membrane 14 can be analyzed. In this state, the membrane filtration system 10 is operated prior to the method for analyzing the contamination state of the separation membrane 14. That is, a predetermined amount of water 1 to be filtered (river water) is filtered by the separation membrane 14 by starting the liquid feed pump 16.

次に、送液ポンプ16を停止し、浸漬槽12内のろ過対象水1を図示しない排水経路を介して排水し、分離膜14をろ過対象水1から露出させる。この状態において、以下に示すようにろ過後の分離膜14の汚染状態を分析する。なお、分離膜14をろ過対象水1から露出させることで、以下の分析の際に後述する分離膜14(中空糸14b)と各光伝達手段(励起光伝達手段26、蛍光伝達手段28、近赤外光伝達手段44及び光伝達手段46)の分離膜14側端部との間にろ過対象水1が介在し、このろ過対象水1に含まれるコロイド成分及びSS(懸濁物質又は浮遊物質)等の影響による不具合が回避される。したがって、S/N比を向上させることができる。   Next, the liquid feed pump 16 is stopped, the filtration target water 1 in the immersion tank 12 is drained through a drainage path (not shown), and the separation membrane 14 is exposed from the filtration target water 1. In this state, as shown below, the contamination state of the separation membrane 14 after filtration is analyzed. In addition, by exposing the separation membrane 14 from the water 1 to be filtered, a separation membrane 14 (hollow fiber 14b) described later and each light transmission means (excitation light transmission means 26, fluorescence transmission means 28, The filtration target water 1 is interposed between the infrared light transmission means 44 and the light transmission means 46) on the separation membrane 14 side end, and the colloidal component and SS (suspended substance or suspended substance) contained in the filtration target water 1 ) Etc. are avoided. Therefore, the S / N ratio can be improved.

[光受信工程(S101)]
まず、分光蛍光光度計本体30及び近赤外光分光光度計本体50の電源をそれぞれ投入し、両者を起動する。
[Optical reception process (S101)]
First, the spectrofluorometer main body 30 and the near-infrared light spectrophotometer main body 50 are turned on, and both are activated.

これにより、分光蛍光光度計本体30において、制御部38は光照射部32及び受信・分光部34に信号を送る。この信号により、光照射部32は励起光伝達手段26(一の光伝達手段)を介して分離膜14に励起波長220nm〜600nmの励起光を順次照射する。そして、励起光を吸収した分離膜14が放出した蛍光が蛍光伝達手段28(他の光伝達手段)を介して分光蛍光光度計本体30に伝達される。また、上記制御部38の信号により、分光蛍光光度計本体30に伝達された蛍光を受信・分光部34が受信し、蛍光波長220nm〜650nmに分光する。   Thereby, in the spectrofluorometer main body 30, the control unit 38 sends a signal to the light irradiation unit 32 and the reception / spectral unit 34. With this signal, the light irradiation unit 32 sequentially irradiates the separation film 14 with excitation light having an excitation wavelength of 220 nm to 600 nm via the excitation light transmission means 26 (one light transmission means). Then, the fluorescence emitted from the separation membrane 14 that has absorbed the excitation light is transmitted to the spectrofluorometer main body 30 via the fluorescence transmission means 28 (other light transmission means). In addition, the reception / spectroscopy unit 34 receives the fluorescence transmitted to the spectrofluorophotometer main body 30 according to the signal from the control unit 38 and separates it into a fluorescence wavelength of 220 nm to 650 nm.

同時に、近赤外光分光光度計本体50において、制御部58は光照射部52及び受信・分光部54に信号を送る。この信号により、光照射部52は所定波長範囲の近赤外光を近赤外光伝達手段44(一の光伝達手段)を介して分離膜14に照射する。そして、分離膜14(中空糸14b)が吸収した光以外の反射光・透過光が光伝達手段46(他の光伝達手段)を介して近赤外光分光光度計本体50に伝達される。また、上記制御部58の信号により、近赤外光分光光度計本体50に伝達された反射光・透過光を受信・分光部54が受信し、任意の波長に分光する(以上、光受信工程S101)。   At the same time, in the near-infrared light spectrophotometer main body 50, the control unit 58 sends a signal to the light irradiation unit 52 and the reception / spectral unit 54. With this signal, the light irradiation unit 52 irradiates the separation membrane 14 with near infrared light in a predetermined wavelength range via the near infrared light transmission means 44 (one light transmission means). Then, the reflected light / transmitted light other than the light absorbed by the separation membrane 14 (hollow fiber 14b) is transmitted to the near-infrared spectrophotometer main body 50 through the light transmission means 46 (other light transmission means). In addition, the reception / spectroscopy unit 54 receives the reflected / transmitted light transmitted to the near-infrared spectrophotometer main body 50 based on the signal from the control unit 58, and splits it into an arbitrary wavelength (the light receiving process is described above). S101).

[分光スペクトル作成工程(S102)]
分光スペクトル作成工程S102は、蛍光分光法においてはFEEM作成工程に対応し、近赤外分光法においては吸収スペクトル作成工程に対応する。
[Spectral Spectrum Creation Step (S102)]
The spectral spectrum creating step S102 corresponds to the FEEM creating step in the fluorescence spectroscopy, and corresponds to the absorption spectrum creating step in the near infrared spectroscopy.

蛍光分光法においては、制御部38はFEEM作成部36に信号を送る。これにより、FEEM作成部36は、光照射部32が照射した励起光の波長についての情報及び受信・分光部34が受信し、分光した蛍光波長についての情報に基づき、図4に示すような三次元励起蛍光マトリクススペクトル(FEEM)を作成する。   In the fluorescence spectroscopy, the control unit 38 sends a signal to the FEEM creation unit 36. Thereby, the FEEM creation unit 36 performs the tertiary processing as shown in FIG. 4 based on the information on the wavelength of the excitation light irradiated by the light irradiation unit 32 and the information on the fluorescence wavelength received and dispersed by the reception / spectral unit 34. An original excitation fluorescence matrix spectrum (FEEM) is created.

近赤外分光法においては、制御部58は吸収スペクトル作成部56に信号を送る。これにより、吸収スペクトル作成部56は、受信・分光部54が受信し、分光した波長についての情報に基づき吸収スペクトルを作成する。   In the near infrared spectroscopy, the control unit 58 sends a signal to the absorption spectrum creation unit 56. Thereby, the absorption spectrum creating unit 56 creates an absorption spectrum based on the information about the wavelength received and split by the reception / spectral unit 54.

[分光スペクトル分析工程(S103)]
分光スペクトル分析工程S103は、蛍光分光法においてはFEEM分析工程に対応し、近赤外分光法においては吸収スペクトル分析工程に対応する。
[Spectral spectrum analysis step (S103)]
The spectral spectrum analysis step S103 corresponds to the FEEM analysis step in the fluorescence spectroscopy, and corresponds to the absorption spectrum analysis step in the near infrared spectroscopy.

蛍光分光法においては、作成されたFEEMのうち、蛍光波長290nm〜330nm及び励起波長220nm〜240nmの範囲に区画される領域AP1、蛍光波長290nm〜320nm及び励起波長265nm〜295nmの範囲に区画される領域P1、蛍光波長320nm〜395nm及び励起波長245nm〜295nmの範囲に区画される領域P2、蛍光波長395nm〜480nm及び励起波長250nm〜295nmの範囲に区画される領域H1、及び蛍光波長395nm〜520nm及び励起波長300nm〜375nmの範囲に区画される領域H2の少なくとも1個以上の領域を用い、当該領域の蛍光強度を積分した値(AP、P1、P2、H1、H2)を求める。予備的な試験結果によれば、領域AP1、P1、P2、H1及びH2にスペクトルのピークが存在する物質は、膜ファウリングの進行に連れて増大するという知見が得られており、分離膜14がろ過した総ろ過水量の増加に対応した上記積分値(AP、P1、P2、H1、H2)の変化を観察することで、分離膜14の汚染状態を把握することができる。 In the fluorescence spectroscopy, among the prepared FEEMs, the region AP1 is divided into a fluorescence wavelength range of 290 nm to 330 nm and an excitation wavelength range of 220 nm to 240 nm, and a fluorescence wavelength range of 290 nm to 320 nm and an excitation wavelength range of 265 nm to 295 nm. A region P1, a region P2 partitioned in a range of fluorescence wavelengths 320 nm to 395 nm and an excitation wavelength 245 nm to 295 nm, a region H1 partitioned in a range of fluorescence wavelengths 395 nm to 480 nm and an excitation wavelength 250 nm to 295 nm, and a fluorescence wavelength of 395 nm to 520 nm Using at least one region H2 divided into excitation wavelengths of 300 nm to 375 nm, the values (AP i , P1 i , P2 i , H1 i , H2 i ) obtained by integrating the fluorescence intensities in the region are obtained. . According to the preliminary test results, it has been found that substances having spectral peaks in the regions AP1, P1, P2, H1, and H2 increase with the progress of membrane fouling. By observing changes in the integrated values (AP i , P1 i , P2 i , H1 i , H2 i ) corresponding to the increase in the total amount of filtered water filtered, the contamination state of the separation membrane 14 can be grasped. .

また、近赤外分光法においては、作成された吸収スペクトルのうち、膜閉塞物質である糖たんぱく質の糖構造部に対応するピークの面積を算出する。そして、分離膜14がろ過した総ろ過水量の増加に対応したこのピーク面積の変化を観察することで、分離膜14の汚染状態を把握することができる。   In the near-infrared spectroscopy, the peak area corresponding to the sugar structure part of the glycoprotein, which is a membrane-occluding substance, is calculated from the created absorption spectrum. The contamination state of the separation membrane 14 can be grasped by observing the change in the peak area corresponding to the increase in the total amount of filtered water filtered by the separation membrane 14.

なお、分光スペクトル分析工程S103については、制御部38及び制御部58の制御により行ってもよいし、蛍光分光光度計20が作成したFEEM及び近赤外光分光光度計40が作成した吸収スペクトルに基づき、他の手法により行うこととしてもよい。したがって、本実施の形態に係る分離膜14の汚染状態分析方法及び分離膜14の汚染状態分析方法を行うための膜ろ過システム10によれば、ろ過対象水1ではなく分離膜14が蛍光分光法及び近赤外分光法の双方を用いる分析に供されるので、ろ過対象水1中に存在する物質やその物質の濃度の影響による分析誤差・検出限界等の問題を回避することができる。また、分離膜14を分析することで膜を透過する成分が分析に与える影響を排除し、分離膜14に捕捉される膜閉塞成分のみの選択的な分析が可能となる。   In addition, about spectral spectrum analysis process S103, you may perform by control of the control part 38 and the control part 58, and it is based on the absorption spectrum which the FEEM produced by the fluorescence spectrophotometer 20 and the near-infrared-light spectrophotometer 40 produced. Based on this, other methods may be used. Therefore, according to the membrane filtration system 10 for performing the contamination state analysis method for the separation membrane 14 and the contamination state analysis method for the separation membrane 14 according to the present embodiment, the separation membrane 14, not the filtration target water 1, is fluorescence spectroscopy. And the analysis using both near-infrared spectroscopy, it is possible to avoid problems such as analysis error and detection limit due to the influence of the substance existing in the filtration target water 1 and the concentration of the substance. Further, by analyzing the separation membrane 14, the influence of components that permeate the membrane on the analysis is eliminated, and only the membrane blocking component captured by the separation membrane 14 can be selectively analyzed.

さらに、分離膜14は蛍光分光法及び近赤外分光法の双方により分析されることから、前準備を含む分析操作が簡易なものとなるとともに、要する時間も短縮され、簡易且つ迅速な分析が可能となる。   Furthermore, since the separation membrane 14 is analyzed by both fluorescence spectroscopy and near-infrared spectroscopy, the analysis operation including preparation is simplified, the time required is shortened, and simple and rapid analysis is possible. It becomes possible.

また、一般に、膜ファウリングに重要な影響を及ぼす物質である上述の高分子の多糖様物質が糖たんぱく質であることが明らかになっているが、蛍光分光法で検出できるのはたんぱく質構造部であり、糖構造の部分は検出することができなかった。   In general, it has been clarified that the above-mentioned high-molecular-weight polysaccharide-like substances, which are substances that have an important influence on membrane fouling, are glycoproteins, but the protein structure can be detected by fluorescence spectroscopy. Yes, the sugar structure part could not be detected.

本実施の形態によれば、蛍光分光法により糖たんぱく質のたんぱく質構造部を検出し、近赤外分光法により糖たんぱく質の糖構造部を検出することが可能となるため、蛍光分光法と同レベルの分析の簡易性及び迅速性のメリットを維持したまま、膜ファウリング原因物質をより的確に分析することが可能となる。   According to the present embodiment, since it is possible to detect the protein structure part of the glycoprotein by fluorescence spectroscopy and to detect the sugar structure part of the glycoprotein by near infrared spectroscopy, it is the same level as the fluorescence spectroscopy. This makes it possible to more accurately analyze the membrane fouling-causing substance while maintaining the advantages of the simplicity and rapidity of the analysis.

さらに、各光伝達手段(励起光伝達手段26、蛍光伝達手段28、近赤外光伝達手段44及び光伝達手段46)によって、分光光度計本体(分光蛍光光度計本体30及び近赤外光分光光度計本体50)とろ過対象水1の流路3に設けられた分離膜14との間での光の送受信が可能となる。すなわち、分離膜14のその場(オンサイト)分析が可能となるから、分析を行うにあたり浸漬槽12から分離膜14を取り出し、分析後に再び分離膜14を浸漬槽12に取り付けるといった作業が不要となり、さらに分離膜14の汚染状態の分析に係る作業が簡易化されている。   Further, the spectrophotometer main body (spectrofluorophotometer main body 30 and near-infrared light spectroscopy) is obtained by each light transmission means (excitation light transmission means 26, fluorescence transmission means 28, near-infrared light transmission means 44, and light transmission means 46). Light can be transmitted and received between the photometer main body 50) and the separation membrane 14 provided in the flow path 3 of the water 1 to be filtered. That is, since the in-situ (on-site) analysis of the separation membrane 14 is possible, it is not necessary to take out the separation membrane 14 from the immersion tank 12 and to attach the separation membrane 14 to the immersion tank 12 again after the analysis. Furthermore, the work related to the analysis of the contamination state of the separation membrane 14 is simplified.

同時に、分析は基本的に分離膜14への光の照射により行われ、分離膜14が切除されることもないから、分析後の分離膜14を継続して使用することが可能となる。   At the same time, the analysis is basically performed by irradiating the separation membrane 14 with light, and the separation membrane 14 is not excised, so that the separation membrane 14 after the analysis can be used continuously.

そのうえ、三次元励起蛍光マトリクススペクトル(FEEM)によれば、分離膜14に捕捉された各物質に由来するスペクトルの分離性能が従来よりも向上し、それらのスペクトル同士の重複が排除され、目的とする物質のスペクトルを的確に抽出することが可能となる。   In addition, according to the three-dimensional excitation fluorescence matrix spectrum (FEEM), the separation performance of the spectrum derived from each substance captured by the separation membrane 14 is improved as compared with the conventional one, and the overlap between the spectra is eliminated. It becomes possible to extract the spectrum of the substance to be accurately extracted.

また、膜ファウリングと関係する領域AP1、P1、P2、H1及びH2にスペクトルのピークが存在する物質を選択的にモニターすることができ、目的とする物質以外からの不必要なスペクトルを排除することができる。したがって、S/N比を向上させることができる。   Moreover, it is possible to selectively monitor substances having spectral peaks in the regions AP1, P1, P2, H1, and H2 related to membrane fouling, and eliminate unnecessary spectra other than the target substance. be able to. Therefore, the S / N ratio can be improved.

なお、領域AP1、P1及びP2には、糖ファウリングの原因物質である糖たんぱく質のスペクトルのピークが存在し、領域H1及びH2には、糖ファウリングに関与する物質であるフミン物質のスペクトルのピークが存在するとの知見が得られている。なお、AP1は、上記糖たんぱく質のうち、芳香族系の官能基を有する糖たんぱく質のスペクトルのピークが存在する領域である。   In the regions AP1, P1, and P2, there are peaks of the spectrum of glycoprotein that is a causative agent of sugar fouling, and in regions H1 and H2, the spectrum of the humic substance that is a substance involved in sugar fouling is present. The knowledge that a peak exists is obtained. In addition, AP1 is an area | region where the peak of the spectrum of the glycoprotein which has an aromatic functional group among the said glycoprotein exists.

また、発明者は新たに、図5に示すように、領域AP1、P1及びP2の蛍光強度は膜ファウリングの進行の初期〜終期にかけて漸次増加し(同図中のPを参照乞う)、領域H1及びH2の蛍光強度は膜ファウリングの進行の初期〜中期よりも終期において大きく増大する(同図中のHを参照乞う)との知見を得た(尚、同図中、縦軸はFEEMの所定領域における蛍光強度の積分値(例えば、P1)を示し、横軸は総ろ過水量を示す。)。 In addition, as shown in FIG. 5, the inventor newly increased the fluorescence intensity of the regions AP1, P1, and P2 gradually from the beginning to the end of the progress of membrane fouling (see P in the figure). It was found that the fluorescence intensities of H1 and H2 were greatly increased at the end of the membrane fouling progression (see H in the figure) (in the figure, the vertical axis represents FEEM). The integrated value of the fluorescence intensity in the predetermined region (for example, P1 i ) is shown, and the horizontal axis shows the total amount of filtered water.)

そこで、上記実施の形態におけるFEEM分析工程(分光スペクトル分析工程S103)において、FEEM作成工程において作成されるFEEMのうち、領域AP1、P1及び領域P2のうち少なくとも1個の領域と、領域H1及び領域H2のうち少なくとも1個の領域とを用いることとしてもよい。   Therefore, in the FEEM analysis step (spectral spectrum analysis step S103) in the above embodiment, at least one of the regions AP1, P1 and P2 and the region H1 and the region among the FEEMs created in the FEEM creation step. At least one region of H2 may be used.

これによれば、領域AP1、P1及び領域P2のうち少なくとも1個の領域並びに領域H1及び領域H2のうち少なくとも1個の領域の各積分値の総ろ過水量に対する変化をモニターすることで、図5に示すように、領域H1〜H2の積分値の増加割合に対して領域AP1、P1〜P2の積分値の増加割合が大きい場合には膜ファウリングの進行が初期〜中期の段階にあり、領域AP1、P1〜P2の積分値の増加割合に対して領域H1〜H2の増加割合が大きくなる場合には、膜ファウリングの終期段階にあると判定することができる。すなわち、膜ファウリングの進行及び膜ファウリングの終期をより的確に把握することができ、分離膜14が完全に閉塞する前に分離膜14に対する適切な処置を施すことが可能となる。   According to this, by monitoring the change with respect to the total filtered water amount of each integral value of at least one of the regions AP1, P1 and P2, and at least one of the regions H1 and H2, FIG. As shown in FIG. 4, when the increase rate of the integrated values of the regions AP1, P1 and P2 is larger than the increase rate of the integrated values of the regions H1 to H2, the progress of the film fouling is in the initial to middle stage, When the increase rate of the regions H1 to H2 is larger than the increase rate of the integrated values of AP1 and P1 to P2, it can be determined that the film fouling is in the final stage. That is, the progress of membrane fouling and the end of membrane fouling can be grasped more accurately, and appropriate treatment can be performed on the separation membrane 14 before the separation membrane 14 is completely blocked.

なお、図5に示すような領域AP1、P1〜P2及び領域H1〜H2の蛍光強度の増加現象の違いは、領域AP1、P1〜P2にスペクトルのピークを有する糖たんぱく質は膜に直接付着して膜ファウリングをもたらし、領域H1〜H2にスペクトルのピークを有するフミン物質は分離膜よりも分離膜に付着した膜閉塞物質に付着して膜ファウリングを促進するという現象が生じていることに起因するものであると推察される。   Note that the difference in the fluorescence intensity increase phenomenon between the regions AP1, P1 and P2 and the regions H1 and H2 as shown in FIG. 5 is that glycoproteins having spectral peaks in the regions AP1, P1 and P2 are directly attached to the membrane. This is due to the phenomenon that humic substances that cause membrane fouling and have a spectrum peak in the regions H1 to H2 adhere to the membrane occluding material attached to the separation membrane and promote membrane fouling rather than the separation membrane. It is inferred that

また、上記実施の形態の分光スペクトル分析工程S103であるFEEM分析工程において、FEEMが主成分分析法により変換されたデータを用いることも可能である。かかる変換データによれば、FEEMで表わされる等高線図中の山部や谷部のうち、例えば、膜ファウリングに寄与する部分を効率良く抽出することが可能となる。   In the FEEM analysis step, which is the spectral spectrum analysis step S103 of the above embodiment, it is also possible to use data obtained by converting the FEEM by the principal component analysis method. According to such conversion data, it is possible to efficiently extract, for example, a portion that contributes to film fouling among the peaks and valleys in the contour map represented by FEEM.

さらに、本願発明は、分離膜の汚染状態分析方法において作製されるFEEMを用いたろ過対象水の水質評価法方法を提供する。以下に、上記実施の形態に係る膜ろ過システム10を用いる場合を例に本実施の形態に係るろ過対象水の水質評価方法について、図6を参照して説明する。   Furthermore, the present invention provides a method for evaluating the quality of water to be filtered using FEEM produced in the method for analyzing the contamination state of a separation membrane. Below, the case of using the membrane filtration system 10 which concerns on the said embodiment is demonstrated with reference to FIG. 6 about the water quality evaluation method of the filtration object water which concerns on this Embodiment.

[検量線作成工程(S201)]
まず、膜閉塞指標値が既知のろ過対象水を少なくとも3種類準備する。かかるろ過対象水としては、複数箇所の河川から採取した河川水を用いることができる。好ましくは、膜閉塞指標値が未知の測定対象となるろ過対象水と膜閉塞指標値が近いと予測されるろ過対象水を選択すべきである。
[Calibration curve creation step (S201)]
First, at least three types of filtration target waters with known membrane blockage index values are prepared. As such filtration target water, river water collected from a plurality of rivers can be used. Preferably, the filtration target water that is predicted to be close to the filtration target water that is the measurement target whose membrane occlusion index value is unknown should be selected.

膜閉塞指標値はどのようなものを用いても良いが、例えば、ファウリングポテンシャル(登録商標)(FP)、MFI、UMFI、MFI−NF、CF−MFIを挙げることができる。本実施の形態では、FPを膜閉塞指標として用いる。FPは、本願発明の発明者の執筆した文献「浄水処理におけるファウリングポテンシャル(登録商標)の提案と浸漬型膜ろ過システムの適用事例」(膜(MEMBRANE),39(4),194−200(2014))によれば、以下のように説明される。   Any membrane occlusion index value may be used, and examples thereof include fouling potential (registered trademark) (FP), MFI, UMFI, MFI-NF, and CF-MFI. In the present embodiment, FP is used as a membrane blockage index. FP is a document written by the inventor of the present invention entitled “Proposal of Fouling Potential (Registered Trademark) in Water Treatment and Application of Submerged Membrane Filtration System” (Membrane, 39 (4), 194-200 ( 2014)), it is explained as follows.

「ファウリングポテンシャル(FP)の測定には、公称孔径0.22μmの疎水性PVDF膜(ミリポア社製GVHP、直径25mm)を使用する。これを撹拌式加圧セルに装着し、HPLC用送液ポンプで加圧ろ過を行う。   “For the measurement of the fouling potential (FP), a hydrophobic PVDF membrane (GVHP manufactured by Millipore, diameter: 25 mm) having a nominal pore size of 0.22 μm is used. Perform pressure filtration with a pump.

ろ過は、セルの攪拌子を1,450rpmで回転させながら全量定速ろ過(膜透過流束20m/日)で行い、膜差圧がある程度上昇した後、膜をセルから取り外し、1%-シュウ酸洗浄(洗浄時間60分、洗浄温度20℃程度)と膜面のスポンジ洗浄を行う。洗浄後、膜をセルに再び装着し、供試水のGVHP膜ろ過水でろ過を行い、再び膜差圧を測定する。   Filtration is performed by constant-rate filtration (membrane permeation flux 20 m / day) while rotating the stirrer of the cell at 1,450 rpm. After the membrane differential pressure has increased to some extent, the membrane is removed from the cell and 1% -shu Acid cleaning (cleaning time 60 minutes, cleaning temperature about 20 ° C.) and sponge cleaning of the membrane surface are performed. After washing, the membrane is attached to the cell again, filtered with GVHP membrane filtered water of the test water, and the membrane differential pressure is measured again.

この膜差圧とろ過開始時の膜差圧の差(m-Aq at25℃)を総ろ過水量(m/m-膜)で除した値をファウリングポテンシャル(fouling potential:FP)と定義している。なお、試料水は、予め0.45μmのメンブレンフィルターでろ過し、濁度成分を除去した後に供試する。」 A value obtained by dividing the difference between the membrane differential pressure and the membrane differential pressure at the start of filtration (m-Aq at 25 ° C.) by the total amount of filtered water (m 3 / m 2 -membrane) is defined as fouling potential (FP). doing. Note that the sample water is preliminarily filtered through a 0.45 μm membrane filter to remove the turbidity component and then tested. "

次に、膜ろ過システム10を用いて少なくとも3種類のろ過対象水を所定量ろ過する動作を、それぞれのろ過対象水について分離膜14を交換しつつ行う。次に、ろ過に用いた各分離膜14についてFEEMを作成する。   Next, the operation of filtering a predetermined amount of at least three types of filtration target water using the membrane filtration system 10 is performed while exchanging the separation membrane 14 for each filtration target water. Next, FEEM is created about each separation membrane 14 used for filtration.

そして、作成されたFEEMについて、例えば、領域P1や領域P2の積分値P1、P2を算出し、算出した積分値をY軸とし、各ろ過対象水のFPをX軸として検量線を作成する。この検量線を、図6に示す(以上、検量線作成工程S201)。同図は、蛍光強度(算出された積分値)と後述するFP値の相関関係から作成した検量線を示す図である。 Then, for the created FEEM, for example, the integrated values P1 i and P2 i of the region P1 and the region P2 are calculated, the calculated integrated value is set as the Y axis, and the calibration curve is generated using the FP of each filtration target water as the X axis. To do. This calibration curve is shown in FIG. 6 (the calibration curve creation step S201). The figure shows a calibration curve created from the correlation between the fluorescence intensity (calculated integral value) and the FP value described later.

[膜閉塞指標値決定工程(S202)]
次に、膜閉塞指標値決定工程S202について説明する。本工程では、膜閉塞指標値(すなわち、FP値)が未知のろ過対象水を膜ろ過システム10を用いて上記検量線作成工程S201と同様の条件で膜ろ過し、膜ろ過に用いた分離膜14についてFEEMを作成する。
[Membrane Blocking Index Value Determination Step (S202)]
Next, the membrane occlusion index value determination step S202 will be described. In this step, the membrane to be filtered whose membrane occlusion index value (that is, FP value) is unknown is subjected to membrane filtration under the same conditions as in the calibration curve creating step S201 using the membrane filtration system 10, and the separation membrane used for membrane filtration Create an FEEM for 14.

そして、作成したFEEMについて、工程S201同様に、例えば、領域P1や領域P2の積分値P1、P2を算出する。 Then, for the created FEEM, as in step S201, for example, the integral values P1 i and P2 i of the region P1 and the region P2 are calculated.

この積分値を、図6に示すように、上記工程S201で作成した検量線に当てはめてFPを決定する。   As shown in FIG. 6, this integrated value is applied to the calibration curve created in step S201 to determine FP.

したがって、本実施の形態に係るろ過対象水の水質評価方法によれば、ろ過対象水中の膜ファウリング原因物質(バイオポリマーと呼ばれる高分子物質群、多糖様物質)の測定は通常高度な分析機器を用いた長時間の測定が必要となるところ、上記実施の形態に係る分離膜の汚染状態分析方法により簡易に作成可能なFEEMと膜閉塞指標(FP)の相関関係から予め検量線を作成しておくことで、膜閉塞指標値(FP値)が未知のろ過対象水についてFEEMを作成することで簡単にそのろ過対象水の膜閉塞指標値を決定することができる。よって、ろ過対象水の水質を簡易且つ迅速に評価することが可能となる。   Therefore, according to the water quality evaluation method for filtration target water according to the present embodiment, measurement of membrane fouling-causing substances (polymer substance group called biopolymer, polysaccharide-like substance) in filtration target water is usually an advanced analytical instrument. When a long-term measurement is required, a calibration curve is created in advance from the correlation between the FEEM and the membrane occlusion index (FP) that can be easily created by the separation membrane contamination analysis method according to the above embodiment. Thus, the membrane occlusion index value of the filtration target water can be easily determined by creating the FEEM for the filtration target water whose membrane occlusion index value (FP value) is unknown. Therefore, it becomes possible to evaluate the quality of water to be filtered easily and quickly.

また、本実施の形態に係る分離膜14の汚染状態分析方法においては、1個の分離膜を用いてろ過対象水の膜ろ過を行い、分離膜の汚染状態の分析を行っているが、これに限定されるものではなく種々の変形が可能である。   Further, in the method for analyzing the contamination state of the separation membrane 14 according to the present embodiment, the filtration target water is subjected to membrane filtration using one separation membrane, and the separation state of the separation membrane is analyzed. The present invention is not limited to the above, and various modifications are possible.

以下に、本実施の形態に係る分離膜の汚染状態分析方法の変形例を、分離膜の配置を変更した膜ろ過システムを用いる場合を例に図7により説明する。図7において、上述の図1に示した実施の形態と同様の要素には、同一の符号を付しその説明を省略する。さらに、図7においては、分光蛍光光度計20及び近赤外光分光光度計40の記載を省略する。図7(A)は本実施の形態に係る分離膜の汚染状態分析方法の一の変形例に用いる膜ろ過システムにおける分離膜の配置を示す模式図であり、図7(B)は本実施の形態に係る分離膜の汚染状態分析方法の他の変形例に用いる膜ろ過システムにおける分離膜の配置を示す模式図である。   Hereinafter, a modified example of the separation membrane contamination state analysis method according to the present embodiment will be described with reference to FIG. 7 using a membrane filtration system in which the arrangement of the separation membrane is changed as an example. In FIG. 7, the same elements as those in the embodiment shown in FIG. 1 described above are denoted by the same reference numerals, and the description thereof is omitted. Further, in FIG. 7, description of the spectrofluorophotometer 20 and the near-infrared light spectrophotometer 40 is omitted. FIG. 7A is a schematic diagram showing the arrangement of separation membranes in a membrane filtration system used in one modification of the separation membrane contamination analysis method according to this embodiment, and FIG. It is a schematic diagram which shows arrangement | positioning of the separation membrane in the membrane filtration system used for the other modification of the contamination state analysis method of the separation membrane which concerns on a form.

一の変形例においては、同図(A)に示すように、浸漬槽12内において分離膜14−1及び分離膜14−2が並列に配置されており、他の変形例においては、同図(B)に示すように、浸漬槽12内において分離膜14−3及び分離膜14−4が直列に配置されている。   In one modified example, as shown in FIG. 1A, the separation membrane 14-1 and the separation membrane 14-2 are arranged in parallel in the immersion tank 12, and in the other modified example, As shown to (B), in the immersion tank 12, the separation membrane 14-3 and the separation membrane 14-4 are arrange | positioned in series.

一の変形例及び他の変形例においても、上水道事業における浄水処理という処理の目的から、上記実施の形態同様に分離膜14−1〜4は限外ろ過膜(UF)及び精密ろ過膜(MF)から選択される。   In one modified example and another modified example, the separation membranes 14-1 to 14-4 are ultrafiltration membranes (UF) and microfiltration membranes (MF) as in the above embodiment for the purpose of water purification treatment in the waterworks business. ) Is selected.

具体的には、例えば、分離膜14−1及び分離膜14−3は、孔径0.45μmの限外ろ過膜(UF)であり、分離膜14−2及び分離膜14−4は、孔径0.01μmである。   Specifically, for example, the separation membrane 14-1 and the separation membrane 14-3 are ultrafiltration membranes (UF) having a pore size of 0.45 μm, and the separation membrane 14-2 and the separation membrane 14-4 have a pore size of 0. 0.01 μm.

その後、ろ過対象水1の膜ろ過、膜ろ過後の分離膜14−1〜4の蛍光分光法及び近赤外分光法による分析がなされる。   Thereafter, membrane filtration of water 1 to be filtered, and separation membranes 14-1 to 14-4 after membrane filtration are analyzed by fluorescence spectroscopy and near infrared spectroscopy.

したがって、一の変形例によれば、分離膜14−1の分析結果から、粒径0.45μm以上であって膜閉塞に寄与する成分の分析が可能となり、分離膜14−2の分析結果から、粒径0.45μm未満〜0.01μm以上の範囲の膜閉塞に寄与する成分の分析を行うことが可能となる。すなわち、孔径の異なる分離膜を用いることで、膜閉塞成分の粒径についての情報をより詳細に得ることが可能となる。これにより、0.01〜1μm程度の粒径を有する糖たんぱく質であって膜ファウリングに関与していると考えられる成分(TEP(透明細胞外重合物質)、EPS(細胞外ポリマー)等)のより精度の高い分析が可能となる。   Therefore, according to one modified example, from the analysis result of the separation membrane 14-1, it is possible to analyze a component having a particle diameter of 0.45 μm or more and contributing to the membrane blockage, and from the analysis result of the separation membrane 14-2. In addition, it is possible to analyze components that contribute to the blockage of the film having a particle size of less than 0.45 μm to 0.01 μm or more. That is, by using separation membranes having different pore sizes, it is possible to obtain more detailed information about the particle size of the membrane blocking component. Thereby, it is a glycoprotein having a particle size of about 0.01 to 1 μm and is considered to be involved in membrane fouling (TEP (transparent extracellular polymer), EPS (extracellular polymer), etc.) More accurate analysis is possible.

また、他の変形例によれば、分離膜14−3の分析結果から粒径0.45μm以上であって膜閉塞に寄与する成分の分析が、分離膜14−4の分析結果から粒径0.01μm以上であって膜閉塞に寄与する成分の分析が、それぞれ可能となる。   Further, according to another modified example, the analysis of the component having a particle diameter of 0.45 μm or more from the analysis result of the separation membrane 14-3 and contributing to the membrane blockage is performed based on the analysis result of the separation membrane 14-4. It is possible to analyze each component that is 0.01 μm or more and contributes to the blockage of the membrane.

以上のように、分離膜の孔径の差と、流路における分離膜の配置によって、より詳細な膜閉塞成分の粒子サイズに関する情報を得ることが可能となる。   As described above, it is possible to obtain more detailed information on the particle size of the membrane blocking component by the difference in the pore size of the separation membrane and the arrangement of the separation membrane in the flow path.

また、上記変形例により得られる膜閉塞成分についての情報は、粒子サイズに関する情報のみとは限られない。例えば、親水性の異なる2種類の分離膜を用いることも可能である。これによれば、分離膜の親水性の差を利用して、膜閉塞成分の親水性の違いに関する情報を得ることが可能となる。   In addition, the information about the membrane blocking component obtained by the above modification is not limited to information about the particle size. For example, it is possible to use two types of separation membranes having different hydrophilicity. According to this, it is possible to obtain information on the difference in hydrophilicity of the membrane blocking component by utilizing the difference in hydrophilicity of the separation membrane.

さらに、本変形例に係る分離膜の汚染状態分析方法は、膜ろ過システム10における分離膜の配置を変更したものを用いて実施しているが、膜ろ過システム10を用いることは必須ではない。すなわち、ろ過対象水のろ過を少なくとも2種類の分離膜で行う膜ろ過系であればどのような膜ろ過系を用いてもよい。   Furthermore, although the separation state analysis method for the separation membrane according to the present modification is implemented using a method in which the arrangement of the separation membrane in the membrane filtration system 10 is changed, the use of the membrane filtration system 10 is not essential. That is, any membrane filtration system may be used as long as it is a membrane filtration system that performs filtration of water to be filtered with at least two types of separation membranes.

(第2実施の形態)
本発明の第2実施の形態に係る分離膜の汚染状態分析方法を、図8及び図9を参照して説明する。図8は蛍光分光光度計60のブロック図、及び図9は本実施の形態に係る分離膜の汚染状態分析方法を説明する図である。なお、本実施の形態において第1実施の形態と同様の要素には、同一の符号を付しその説明を省略する。
(Second Embodiment)
A method for analyzing the state of contamination of a separation membrane according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a block diagram of the fluorescence spectrophotometer 60, and FIG. 9 is a diagram for explaining a method for analyzing the contamination state of the separation membrane according to the present embodiment. In the present embodiment, the same elements as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施の形態においては、蛍光分光法による分析を行う。図8に示すように、本実施の形態において用いる分光蛍光光度計60は、分析すべき試料を挿入する試料挿入部62を有する点において上記第1実施の形態と相違する。試料挿入部62には、試料を固定する試料固定プレート70が挿入される。   In this embodiment, analysis by fluorescence spectroscopy is performed. As shown in FIG. 8, the spectrofluorometer 60 used in the present embodiment is different from the first embodiment in that it has a sample insertion portion 62 for inserting a sample to be analyzed. A sample fixing plate 70 for fixing the sample is inserted into the sample insertion portion 62.

試料固定プレート70は、図9(A)に示すように、略中央部に矩形の孔部72を有する板状体であって、孔部72の図示左右方向には、長さ方向略中央に湾曲した凹部74aを有する一対の固定ピン74が設けられている。   As shown in FIG. 9A, the sample fixing plate 70 is a plate-like body having a rectangular hole 72 at a substantially central portion, and is substantially at the center in the length direction in the horizontal direction of the hole 72 in the drawing. A pair of fixing pins 74 having a curved recess 74a are provided.

また、本実施の形態においては、流路3は第1実施の形態と共通する。すなわち、ろ過対象水1は、浸漬槽12中の分離膜14によってろ過され、ろ液2となる。   Moreover, in this Embodiment, the flow path 3 is common in 1st Embodiment. That is, the filtration target water 1 is filtered by the separation membrane 14 in the immersion tank 12 to become the filtrate 2.

以下、本実施の形態に係る分離膜の汚染状態分析方法を、第1実施の形態と異なる点について主に説明する。   Hereinafter, the method for analyzing the contamination state of the separation membrane according to the present embodiment will be described mainly with respect to differences from the first embodiment.

まず、分離膜14の汚染状態分析方法の実施に先立ち、送液ポンプ16を起動させ、所定量のろ過対象水1(河川水)のろ過を行う。   First, prior to the implementation of the method for analyzing the contamination state of the separation membrane 14, the liquid feed pump 16 is activated to filter a predetermined amount of the filtration target water 1 (river water).

[切除工程(S301)]
切除工程S301では、図9(A)に示すように、ろ過後の分離膜14の中空糸14bの一部を切除する。切除する長さは、固定ピン74で固定可能な長さであれば良い。
[Resection Step (S301)]
In the excision step S301, as shown in FIG. 9A, a part of the hollow fiber 14b of the separation membrane 14 after the filtration is excised. The length to be cut may be a length that can be fixed by the fixing pin 74.

[固定工程(S302)]
固定工程S302では、切除した中空糸14bの外周面を固定ピン74の凹部74aにそれぞれ当接させ、プレート上に中空糸14bを固定する。この際、図9(B)に示すように、中空糸14bが孔部72を横断するように行う(以上、固定工程S302)。
[Fixing step (S302)]
In the fixing step S302, the outer peripheral surface of the cut hollow fiber 14b is brought into contact with the recess 74a of the fixing pin 74, and the hollow fiber 14b is fixed on the plate. At this time, as shown in FIG. 9B, the hollow fiber 14b crosses the hole 72 (the fixing step S302).

固定工程後、プレート70を分光蛍光光度計60の試料挿入部62に挿入する。   After the fixing step, the plate 70 is inserted into the sample insertion portion 62 of the spectrofluorometer 60.

[照射工程(S303)]
次に照射工程S303について説明する。試料挿入部62にプレート70が挿入された状態において、分光蛍光光度計60の電源を投入して起動する。これにより、分光蛍光光度計60において、制御部38は光照射部32に信号を送る。この信号により、光照射部32は、図9(B)に示すように、矢印200方向に、すなわち、中空糸14bの孔部72を横断する部位に孔部72の挿通方向に励起波長220nm〜600nmの励起光を順次照射する(以上、照射工程S303)。
[Irradiation process (S303)]
Next, the irradiation step S303 will be described. In a state where the plate 70 is inserted into the sample insertion portion 62, the spectrofluorometer 60 is turned on and activated. Thereby, in the spectrofluorometer 60, the control unit 38 sends a signal to the light irradiation unit 32. With this signal, as shown in FIG. 9B, the light irradiation unit 32 has an excitation wavelength of 220 nm to 200 nm in the direction of the arrow 200, that is, in the insertion direction of the hole 72 at a site crossing the hole 72 of the hollow fiber 14 b. The excitation light of 600 nm is sequentially irradiated (irradiation step S303).

以降、上記第1実施の形態と同様に受信・分光部34が蛍光を受信し、FEEM作成部36がFEEMを作成し、分離膜14の汚染状態の分析が実施される。   Thereafter, similarly to the first embodiment, the reception / spectroscopy unit 34 receives the fluorescence, the FEEM creation unit 36 creates the FEEM, and the contamination state of the separation membrane 14 is analyzed.

したがって、本実施の形態によれば、分析の前処理は分離膜14の一部の切除及びプレート70への固定で終了し、分析操作はプレート70に固定された分離膜14の一部に光を照射することで実質的に行われる。したがって、前処理及び分析操作が簡素化され、且つ分析時間が短縮され、簡易且つ迅速な分析が可能となる。   Therefore, according to the present embodiment, the pretreatment for analysis is completed by excising a part of the separation membrane 14 and fixing it to the plate 70, and the analysis operation is performed on a part of the separation membrane 14 fixed to the plate 70. It is substantially performed by irradiating. Therefore, preprocessing and analysis operation are simplified, analysis time is shortened, and simple and quick analysis is possible.

同時に、上記第1実施の形態同様、分離膜14が蛍光分光法を用いる分析に供されるので、ろ過対象水1中に存在する物質やその物質の濃度の影響による分析誤差・検出限界等の問題を回避することができる。また、分離膜14を分析することで膜を透過する成分が分析に与える影響を排除し、分離膜14に捕捉される膜閉塞成分のみの選択的な分析が可能となる。   At the same time, since the separation membrane 14 is subjected to analysis using fluorescence spectroscopy as in the first embodiment, analysis errors, detection limits, etc. due to the influence of the substance present in the filtration target water 1 and the concentration of the substance. The problem can be avoided. Further, by analyzing the separation membrane 14, the influence of components that permeate the membrane on the analysis is eliminated, and only the membrane blocking component captured by the separation membrane 14 can be selectively analyzed.

なお、本発明は上記実施の形態に限定されることはなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上記第1実施の形態では、蛍光分光法及び近赤外分光法を用い、第2実施の形態では蛍光分光法を用いているが、これに限られるものではなく、例えば、近赤外分光法のみを用いてもよい。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning of invention. For example, in the first embodiment, fluorescence spectroscopy and near infrared spectroscopy are used, and in the second embodiment, fluorescence spectroscopy is used. However, the present invention is not limited to this. Only spectroscopy may be used.

また、上記実施の形態においては、作成されたFEEMのうち、領域AP1、P1、P2、H1及びH2の少なくとも1個以上の領域をFEEM分析工程において用いているが、当該領域を用いることは必須というわけではない。すなわち、図4に示すようなFEEMをそのままFEEM分析工程において用いることも可能である。   Moreover, in the said embodiment, although at least 1 or more area | region of area | region AP1, P1, P2, H1, and H2 is used in the FEEM analysis process among the produced FEEM, it is essential to use the said area | region. Not that. That is, the FEEM as shown in FIG. 4 can be used in the FEEM analysis process as it is.

これによれば、例えば、既知の膜閉塞成分を付着させた分離膜の蛍光分光法による分析から作成したFEEMと、ろ過対象水1を所定量ろ過させた分離膜14の蛍光分光法による分析から作成したFEEMとを比較し、それらの波形パターンの共通点及び差異点の割合から、分離膜に付着した膜閉塞成分を特定し、当該膜閉塞成分の量を推定するということも可能となる。   According to this, for example, from the FEEM created from the analysis by the fluorescence spectroscopy of the separation membrane to which the known membrane blocking component is adhered and the analysis by the fluorescence spectroscopy of the separation membrane 14 in which a predetermined amount of the filtration target water 1 is filtered. It is also possible to compare the created FEEM, identify the membrane blockage component adhering to the separation membrane, and estimate the amount of the membrane blockage component from the ratio of the common points and the difference points of the waveform patterns.

さらに、本発明とナノ粒子計を併用してもよい。ナノ粒子計の多くは、10〜400nm程度の粒子の大きさの情報とゼータ電位などの電荷の情報が与えられるものであるが、多糖、たんぱく質等のポリマーの特性に関する情報は得られない。かかるナノ粒子計に対して本発明を併用する事により、膜ファウリング物質の質と大きさの両方の情報と、ろ過抵抗への関与に関する情報が得られるので、より好ましい。   Furthermore, you may use together this invention and a nano particle meter. Many nanoparticle meters provide information on the size of particles of about 10 to 400 nm and information on charges such as zeta potential, but information on the properties of polymers such as polysaccharides and proteins cannot be obtained. It is more preferable to use the present invention in combination with such a nanoparticle meter, because information on both the quality and size of the membrane fouling substance and information on participation in filtration resistance can be obtained.

なお、ナノ粒子計の計側法は、特に制限はなく、ナノ粒子追跡解析法(NTA又はPTA)、レーザー誘起破壊検知法(LIDB)、電気抵抗ナノパルス法(TRPS、通称:qNano)、動的光散乱法(DLS)のいずれでもよい。   The measuring method of the nanoparticle meter is not particularly limited, and is a nanoparticle tracking analysis method (NTA or PTA), a laser-induced breakdown detection method (LIDB), an electric resistance nanopulse method (TRPS, commonly known as qNano), dynamic Any of light scattering methods (DLS) may be used.

以下、本発明を実施例により説明する。   Hereinafter, the present invention will be described with reference to examples.

1.ろ過対象水のろ過
本実施例における水処理は、原水を浄化して上水道水とするための水処理を想定しており、原水としては河川水を用いた。
1. Filtration of target water The water treatment in the present example assumes water treatment for purifying raw water to obtain tap water, and river water was used as raw water.

ろ過対象水(河川水)を、材質がPVDFである分離膜(平膜、孔径0.22μm)を用いて約1lろ過した。
2.蛍光分光法による分離膜の汚染状態の分析
分離膜の汚染状態の分析には、本実施の形態に係る膜ろ過システム10にも使用可能な分光蛍光光度計(日立製作所製)を用いた。
About 1 liter of water to be filtered (river water) was filtered using a separation membrane (flat membrane, pore diameter 0.22 μm) made of PVDF.
2. Analysis of the state of contamination of the separation membrane by fluorescence spectroscopy For the analysis of the state of contamination of the separation membrane, a spectrofluorometer (manufactured by Hitachi, Ltd.) that can also be used in the membrane filtration system 10 according to the present embodiment was used.

ろ過対象水をろ過した分離膜のろ過対象水側表面に対して励起光を照射し、分離膜への励起光の照射及び分離膜からの蛍光の受信・分光を行い、FEEMを作成した。   Excitation light was applied to the surface of the separation target water side of the separation membrane obtained by filtering the filtration target water, and irradiation of the excitation light to the separation membrane and reception and spectroscopy of fluorescence from the separation membrane were performed to prepare an FEEM.

図10に、作成したFEEMを示す。このように作成されたFEEMから、分離膜の汚染状態を分析可能であることが示された。   FIG. 10 shows the created FEEM. From the FEEM created in this way, it was shown that the contamination state of the separation membrane can be analyzed.

1 ろ過対象水
3 流路
10 膜ろ過システム
14 分離膜
20 分光蛍光光度計(分光光度計)
22 ホルダ
26 励起光伝達手段(一の光伝達手段)
28 蛍光伝達手段(他の光伝達手段)
30 分光蛍光光度計本体(分光光度計本体)
40 近赤外光分光光度計(分光光度計)
42 ホルダ
44 近赤外光伝達手段(一の光伝達手段)
46 光伝達手段(他の光伝達手段)
50 近赤外光分光光度計本体(分光光度計本体)
70 プレート
72 孔部
1 Water to be filtered 3 Channel 10 Membrane filtration system 14 Separation membrane 20 Spectrofluorometer (spectrophotometer)
22 Holder 26 Excitation light transmission means (one light transmission means)
28 Fluorescence transmission means (other light transmission means)
30 Spectral Fluorometer Main Body (Spectrophotometer Main Body)
40 Near-infrared spectrophotometer (spectrophotometer)
42 Holder 44 Near-infrared light transmission means (one light transmission means)
46 Light transmission means (other light transmission means)
50 Near-infrared spectrophotometer body (spectrophotometer body)
70 Plate 72 Hole

Claims (7)

水処理におけるろ過対象水の流路に分離膜が設けられ、該分離膜によりろ過対象水をろ過するろ過工程と、
蛍光分光法に用いる分光光度計からの励起光を前記分離膜に照射する光照射工程と、
前記分離膜からの蛍光を、前記分光光度計に受光させ、分光させる蛍光分光工程と、
前記励起光の波長についての情報及び分光された前記蛍光の波長についての情報に基づき、三次元励起蛍光マトリクススペクトル(FEEM)を作成するFEEM作成工程と、
前記作成されたFEEMの所定領域における蛍光強度の積分値と総ろ過水量との関係に基づき前記分離膜の汚染状態を分析するFEEM分析工程と、
を含むことを特徴とする分離膜の汚染状態分析方法。
A filtration step in which a separation membrane is provided in a flow path of water to be filtered in water treatment, and the filtration target water is filtered by the separation membrane;
A light irradiation step of irradiating the separation membrane with excitation light from a spectrophotometer used for fluorescence spectroscopy;
Fluorescence spectroscopy step of causing the spectrophotometer to receive and split the fluorescence from the separation membrane,
FEEM creation step of creating a three-dimensional excitation fluorescence matrix spectrum (FEEM) based on the information about the wavelength of the excitation light and the information about the wavelength of the dispersed fluorescence;
An FEEM analysis step of analyzing the state of contamination of the separation membrane based on the relationship between the integrated value of fluorescence intensity in a predetermined region of the created FEEM and the total amount of filtered water;
A method for analyzing the contamination state of a separation membrane, comprising:
前記FEEM作成工程は、励起波長Ex(Y軸)、蛍光波長Em(X軸)、蛍光強度(Z軸)で表される三次元スペクトルを蛍光強度に従って等高線図を作成したものであることを特徴とする請求項1に記載の分離膜の汚染状態分析方法。   In the FEEM creation step, a contour map of a three-dimensional spectrum represented by an excitation wavelength Ex (Y axis), a fluorescence wavelength Em (X axis), and a fluorescence intensity (Z axis) is created according to the fluorescence intensity. The method for analyzing a contamination state of a separation membrane according to claim 1. 前記FEEM分析工程は、前記作成されるFEEMのうち、
蛍光波長290nm〜330nm及び励起波長220nm〜240nmの範囲に区画される領域AP1、蛍光波長290nm〜320nm及び励起波長265nm〜295nmの範囲に区画される領域P1及び蛍光波長320nm〜395nm及び励起波長245nm〜295nmの範囲に区画される領域P2のうち少なくとも1個の領域の総ろ過水量に対する蛍光強度の積分値、並びに
蛍光波長395nm〜480nm及び励起波長250nm〜295nmの範囲に区画される領域H1及び蛍光波長395nm〜520nm及び励起波長300nm〜375nmの範囲に区画される領域H2のうち少なくとも1個の領域の総ろ過水量に対する蛍光強度の積分値をそれぞれ求め、
前記領域AP1、P1〜P2の積分値の増加割合に対し、前記領域H1〜H2の積分値の増加割合が大きい場合、膜のファウリングの終期にあると判定することを特徴とする請求項1又は2に記載の分離膜の汚染状態分析方法。
The FEEM analysis process includes the FEEM to be created.
Region AP1 partitioned into a range of fluorescence wavelengths 290 nm to 330 nm and excitation wavelengths 220 nm to 240 nm, region P1 partitioned into a range of fluorescence wavelengths 290 nm to 320 nm and excitation wavelengths 265 nm to 295 nm, fluorescence wavelengths 320 nm to 395 nm, and excitation wavelengths 245 nm to The integrated value of the fluorescence intensity with respect to the total amount of filtered water in at least one of the regions P2 partitioned in the range of 295 nm, the region H1 partitioned in the range of the fluorescence wavelength of 395 nm to 480 nm and the excitation wavelength of 250 nm to 295 nm, and the fluorescence wavelength Finding the integral value of the fluorescence intensity with respect to the total amount of filtered water in at least one of the regions H2 partitioned into a range of 395 nm to 520 nm and an excitation wavelength of 300 nm to 375 nm,
2. It is determined that the film is in the final stage of fouling when the increase rate of the integral value of the regions H1 to H2 is larger than the increase rate of the integral value of the regions AP1 and P1 to P2. Alternatively, the method for analyzing the contamination state of the separation membrane according to 2.
水処理におけるろ過対象水の水質評価方法であって、
請求項1〜3の何れか一項に記載の分離膜汚染状態分析方法におけるFEEM作成工程から、該FEEMの前記積分値と、予め既知の膜閉塞指標値との相関関係から検量線を作成する検量線作成工程と、
前記膜閉塞指標値が未知のろ過対象水について前記検量線作成工程で用いた前記分離膜の汚染状態分析方法と同じ方法により膜ろ過し該膜ろ過した分離膜のFEEMを作成し、得られたFEEMの積分値を前記作成された検量線に当てはめて膜閉塞指標値を決定する膜閉塞指標値決定工程と、
を有することを特徴とするろ過対象水の水質評価方法。
A method for evaluating the quality of water to be filtered in water treatment,
A calibration curve is created from the correlation between the integral value of the FEEM and a known membrane blockage index value from the FEEM creation step in the separation membrane contamination state analysis method according to any one of claims 1 to 3. Calibration curve creation process,
A membrane filtration was performed by the same method as the separation membrane contamination state analysis method used in the calibration curve creation step for the filtration target water with an unknown membrane blockage index value, and the FEEM of the separation membrane subjected to the membrane filtration was obtained. A membrane occlusion index value determining step of applying an integral value of FEEM to the created calibration curve to determine a membrane occlusion index value;
A method for evaluating the quality of water to be filtered.
水処理におけるろ過対象水の流路に設けられ、該ろ過対象水を導入してろ過する分離膜の汚染状態分析方法を行うための膜ろ過システムであって、
前記分離膜の前記ろ過対象水側表面に着脱可能に取り付けられるホルダと、
前記ホルダに設けられ、励起光を前記分離膜に照射する励起光照射部と、
前記ホルダに設けられ、前記ろ過後の分離膜に対し該励起光を吸収した分離膜から放出された蛍光を分光する蛍光分光部と、
蛍光分光法による分析を、前記励起光の励起光波長情報及び前記分光した蛍光波長情報に基づいて、励起波長をY軸、蛍光波長をX軸、蛍光強度をZ軸として表される三次元励起蛍光マトリクススペクトル(FEEM)を作成するFEEM作成部と、を有し、
前記作成したFEEMの蛍光波長領域の蛍光強度の積分値変化より、前記分離膜の汚染状態を把握可能とすることを特徴とする膜ろ過システム。
A membrane filtration system for conducting a contamination state analysis method for a separation membrane that is provided in a flow path of water to be filtered in water treatment and introduces and filters the water to be filtered.
A holder removably attached to the surface to be filtered of the separation membrane,
An excitation light irradiating unit that is provided in the holder and irradiates the separation film with excitation light;
A fluorescence spectroscopic unit that is provided in the holder and separates fluorescence emitted from the separation membrane that has absorbed the excitation light with respect to the filtered separation membrane;
Based on the excitation light wavelength information of the excitation light and the spectral fluorescence wavelength information, the three-dimensional excitation represented by the excitation wavelength as the Y-axis, the fluorescence wavelength as the X-axis, and the fluorescence intensity as the Z-axis. An FEEM creation unit for creating a fluorescence matrix spectrum (FEEM),
The membrane filtration system characterized in that the state of contamination of the separation membrane can be grasped from the change in the integrated value of the fluorescence intensity in the fluorescence wavelength region of the created FEEM.
水処理におけるろ過対象水の流路に設けられ、該ろ過対象水を導入してろ過する分離膜の汚染状態分析方法を行うための膜ろ過システムであって、
前記分離膜の前記ろ過対象水側表面に着脱可能に取り付けられるホルダと、
前記ホルダに設けられ、近赤外光を前記分離膜に照射する近赤外光照射部と、
前記近赤外光を吸収した前記分離膜から放出された光を分光する放出光分光部と、
前記分光した放出光波長情報に基づいて、吸光度−分光波長の二次元吸収スペクトルを作成する二次元吸収スペクトル作成部と、を有し、
前記二次元吸収スペクトル作成部により、前記分離膜のろ過後の測定による吸収スペクトルAと、分離膜のろ過前の測定による吸収スペクトルAと、による差分の吸収スペクトルを求めて、前記分離膜のろ過により捕捉された物質に由来するスペクトルを得ることにより、前記分離膜の汚染状態を把握可能とすることを特徴とする膜ろ過システム。
A membrane filtration system for conducting a contamination state analysis method for a separation membrane that is provided in a flow path of water to be filtered in water treatment and introduces and filters the water to be filtered.
A holder removably attached to the surface to be filtered of the separation membrane,
A near-infrared light irradiating unit provided on the holder for irradiating the separation membrane with near-infrared light;
An emission light spectroscopic unit that splits light emitted from the separation membrane that has absorbed the near-infrared light; and
A two-dimensional absorption spectrum creation unit that creates a two-dimensional absorption spectrum of absorbance-spectral wavelength based on the spectrally emitted light wavelength information;
By the two-dimensional absorption spectrum creation unit, asking the absorption spectrum A 1 by measurement after filtration of the separation membrane, the absorption spectrum A 0 by the measurement before filtration of the separation membrane, the absorption spectrum of the by difference, the separation membrane A membrane filtration system characterized in that a contamination state of the separation membrane can be ascertained by obtaining a spectrum derived from a substance captured by filtration.
請求項5に記載の膜ろ過システムであって、
前記ホルダに設けられ、近赤外光を前記分離膜に照射する近赤外光照射部と、
前記近赤外光を吸収した前記分離膜から放出された光を受光し、分光する放出光分光部と、
前記分光した放出光波長情報に基づいて、吸光度−分光波長の二次元吸収スペクトルを作成する二次元吸収スペクトル作成部と、を有し、
前記二次元吸収スペクトル作成部により、前記分離膜のろ過後の測定による吸収スペクトルAと、分離膜のろ過前の測定による吸収スペクトルAと、による差分の吸収スペクトルを求めて、前記分離膜のろ過により捕捉された物質に由来するスペクトルを得ることにより、前記分離膜の汚染状態を把握可能とし、
前記蛍光分光法による分析によりタンパク質構造部を検出し、前記ろ過後の分離膜に対して近赤外光を照射する近赤外分光法により糖構造部を検出する、双方の分光法を用いて前記分離膜の汚染状態を把握することを特徴とする膜ろ過システム。
The membrane filtration system according to claim 5,
A near-infrared light irradiating unit provided on the holder for irradiating the separation membrane with near-infrared light;
An emission light spectroscopic unit that receives and separates light emitted from the separation film that has absorbed the near-infrared light; and
A two-dimensional absorption spectrum creation unit that creates a two-dimensional absorption spectrum of absorbance-spectral wavelength based on the spectrally emitted light wavelength information,
By the two-dimensional absorption spectrum creation unit, asking the absorption spectrum A 1 by measurement after filtration of the separation membrane, the absorption spectrum A 0 by the measurement before filtration of the separation membrane, the absorption spectrum of the by difference, the separation membrane By obtaining a spectrum derived from the substance captured by filtration of the filter, it is possible to grasp the contamination state of the separation membrane,
Using both spectroscopic methods, the protein structure part is detected by the analysis by the fluorescence spectroscopy, and the sugar structure part is detected by the near infrared spectroscopy method of irradiating the filtered separation membrane with near infrared light. A membrane filtration system characterized by grasping a contamination state of the separation membrane.
JP2019124925A 2019-07-04 2019-07-04 Contaminated state analysis method of separation membrane and water quality evaluation method of filtered water using the method Active JP6768889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019124925A JP6768889B2 (en) 2019-07-04 2019-07-04 Contaminated state analysis method of separation membrane and water quality evaluation method of filtered water using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019124925A JP6768889B2 (en) 2019-07-04 2019-07-04 Contaminated state analysis method of separation membrane and water quality evaluation method of filtered water using the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014249618A Division JP6567274B2 (en) 2014-12-10 2014-12-10 Method for analyzing contamination state of separation membrane, and method for evaluating water quality of filtration target water using the method

Publications (2)

Publication Number Publication Date
JP2019206000A true JP2019206000A (en) 2019-12-05
JP6768889B2 JP6768889B2 (en) 2020-10-14

Family

ID=68767998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124925A Active JP6768889B2 (en) 2019-07-04 2019-07-04 Contaminated state analysis method of separation membrane and water quality evaluation method of filtered water using the method

Country Status (1)

Country Link
JP (1) JP6768889B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112755797A (en) * 2020-12-30 2021-05-07 北京城市排水集团有限责任公司 Method and system for improving and transforming water yield of membrane system
CN113358597A (en) * 2021-01-12 2021-09-07 南京富磁仪器设备有限公司 FT-IR-based PCA-CA in-situ analysis method for domestic sewage membrane pollution condition
CN113552105A (en) * 2021-07-21 2021-10-26 苏州苏净环保工程有限公司 Method for detecting organic membrane pollution
CN113933278A (en) * 2021-11-03 2022-01-14 中国科学院大学 Method for monitoring membrane pollution potential in real time
WO2022085802A1 (en) * 2020-10-23 2022-04-28 国立研究開発法人理化学研究所 Important factor calculation device for filter membrane fouling, fouling occurrence prediction device, important factor calculation method, fouling occurrence prediction method, program, trained model, storage medium, and trained model creation method
CN114660035A (en) * 2022-03-28 2022-06-24 广州大学 Front surface fluorescence probe device for membrane pollution monitoring
CN114904397A (en) * 2021-02-09 2022-08-16 上海工程技术大学 Method for measuring aperture and aperture distribution of filter membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102674964B1 (en) * 2022-02-03 2024-06-14 주식회사 제이엠워터스 Image-based water quality measurement device and water quality measurement method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538823A (en) * 2007-09-12 2010-12-16 ダニスコ・ユーエス・インク Filtration with controlled internal fouling
JP2012106237A (en) * 2010-10-21 2012-06-07 Nitto Denko Corp Membrane separation apparatus, membrane separation apparatus operation method and evaluation method using the membrane separation apparatus
US20130213881A1 (en) * 2012-01-30 2013-08-22 Korea Advanced Institute Of Science And Technology Filtration membranes and related compositions, methods and systems
WO2013138159A1 (en) * 2012-03-15 2013-09-19 Amgen Inc. Methods of determining exposure to uv light
JP2014172013A (en) * 2013-03-12 2014-09-22 Toray Ind Inc Water making method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538823A (en) * 2007-09-12 2010-12-16 ダニスコ・ユーエス・インク Filtration with controlled internal fouling
JP2012106237A (en) * 2010-10-21 2012-06-07 Nitto Denko Corp Membrane separation apparatus, membrane separation apparatus operation method and evaluation method using the membrane separation apparatus
US20130213881A1 (en) * 2012-01-30 2013-08-22 Korea Advanced Institute Of Science And Technology Filtration membranes and related compositions, methods and systems
WO2013138159A1 (en) * 2012-03-15 2013-09-19 Amgen Inc. Methods of determining exposure to uv light
JP2014172013A (en) * 2013-03-12 2014-09-22 Toray Ind Inc Water making method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山村寛、外2名: "起源を異にする溶存有機物による不可逆的膜ファウリング", 環境工学研究論文集, vol. 第41巻, JPN6018045632, 2004, pages 257 - 267, ISSN: 0004306828 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085802A1 (en) * 2020-10-23 2022-04-28 国立研究開発法人理化学研究所 Important factor calculation device for filter membrane fouling, fouling occurrence prediction device, important factor calculation method, fouling occurrence prediction method, program, trained model, storage medium, and trained model creation method
CN112755797A (en) * 2020-12-30 2021-05-07 北京城市排水集团有限责任公司 Method and system for improving and transforming water yield of membrane system
CN113358597A (en) * 2021-01-12 2021-09-07 南京富磁仪器设备有限公司 FT-IR-based PCA-CA in-situ analysis method for domestic sewage membrane pollution condition
CN114904397A (en) * 2021-02-09 2022-08-16 上海工程技术大学 Method for measuring aperture and aperture distribution of filter membrane
CN114904397B (en) * 2021-02-09 2023-09-19 上海工程技术大学 Method for measuring pore diameter and pore diameter distribution of filter membrane
CN113552105A (en) * 2021-07-21 2021-10-26 苏州苏净环保工程有限公司 Method for detecting organic membrane pollution
CN113933278A (en) * 2021-11-03 2022-01-14 中国科学院大学 Method for monitoring membrane pollution potential in real time
CN114660035A (en) * 2022-03-28 2022-06-24 广州大学 Front surface fluorescence probe device for membrane pollution monitoring
CN114660035B (en) * 2022-03-28 2024-07-16 广州大学 Front surface fluorescent probe device for membrane pollution monitoring

Also Published As

Publication number Publication date
JP6768889B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6567274B2 (en) Method for analyzing contamination state of separation membrane, and method for evaluating water quality of filtration target water using the method
JP6768889B2 (en) Contaminated state analysis method of separation membrane and water quality evaluation method of filtered water using the method
Chen et al. Molecular spectroscopic characterization of membrane fouling: a critical review
Peiris et al. Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices
Yu et al. Characterization of fluorescence foulants on ultrafiltration membrane using front-face excitation-emission matrix (FF-EEM) spectroscopy: Fouling evolution and mechanism analysis
JP6679439B2 (en) Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method
Kimura et al. Irreversible fouling in hollow-fiber PVDF MF/UF membranes filtering surface water: Effects of precoagulation and identification of the foulant
Tian et al. Insights into the properties of surface waters and their associated nanofiltration membrane fouling: The importance of biopolymers and high molecular weight humics
WO2012124538A1 (en) Fouling prediction method, and membrane filtration system
Peleato et al. Characterization of UF foulants and fouling mechanisms when applying low in-line coagulant pre-treatment
Rachman et al. Assessment of silt density index (SDI) as fouling propensity parameter in reverse osmosis (RO) desalination systems
Zhan et al. Quantitative analysis of the irreversible membrane fouling of forward osmosis during wastewater reclamation: Correlation with the modified fouling index
Yamamura et al. Solid-phase fluorescence excitation emission matrix for in-situ monitoring of membrane fouling during microfiltration using a polyvinylidene fluoride hollow fiber membrane
Myat et al. Characterisation of organic matter in IX and PACl treated wastewater in relation to the fouling of a hydrophobic polypropylene membrane
JP6719291B2 (en) Method for cleaning organic separation membrane of water treatment device
Lidén et al. Integrity breaches in a hollow fiber nanofilter–Effects on natural organic matter and virus-like particle removal
Zhan et al. Application of fouling index for forward osmosis hybrid system: A pilot demonstration
Yu et al. Long-term fouling evolution of polyvinyl chloride ultrafiltration membranes in a hybrid short-length sedimentation/ultrafiltration process for drinking water production
Peiris et al. Development of a species specific fouling index using principal component analysis of fluorescence excitation–emission matrices for the ultrafiltration of natural water and drinking water production
JP7033841B2 (en) Membrane obstruction evaluation method of reverse osmosis membrane supply water and operation management method of water treatment equipment using the membrane obstruction evaluation method
JP2018008192A (en) Foulant quantification method
Yamamura et al. Seasonal variation of effective chemical solution for cleaning of ultrafiltration membrane treating a surface water
Salinas-Rodriguez et al. Methods for Assessing Fouling and Scaling of Saline Water in Membrane-Based Desalination
JP6530996B2 (en) Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus
Xu et al. Assessing organic fouling of ultrafiltration membranes using partition coefficients of dissolved organic matter in aqueous two-phase systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200923

R150 Certificate of patent or registration of utility model

Ref document number: 6768889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250