JP6728509B1 - エアロゾル吸引器の電源ユニット - Google Patents

エアロゾル吸引器の電源ユニット Download PDF

Info

Publication number
JP6728509B1
JP6728509B1 JP2020038193A JP2020038193A JP6728509B1 JP 6728509 B1 JP6728509 B1 JP 6728509B1 JP 2020038193 A JP2020038193 A JP 2020038193A JP 2020038193 A JP2020038193 A JP 2020038193A JP 6728509 B1 JP6728509 B1 JP 6728509B1
Authority
JP
Japan
Prior art keywords
potential
power supply
operational amplifier
load
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020038193A
Other languages
English (en)
Other versions
JP2021136942A (ja
Inventor
啓司 丸橋
啓司 丸橋
創 藤田
創 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP2020038193A priority Critical patent/JP6728509B1/ja
Priority to JP2020111503A priority patent/JP2021136987A/ja
Application granted granted Critical
Publication of JP6728509B1 publication Critical patent/JP6728509B1/ja
Priority to RU2021105421A priority patent/RU2751015C1/ru
Priority to US17/191,711 priority patent/US11134721B2/en
Priority to EP21160986.2A priority patent/EP3876666B1/en
Priority to CN202110243883.9A priority patent/CN113349465B/zh
Publication of JP2021136942A publication Critical patent/JP2021136942A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/009Inhalators using medicine packages with incorporated spraying means, e.g. aerosol cans
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/035Electrical circuits used in resistive heating apparatus

Abstract

【課題】エアロゾルの生成に用いる負荷の温度を高精度に検出可能とする。【解決手段】電源ユニット10は、負荷21に対して直列接続される第1電気抵抗値R1を有する第1素子63と、第2電気抵抗値R2を有する第2素子64及び第2素子64に対して直列接続された第3電気抵抗値R3を有する第3素子65を含み、負荷21及び第1素子63の第1直列回路C1と並列に接続された第2直列回路C2と、第1直列回路C1及び第2直列回路C2に接続された第1オペアンプ56と、第2直列回路C2と第1オペアンプ56の反転入力端子との間に接続された第2オペアンプ58と、を備える。【選択図】図6

Description

本発明は、エアロゾル吸引器の電源ユニットに関する。
特許文献1には、吸入可能なエアロゾルを生成する装置において、ヒータの抵抗値を測定する回路が記載されている。
特表2017−501805号公報
エアロゾル吸引器は、ユーザが口に咥えて利用するものであるため、エアロゾルを生成するために用いるヒータの温度管理が重要となる。一方で、エアロゾルの生成効率を高めることも求められる。特許文献1には、ヒータの抵抗値を測定することは記載されているが、その具体的な構成は開示されていない。
本発明の目的は、エアロゾルの生成に用いる負荷の温度を高精度に検出可能とするエアロゾル吸引器の電源ユニットを提供することにある。
本発明の一態様のエアロゾル吸引器の電源ユニットは、エアロゾル生成源を加熱し且つ温度と電気抵抗値が相関を持つ負荷に放電可能な電源を有するエアロゾル吸引器の電源ユニットであって、前記負荷に対して直列接続される第1電気抵抗値を有する第1素子と、第2電気抵抗値を有する第2素子及び前記第2素子に対して直列接続された第3電気抵抗値を有する第3素子を含み、前記負荷及び前記第1素子の第1直列回路と並列接続された第2直列回路と、前記負荷及び前記第1素子の第1接続ノードと前記第2素子及び前記第3素子の第2接続ノードのうちの一方に接続された非反転入力端子と、前記第1接続ノードと前記第2接続ノードのうちの他方に接続された反転入力端子と、を含む第1オペアンプと、前記第1接続ノード及び前記第2接続ノードのうちの前記非反転入力端子と接続される方の第1電位が、前記第1接続ノード及び前記第2接続ノードのうちの前記反転入力端子と接続される方の第2電位未満となる状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの負電源端子の電位又は前記第1オペアンプが取得可能な最小値と同じになるのを抑制する、前記第1オペアンプに接続された電位調整回路と、を備えるものである。
本発明の別態様のエアロゾル吸引器の電源ユニットは、エアロゾル生成源を加熱し且つ温度と電気抵抗値が相関を持つ負荷に放電可能な電源を有するエアロゾル吸引器の電源ユニットであって、前記負荷に対して直列接続される第1電気抵抗値を有する第1素子と、第2電気抵抗値を有する第2素子及び前記第2素子に対して直列接続された第3電気抵抗値を有する第3素子を含み、前記負荷及び前記第1素子の第1直列回路と並列接続された第2直列回路と、前記負荷及び前記第1素子の第1接続ノードと前記第2素子及び前記第3素子の第2接続ノードのうちの一方に接続された非反転入力端子と、前記第1接続ノードと前記第2接続ノードのうちの他方に間接的に接続された反転入力端子と、を含む第1オペアンプと、前記第1接続ノード及び前記第2接続ノードのうちの前記反転入力端子と間接的に接続される方に接続された非反転入力端子と、正の既定電位が入力される反転入力端子と、前記第1オペアンプの前記反転入力端子に接続された出力端子と、を有する第2オペアンプと、を備えるものである。
本発明によれば、エアロゾルの生成に用いる負荷の温度を高精度に検出可能である。
本発明の一実施形態の電源ユニットが装着されたエアロゾル吸引器の斜視図である。 図1のエアロゾル吸引器の他の斜視図である。 図1のエアロゾル吸引器の断面図である。 図1のエアロゾル吸引器における電源ユニットの斜視図である。 図1のエアロゾル吸引器における電源ユニットの要部構成を示すブロック図である。 図1のエアロゾル吸引器における電源ユニットの回路構成の第1実施形態を示す模式図である。 図6に示す第1実施形態の電源ユニットの既定電位VPSEUDOの供給回路の一例を示す図である。 図6に示す第1実施形態の電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図6に示す第1実施形態の電源ユニット10における第1オペアンプ56の差動入力値の別例を説明するためのグラフである。 図6に示す第1実施形態の電源ユニット10の回路構成の第1変形例を示す模式図である。 図10に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図6に示す第1実施形態の電源ユニット10の回路構成の第2変形例を示す模式図である。 図12に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図6に示す第1実施形態の電源ユニットの回路構成の第3変形例を示す模式図である。 図14に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図1のエアロゾル吸引器における電源ユニットの回路構成の第2実施形態を示す模式図である。 図16に示す第2実施形態の電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図16に示す第2実施形態の電源ユニット10における第1オペアンプ56の差動入力値の別例を説明するためのグラフである。 図16に示す第2実施形態の電源ユニット10の回路構成の第1変形例を示す模式図である。 図19に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図16に示す第2実施形態の電源ユニット10の回路構成の第2変形例を示す模式図である。 図21に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図16に示す第2実施形態の電源ユニットの回路構成の第3変形例を示す模式図である。 図23に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図1のエアロゾル吸引器における電源ユニットの回路構成の第3実施形態を示す模式図である。 図25に示す第3実施形態の電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図25に示す第3実施形態の電源ユニット10における第1オペアンプ56の差動入力値の別例を説明するためのグラフである。 図25に示す第3実施形態の電源ユニット10の回路構成の第1変形例を示す模式図である。 図28に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図25に示す第3実施形態の電源ユニット10の回路構成の第2変形例を示す模式図である。 図30に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。 図25に示す第2実施形態の電源ユニットの回路構成の第3変形例を示す模式図である。 図32に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。
以下、本発明の一実施形態であるエアロゾル吸引器の電源ユニットについて説明するが、先ず、電源ユニットが装着されたエアロゾル吸引器について、図1及び図2を参照しながら説明する。
(エアロゾル吸引器)
エアロゾル吸引器1は、燃焼を伴わずに香味が付加されたエアロゾルを吸引するための器具であり、所定方向(以下、長手方向Xと呼ぶ)に沿って延びる棒形状を有する。エアロゾル吸引器1は、長手方向Xに沿って電源ユニット10と、第1カートリッジ20と、第2カートリッジ30と、がこの順に設けられている。第1カートリッジ20は、電源ユニット10に対して着脱可能である。第2カートリッジ30は、第1カートリッジ20に対して着脱可能である。言い換えると、第1カートリッジ20及び第2カートリッジ30は、それぞれ交換可能である。
(電源ユニット)
本実施形態の電源ユニット10は、図3、図4、図5、及び図6に示すように、円筒状の電源ユニットケース11の内部に、電源12、充電IC55A、MCU(Micro Controller Unit)50、吸気センサ15等の各種センサ等を収容する。電源12は、充電可能な二次電池、電気二重層キャパシタ等であり、好ましくは、リチウムイオン二次電池である。電源12の電解質は、ゲル状の電解質、電解液、固体電解質、イオン液体の1つ又はこれらの組合せで構成されていてもよい。
図4に示すように、電源ユニットケース11の長手方向Xの一端側(第1カートリッジ20側)に位置するトップ部11aには、放電端子41が設けられる。放電端子41は、トップ部11aの上面から第1カートリッジ20に向かって突出するように設けられ、第1カートリッジ20の負荷21と電気的に接続可能に構成される。
また、トップ部11aの上面には、放電端子41の近傍に、第1カートリッジ20の負荷21に空気を供給する空気供給部42が設けられている。
電源ユニットケース11の長手方向Xの他端側(第1カートリッジ20と反対側)に位置するボトム部11bには、電源12を充電可能な外部電源(図示省略)と電気的に接続可能な充電端子43が設けられる。充電端子43は、ボトム部11bの側面に設けられ、例えば、USB端子、microUSB端子、及びLightning(登録商標)端子の少なくとも1つが接続可能である。
なお、充電端子43は、外部電源から送電される電力を非接触で受電可能な受電部であってもよい。このような場合、充電端子43(受電部)は、受電コイルから構成されていてもよい。非接触による電力伝送(Wireless Power Transfer)の方式は、電磁誘導型でもよいし、磁気共鳴型でもよい。また、充電端子43は、外部電源から送電される電力を無接点で受電可能な受電部であってもよい。別の一例として、充電端子43は、USB端子、microUSB端子、Lightning端子の少なくとも1つが接続可能であり、且つ上述した受電部を有していてもよい。
電源ユニットケース11には、ユーザが操作可能な操作部14が、トップ部11aの側面に充電端子43とは反対側を向くように設けられる。より詳述すると、操作部14と充電端子43は、操作部14と充電端子43を結ぶ直線と長手方向Xにおける電源ユニット10の中心線の交点について点対称の関係にある。操作部14は、ボタン式のスイッチ、タッチパネル等から構成される。図3に示すように、操作部14の近傍には、パフ動作を検出する吸気センサ15が設けられている。
充電IC55Aは、充電端子43に近接して配置され、充電端子43から入力される電力の電源12への充電制御を行う。なお、充電IC55Aは、MCU50の近傍に配置されていてもよい。
MCU50は、図5に示すように、パフ(吸気)動作を検出する吸気センサ15等の各種センサ装置、操作部14、後述の報知部45、及びパフ動作の回数又は負荷21への通電時間等を記憶するメモリー18に接続され、エアロゾル吸引器1の各種の制御を行う。MCU50は、具体的には後述のプロセッサ55(図7参照)を主体に構成されており、プロセッサ55の動作に必要なRAM(Random Access Memory)と各種情報を記憶するROM(Read Only Memory)等の記憶媒体を更に含む。本明細書におけるプロセッサとは、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
MCU50は、電源12の電源電圧を測定する電圧センサ16を有する。電圧センサ16は、後述する第1オペアンプ56とADC57によって構成されてもよい。MCU50の内部において、電圧センサ16の出力信号はプロセッサ55に入力される。本実施形態に代えて、電圧センサ16はMCU50の外部に設けられ、MCU50と接続されてもよい。
また、電源ユニットケース11には、内部に外気を取り込む不図示の空気の取込口が設けられている。なお、空気取込口は、操作部14の周囲に設けられていてもよく、充電端子43の周囲に設けられていてもよい。
(第1カートリッジ)
図3に示すように、第1カートリッジ20は、円筒状のカートリッジケース27の内部に、エアロゾル源22を貯留するリザーバ23と、エアロゾル源22を霧化する電気的な負荷21と、リザーバ23から負荷21へエアロゾル源を引き込むウィック24と、エアロゾル源22が霧化されることで発生したエアロゾルが第2カートリッジ30に向かって流れるエアロゾル流路25と、第2カートリッジ30の一部を収容するエンドキャップ26と、を備える。
リザーバ23は、エアロゾル流路25の周囲を囲むように区画形成され、エアロゾル源22を貯留する。リザーバ23には、樹脂ウェブ又は綿等の多孔体が収容され、且つ、エアロゾル源22が多孔体に含浸されていてもよい。リザーバ23には、樹脂ウェブ又は綿上の多孔質体が収容されず、エアロゾル源22のみが貯留されていてもよい。エアロゾル源22は、グリセリン、プロピレングリコール、又は水などの液体を含む。
ウィック24は、リザーバ23から毛管現象を利用してエアロゾル源22を負荷21へ引き込む液保持部材である。ウィック24は、例えば、ガラス繊維や多孔質セラミックなどによって構成される。
負荷21は、電源12から放電端子41を介して供給される電力によって、燃焼を伴わずにエアロゾル源22を加熱することで、エアロゾル源22を霧化する。負荷21は、所定ピッチで巻き回される電熱線(コイル)によって構成されている。
なお、負荷21は、エアロゾル源22を加熱することで霧化してエアロゾルを生成可能な素子であればよい。負荷21は、例えば、発熱素子である。発熱素子としては、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。以下では、負荷21の持つ電気抵抗値を電気抵抗値RHTRと記載する。
負荷21は、温度と電気抵抗値が相関を持つものが用いられる。負荷21としては、温度の増加に伴って電気抵抗値も増加するPTC(Positive Temperature Coefficient)特性を有するものが例えば用いられる。PTC特性は、正の抵抗温度係数特性とも呼ばれる。
エアロゾル流路25は、負荷21の下流側であって、電源ユニット10の中心線L上に設けられる。エンドキャップ26は、第2カートリッジ30の一部を収容するカートリッジ収容部26aと、エアロゾル流路25とカートリッジ収容部26aとを連通させる連通路26bと、を備える。
(第2カートリッジ)
第2カートリッジ30は、香味源31を貯留する。第2カートリッジ30は、第1カートリッジ20のエンドキャップ26に設けられたカートリッジ収容部26aに着脱可能に収容される。第2カートリッジ30は、第1カートリッジ20側とは反対側の端部が、ユーザの吸口32となっている。なお、吸口32は、第2カートリッジ30と一体不可分に構成される場合に限らず、第2カートリッジ30と着脱可能に構成されてもよい。このように吸口32を電源ユニット10と第1カートリッジ20とは別体に構成することで、吸口32を衛生的に保つことができる。
第2カートリッジ30は、負荷21によってエアロゾル源22が霧化されることで発生したエアロゾルを香味源31に通すことによってエアロゾルに香味を付与する。香味源31を構成する原料片としては、刻みたばこ、又は、たばこ原料を粒状に成形した成形体を用いることができる。香味源31は、たばこ以外の植物(例えば、ミント、漢方、ハーブ等)によって構成されてもよい。香味源31には、メントールなどの香料が付与されていてもよい。
本実施形態のエアロゾル吸引器1では、エアロゾル源22と香味源31と負荷21とによって、香味が付加されたエアロゾルを発生させることができる。つまり、エアロゾル源22と香味源31は、エアロゾルを発生させるエアロゾル生成源を構成している。
エアロゾル吸引器1におけるエアロゾル生成源は、ユーザが交換して使用する部分である。この部分は、例えば、1つの第1カートリッジ20と、1つ又は複数(例えば5つ)の第2カートリッジ30とが1セットとしてユーザに提供される。
エアロゾル吸引器1に用いられるエアロゾル生成源の構成は、エアロゾル源22と香味源31とが別体になっている構成の他、エアロゾル源22と香味源31とが一体的に形成されている構成、香味源31が省略されて香味源31に含まれ得る物質がエアロゾル源22に付加された構成、香味源31の代わりに薬剤等がエアロゾル源22に付加された構成等であってもよい。
エアロゾル源22と香味源31とが一体的に形成されたエアロゾル生成源を含むエアロゾル吸引器1であれば、例えば1つ又は複数(例えば20個)のエアロゾル生成源が1セットとしてユーザに提供される。
エアロゾル源22のみをエアロゾル生成源として含むエアロゾル吸引器1であれば、例えば1又は複数(例えば20個)のエアロゾル生成源が1セットとしてユーザに提供される。
このように構成されたエアロゾル吸引器1では、図3中の矢印Bで示すように、電源ユニットケース11に設けられた不図示の取込口から流入した空気が、空気供給部42から第1カートリッジ20の負荷21付近を通過する。負荷21は、ウィック24によってリザーバ23から引き込まれたエアロゾル源22を霧化する。霧化されて発生したエアロゾルは、取込口から流入した空気と共にエアロゾル流路25を流れ、連通路26bを介して第2カートリッジ30に供給される。第2カートリッジ30に供給されたエアロゾルは、香味源31を通過することで香味が付与され、吸口32に供給される。
また、エアロゾル吸引器1には、各種情報を報知する報知部45が設けられている(図5参照)。報知部45は、発光素子によって構成されていてもよく、振動素子によって構成されていてもよく、音出力素子によって構成されていてもよい。報知部45は、発光素子、振動素子、及び音出力素子のうち、2以上の素子の組合せであってもよい。報知部45は、電源ユニット10、第1カートリッジ20、及び第2カートリッジ30のいずれに設けられてもよいが、電源ユニット10に設けられることが好ましい。例えば、操作部14の周囲が透光性を有し、LED等の発光素子によって発光するように構成される。
(電気回路の第1実施形態)
図6は、図1のエアロゾル吸引器における電源ユニットの回路構成の第1実施形態を示す模式図である。図6に示すように、電源ユニット10は、主要な回路構成として、電源12と、負荷21を含む第1カートリッジ20が着脱自在に構成された放電端子41と、MCU50と、LDO(Low Drop Out)レギュレータ60と、開閉器61と、開閉器62と、第1電気抵抗値Rを有する第1素子63と、第2電気抵抗値Rを有する第2素子64と、第3電気抵抗値Rを有する第3素子65と、を備える。
第1素子63、第2素子64、及び第3素子65は、それぞれ、電気抵抗値を持つ素子であればよく、例えば抵抗器、ダイオード、又はトランジスタ等である。図6の例では、第1素子63、第2素子64、及び第3素子65が、それぞれ抵抗器となっている。
開閉器62は、配線路の遮断と導通を切り替えるトランジスタ等のスイッチング素子である。図6の例では、開閉器62は、MCU50から供給されるハイレベルのオン指令信号を受けてオン(導通)し、MCU50から供給されるローレベルのオフ指令信号を受けてオフ(遮断)するノーマリーオフ型のIGBT(Insulated Gate Bipolar Transistor)となっている。開閉器61は、開閉器62と同様に、ノーマリーオフ型のIGBTである。IGBTに代えて、FET(Field Effect Transistor)を開閉器61や開閉器62に用いてもよい。
LDOレギュレータ60とMCU50は、電源12に直列接続されている。LDOレギュレータ60は、電源12からの電圧を降圧して出力する。LDOレギュレータ60の出力電圧(以下、基準電圧VREFと記載する)は、MCU50の動作電圧としてMCU50に供給される。主正母線LUと主負母線LDのうち、主正母線LUは高電位側の線であり、主負母線LDは低電位側の線である。主正母線LUは、図6の例では、電源ユニット10の電気回路のうち最も高い電位となる線である。主負母線LDは、主正母線LUよりも低い電位となる線である。主負母線LDは、図6の例では、電源ユニット10の電気回路のうち最も低い電位(具体的には0V)となる線である。
MCU50は、LDOレギュレータ60と、電源12の負極に接続された主負母線LDとに接続されている。MCU50は、開閉器61及び開閉器62にも接続されており、開閉器61及び開閉器62のオンオフ制御を行う。以下では、開閉器61がオフ且つ開閉器62がオンの状態にて、第1直列回路C1及び第2直列回路C2からなるブリッジ回路に供給される電圧と、開閉器61がオン且つ開閉器62がオフの状態にて第1素子63及び負荷21の接続ノードに供給される電圧を、それぞれ電圧VOUTと記載する。この電圧VOUTは、基準電圧VREFと同じであってもよい。
電源ユニット10に第1カートリッジ20が装着された状態において、第1素子63と負荷21は直列接続されて第1直列回路C1を構成している。第2素子64と第3素子65は直列接続されて第2直列回路C2を構成している。
第1直列回路C1と第2直列回路C2は、主正母線LUと主負母線LDの間に並列接続されている。具体的には、主正母線LUに開閉器62のコレクタが接続され、開閉器62のエミッタに、第1素子63と第2素子64が並列接続されている。また、主負母線LDには、負荷21と第3素子65が並列接続されている。そして、負荷21は第1素子63に接続され、第3素子65は第2素子64に接続されている。
第1直列回路C1は、MCU50と接続されている。具体的には、第1直列回路C1は、第1素子63と負荷21との第1接続ノードにおいて、MCU50と接続されている。第1直列回路C1における第1接続ノードと負荷21との間には、開閉器61のエミッタが接続されている。開閉器61のコレクタは、主正母線LUに接続されている。
第2直列回路C2は、MCU50と接続されている。具体的には、第2直列回路C2は、第2素子64と第3素子65との第2接続ノードにおいて、MCU50と接続されている。
MCU50は、第1オペアンプ56と、ADC(アナログデジタル変換器)57と、プロセッサ55と、増幅率が1倍の第2オペアンプ58と、を備える。なお、全ての実施形態において、第1オペアンプ56、ADC57、第2オペアンプ58の少なくとも1つは、MCU50の外部に設けられていてもよい。
第1オペアンプ56は、非反転入力端子(+)と反転入力端子(−)を有し、非反転入力端子に入力される電位Vから反転入力端子に入力される電位Vを減算した差動入力値を、所定の増幅率Aによって増幅して出力する。この差動入力値は、負荷21の電気抵抗値がその温度によって変化した場合に、変化する。同様に、第1オペアンプ56の出力信号は、負荷21の電気抵抗値がその温度によって変化した場合に、変化する。以降の説明では特に断りのない限り、第1オペアンプ56は、入出力レール・ツー・レール型のオペアンプとして扱う。
第1オペアンプ56は、一対の電源端子を有する。一例として、高電位側の電源端子(以下、正電源端子と記載する)には、LDOレギュレータ60からの基準電圧VREFが供給される。低電位側の電源端子(以下、負電源端子と記載する)は、主負母線LDに接続される。
このように第1オペアンプ56の電源端子を接続した場合、第1オペアンプ56が増幅することのできる差動入力値の範囲(以下、増幅レンジと記載する)の上限値は、正電源端子の電位(一例として基準電圧VREF)となり、増幅レンジの下限値は、負電源端子の電位(0V)となる。従って、差動入力値が0Vを下回る場合には、その差動入力値は0Vにクリップされることになる(この現象を下限クリップと記載する)。同様に、差動入力値が基準電圧VREFを上回る場合には、その差動入力値は基準電圧VREFにクリップされることになる(この現象を上限クリップと記載する)。なお、第1オペアンプ56の正電源端子の電位(基準電圧VREF)と電圧VOUTを一致させれば、上限クリップを発生しないようにすることができる。このため、下限クリップが生じないように工夫することが特に重要となる。
なお、第1オペアンプ56が入出力レール・ツー・レール型ではない場合、増幅レンジの上限値は入出力レール・ツー・レール型よりも低くなり、増幅レンジの下限値は入出力レール・ツー・レール型よりも高くなる。換言すれば、入出力レール・ツー・レール型ではない第1オペアンプ56の増幅レンジは入出力レール・ツー・レール型の第1オペアンプ56の増幅レンジよりも狭い。そのため、入出力レール・ツー・レール型ではない第1オペアンプ56を用いる場合には、上限クリップや下限クリップが生じやすい点に留意すべきである。
第1オペアンプ56の非反転入力端子には、第1直列回路C1が接続されている。具体的には、第1直列回路C1における第1素子63と負荷21との第1接続ノードに、第1オペアンプ56の非反転入力端子が接続されている。
第1オペアンプ56の反転入力端子には、第2直列回路C2が間接的に接続されている。具体的には、第2直列回路C2における第2素子64と第3素子65との第2接続ノードに、第2オペアンプ58を介して、第1オペアンプ56の反転入力端子が接続されている。
第2オペアンプ58の非反転入力端子は、第2直列回路C2における第2素子64と第3素子65との第2接続ノードに接続されている。第2オペアンプ58の反転入力端子は、既定電位VPSEUDOを供給する回路に接続されている。第2オペアンプ58の出力端子は、第1オペアンプ56の反転入力端子に接続されている。第2オペアンプ58の正電源端子には例えば基準電圧VREFが供給されている。第2オペアンプ58の負電源端子は例えば主負母線LDに接続されている。
第2オペアンプ58は、第1オペアンプ56の増幅レンジの下限値(つまり、第1オペアンプ56の負電源端子の電位)を擬似的に下げる機能を果たす。第2オペアンプ58が存在することで、第1オペアンプ56の差動入力値は既定電位VPSEUDOだけ持ち上げられることになる。これにより、第1素子63と負荷21との第1接続ノードの電位が、第2素子64と第3素子65との第2接続ノードの電位未満となる状態であっても、下限クリップが発生するのを防ぐことが可能となり、負荷21の温度検出を高精度に行うことが可能になる。
図7は、図6に示す第1実施形態の電源ユニットの既定電位VPSEUDOの供給回路の一例を示す図である。この回路は、第4電気抵抗値Rを有する第4素子71と、第5電気抵抗値Rを有する第5素子72と、オペアンプ73と、を備える。
第4素子71と第5素子72は、それぞれ、電気抵抗値を持つ素子であればよく、例えば抵抗器、ダイオード、又はトランジスタ等である。図7の例では、第4素子71と第5素子72は、それぞれ抵抗器となっている。第4素子71と第5素子72は直列接続されており、第4素子71における第5素子72側と反対側の端子には基準電圧VREFを供給する回路(例えばLDOレギュレータ60)が接続されている。第5素子72における第4素子71側と反対側の端子には主負母線LDが接続されている。
オペアンプ73の非反転入力端子には、第4素子71と第5素子72との接続ノードが接続されている。オペアンプ73の反転入力端子と出力端子は電気抵抗値を持つ素子を介することなく接続されている。オペアンプ73における反転入力端子と出力端子の接続ノードは、主負母線LDに接続されている。これにより、オペアンプ73は、差動入力値を増幅することなくそのまま出力する電圧フォロワとして機能する。図7に示したオペアンプ73の出力端子の電位である既定電位VPSEUDOは、以下の式(A)によって表される。
PSEUDO ={R/(R+R)}・VREF ・・・(A)
図7に示す回路によれば、入力電圧である基準電圧VREFを分圧して既定電位VPSEUDOを生成することができる。この生成回路によれば、第4電気抵抗値Rと第5電気抵抗値Rを調整することで、既定電位VPSEUDOを所望の値とすることが容易となる。なお、回路を簡略化するため、基準電圧VREFをそのまま既定電位VPSEUDOとして利用することも可能である。既定電位VPSEUDOの供給回路は、図7に限られず、LDOレギュレータ60とは別体のLDOレギュレータや、DC/DCコンバータなどであってもよい。つまり、入力電圧である基準電圧VREFを降圧して既定電位VPSEUDOを生成するようにしてもよい。
ADC57は、第1オペアンプ56の出力信号をデジタル信号に変換して出力する。ADC57は、基準電圧VREFによって動作する。
MCU50は、図5に示すように、ROMに記憶されたプログラムをプロセッサ55が実行することにより実現される機能ブロックとして、エアロゾル生成要求検出部51と、温度検出部52と、電力制御部53と、報知制御部54と、を備える。
エアロゾル生成要求検出部51は、吸気センサ15の出力結果に基づいてエアロゾル生成の要求を検出する。吸気センサ15は、吸口32を通じたユーザの吸引により生じた電源ユニット10内の圧力(内圧)変化の値を出力するよう構成されている。吸気センサ15は、例えば、不図示の取込口から吸口32に向けて吸引される空気の流量(すなわち、ユーザのパフ動作)に応じて変化する内圧に応じた出力値(例えば、電圧値又は電流値)を出力する圧力センサである。吸気センサ15は、コンデンサマイクロフォン等から構成されていてもよい。吸気センサ15は、アナログ値を出力してもよいし、アナログ値から変換したデジタル値を出力してもよい。
温度検出部52は、図6に示した第1オペアンプ56の出力信号に基づいて負荷21の温度を検出する。温度検出部52は、開閉器61をオフにし且つ開閉器62をオンすることで、第1直列回路C1と第2直列回路C2の各々に電流を流し、そのときの第1オペアンプ56の出力信号に基づいて、負荷21の温度を検出する。
報知制御部54は、各種情報を報知するように報知部45を制御する。例えば、報知制御部54は、第2カートリッジ30の交換タイミングの検出に応じて、第2カートリッジ30の交換タイミングを報知するように報知部45を制御する。報知制御部54は、メモリー18に記憶されたパフ動作の累積回数又は負荷21への累積通電時間に基づいて、第2カートリッジ30の交換タイミングを検出し、報知する。報知制御部54は、第2カートリッジ30の交換タイミングの報知に限らず、第1カートリッジ20の交換タイミング、電源12の交換タイミング、電源12の充電タイミング等を報知してもよい。
報知制御部54は、未使用の1つの第2カートリッジ30がセットされた状態にて、パフ動作が所定回数行われた場合、又は、パフ動作による負荷21への累積通電時間が所定値(例えば120秒)に達した場合に、この第2カートリッジ30を使用済み(即ち、残量がゼロ又は空である)と判定して、第2カートリッジ30の交換タイミングを報知するようにしている。
また、報知制御部54は、上記の1セットに含まれる全ての第2カートリッジ30が使用済みとなったと判定した場合に、この1セットに含まれる1つの第1カートリッジ20を使用済み(即ち、残量がゼロ又は空である)と判定して、第1カートリッジ20の交換タイミングを報知するようにしてもよい。
電力制御部53は、エアロゾル生成要求検出部51がエアロゾル生成の要求を検出した際に、放電端子41を介した電源12の放電を、開閉器61及び開閉器62のオン/オフによって制御する。電力制御部53は、開閉器61をオンにし且つ開閉器62をオフにすることで、負荷21に電流を流して、負荷21へエアロゾルを生成するための放電を行う。
電力制御部53は、温度検出部52により検出された負荷21の温度が予め決められている上限温度TMAXを超える場合には、負荷21の加熱(負荷21への放電)を停止する制御を行う。電力制御部53は、不図示のサーミスタなどにより検出された電源12の温度が予め決められている下限温度TMINを下回る場合には、負荷21の加熱(負荷21への放電)を不許可とする制御を行う。電源12の温度が下限温度TMIN近傍又は下限温度TMINより低い場合には、電源12の温度と負荷21の温度は略等しい。つまり、エアロゾル吸引器1では、下限温度TMIN以上且つ上限温度TMAX以下の動作温度範囲にて負荷21が動作するよう構成されている。
図6に示す電気回路の動作について説明する。MCU50のプロセッサ55は、エアロゾル生成要求を検出すると、開閉器61にオン指令を送り、開閉器62にオフ指令を送る。これらの指令に応じて開閉器61がオンし、開閉器62がオフした状態になる。例えば、ブリッジ回路において、負荷21の電気抵抗値RHTRを最小にすることで、開閉器61がオン且つ開閉器62がオフの状態においては、負荷21に多くの電流が流れ、第1素子63と第2素子64と第3素子65に流れる電流をゼロ又はほぼゼロにすることができる。これにより、負荷21が加熱されてエアロゾルの生成が行われる。
負荷21の加熱開始から所定時間経過すると、プロセッサ55は、開閉器61にオフ指令を送り、開閉器62にオン指令を送る。これらの指令に応じて開閉器61がオフし、開閉器62がオンした状態になることで、第1直列回路C1と第2直列回路C2に電流が流れる。そして、差動入力値が第1オペアンプ56にて増幅され、ADC57にてデジタル変換されてプロセッサ55に入力される。プロセッサ55は、ADC57からの入力信号に基づいて、負荷21の温度を検出する。
負荷21の温度を検出した後、プロセッサ55は、開閉器61にオン指令を送り、開閉器62にオフ指令を送って再びエアロゾルの生成を開始させる。以上の動作が繰り返されることで、エアロゾル生成要求に応じたエアロゾル生成期間中に、高頻度で負荷21の温度が検出される。
以下、図6に示す第1実施形態において、負荷21の温度検出精度を高めることのできる構成について説明する。負荷の温度検出精度を高めるためには、負荷21の動作温度範囲において、上限クリップと下限クリップ(特に下限クリップ)が生じないようにすることが求められる。
第1実施形態の電源ユニット10では、第1素子63と負荷21との第1接続ノードの電位が第2素子64と第3素子65との第2接続ノードの電位未満となる状態、且つ、負荷21の温度が動作温度範囲にある状態において、第1オペアンプ56の差動入力値が第1オペアンプ56の負電源端子の電位よりも大きくなるように、既定電位VPSEUDOの値が決められている。
図8は、図6に示す第1実施形態の電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図8と、後述の図9、図11、図13、及び図15の各々において、縦軸は電圧(電位)を表し、横軸は負荷21の温度を表す。
図8及び図9において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。また、図8及び図9において、「V’」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。図8において、「V−V’+VPSEUDO」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
図6に示す第1実施形態において、第2オペアンプ58が存在せずに、第2接続ノードと第1オペアンプ56の反転入力端子とが直接接続される構成を第1参考回路構成と記載する。図8において「V−V’」で示されるグラフは、この第1参考回路構成における第1オペアンプ56の差動入力値を表す。図8に示す例では、動作温度範囲における温度範囲Tr1において、第1接続ノードの電位「V」が第2接続ノードの電位「V’」未満となる状態が発生する。このため、第1参考回路構成であれば、動作温度範囲において下限クリップが発生する。
一方、図6に示す第1実施形態では、温度範囲Tr1において、第1オペアンプ56の差動入力値が0Vよりも大きくなるように既定電位VPSEUDOの値が決められている。更に、図6に示す第1実施形態では、動作温度範囲の上限温度TMAXにおいて第1オペアンプ56の差動入力値が正電源端子の電位(基準電圧VREF)よりも小さくなるように、既定電位VPSEUDOの値が決められている。このように既定電位VPSEUDOを決めることにより、動作温度範囲においては、第1オペアンプ56における下限クリップと上限クリップの発生が防止される。このため、負荷21の温度検出精度を高めることができる。
図6に示す第1実施形態によれば、ブリッジ回路として、動作温度範囲において第1接続ノードの電位「V」が第2接続ノードの電位「V’」未満となる状態を取り得る構成を採用することができる。このため、ブリッジ回路の各素子の電気抵抗値の制約を緩めることができ、設計自由度を高めることができる。
なお、第1接続ノードの電位「V」が第2接続ノードの電位「V’」未満となる状態は、負荷21の電気抵抗値RHTRの製造誤差によっても生じ得る。負荷21の電気抵抗値RHTRには、一般的に±10%程度の製造誤差が生じ得る。このため、例えば、動作温度範囲においては、第1接続ノードの電位「V」が第2接続ノードの電位「V’」以上となるようにブリッジ回路の設計ができたとしても、この製造誤差によって、第1接続ノードの電位「V」が第2接続ノードの電位「V’」未満となる状態が発生し得る。したがって、既定電位VPSEUDOの値は、負荷21の電気抵抗値RHTRの製造誤差を考慮して決めておくことが望ましい。
図9は、図6に示す第1実施形態の電源ユニット10における第1オペアンプ56の差動入力値の別例を説明するためのグラフである。図9に示す例では、負荷21の温度が下限温度TMINである状態において、第1接続ノードの電位「V」と第2接続ノードの電位「V’」が等しくなるように、負荷21の電気抵抗値RHTRが設計されている場合を想定している。このように設計することで、第1オペアンプ56の増幅率Aを大きくすることができるため、負荷21の温度検出分解能を高めることができる。
図9おいて、「V’」で示されるグラフは、負荷21の電気抵抗値RHTRに、設計値に対し−10%の誤差が生じている場合の第1接続ノードの電位を示している。このように、負荷21の電気抵抗値RHTRに−10%の誤差が生じている場合には、第1参考回路構成における第1オペアンプ56の差動入力値は、図9の「V’−V’」で示されるグラフのようになり、動作温度範囲の温度範囲Tr2において下限クリップが生じる。
第1実施形態では、負荷21の電気抵抗値RHTRに、設計値に対し−10%の誤差が生じている場合に、第1接続ノードの電位が第2接続ノードの電位未満となる温度範囲Tr2において、第1オペアンプ56の差動入力値が0Vよりも大きくなるように既定電位VPSEUDOの値が決められる。
また、第1実施形態では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が上限温度TMAXである場合に、第1オペアンプ56の差動入力値が、第1オペアンプ56の正電源端子の電位未満となるように、既定電位VPSEUDOの値が決められる。図9に示す「V’−V’+VPSEUDO」で示されるグラフが、負荷21の電気抵抗値RHTRに−10%の誤差が生じていた場合の第1オペアンプ56の差動入力値を示している。
このように、負荷21の製造誤差を加味して既定電位VPSEUDOを決めることにより、負荷21に製造誤差があった場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位と正電源端子の電位の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
(電気回路の第1実施形態の第1変形例)
図10は、図6に示す第1実施形態の電源ユニット10の回路構成の第1変形例を示す模式図である。図10に示す電源ユニット10は、第1オペアンプ56及び第2オペアンプ58とブリッジ回路との接続関係が変更された点を除いては、図6の回路構成と同じである。図10に示す電源ユニット10においては、第1素子63と負荷21との第1接続ノードに第2オペアンプ58の非反転入力端子が接続されている。また、第2素子64と第3素子65との第2接続ノードに第1オペアンプ56の非反転入力端子が接続されている。
図10に示す電源ユニット10では、第2接続ノードの電位が第1接続ノードの電位未満となる状態、且つ、負荷21の温度が動作温度範囲にある状態において、第1オペアンプ56の差動入力値が第1オペアンプ56の負電源端子の電位よりも大きくなるように、既定電位VPSEUDOの値が決められている。
図11は、図10に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図11において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。また、図11において、「V’」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。図11において、「V−V’+VPSEUDO」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
図10に示す電源ユニット10において、第2オペアンプ58が存在せずに、第1接続ノードと第1オペアンプ56の反転入力端子とが直接接続される構成を第2参考回路構成と記載する。図11において「V−V’」で示されるグラフは、この第2参考回路構成における第1オペアンプ56の差動入力値を表す。
一例として、図10に示す電源ユニット10においては、負荷21の温度が上限温度TMAXである状態において、第2接続ノードの電位「V」と第1接続ノードの電位「V’」が等しくなるように、負荷21の電気抵抗値RHTRが設計されているものとする。そして、図11は、負荷21の電気抵抗値RHTRに+10%の誤差が生じている場合を例にしている。
負荷21の電気抵抗値RHTRに+10%の誤差が生じていることで、図11に示す例では、動作温度範囲の温度範囲Tr3において、第2接続ノードの電位「V」が第1接続ノードの電位「V’」未満となっている。このため、第2参考回路構成の場合には、動作温度範囲の温度範囲Tr3において下限クリップが発生する。なお、負荷21の電気抵抗値RHTRに+10%の誤差が生じている場合には、下限クリップは発生しない。
図10に示す電源ユニット10では、温度範囲Tr3において、第1オペアンプ56の差動入力値が0Vよりも大きくなるように既定電位VPSEUDOの値が決められている。更に、図10に示す電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており且つ負荷21の温度が下限温度TMINとなる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(基準電圧VREF)よりも小さくなるように、既定電位VPSEUDOの値が決められている。更に、図10に示す電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており且つ負荷21の温度が下限温度TMINとなる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(基準電圧VREF)よりも小さくなるように、既定電位VPSEUDOの値が決められている。
このように既定電位VPSEUDOを決めることにより、負荷21に製造誤差が生じていた場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位と正電源端子の電位の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
(電気回路の第1実施形態の第2変形例)
図12は、図6に示す第1実施形態の電源ユニット10の回路構成の第2変形例を示す模式図である。図12に示す電源ユニット10は、第1直列回路C1における第1素子63と負荷21の位置が逆になっている点と、開閉器61の位置が変更された点と、を除いては、図6の回路構成と同じである。
開閉器61は、第1接続ノードと主負母線LDとの間に接続されている。図12に示す電源ユニット10では、開閉器61と開閉器62がいずれもオンされることで、負荷21の加熱が行われる。また、開閉器61がオフされ、開閉器62がオンされた状態にて、負荷21の温度検出が行われる。
図12に示す電源ユニット10では、第1接続ノードの電位が第2接続ノードの電位未満となる状態、且つ、負荷21の温度が動作温度範囲にある状態において、第1オペアンプ56の差動入力値が第1オペアンプ56の負電源端子の電位よりも大きくなるように、既定電位VPSEUDOの値が決められている。
図13は、図12に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図13において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。図13において、「V’」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。図13において、「V−V’+VPSEUDO」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
図13に示す電源ユニット10において、第2オペアンプ58が存在せずに、第2接続ノードと第1オペアンプ56の反転入力端子とが直接接続される構成を第3参考回路構成と記載する。図13において「V−V’」で示されるグラフは、この第3参考回路構成における第1オペアンプ56の差動入力値を表す。
一例として、図12に示す電源ユニット10においては、負荷21の温度が上限温度TMAXである状態において、第1接続ノードの電位「V」と第2接続ノードの電位「V’」が等しくなるように、負荷21の電気抵抗値RHTRが設計されているものとする。そして、図13は、負荷21の電気抵抗値RHTRに−10%の誤差が生じている場合を例にしている。
負荷21の電気抵抗値RHTRに−10%の誤差が生じていることで、図11に示す例では、動作温度範囲の温度範囲Tr4において、第1接続ノードの電位「V」が第2接続ノードの電位「V’」未満となっている。このため、第3参考回路構成の場合には、動作温度範囲の温度範囲Tr4において下限クリップが発生する。なお、負荷21の電気抵抗値RHTRに+10%の誤差が生じている場合には、下限クリップは発生しない。
図12に示す電源ユニット10では、温度範囲Tr4において、第1オペアンプ56の差動入力値が0Vよりも大きくなるように既定電位VPSEUDOの値が決められている。更に、図12に示す電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており且つ負荷21の温度が下限温度TMINとなる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(基準電圧VREF)よりも小さくなるように、既定電位VPSEUDOの値が決められている。更に、図12に示す電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており且つ負荷21の温度が下限温度TMINとなる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(基準電圧VREF)よりも小さくなるように、既定電位VPSEUDOの値が決められている。
このように既定電位VPSEUDOを決めることにより、負荷21に製造誤差が生じていた場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位と正電源端子の電位の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
(電気回路の第1実施形態の第3変形例)
図14は、図6に示す第1実施形態の電源ユニットの回路構成の第3変形例を示す模式図である。図14に示す電源ユニット10は、第1オペアンプ56及び第2オペアンプ58とブリッジ回路との接続関係が変更された点を除いては、図12の回路構成と同じである。図14に示す電源ユニット10においては、第1素子63と負荷21との第1接続ノードに第2オペアンプ58の非反転入力端子が接続されている。また、第2素子64と第3素子65との第2接続ノードに第1オペアンプ56の非反転入力端子が接続されている。
図14に示す電源ユニット10では、第2接続ノードの電位が第1接続ノードの電位未満となる状態、且つ、負荷21の温度が動作温度範囲にある状態において、第1オペアンプ56の差動入力値が第1オペアンプ56の負電源端子の電位よりも大きくなるように、既定電位VPSEUDOの値が決められている。
図15は、図14に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図15において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。図15において、「V’」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。図15において、「V−V’+VPSEUDO」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
図14に示す電源ユニット10において、第2オペアンプ58が存在せずに、第1接続ノードと第1オペアンプ56の反転入力端子とが直接接続される構成を第4参考回路構成と記載する。図15において「V−V’」で示されるグラフは、この第4参考回路構成における第1オペアンプ56の差動入力値を表す。
一例として、図14に示す電源ユニット10においては、負荷21の温度が下限温度TMINである状態において、第2接続ノードの電位「V」と第1接続ノードの電位「V’」が等しくなるように、負荷21の電気抵抗値RHTRが設計されているものとする。そして、図15は、負荷21の電気抵抗値RHTRに+10%の誤差が生じている場合を例にしている。
負荷21の電気抵抗値RHTRに+10%の誤差が生じていることで、図15に示す例では、動作温度範囲の温度範囲Tr5において、第2接続ノードの電位「V」が第1接続ノードの電位「V’」未満となっている。このため、第4参考回路構成の場合には、動作温度範囲の温度範囲Tr5において下限クリップが発生する。なお、負荷21の電気抵抗値RHTRに−10%の誤差が生じている場合には、下限クリップは発生しない。
図14に示す電源ユニット10では、温度範囲Tr5において、第1オペアンプ56の差動入力値が0Vよりも大きくなるように既定電位VPSEUDOの値が決められている。更に、図14に示す電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており且つ負荷21の温度が上限温度TMAXとなる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(基準電圧VREF)よりも小さくなるように、既定電位VPSEUDOの値が決められている。更に、図14に示す電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており且つ負荷21の温度が上限温度TMAXとなる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(基準電圧VREF)よりも小さくなるように、既定電位VPSEUDOの値が決められている。
このように既定電位VPSEUDOを決めることにより、負荷21に製造誤差が生じていた場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位と正電源端子の電位の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
第1実施形態において、既定電位VPSEUDOの値は、負荷21の電気抵抗値RHTRに製造誤差が生じており、且つ、負荷21の温度が動作温度範囲外にあり、且つ、ブリッジ回路における第1オペアンプ56の非反転入力端子と接続される側の直列回路の接続ノードの電位が第1オペアンプ56の反転入力端子と接続される側の直列回路の接続ノードの電位未満となる状態において、第1オペアンプ56の差動入力値が第1オペアンプ56の負電源端子の電位と等しくなる値としてもよい。つまり、動作温度範囲外においては、第1オペアンプ56にて下限クリップが生じるのを許容してもよい。このようにすることで、既定電位VPSEUDOの値が大きくなるのを抑制することができ、回路規模の縮小が可能である。
第1オペアンプ56が入出力レール・ツー・レール型ではない場合でも、既定電位VPSEUDOを適切な値とすることで、下限クリップや上限クリップが発生しないようにすることができる。このような場合、差動入力値が負電源端子の電位より大きくても下限クリップが発生し得る。同様に、差動入力値が正電源端子の電位より低くても上限クリップが発生し得る。以降の説明では、入出力レール・ツー・レール型ではない第1オペアンプ56において下限クリップが発生する差動入力値を、第1オペアンプ56が取得可能な最小値と記載する。また、入出力レール・ツー・レール型ではない第1オペアンプ56において上限クリップが発生する差動入力値を、第1オペアンプ56が取得可能な最大値と記載する。具体的には、上述した実施形態において、第1オペアンプ56が取得可能な最小値よりも差動入力値が大きくなるように既定電位VPSEUDOを設定すればよい。ただし、第1オペアンプ56が取得可能な最大値よりも差動入力値が小さくなるように既定電位を設定しなければならない点にも留意する必要がある。
(電気回路の第2実施形態)
図16は、図1のエアロゾル吸引器における電源ユニットの回路構成の第2実施形態を示す模式図である。図16に示す電源ユニット10は、第1オペアンプ56の反転入力端子と、第2素子64と第3素子65との第2接続ノードとが直接接続された点と、抵抗器591、抵抗器592、コンデンサ593、及びコンデンサ594からなるレールスプリッタ回路59が追加された点と、第1オペアンプ56の2つの電源端子にレールスプリッタ回路59から電位が供給されている点と、を除いては、図6と同じ構成である。
レールスプリッタ回路59は、LDOレギュレータ60によって生成された基準電圧VREF(入力電圧)から、絶対値が同じで正負の異なる2つの電位((VREF/2)のプラス電位と(−VREF/2)のマイナス電位)を生成する。そして、レールスプリッタ回路59によって生成されたプラス電位(VREF/2)は、第1オペアンプ56の正電源端子に入力され、レールスプリッタ回路59によって生成されたマイナス電位(−VREF/2)は、第1オペアンプ56の負電源端子に入力されている。レールスプリッタ回路59においては、抵抗器591及び抵抗器592の各電気抵抗値と、入力電圧と、の少なくとも一方を調整することによって、生成される電位の絶対値を調整することができる。
図16に示す第2実施形態の電源ユニット10によれば、レールスプリッタ回路59によって、第1オペアンプ56の増幅レンジの下限値をマイナス方向にシフトすることができる。したがって、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位が第2接続ノードの電位未満となる状態において、第1オペアンプ56の差動入力値がレールスプリッタ回路59により生成されるマイナス電位よりも大きくなるように、抵抗器591及び抵抗器592の各電気抵抗値と入力電圧の少なくとも一方を決めることで、動作温度範囲での第1オペアンプ56における下限クリップの発生を防止することができる。
また、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位が第2接続ノードの電位以上の状態において、第1オペアンプ56の差動入力値がレールスプリッタ回路59により生成されるプラス電位よりも小さくなるように、抵抗器591及び抵抗器592の各電気抵抗値と入力電圧の少なくとも一方を決めることで、動作温度範囲での第1オペアンプ56における上限クリップの発生を防止することができる。
図17は、図16に示す第2実施形態の電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図17と、後述の図18、図20、図22、及び図24の各々において、縦軸は電圧(電位)を表し、横軸は負荷21の温度を表す。
図17及び図18において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。また、図17及び図18において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。図17において、「V−V」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
図16に示す第2実施形態では、動作温度範囲における温度範囲Tr11において、第1接続ノードの電位「V」が第2接続ノードの電位「V’」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr11において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、レールスプリッタ回路59により生成されるマイナス電位の値(絶対値)を決めればよい。また、図16に示す第2実施形態では、動作温度範囲における温度範囲Tr11を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成されるプラス電位の値(絶対値)を決めればよい。このようにレールスプリッタ回路59により生成される電位の値を決めることにより、動作温度範囲においては、第1オペアンプ56における下限クリップと上限クリップの発生が防止される。このため、負荷21の温度検出精度を高めることができる。
図16に示す第2実施形態によれば、ブリッジ回路として、動作温度範囲において第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態を取り得る構成を採用することができる。このため、ブリッジ回路の各素子の電気抵抗値の制約を緩めることができ、設計自由度を高めることができる。
なお、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態は、負荷21の電気抵抗値RHTRの製造誤差によって生じ得る。したがって、レールスプリッタ回路59により生成される電位の値は、負荷21の電気抵抗値RHTRの製造誤差を考慮して設計することが望ましい。
図18は、図16に示す第2実施形態の電源ユニット10における第1オペアンプ56の差動入力値の別例を説明するためのグラフである。図18に示す例では、負荷21の温度が下限温度TMINである状態において、第1接続ノードの電位「V」と第2接続ノードの電位「V」が等しくなるように、負荷21の電気抵抗値RHTRが設計されている場合を想定している。図18において、「V−V」で示されるグラフは、負荷21の電気抵抗値RHTRに誤差がない場合における第1オペアンプ56の差動入力値を表す。
図18おいて、「V’」で示されるグラフは、負荷21の電気抵抗値RHTRに、設計値に対し−10%の誤差が生じている場合の第1接続ノードの電位を示している。このように、負荷21の電気抵抗値RHTRに−10%の誤差が生じている場合には、第1オペアンプ56の差動入力値は、図18の「V’−V」で示されるグラフのようになる。
図18の例では、動作温度範囲における温度範囲Tr12において、第1接続ノードの電位「V’」が第2接続ノードの電位「V」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr12において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、レールスプリッタ回路59により生成されるマイナス電位の値(絶対値)を決めればよい。また、図18の例では、動作温度範囲における温度範囲Tr12を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成されるプラス電位の値(絶対値)を決めればよい。
また、負荷21の電気抵抗値RHTRに、設計値に対し+10%の誤差が生じている場合には、動作温度範囲において、第1接続ノードの電位「V’」が第2接続ノードの電位「V」未満となる状態は発生しない。そのため、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V’」が第2接続ノードの電位「V」以上となる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成される電位の値(絶対値)を決めればよい。
このように、第2実施形態の電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、レールスプリッタ回路59により生成されるマイナス電位の値が決められる。また、第2実施形態の電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態と、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態とのいずれの状態においても、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成されるマイナス電位の値が決められる。
このように、負荷21の製造誤差を加味してレールスプリッタ回路59により生成される電位の値を決めることにより、負荷21に製造誤差があった場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位(又は最小値)と正電源端子の電位(又は最大値)の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
(電気回路の第2実施形態の第1変形例)
図19は、図16に示す第2実施形態の電源ユニット10の回路構成の第1変形例を示す模式図である。図19に示す電源ユニット10は、第1オペアンプ56とブリッジ回路との接続関係が変更された点を除いては、図16の回路構成と同じである。図19に示す電源ユニット10においては、第1素子63と負荷21との第1接続ノードに第1オペアンプ56の反転入力端子が接続されている。また、第2素子64と第3素子65との第2接続ノードに第1オペアンプ56の非反転入力端子が接続されている。
図20は、図19に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図20において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。また、図20において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。図20において、「V−V」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
一例として、図19に示す電源ユニット10においては、負荷21の温度が上限温度TMAXである状態において、第2接続ノードの電位「V」と第1接続ノードの電位「V」が等しくなるように、負荷21の電気抵抗値RHTRが設計されているものとする。そして、図20は、負荷21の電気抵抗値RHTRに+10%の誤差が生じている場合を例にしている。
負荷21の電気抵抗値RHTRに+10%の誤差が生じていることで、図20の例では、動作温度範囲における温度範囲Tr13において、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr13において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、レールスプリッタ回路59により生成されるマイナス電位の値(絶対値)を決めればよい。また、図20の例では、動作温度範囲における温度範囲Tr13を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成されるプラス電位の値(絶対値)を決めればよい。
また、負荷21の電気抵抗値RHTRに、設計値に対し−10%の誤差が生じている場合には、動作温度範囲において、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態は発生しない。そのため、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成される電位の値(絶対値)を決めればよい。
このように、第2実施形態の第1変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」未満となる状態において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、レールスプリッタ回路59により生成されるマイナス電位の値が決められる。また、第2実施形態の第1変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態と、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態とのいずれの状態においても、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成されるマイナス電位の値が決められる。
このように、負荷21の製造誤差を加味してレールスプリッタ回路59により生成される電位の値を決めることにより、負荷21に製造誤差があった場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位(又は最小値)と正電源端子の電位(又は最大値)の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
(電気回路の第2実施形態の第2変形例)
図21は、図16に示す第2実施形態の電源ユニット10の回路構成の第2変形例を示す模式図である。図21に示す電源ユニット10は、第1直列回路C1における第1素子63と負荷21の位置が逆になっている点と、開閉器61の位置が変更された点と、を除いては、図16の回路構成と同じである。
開閉器61は、第1接続ノードと主負母線LDとの間に接続されている。図21に示す電源ユニット10では、開閉器61と開閉器62がいずれもオンされることで、負荷21の加熱が行われる。また、開閉器61がオフされ、開閉器62がオンされた状態にて、負荷21の温度検出が行われる。
図22は、図21に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図22において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。図22において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。図22において、「V−V」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
一例として、図21に示す電源ユニット10においては、負荷21の温度が上限温度TMAXである状態において、第1接続ノードの電位「V」と第2接続ノードの電位「V」が等しくなるように、負荷21の電気抵抗値RHTRが設計されているものとする。そして、図22は、負荷21の電気抵抗値RHTRに−10%の誤差が生じている場合を例にしている。
負荷21の電気抵抗値RHTRに−10%の誤差が生じていることで、図22の例では、動作温度範囲における温度範囲Tr14において、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr14において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、レールスプリッタ回路59により生成されるマイナス電位の値(絶対値)を決めればよい。また、図22の例では、動作温度範囲における温度範囲Tr14を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成されるプラス電位の値(絶対値)を決めればよい。
また、負荷21の電気抵抗値RHTRに、設計値に対し+10%の誤差が生じている場合には、動作温度範囲において、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態は発生しない。そのため、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成される電位の値(絶対値)を決めればよい。
このように、第2実施形態の第2変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、レールスプリッタ回路59により生成されるマイナス電位の値が決められる。また、第2実施形態の第2変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態と、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態とのいずれの状態においても、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成されるマイナス電位の値が決められる。
このように、負荷21の製造誤差を加味してレールスプリッタ回路59により生成される電位の値を決めることにより、負荷21に製造誤差があった場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位(又は最小値)と正電源端子の電位(又は最大値)の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
(電気回路の第2実施形態の第3変形例)
図23は、図16に示す第2実施形態の電源ユニットの回路構成の第3変形例を示す模式図である。図23に示す電源ユニット10は、第1オペアンプ56とブリッジ回路との接続関係が変更された点を除いては、図21の回路構成と同じである。図23に示す電源ユニット10においては、第1素子63と負荷21との第1接続ノードに第1オペアンプ56の反転入力端子が接続されている。また、第2素子64と第3素子65との第2接続ノードに第1オペアンプ56の非反転入力端子が接続されている。
図24は、図23に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図24において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。図24において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。図24において、「V−V」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
一例として、図23に示す電源ユニット10においては、負荷21の温度が下限温度TMINである状態において、第2接続ノードの電位「V」と第1接続ノードの電位「V」が等しくなるように、負荷21の電気抵抗値RHTRが設計されているものとする。そして、図24は、負荷21の電気抵抗値RHTRに+10%の誤差が生じている場合を例にしている。
負荷21の電気抵抗値RHTRに+10%の誤差が生じていることで、図24の例では、動作温度範囲における温度範囲Tr15において、第2接続ノードの電位「V」が第1接続ノードの電位「V」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr15において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、レールスプリッタ回路59により生成されるマイナス電位の値(絶対値)を決めればよい。また、図24の例では、動作温度範囲における温度範囲Tr15を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成されるプラス電位の値(絶対値)を決めればよい。
また、負荷21の電気抵抗値RHTRに、設計値に対し−10%の誤差が生じている場合には、動作温度範囲において、第2接続ノードの電位「V」が第1接続ノードの電位「V」未満となる状態は発生しない。そのため、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成される電位の値(絶対値)を決めればよい。
このように、第2実施形態の第3変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」未満となる状態において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、レールスプリッタ回路59により生成されるマイナス電位の値が決められる。また、第2実施形態の第3変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態と、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態とのいずれの状態においても、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、レールスプリッタ回路59により生成されるマイナス電位の値が決められる。
このように、負荷21の製造誤差を加味してレールスプリッタ回路59により生成される電位の値を決めることにより、負荷21に製造誤差があった場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位(又は最小値)と正電源端子の電位(又は最大値)の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。なお、上述してきたように、第1オペアンプ56が入出力レール・ツー・レール型ではない場合は、第1オペアンプ56が取得可能な最大値と最小値の間に差動入力値が収まるように、レールスプリッタ回路59により生成される電位の値(絶対値)を決めればよい。
(電気回路の第3実施形態)
図25は、図1のエアロゾル吸引器における電源ユニットの回路構成の第3実施形態を示す模式図である。図25に示す電源ユニット10は、第1オペアンプ56の反転入力端子と、第2素子64と第3素子65との第2接続ノードとが直接接続された点と、第1オペアンプ56の負電源端子に、マイナスの電位(図の例では、基準電圧よりも絶対値が小さい“−VREF2”)を供給する負電源12Aが接続されている点と、を除いては、図6と同じ構成である。
図25に示す第3実施形態の電源ユニット10によれば、負電源12Aによって、第1オペアンプ56の増幅レンジの下限値をマイナス方向に拡張することができる。したがって、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位が第2接続ノードの電位未満となる状態において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aから供給する電位を決めることで、動作温度範囲での第1オペアンプ56における下限クリップの発生を防止することができる。
図26は、図25に示す第3実施形態の電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図26と、後述の図27、図29、図31、及び図33の各々において、縦軸は電圧(電位)を表し、横軸は負荷21の温度を表す。
図26及び図27において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。また、図26及び図27において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。図26において、「V−V」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
図25に示す第3実施形態では、動作温度範囲における温度範囲Tr21において、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr21において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aの電位を決めればよい。また、図25に示す第3実施形態では、動作温度範囲における温度範囲Tr21を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、正電源端子の電位を決めればよい。このように正電源端子と負電源端子の電位の値を決めることにより、動作温度範囲においては、第1オペアンプ56における下限クリップと上限クリップの発生が防止される。このため、負荷21の温度検出精度を高めることができる。
図25に示す第3実施形態によれば、ブリッジ回路として、動作温度範囲において第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態を取り得る構成を採用することができる。このため、ブリッジ回路の各素子の電気抵抗値の制約を緩めることができ、設計自由度を高めることができる。また、第1オペアンプ56の正電源端子の電位の設定の自由度を高めることができる。
なお、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態は、負荷21の電気抵抗値RHTRの製造誤差によって生じ得る。したがって、負電源12Aの電位の値は、負荷21の電気抵抗値RHTRの製造誤差を考慮して設計することが望ましい。
図27は、図25に示す第3実施形態の電源ユニット10における第1オペアンプ56の差動入力値の別例を説明するためのグラフである。図27に示す例では、負荷21の温度が下限温度TMINである状態において、第1接続ノードの電位「V」と第2接続ノードの電位「V」が等しくなるように、負荷21の電気抵抗値RHTRが設計されている場合を想定している。図27において、「V−V」で示されるグラフは、負荷21の電気抵抗値RHTRに誤差がない場合における第1オペアンプ56の差動入力値を表す。
図27おいて、「V’」で示されるグラフは、負荷21の電気抵抗値RHTRに、設計値に対し−10%の誤差が生じている場合の第1接続ノードの電位を示している。このように、負荷21の電気抵抗値RHTRに−10%の誤差が生じている場合には、第1オペアンプ56の差動入力値は、図27の「V’−V」で示されるグラフのようになる。
図27の例では、動作温度範囲における温度範囲Tr22において、第1接続ノードの電位「V’」が第2接続ノードの電位「V」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr22において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aの電位を決めればよい。また、図27の例では、動作温度範囲における温度範囲Tr22を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、正電源端子の電位を決めればよい。
また、負荷21の電気抵抗値RHTRに、設計値に対し+10%の誤差が生じている場合には、動作温度範囲において、第1接続ノードの電位「V’」が第2接続ノードの電位「V」未満となる状態は発生しない。そのため、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V’」が第2接続ノードの電位「V」以上となる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、正電源端子の電位を決めればよい。
このように、第3実施形態の電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aの電位の値が決められる。また、第2実施形態の電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態と、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態とのいずれの状態においても、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、第1オペアンプ56の正電源端子の電位が決められる。
このように、負荷21の製造誤差を加味して、第1オペアンプ56の正電源端子と負電源端子の電位の値を決めることにより、負荷21に製造誤差があった場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位と正電源端子の電位の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
(電気回路の第3実施形態の第1変形例)
図28は、図25に示す第3実施形態の電源ユニット10の回路構成の第1変形例を示す模式図である。図28に示す電源ユニット10は、第1オペアンプ56とブリッジ回路との接続関係が変更された点を除いては、図28の回路構成と同じである。図28に示す電源ユニット10においては、第1素子63と負荷21との第1接続ノードに第1オペアンプ56の反転入力端子が接続されている。また、第2素子64と第3素子65との第2接続ノードに第1オペアンプ56の非反転入力端子が接続されている。
図29は、図28に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図29において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。また、図29において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。図29において、「V−V」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
一例として、図28に示す電源ユニット10においては、負荷21の温度が上限温度TMAXである状態において、第2接続ノードの電位「V」と第1接続ノードの電位「V」が等しくなるように、負荷21の電気抵抗値RHTRが設計されているものとする。そして、図29は、負荷21の電気抵抗値RHTRに+10%の誤差が生じている場合を例にしている。
負荷21の電気抵抗値RHTRに+10%の誤差が生じていることで、図29の例では、動作温度範囲における温度範囲Tr23において、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr23において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aの電位を決めればよい。また、図29の例では、動作温度範囲における温度範囲Tr23を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、第1オペアンプ56の正電源端子の電位を決めればよい。
また、負荷21の電気抵抗値RHTRに、設計値に対し−10%の誤差が生じている場合には、動作温度範囲において、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態は発生しない。そのため、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、第1オペアンプ56の正電源端子の電位を決めればよい。
このように、第3実施形態の第1変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」未満となる状態において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aの電位の値が決められる。また、第3実施形態の第1変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態と、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態とのいずれの状態においても、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、第1オペアンプ56の正電源端子の電位の値が決められる。
このように、負荷21の製造誤差を加味して第1オペアンプ56の電源端子の電位の値を決めることにより、負荷21に製造誤差があった場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位と正電源端子の電位の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
(電気回路の第3実施形態の第2変形例)
図30は、図25に示す第3実施形態の電源ユニット10の回路構成の第2変形例を示す模式図である。図30に示す電源ユニット10は、第1直列回路C1における第1素子63と負荷21の位置が逆になっている点と、開閉器61の位置が変更された点と、を除いては、図25の回路構成と同じである。
開閉器61は、第1接続ノードと主負母線LDとの間に接続されている。図30に示す電源ユニット10では、開閉器61と開閉器62がいずれもオンされることで、負荷21の加熱が行われる。また、開閉器61がオフされ、開閉器62がオンされた状態にて、負荷21の温度検出が行われる。
図31は、図30に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図31において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。図31において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。図31において、「V−V」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
一例として、図30に示す電源ユニット10においては、負荷21の温度が上限温度TMAXである状態において、第1接続ノードの電位「V」と第2接続ノードの電位「V」が等しくなるように、負荷21の電気抵抗値RHTRが設計されているものとする。そして、図31は、負荷21の電気抵抗値RHTRに−10%の誤差が生じている場合を例にしている。
負荷21の電気抵抗値RHTRに−10%の誤差が生じていることで、図31の例では、動作温度範囲における温度範囲Tr24において、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr24において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aの電位を決めればよい。また、図31の例では、動作温度範囲における温度範囲Tr24を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、第1オペアンプ56の正電源端子の電位を決めればよい。
また、負荷21の電気抵抗値RHTRに、設計値に対し+10%の誤差が生じている場合には、動作温度範囲において、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態は発生しない。そのため、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態において、第1オペアンプ56の差動入力値が正電源端子の電位よりも小さくなるように、第1オペアンプ56の正電源端子の電位を決めればよい。
このように、第3実施形態の第2変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」未満となる状態において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aの電位の値が決められる。また、第3実施形態の第2変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態と、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第1接続ノードの電位「V」が第2接続ノードの電位「V」以上となる状態とのいずれの状態においても、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、第1オペアンプ56の正電源端子の電位の値が決められる。
このように、負荷21の製造誤差を加味して第1オペアンプ56の電源端子の電位の値を決めることにより、負荷21に製造誤差があった場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位と正電源端子の電位の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。
(電気回路の第3実施形態の第3変形例)
図32は、図25に示す第2実施形態の電源ユニットの回路構成の第3変形例を示す模式図である。図32に示す電源ユニット10は、第1オペアンプ56とブリッジ回路との接続関係が変更された点を除いては、図30の回路構成と同じである。図32に示す電源ユニット10においては、第1素子63と負荷21との第1接続ノードに第1オペアンプ56の反転入力端子が接続されている。また、第2素子64と第3素子65との第2接続ノードに第1オペアンプ56の非反転入力端子が接続されている。
図33は、図32に示す電源ユニット10における第1オペアンプ56の差動入力値の一例を説明するためのグラフである。図33において、「V」で示されるグラフは、第2素子64と第3素子65との第2接続ノードの電位を表す。図3において、「V」で示されるグラフは、第1素子63と負荷21との第1接続ノードの電位を表す。図33において、「V−V」で示されるグラフは、第1オペアンプ56の差動入力値を表す。
一例として、図32に示す電源ユニット10においては、負荷21の温度が下限温度TMINである状態において、第2接続ノードの電位「V」と第1接続ノードの電位「V」が等しくなるように、負荷21の電気抵抗値RHTRが設計されているものとする。そして、図33は、負荷21の電気抵抗値RHTRに+10%の誤差が生じている場合を例にしている。
負荷21の電気抵抗値RHTRに+10%の誤差が生じていることで、図33の例では、動作温度範囲における温度範囲Tr25において、第2接続ノードの電位「V」が第1接続ノードの電位「V」未満となる状態が発生している。下限クリップを防ぐためには、この温度範囲Tr25において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aの電位を決めればよい。また、図33の例では、動作温度範囲における温度範囲Tr25を除く範囲において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、第1オペアンプ56の正電源端子の電位を決めればよい。
また、負荷21の電気抵抗値RHTRに、設計値に対し−10%の誤差が生じている場合には、動作温度範囲において、第2接続ノードの電位「V」が第1接続ノードの電位「V」未満となる状態は発生しない。そのため、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態において、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、第1オペアンプ56の正電源端子の電位を決めればよい。
このように、第3実施形態の第3変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」未満となる状態において、第1オペアンプ56の差動入力値が負電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最小値)よりも大きくなるように、負電源12Aの電位の値が決められる。また、第3実施形態の第3変形例の電源ユニット10では、負荷21の電気抵抗値RHTRに+10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態と、負荷21の電気抵抗値RHTRに−10%の誤差が生じており、且つ、負荷21の温度が動作温度範囲にあり、且つ、第2接続ノードの電位「V」が第1接続ノードの電位「V」以上となる状態とのいずれの状態においても、第1オペアンプ56の差動入力値が正電源端子の電位(第1オペアンプ56が入出力レール・ツー・レール型ではない場合には、第1オペアンプ56が取得可能な最大値)よりも小さくなるように、第1オペアンプ56の正電源端子の電位の値が決められる。
このように、負荷21の製造誤差を考慮して第1オペアンプ56の電源端子の電位の値を決めることにより、負荷21に製造誤差があった場合でも、動作温度範囲においては、第1オペアンプ56の差動入力値が負電源端子の電位と正電源端子の電位の間におさまる。このため、第1オペアンプ56における下限クリップと上限クリップの発生を防止することができ、負荷21の温度検出精度を高めることができる。なお、上述してきたように、第1オペアンプ56が入出力レール・ツー・レール型ではない場合は、第1オペアンプ56が取得可能な最大値と最小値の間に第1オペアンプ56の差動入力値が収まるように、負電源12Aの電位を決めればよい。
ここまでの実施形態においては、負荷21を含む第1カートリッジ20が電源ユニット10に着脱自在な構成とされているが、負荷21を含む第1カートリッジ20は電源ユニット10と一体化された構成であってもよい。
本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
(1)
エアロゾル生成源を加熱し且つ温度と電気抵抗値が相関を持つ負荷(負荷21)に放電可能な電源(電源12)を有するエアロゾル吸引器(エアロゾル吸引器1)の電源ユニット(電源ユニット10)であって、
前記負荷に対して直列接続される第1電気抵抗値を有する第1素子(第1素子63)と、
第2電気抵抗値を有する第2素子(第2素子64)及び前記第2素子に対して直列接続された第3電気抵抗値を有する第3素子(第3素子65)を含み、前記負荷及び前記第1素子の第1直列回路(第1直列回路C1)と並列接続された第2直列回路(第2直列回路C2)と、
前記負荷及び前記第1素子の第1接続ノードと前記第2素子及び前記第3素子の第2接続ノードのうちの一方に接続された非反転入力端子と、前記第1接続ノードと前記第2接続ノードのうちの他方に接続された反転入力端子と、を含む第1オペアンプ(第1オペアンプ56)と、
前記第1接続ノード及び前記第2接続ノードのうちの前記非反転入力端子と接続される方の第1電位が、前記第1接続ノード及び前記第2接続ノードのうちの前記反転入力端子と接続される方の第2電位未満となる状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの負電源端子の電位又は前記第1オペアンプが取得可能な最小値と同じになるのを抑制する、前記第1オペアンプに接続された電位調整回路(第2オペアンプ58、レールスプリッタ回路59、負電源12A)と、を備えるエアロゾル吸引器の電源ユニット。
(1)によれば、第1電位が第2電位未満となる状態であっても、第1オペアンプの差動入力値が第1オペアンプの負電源端子の電位又は第1オペアンプが取得可能な最小値と同じになることが抑制される。このため、第1オペアンプの出力信号に基づく負荷の温度検出を高精度に行うことができる。
(2)
(1)記載のエアロゾル吸引器の電源ユニットであって、
前記電位調整回路は、前記第1接続ノード及び前記第2接続ノードのうちの前記反転入力端子と接続される方に接続された非反転入力端子と、正の既定電位が入力される反転入力端子と、前記第1オペアンプの前記反転入力端子に接続された出力端子と、を有する第2オペアンプ(第2オペアンプ58)を含むエアロゾル吸引器の電源ユニット。
(2)によれば、第2オペアンプによって第1オペアンプの差動入力値を、既定電位の分、持ち上げることができる。これにより、既定電位を適切な値とすることで、第1オペアンプの差動入力値が第1オペアンプの負電源端子の電位又は第1オペアンプが取得可能な最小値と同じになるのを抑制することができ、負荷の温度検出を高精度に行うことができる。
(3)
(2)記載のエアロゾル吸引器の電源ユニットであって、
前記既定電位の値は、前記第1オペアンプの正電源端子に入力される電位の値、又は、前記第1直列回路及び第2直列回路に印加される電圧の値と等しいエアロゾル吸引器の電源ユニット。
(3)によれば、回路で他の目的に利用されている電位をそのまま利用することができるため、複雑な回路を必要とせずに、第1オペアンプの差動入力値を、既定電位の分、持ち上げることができる。
(4)
(2)記載のエアロゾル吸引器の電源ユニットであって、
前記既定電位は、前記第1オペアンプの正電源端子に入力される電位、又は、前記第1直列回路及び前記第2直列回路に印加される電圧を分圧して得られたものであるエアロゾル吸引器の電源ユニット。
(4)によれば、分圧又は降圧によって既定電位が生成されるため、既定電位を所望の値とすることが容易となる。これにより、第1オペアンプの差動入力値が第1オペアンプの負電源端子の電位又は第1オペアンプが取得可能な最小値と同じにならないようにするための適切な既定電位を第2オペアンプに与えることができる。
(5)
(2)記載のエアロゾル吸引器の電源ユニットであって、
前記負荷への放電が行われる温度範囲の上限値を上限温度(上限温度TMAX)とし、前記温度範囲の下限値を下限温度(下限温度TMIN)とし、
前記既定電位は、前記負荷の温度が前記上限温度以下且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度以上且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの負電源端子の電位又は前記第1オペアンプが取得可能な最小値よりも大きくなる、値を有するエアロゾル吸引器の電源ユニット。
(5)によれば、負荷への放電が行われる温度範囲において第1オペアンプの差動入力値が負電源端子の電位又は第1オペアンプが取得可能な最小値よりも大きくなっているため、負荷の動作温度範囲内で負荷の温度検出を高精度に行うことができる。
(6)
(2)記載のエアロゾル吸引器の電源ユニットであって、
前記負荷への放電が行われる温度範囲の上限値を上限温度(上限温度TMAX)とし、前記温度範囲の下限値を下限温度(下限温度TMIN)とし、
前記既定電位は、前記負荷の温度が前記下限温度又は前記上限温度である状態にて前記第1電位と前記第2電位が等しくなる場合の前記負荷の想定電気抵抗値に対し前記負荷の電気抵抗値が−10%の誤差を持っており、且つ、前記負荷の温度が前記下限温度以上又は前記上限温度以下、且つ、前記第1電位が前記第2電位未満の状態、或いは、前記負荷の温度が前記上限温度又は前記下限温度である状態にて前記第1電位と前記第2電位が等しくなる場合の前記負荷の想定電気抵抗値に対し前記負荷の電気抵抗値が+10%の誤差を持っており、且つ、前記負荷の温度が前記上限温度以下又は前記下限温度以上、且つ、前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの負電源端子の電位又は前記第1オペアンプが取得可能な最小値よりも大きくなる、値を有するエアロゾル吸引器の電源ユニット。
(6)によれば、負荷の電気抵抗値に誤差があった場合でも、負荷への放電が行われる温度範囲において第1オペアンプの差動入力値が負電源端子の電位又は第1オペアンプが取得可能な最小値よりも大きくなるため、負荷の動作温度範囲内で負荷の温度検出を高精度に行うことができる。
(7)
(5)又は(6)記載のエアロゾル吸引器の電源ユニットであって、
前記既定電位は、前記負荷の温度が前記上限温度を超えており且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度未満であり且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの負電源端子の電位又は前記第1オペアンプが取得可能な最小値と同じになる、値を有するエアロゾル吸引器の電源ユニット。
(7)によれば、負荷への放電が行われる温度範囲外においては第1オペアンプの差動入力値が負電源端子の電位又は第1オペアンプが取得可能な最小値と同じになるのを許容するため、過大な既定電位を生成しなくてすむようになる。この結果、回路規模を小さくできる。
(8)
(5)又は(6)記載のエアロゾル吸引器の電源ユニットであって、
前記既定電位は、前記負荷の温度が前記上限温度以下であり且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度以上であり且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの正電源端子の電位又は前記第1オペアンプが取得可能な最大値よりも低くなる、値を有するエアロゾル吸引器の電源ユニット。
(8)によれば、負荷への放電が行われる温度範囲において第1オペアンプの差動入力値が正電源端子の電位又は第1オペアンプが取得可能な最大値よりも小さくなっているため、負荷の動作温度範囲内で負荷の温度検出を高精度に行うことができる。
(9)
(1)記載のエアロゾル吸引器の電源ユニットであって、
前記電位調整回路は、入力電圧からマイナスの電位と前記マイナスの電位と絶対値が同じプラスの電位を生成するレールスプリッタ回路(レールスプリッタ回路59)を含み、
前記プラスの電位は、前記第1オペアンプの正電源端子に入力され、
前記マイナスの電位は、前記第1オペアンプの負電源端子に入力されるエアロゾル吸引器の電源ユニット。
(9)によれば、レールスプリッタ回路によって、第1オペアンプの差動入力値が負電源端子の電位又は第1オペアンプが取得可能な最小値に近づきにくくなる。このため、第1オペアンプの差動入力値が第1オペアンプの負電源端子の電位又は第1オペアンプが取得可能な最小値以下となるのを効果的に抑制することができ、負荷の温度検出を高精度に行うことができる。
(10)
(9)記載のエアロゾル吸引器の電源ユニットであって、
前記負荷への放電が行われる温度範囲の上限値を上限温度(上限温度TMAX)とし、前記温度範囲の下限値を下限温度(下限温度TMIN)とし、
前記入力電圧の値と前記レールスプリッタ回路に含まれる抵抗器の電気抵抗値の少なくとも一方は、前記負荷の温度が前記上限温度以下且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度以上且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記マイナスの電位よりも大きくなる、値を有するエアロゾル吸引器の電源ユニット。
(10)によれば、負荷への放電が行われる温度範囲において第1オペアンプの差動入力値が負電源端子の電位又は第1オペアンプが取得可能な最小値よりも大きくなっているため、負荷の動作温度範囲内で負荷の温度検出を高精度に行うことができる。
(11)
(9)又は(10)記載のエアロゾル吸引器の電源ユニットであって、
前記負荷への放電が行われる温度範囲の上限値を上限温度(上限温度TMAX)とし、前記温度範囲の下限値を下限温度(下限温度TMIN)とし、
前記入力電圧の値と前記レールスプリッタ回路に含まれる抵抗器の電気抵抗値の少なくとも一方は、前記負荷の温度が前記上限温度以下、又は、前記負荷の温度が前記下限温度以上の状態において、前記第1オペアンプの差動入力値が前記プラスの電位よりも小さくなる、値を有するエアロゾル吸引器の電源ユニット。
(11)によれば、負荷への放電が行われる温度範囲において第1オペアンプの差動入力値が正電源端子の電位又は第1オペアンプが取得可能な最大値よりも低くなるため、負荷の動作温度範囲内で負荷の温度検出を高精度に行うことができる。
(12)
(1)記載のエアロゾル吸引器の電源ユニットであって、
前記電位調整回路は、マイナス電位を生成するマイナス電源(負電源12A)を含み、
前記マイナス電源は、前記第1オペアンプの負電源端子に接続されるエアロゾル吸引器の電源ユニット。
(12)によれば、マイナス電源によって、第1オペアンプの差動入力値が負電源端子の電位又は第1オペアンプが取得可能な最小値に近づきにくくなる。このため、第1オペアンプの差動入力値が第1オペアンプの負電源端子の電位又は第1オペアンプが取得可能な最小値以下となるのを効果的に抑制することができ、負荷の温度検出を高精度に行うことができる。
(13)
(12)記載のエアロゾル吸引器の電源ユニットであって、
前記負荷への放電が行われる温度範囲の上限値を上限温度(上限温度TMAX)とし、前記温度範囲の下限値を下限温度(下限温度TMIN)とし、
前記マイナス電位は、前記負荷の温度が前記上限温度以下且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度以上且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記マイナス電位よりも大きくなる、値を有するエアロゾル吸引器の電源ユニット。
(13)によれば、負荷への放電が行われる温度範囲において第1オペアンプの差動入力値が負電源端子の電位又は第1オペアンプが取得可能な最小値よりも大きくなっているため、負荷の動作温度範囲内で負荷の温度検出を高精度に行うことができる。
(14)
エアロゾル生成源を加熱し且つ温度と電気抵抗値が相関を持つ負荷(負荷21)に放電可能な電源(電源12)を有するエアロゾル吸引器(エアロゾル吸引器1)の電源ユニット(電源ユニット10)であって、
前記負荷に対して直列接続される第1電気抵抗値を有する第1素子(第1素子63)と、
第2電気抵抗値を有する第2素子(第2素子64)及び前記第2素子に対して直列接続された第3電気抵抗値を有する第3素子(第3素子65)を含み、前記負荷及び前記第1素子の第1直列回路(第1直列回路C1)と並列接続された第2直列回路(第2直列回路C2)と、
前記負荷及び前記第1素子の第1接続ノードと前記第2素子及び前記第3素子の第2接続ノードのうちの一方に接続された非反転入力端子と、前記第1接続ノードと前記第2接続ノードのうちの他方に接続された反転入力端子と、を含む第1オペアンプ(第1オペアンプ56)と、
前記第1接続ノード及び前記第2接続ノードのうちの前記反転入力端子と間接的に接続される方に接続された非反転入力端子と、正の既定電位(既定電位VPSEUDO)が入力される反転入力端子と、前記第1オペアンプの前記反転入力端子に接続された出力端子と、を有する第2オペアンプ(第2オペアンプ58)と、を備えるエアロゾル吸引器の電源ユニット。
(14)によれば、第2オペアンプによって第1オペアンプの差動入力値を、既定電位の分、持ち上げることができる。これにより、第1電位が第2電位未満となる状態であっても、第1オペアンプの差動入力値が第1オペアンプの負電源端子の電位又は第1オペアンプが取得可能な最小値以下となることが抑制される。このため、第1オペアンプの出力信号に基づく負荷の温度検出を高精度に行うことができる。
1 エアロゾル吸引器
HTR 電気抵抗値
第1電気抵抗値
C1 第1直列回路
第2電気抵抗値
C2 第2直列回路
第3電気抵抗値
10 電源ユニット
11a トップ部
11b ボトム部
11 電源ユニットケース
12 電源
12A 負電源
14 操作部
15 吸気センサ
18 メモリー
20 第1カートリッジ
21 負荷
22 エアロゾル源
23 リザーバ
24 ウィック
25 エアロゾル流路
26a カートリッジ収容部
26b 連通路
26 エンドキャップ
27 カートリッジケース
30 第2カートリッジ
31 香味源
32 吸口
41 放電端子
42 空気供給部
43 充電端子
45 報知部
50 MCU
51 エアロゾル生成要求検出部
52 温度検出部
53 電力制御部
54 報知制御部
55A 充電IC
55 プロセッサ
56 第1オペアンプ
58 第2オペアンプ
57 ADC
60 LDOレギュレータ
61,62 開閉器
63 第1素子
64 第2素子
65 第3素子

Claims (14)

  1. エアロゾル生成源を加熱し且つ温度と電気抵抗値が相関を持つ負荷に放電可能な電源を有するエアロゾル吸引器の電源ユニットであって、
    前記負荷に対して直列接続される第1電気抵抗値を有する第1素子と、
    第2電気抵抗値を有する第2素子及び前記第2素子に対して直列接続された第3電気抵抗値を有する第3素子を含み、前記負荷及び前記第1素子の第1直列回路と並列接続された第2直列回路と、
    前記負荷及び前記第1素子の第1接続ノードと前記第2素子及び前記第3素子の第2接続ノードのうちの一方に接続された非反転入力端子と、前記第1接続ノードと前記第2接続ノードのうちの他方に接続された反転入力端子と、を含む第1オペアンプと、
    前記第1接続ノード及び前記第2接続ノードのうちの前記非反転入力端子と接続される方の第1電位が、前記第1接続ノード及び前記第2接続ノードのうちの前記反転入力端子と接続される方の第2電位未満となる状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの負電源端子の電位又は前記第1オペアンプが取得可能な最小値と同じになるのを抑制する、前記第1オペアンプに接続された電位調整回路と、を備えるエアロゾル吸引器の電源ユニット。
  2. 請求項1記載のエアロゾル吸引器の電源ユニットであって、
    前記電位調整回路は、前記第1接続ノード及び前記第2接続ノードのうちの前記反転入力端子と接続される方に接続された非反転入力端子と、正の既定電位が入力される反転入力端子と、前記第1オペアンプの前記反転入力端子に接続された出力端子と、を有する第2オペアンプを含むエアロゾル吸引器の電源ユニット。
  3. 請求項2記載のエアロゾル吸引器の電源ユニットであって、
    前記既定電位の値は、前記第1オペアンプの正電源端子に入力される電位の値、又は、前記第1直列回路及び第2直列回路に印加される電圧の値と等しいエアロゾル吸引器の電源ユニット。
  4. 請求項2記載のエアロゾル吸引器の電源ユニットであって、
    前記既定電位は、前記第1オペアンプの正電源端子に入力される電位、又は、前記第1直列回路及び前記第2直列回路に印加される電圧を分圧又は降圧して得られたものであるエアロゾル吸引器の電源ユニット。
  5. 請求項2記載のエアロゾル吸引器の電源ユニットであって、
    前記負荷への放電が行われる温度範囲の上限値を上限温度とし、前記温度範囲の下限値を下限温度とし、
    前記既定電位は、前記負荷の温度が前記上限温度以下且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度以上且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの負電源端子の電位又は前記第1オペアンプが取得可能な最小値よりも大きくなる、値を有するエアロゾル吸引器の電源ユニット。
  6. 請求項2記載のエアロゾル吸引器の電源ユニットであって、
    前記負荷への放電が行われる温度範囲の上限値を上限温度とし、前記温度範囲の下限値を下限温度とし、
    前記既定電位は、前記負荷の温度が前記下限温度又は前記上限温度である状態にて前記第1電位と前記第2電位が等しくなる場合の前記負荷の想定電気抵抗値に対し前記負荷の電気抵抗値が−10%の誤差を持っており、且つ、前記負荷の温度が前記下限温度以上又は前記上限温度以下、且つ、前記第1電位が前記第2電位未満の状態、或いは、前記負荷の温度が前記上限温度又は前記下限温度である状態にて前記第1電位と前記第2電位が等しくなる場合の前記負荷の想定電気抵抗値に対し前記負荷の電気抵抗値が+10%の誤差を持っており、且つ、前記負荷の温度が前記上限温度以下又は前記下限温度以上、且つ、前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの負電源端子の電位又は前記第1オペアンプが取得可能な最小値よりも大きくなる、値を有するエアロゾル吸引器の電源ユニット。
  7. 請求項5又は6記載のエアロゾル吸引器の電源ユニットであって、
    前記既定電位は、前記負荷の温度が前記上限温度を超えており且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度未満であり且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの負電源端子の電位又は前記第1オペアンプが取得可能な最小値と同じになる、値を有するエアロゾル吸引器の電源ユニット。
  8. 請求項5又は6記載のエアロゾル吸引器の電源ユニットであって、
    前記既定電位は、前記負荷の温度が前記上限温度以下であり且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度以上であり且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記第1オペアンプの正電源端子の電位又は前記第1オペアンプが取得可能な最大値よりも低くなる、値を有するエアロゾル吸引器の電源ユニット。
  9. 請求項1記載のエアロゾル吸引器の電源ユニットであって、
    前記電位調整回路は、入力電圧からマイナスの電位と前記マイナスの電位と絶対値が同じプラスの電位を生成するレールスプリッタ回路を含み、
    前記プラスの電位は、前記第1オペアンプの正電源端子に入力され、
    前記マイナスの電位は、前記第1オペアンプの負電源端子に入力されるエアロゾル吸引器の電源ユニット。
  10. 請求項9記載のエアロゾル吸引器の電源ユニットであって、
    前記負荷への放電が行われる温度範囲の上限値を上限温度とし、前記温度範囲の下限値を下限温度とし、
    前記入力電圧の値と前記レールスプリッタ回路に含まれる抵抗器の電気抵抗値の少なくとも一方は、前記負荷の温度が前記上限温度以下且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度以上且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記マイナスの電位よりも大きくなる、値を有するエアロゾル吸引器の電源ユニット。
  11. 請求項9又は10記載のエアロゾル吸引器の電源ユニットであって、
    前記負荷への放電が行われる温度範囲の上限値を上限温度とし、前記温度範囲の下限値を下限温度とし、
    前記入力電圧の値と前記レールスプリッタ回路に含まれる抵抗器の電気抵抗値の少なくとも一方は、前記負荷の温度が前記上限温度以下、又は、前記負荷の温度が前記下限温度以上の状態において、前記第1オペアンプの差動入力値が前記プラスの電位よりも小さくなる、値を有するエアロゾル吸引器の電源ユニット。
  12. 請求項1記載のエアロゾル吸引器の電源ユニットであって、
    前記電位調整回路は、マイナス電位を生成するマイナス電源を含み、
    前記マイナス電源は、前記第1オペアンプの負電源端子に接続されるエアロゾル吸引器の電源ユニット。
  13. 請求項12記載のエアロゾル吸引器の電源ユニットであって、
    前記負荷への放電が行われる温度範囲の上限値を上限温度とし、前記温度範囲の下限値を下限温度とし、
    前記マイナス電位は、前記負荷の温度が前記上限温度以下且つ前記第1電位が前記第2電位未満の状態、又は、前記負荷の温度が前記下限温度以上且つ前記第1電位が前記第2電位未満の状態において、前記第1オペアンプの差動入力値が前記マイナス電位よりも大きくなる、値を有するエアロゾル吸引器の電源ユニット。
  14. エアロゾル生成源を加熱し且つ温度と電気抵抗値が相関を持つ負荷に放電可能な電源を有するエアロゾル吸引器の電源ユニットであって、
    前記負荷に対して直列接続される第1電気抵抗値を有する第1素子と、
    第2電気抵抗値を有する第2素子及び前記第2素子に対して直列接続された第3電気抵抗値を有する第3素子を含み、前記負荷及び前記第1素子の第1直列回路と並列接続された第2直列回路と、
    前記負荷及び前記第1素子の第1接続ノードと前記第2素子及び前記第3素子の第2接続ノードのうちの一方に接続された非反転入力端子と、前記第1接続ノードと前記第2接続ノードのうちの他方に間接的に接続された反転入力端子と、を含む第1オペアンプと、
    前記第1接続ノード及び前記第2接続ノードのうちの前記反転入力端子と間接的に接続される方に接続された非反転入力端子と、正の既定電位が入力される反転入力端子と、前記第1オペアンプの前記反転入力端子に接続された出力端子と、を有する第2オペアンプと、を備えるエアロゾル吸引器の電源ユニット。
JP2020038193A 2020-03-05 2020-03-05 エアロゾル吸引器の電源ユニット Active JP6728509B1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020038193A JP6728509B1 (ja) 2020-03-05 2020-03-05 エアロゾル吸引器の電源ユニット
JP2020111503A JP2021136987A (ja) 2020-03-05 2020-06-29 エアロゾル吸引器の電源ユニット
RU2021105421A RU2751015C1 (ru) 2020-03-05 2021-03-03 Блок питания для аэрозольного ингалятора
US17/191,711 US11134721B2 (en) 2020-03-05 2021-03-04 Power supply unit for aerosol inhaler
EP21160986.2A EP3876666B1 (en) 2020-03-05 2021-03-05 Power supply unit for aerosol inhaler
CN202110243883.9A CN113349465B (zh) 2020-03-05 2021-03-05 用于气溶胶吸入器的电源单元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038193A JP6728509B1 (ja) 2020-03-05 2020-03-05 エアロゾル吸引器の電源ユニット

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020111503A Division JP2021136987A (ja) 2020-03-05 2020-06-29 エアロゾル吸引器の電源ユニット

Publications (2)

Publication Number Publication Date
JP6728509B1 true JP6728509B1 (ja) 2020-07-22
JP2021136942A JP2021136942A (ja) 2021-09-16

Family

ID=71663931

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020038193A Active JP6728509B1 (ja) 2020-03-05 2020-03-05 エアロゾル吸引器の電源ユニット
JP2020111503A Pending JP2021136987A (ja) 2020-03-05 2020-06-29 エアロゾル吸引器の電源ユニット

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020111503A Pending JP2021136987A (ja) 2020-03-05 2020-06-29 エアロゾル吸引器の電源ユニット

Country Status (5)

Country Link
US (1) US11134721B2 (ja)
EP (1) EP3876666B1 (ja)
JP (2) JP6728509B1 (ja)
CN (1) CN113349465B (ja)
RU (1) RU2751015C1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220044139A (ko) * 2020-09-30 2022-04-06 니뽄 다바코 산교 가부시키가이샤 에어로졸 생성 장치의 전원 유닛
WO2022239065A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニットおよび方法
EP4192294A4 (en) * 2020-12-31 2024-02-28 Kt & G Corp AEROSOL GENERATION DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6865879B1 (ja) * 2020-09-07 2021-04-28 日本たばこ産業株式会社 エアロゾル発生システム、吸引器用コントローラ、および電源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118594U (ja) * 1984-07-09 1986-02-03 保 竹田 発熱抵抗体の温度制御装置
JPH03191852A (ja) * 1988-06-24 1991-08-21 Honeywell Inc 流体の熱伝導率及び比熱測定方法及び装置
CN208354611U (zh) * 2018-07-03 2019-01-11 山东华菱电子股份有限公司 一种电子烟的加热装置
CN110250580A (zh) * 2019-06-26 2019-09-20 西安拓尔微电子有限责任公司 一种基于双电源的高精度恒温电子烟
JP6613008B1 (ja) * 2019-05-31 2019-11-27 日本たばこ産業株式会社 エアロゾル吸引器用の制御装置及びエアロゾル吸引器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226411A (en) * 1991-03-07 1993-07-13 Walter Levine Aerosol nebulizer heater
JPH0555491U (ja) * 1991-12-26 1993-07-23 東レ株式会社 自己温度制御型ヒータ
JP2946400B2 (ja) * 1995-06-16 1999-09-06 株式会社トーキン 発熱抵抗体の温度制御回路
JP2011091572A (ja) * 2009-10-21 2011-05-06 Sanyo Electric Co Ltd 可変利得増幅回路
DE202014011221U1 (de) 2013-12-23 2018-09-13 Juul Labs Uk Holdco Limited Systeme für eine Verdampfungsvorrichtung
IL308092A (en) * 2016-08-05 2023-12-01 Juul Labs Inc Anemometer-assisted control of a vaporizer
CN207040890U (zh) * 2017-06-20 2018-02-27 深圳市合元科技有限公司 一种电磁加热电子烟
TWI760513B (zh) * 2017-06-30 2022-04-11 瑞士商菲利浦莫里斯製品股份有限公司 具有有效電力控制的感應加熱系統之氣溶膠產生裝置與氣溶膠產生系統
JP7344199B2 (ja) * 2017-10-05 2023-09-13 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 連続的な電力調整を有する電気的に作動するエアロゾル発生装置
JP7015681B2 (ja) * 2017-11-30 2022-02-03 Koa株式会社 ヒータ温度制御回路、及び、それを用いたセンサ装置
GB201721821D0 (en) * 2017-12-22 2018-02-07 Nicoventures Holdings Ltd Electronic aerosol provision system
EP3738454B1 (en) * 2018-02-02 2024-01-17 Japan Tobacco Inc. Power source unit for inhalation component generation device
WO2019239548A1 (ja) * 2018-06-14 2019-12-19 日本たばこ産業株式会社 電源ユニット、香味生成装置、方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118594U (ja) * 1984-07-09 1986-02-03 保 竹田 発熱抵抗体の温度制御装置
JPH03191852A (ja) * 1988-06-24 1991-08-21 Honeywell Inc 流体の熱伝導率及び比熱測定方法及び装置
CN208354611U (zh) * 2018-07-03 2019-01-11 山东华菱电子股份有限公司 一种电子烟的加热装置
JP6613008B1 (ja) * 2019-05-31 2019-11-27 日本たばこ産業株式会社 エアロゾル吸引器用の制御装置及びエアロゾル吸引器
CN110250580A (zh) * 2019-06-26 2019-09-20 西安拓尔微电子有限责任公司 一种基于双电源的高精度恒温电子烟

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220044139A (ko) * 2020-09-30 2022-04-06 니뽄 다바코 산교 가부시키가이샤 에어로졸 생성 장치의 전원 유닛
KR102391411B1 (ko) 2020-09-30 2022-04-26 니뽄 다바코 산교 가부시키가이샤 에어로졸 생성 장치의 전원 유닛
US11612188B2 (en) 2020-09-30 2023-03-28 Japan Tobacco Inc. Power supply unit for aerosol generation device
EP4192294A4 (en) * 2020-12-31 2024-02-28 Kt & G Corp AEROSOL GENERATION DEVICE
WO2022239065A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニットおよび方法

Also Published As

Publication number Publication date
JP2021136942A (ja) 2021-09-16
US20210274852A1 (en) 2021-09-09
US11134721B2 (en) 2021-10-05
EP3876666B1 (en) 2022-08-03
RU2751015C1 (ru) 2021-07-07
EP3876666A1 (en) 2021-09-08
CN113349465A (zh) 2021-09-07
CN113349465B (zh) 2022-07-26
JP2021136987A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
JP6728509B1 (ja) エアロゾル吸引器の電源ユニット
KR20200089632A (ko) 에어로졸 흡인기용 전원 공급 장치 및 에어로졸 흡인기용 전원 공급 장치의 제어 방법 및 프로그램
CN112704265B (zh) 气溶胶吸入器的电源单元
JP6811346B1 (ja) エアロゾル吸引器の電源ユニット及びエアロゾル吸引器
KR102338600B1 (ko) 에어로졸 흡인기의 전원 유닛
US11311053B2 (en) Power supply unit for aerosol inhaler
US20220095693A1 (en) Power supply unit for aerosol generation device
JP2021132552A (ja) エアロゾル吸引器の電源ユニット
JP6888137B1 (ja) エアロゾル吸引器の電源ユニット及びエアロゾル吸引器
JP2021180656A (ja) エアロゾル吸引器の電源ユニット及びエアロゾル吸引器
JP6756025B1 (ja) エアロゾル吸引器用の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200305

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

R150 Certificate of patent or registration of utility model

Ref document number: 6728509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250