WO2019239548A1 - 電源ユニット、香味生成装置、方法及びプログラム - Google Patents

電源ユニット、香味生成装置、方法及びプログラム Download PDF

Info

Publication number
WO2019239548A1
WO2019239548A1 PCT/JP2018/022762 JP2018022762W WO2019239548A1 WO 2019239548 A1 WO2019239548 A1 WO 2019239548A1 JP 2018022762 W JP2018022762 W JP 2018022762W WO 2019239548 A1 WO2019239548 A1 WO 2019239548A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
resistance value
power supply
power
value
Prior art date
Application number
PCT/JP2018/022762
Other languages
English (en)
French (fr)
Inventor
剛志 赤尾
将之 辻
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to JP2020525033A priority Critical patent/JPWO2019239548A1/ja
Priority to CN201880095652.4A priority patent/CN112533498A/zh
Priority to EP18922596.4A priority patent/EP3808197A4/en
Priority to PCT/JP2018/022762 priority patent/WO2019239548A1/ja
Priority to TW107120947A priority patent/TW202000051A/zh
Publication of WO2019239548A1 publication Critical patent/WO2019239548A1/ja
Priority to US17/110,644 priority patent/US20210084985A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/70Load identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery

Definitions

  • the present invention relates to a power supply unit and a flavor generation apparatus, and a method and a program applied to the power supply unit and the flavor generation apparatus.
  • Patent Document 1 An electric vapor suction device such as an electronic cigarette that tastes flavors (including aerosols) generated by atomizing a flavor source with an electric load such as a heater instead of a cigarette is known (Patent Document 1). And Patent Document 2).
  • Patent Document 1 in order to perform appropriate heating control according to the type of liquid to be heated, the type of liquid is identified by reading the electric resistance value of the heating unit, and the optimum power according to the type of liquid Disclose the technology to supply.
  • Patent Document 2 discloses a method of measuring an electrical resistance value of a heating unit in a flavor generating device. In the method described in Patent Document 2, the electric resistance value of the heating portion of the cartomizer is measured while a weak current is passed through the heating portion of the cartomizer.
  • a first feature is a power supply unit that supplies power to an electrical load that vaporizes or atomizes a flavor source or an aerosol source, and electrically connects the power source, the control unit, and the power source and the load. And the control unit supplies the load to the load after a predetermined time has elapsed since the supply of power to the load, or the rate of change of the value related to the electrical resistance value of the load, the temperature of the load, or the load.
  • the gist of the present invention is that a value related to the electrical resistance value of the load is acquired based on the number of power pulses to be generated.
  • a second feature is the power supply unit according to the first feature, wherein the control unit is configured to perform a predetermined determination based on the acquired value related to the electrical resistance value of the load.
  • the third feature is a power supply unit according to the second feature, wherein the predetermined judgment is authentication of a load connected to the connection unit.
  • the fourth feature is a power supply unit according to the first feature or the second feature, comprising a memory that stores information relating a value related to an electrical resistance value of the load and the load, and the control unit Is summarized in that the load is authenticated by comparing the acquired value related to the electrical resistance value of the load with the information stored in the memory.
  • a fifth feature is the power supply unit according to the third feature or the fourth feature, comprising a notification unit that notifies the result of authentication of the load by at least one of light, sound, and vibration.
  • a sixth feature is the power supply unit according to any one of the third to fifth features, wherein the control unit reduces power to the load when the result of authentication of the load is abnormal. Or it makes it a summary to stop and to notify abnormality via the said notification part.
  • a seventh feature is a power supply unit according to any one of the first feature to the sixth feature, wherein the power unit is configured to acquire a value related to an electric resistance value of the load in order to execute the predetermined determination.
  • the gist of the present invention is to include a first electric circuit and a second electric circuit that is electrically connected to the connecting portion and is different from the first electric circuit.
  • the eighth feature is the power supply unit according to the seventh feature, wherein the electrical resistance value of the first electrical circuit is smaller than the electrical resistance value of the second electrical circuit.
  • a ninth feature is the power supply unit according to the seventh feature or the eighth feature, wherein the second electric circuit has a shunt resistor, and the temperature change of the electric resistance value of the shunt resistor is the load of the load.
  • the gist is that the electrical resistance value is smaller than the temperature change.
  • a tenth feature is the power supply unit according to any one of the seventh feature to the ninth feature, wherein the control unit uses the second electric circuit to determine whether a load is connected to the connection unit, Or it makes it a summary to acquire the value regarding the electrical resistance value of the said load connected to the said connection part.
  • An eleventh feature is the power supply unit according to any one of the seventh feature to the tenth feature, wherein the control unit is based on a value related to an electrical resistance value of the load acquired using the second electrical circuit.
  • the gist of the invention is that the remaining amount of the aerosol source or the flavor source can be estimated.
  • a twelfth feature is a power supply unit according to any one of the first feature to the eleventh feature, including a suction detection unit that detects a suction request operation by a user, and the control unit is configured to detect the suction detection unit. Based on this signal, the first power pulse capable of vaporizing or atomizing the flavor source or the aerosol source is supplied to the load.
  • a thirteenth feature is the power supply unit according to the twelfth feature, wherein the control unit is configured to acquire a value related to an electrical resistance value of the load by supplying the first power pulse to the load. It is a summary.
  • a fourteenth feature is the power supply unit according to the twelfth feature or the thirteenth feature, wherein the control unit is configured to acquire a value related to an electrical resistance value of the load at every first power pulse. It is a summary.
  • a fifteenth feature is the power supply unit according to any one of the twelfth feature to the fourteenth feature, wherein the control unit has a predetermined number of the first power pulses counted from the start of supply of the first power pulses.
  • the gist of the invention is that a value related to the electrical resistance value of the load is acquired when the number of times is reached.
  • a sixteenth feature is the power supply unit according to any one of the twelfth to fifteenth features, wherein the control unit applies a second power pulse to the load during a period between the first power pulses. It is comprised so that it may supply, and it makes it a summary that the electric current value of the said 2nd power pulse is smaller than the electric current value of the said 1st electric power pulse.
  • a seventeenth feature is the power supply unit according to any one of the twelfth feature through the sixteenth feature, wherein the control unit uses the second power pulse to determine whether a load is connected to the connection unit.
  • the gist is that it is configured to obtain.
  • the eighteenth feature is the power supply unit according to any one of the first feature to the thirteenth feature, wherein the control unit has a rate of change of the electrical resistance value of the load that is less than a predetermined threshold value.
  • the gist is that the electrical resistance value of the load is measured.
  • a nineteenth feature is the power supply unit according to any one of the first feature to the thirteenth feature, wherein the control unit is capable of vaporizing or atomizing the temperature of the load so that the flavor source or the aerosol source is vaporized.
  • the gist is that the electrical resistance value of the load is measured when the temperature is reached.
  • a twentieth feature is the power supply unit according to any one of the first feature to the thirteenth feature, wherein the control unit is capable of vaporizing or atomizing the flavor source or the aerosol source to the load.
  • the gist is that when the number of the first power pulses counted from the start of supply of the power pulses reaches a predetermined number of times, a value related to the electrical resistance value of the load is obtained.
  • a twenty-first feature is a power supply unit that supplies power to an electrical load that vaporizes or atomizes a flavor source or an aerosol source, and electrically connects the power source, the controller, the power source, and the load.
  • the control unit is configured to acquire a value related to an electrical resistance value of the load while passing a current that can vaporize or atomize the flavor source or the aerosol source to the load.
  • a twenty-second feature is a flavor generating apparatus, wherein the power source unit of any one of the first to twenty-first features, the flavor source or the aerosol source, and the flavor source or the aerosol source is vaporized or fogged. And an electrical load to be converted.
  • a twenty-third feature is that the electrical load for vaporizing or atomizing the flavor source or the aerosol source and the electrical connection of the load to the connection part for electrically connecting the power source are passed after a predetermined time has elapsed, or the load Obtaining a value relating to the electrical resistance value of the load based on a rate of change of the value relating to the electrical resistance value, the temperature of the load, or the number of power pulses supplied to the load; and relating to the obtained electrical resistance value of the load And a step of performing a predetermined determination based on the value.
  • the twenty-fourth feature is a value relating to an electrical resistance value of the load while flowing an electric current capable of vaporizing or atomizing the flavor source or the aerosol source to an electric load for vaporizing or atomizing the flavor source or the aerosol source. And a step of performing a predetermined determination based on the acquired value relating to the electrical resistance value of the load.
  • the gist of the twenty-fifth feature is the method according to the twenty-third feature or the twenty-fourth feature, wherein the predetermined judgment is authentication of a load connected to the connection unit.
  • the twenty-sixth feature is summarized as a program that causes an electronic device to execute the method according to any one of the twenty-third to twenty-fifth features.
  • FIG. 1 is a schematic diagram of a flavor generating apparatus according to an embodiment.
  • FIG. 2 is a schematic diagram of an atomization unit according to an embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of a suction sensor according to an embodiment.
  • FIG. 4 is a block diagram of the flavor generating apparatus.
  • FIG. 5 is a diagram illustrating an electric circuit of the atomization unit and the power supply unit.
  • FIG. 6 is a flowchart regarding load attachment / detachment detection.
  • FIG. 7 is a flowchart illustrating an example of a control method in the power supply mode.
  • FIG. 8 is a graph showing timings of various controls during power feeding to the load 121R.
  • FIG. 9 is a flowchart illustrating an example of the predetermined determination.
  • FIG. 10 is a graph showing how the temperature of the load 121R changes.
  • Patent Document 2 discloses that the electric resistance value of the heating portion of the cartomizer is measured while a weak current is passed through the heating portion of the cartomizer.
  • a weak current when used, the influence of noise on the current value may increase. Therefore, the accuracy of the measured value or estimated value of the electrical resistance value may be reduced.
  • the electrical resistance value of the heating part can also change with the temperature change of the heating part. Therefore, if an attempt is made to measure or estimate the electrical resistance value of the heating unit while the temperature of the heating unit is changing rapidly, the accuracy of measurement or estimation may be reduced.
  • a power supply unit that supplies power to an electrical load that vaporizes or atomizes a flavor source or an aerosol source includes a power source, a controller, and a connection that electrically connects the power source and the load.
  • the control unit after a predetermined time has elapsed from the supply of power to the load, or based on the rate of change of a value related to the electrical resistance value of the load, the temperature of the load, or the number of power pulses supplied to the load It is comprised so that the value regarding the electrical resistance value of may be acquired.
  • the temperature change of the load becomes large, and the electrical resistance value of the load may change greatly. Therefore, by acquiring a value related to the electrical resistance value of the load after a predetermined time has elapsed since the supply of power to the load, it is possible to suppress a decrease in the accuracy of the measured value or estimated value of the electrical resistance value of the load.
  • a power supply unit that supplies power to an electrical load that vaporizes or atomizes a flavor source or an aerosol source electrically connects the power source, the controller, the power source, and the load. And a connecting portion.
  • the control unit is configured to acquire a value related to the electrical resistance value of the load while flowing a current that can vaporize or atomize the flavor source or the aerosol source to the load.
  • FIG. 1 is an exploded view showing a flavor generating apparatus according to an embodiment.
  • FIG. 2 is a diagram illustrating an atomization unit according to an embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of a suction sensor according to an embodiment.
  • FIG. 4 is a block diagram showing an electrical configuration of the flavor generating apparatus.
  • FIG. 5 is a diagram illustrating an electric circuit of the atomization unit and the power supply unit.
  • the flavor generating device 100 may be a non-combustion type flavor inhaler for sucking flavor without burning.
  • the flavor generation device 100 may have a shape extending along a predetermined direction A that is a direction from the non-suction end E2 toward the suction end E1.
  • the flavor generating apparatus 100 may include one end E1 having the suction port 141 for sucking the flavor and the other end E2 on the opposite side of the suction port 141.
  • the flavor generation device 100 may include a power supply unit 110 and an atomization unit 120.
  • the atomization unit 120 may be configured to be detachable from the power supply unit 110 through mechanical connection portions 111 and 121.
  • a later-described load 121R in the atomization unit 120 is provided in the power supply unit 110 via the electrical connection terminals 111t and 121t.
  • the power source 10 is electrically connected. That is, the electrical connection terminals 111t and 121t constitute a connection portion that can electrically connect the load 121R and the power supply 10.
  • the atomization unit 120 includes an aerosol source that is aspirated by a user, and an electrical load 121R that atomizes the aerosol source with electric power from the power supply 10.
  • the load 121R may be an element that can generate aerosol from the aerosol source 121P by receiving electric power.
  • the load 121R may be a heating element such as an electric heater or an element such as an ultrasonic generator.
  • the heating element include a heating resistor, a ceramic heater, and an induction heating type heater.
  • the atomization unit 120 may have a reservoir 121P, a wick 121Q, and a load 121R.
  • the reservoir 121P may be configured to store a liquid aerosol source.
  • the reservoir 121P may be a porous body made of a material such as a resin web, for example.
  • the wick 121Q may be a liquid holding member that draws an aerosol source from the reservoir 121P using capillary action.
  • the wick 121Q can be made of, for example, glass fiber or porous ceramic.
  • the load 121R heats the aerosol source held by the wick 121Q.
  • the load 121R is configured by, for example, a resistance heating element (for example, a heating wire) wound around the wick 121Q.
  • the air that has flowed from the inlet 125 through the flow path 122A passes through the vicinity of the load 121R in the atomization unit 120.
  • the aerosol generated by the load 121R flows toward the inlet 141 together with air.
  • the aerosol source may be a liquid at room temperature.
  • a polyhydric alcohol can be used as the aerosol source.
  • the aerosol source may include a tobacco raw material that releases a flavor component by heating or an extract derived from a tobacco raw material.
  • an example of an aerosol source that is liquid at room temperature has been described in detail, but instead, an aerosol source that is solid at room temperature can be used.
  • the load 121R may be in contact with or close to the solid aerosol source in order to generate the aerosol from the solid aerosol source.
  • the atomization unit 120 may include a flavor unit (cartridge) 130 configured to be replaceable.
  • the flavor unit 130 may have a cylinder 131 that houses a flavor source.
  • the cylinder 131 may include a membrane member 133 and a filter 132 through which air, aerosol, or the like can pass.
  • a flavor source may be provided in a space formed by the membrane member 133 and the filter 132.
  • the flavor source in the flavor unit 130 imparts flavor components to the aerosol generated by the load 121R of the atomization unit 120.
  • the flavor imparted to the aerosol by the flavor source is carried to the mouthpiece 141 of the flavor generating device 100.
  • the flavor source in the flavor unit 130 may be solid at room temperature.
  • the flavor source is constituted by a raw material piece of plant material that imparts a flavor component to the aerosol.
  • a raw material piece which comprises a flavor source the molded object which shape
  • the flavor source may be a molded body obtained by molding a tobacco material into a sheet shape.
  • the raw material piece which comprises a flavor source may be comprised by plants (for example, mint, an herb, etc.) other than tobacco.
  • the flavor source may be provided with a fragrance such as menthol.
  • the flavor generation device 100 may include a mouthpiece having a suction port for the user to suck the suction component.
  • the mouthpiece may be configured to be attachable to and detachable from the atomization unit 120 or the flavor unit 130, or may be configured inseparably.
  • the power supply unit 110 may include a power supply 10, a notification unit 40, and a control unit 50.
  • the power supply 10 stores electric power necessary for the operation of the flavor generating apparatus 100.
  • the power supply 10 may be detachable from the power supply unit 110.
  • the power source 10 may be a rechargeable battery such as a lithium ion secondary battery.
  • the flavor generation device 100 may include a suction sensor 20, a push button 30, voltage sensors 150 and 152, and a temperature sensor 160.
  • the voltage sensor 150 may be configured to measure or estimate a potential difference between the pair of connection terminals 111t.
  • the voltage sensor 152 may be configured to measure or estimate a voltage drop of a shunt resistor 152 described later.
  • the temperature sensor 160 may be configured to measure or estimate the temperature of the load 121R.
  • the temperature sensor 160 may be disposed near the load 121R.
  • the control unit 50 may perform various controls necessary for the operation of the flavor generating apparatus 100 according to the output value of the voltage sensor 150.
  • the control unit 50 controls power from the power supply 10 to the load 121R.
  • the control part 50 may have the memory 52 which memorize
  • the load 121R provided in the atomization unit 120 is electrically connected to the power supply 10 of the power supply unit 110 (see FIG. 5).
  • the flavor generating apparatus 100 may include a first switch 180 and a second switch 182 that can electrically connect and disconnect the load 121R and the power supply 10. Each of the first switch 180 and the second switch 182 is opened and closed by the control unit 50.
  • the first switch 180 and the second switch 182 may be configured by MOSFETs, for example. When at least one of the first switch 180 and the second switch 182 is turned on, the electrical path from the power source to the load 121R is conducted, and power is supplied from the power source 10 to the load 121R.
  • the power supply unit 110 may include a determination unit that determines whether or not the load 121R is connected to the electrical terminal 111t.
  • the determination unit may determine whether or not the load 121R is connected based on, for example, the potential difference between the pair of electrical terminals 111t or the electrical resistance value.
  • the power supply unit 110 is electrically connected to the first electric circuit C1 configured to acquire a value related to the electric resistance value of the load 121R and the connection unit 111t, and
  • the second electric circuit C2 may be different from the first electric circuit C1.
  • the first electric circuit C1 has a first switch 180
  • the second electric circuit 2 has a second switch 182.
  • the second electric circuit C2 may be connected in parallel with the first electric circuit C1 with the power supply 10 as a reference.
  • the first electric circuit C1 is a circuit that returns from the positive electrode of the power supply 10 to the negative electrode of the power supply 10 through the first switch 180 and the load 121R.
  • the second electric circuit C2 is a circuit that returns from the positive electrode of the power supply 10 to the negative electrode of the power supply 10 via the second switch 182, the shunt resistor 190, and the load 121R.
  • the second switch 182 and the shunt resistor 190 are connected in parallel with the first switch 180 with the power supply 10 as a reference.
  • the electric resistance value of the first electric circuit C1 is smaller than the electric resistance value of the second electric circuit C2.
  • the electric resistance value of the second electric circuit C2 is equal to the electric resistance value of the first electric circuit C1 by the electric resistance value of the shunt resistor 190. It is larger than the value.
  • the control unit 50 may include a suction detection unit that detects a suction request operation by the user.
  • the suction detection unit may be, for example, the push button 30 pressed by the user or the suction sensor 20 that detects the user's suction operation.
  • the control unit 50 When the suction request operation is detected by the suction detection unit, the control unit 50 generates a command for operating the load 121R.
  • the control unit 50 outputs a command for operating the load 121R to the first switch 180, and the first switch 180 is turned on in response to this command.
  • control unit 50 preferably supplies power to the load 121R in the form of power pulses by repeatedly turning on and off the first switch 180.
  • the control unit 50 is configured to supply the load 121R with the first power pulse that can vaporize or atomize the aerosol source based on the signal from the suction detection unit.
  • the aerosol source is vaporized or atomized by the load 121R.
  • the suction sensor 20 may be configured to output an output value that varies according to suction from the suction port. Specifically, the suction sensor 20 outputs a value (for example, a voltage value or a current value) that changes according to the flow rate of air sucked from the non-suction side toward the suction side (that is, the user's puff operation). It may be a sensor. Examples of such a sensor include a condenser microphone sensor and a known flow rate sensor.
  • FIG. 3 shows a specific example of the suction sensor 20.
  • the suction sensor 20 illustrated in FIG. 3 includes a sensor main body 21, a cover 22, and a substrate 23.
  • the sensor body 21 is constituted by a capacitor, for example.
  • the electric capacity of the sensor body 21 changes due to vibration (pressure) generated by air sucked from the inlet 125 (that is, air sucked from the non-suction side toward the suction side).
  • the cover 22 is provided on the suction side with respect to the sensor body 21 and has an opening 22A. By providing the cover 22 having the opening 22A, the electric capacity of the sensor body 21 is easily changed, and the response characteristics of the sensor body 21 are improved.
  • substrate 23 outputs the value (here voltage value) which shows the electrical capacitance of the sensor main body 21 (capacitor).
  • the notification unit 40 issues a notification for notifying the user of various types of information.
  • the notification unit 40 may be a light emitting element that emits light, such as an LED. Instead of this, the notification unit 40 may be an element that generates sound or a vibrator that generates vibration. Moreover, the notification part 40 may be comprised by the combination of the element which emits light, a sound, or a vibration.
  • the flavor generating apparatus 100 more specifically, the power supply unit 110 may be configured to be connectable to a charger that charges the power supply 10 in the power supply unit 110.
  • the charger 200 is electrically connected to the power supply 10 of the power supply unit 110.
  • the pair of electrical terminals of the power supply unit 110 for electrically connecting the charger may be the same as the pair of electrical terminals 111t of the power supply unit 110 for electrically connecting the load 121R. Instead, the pair of electrical terminals of the power supply unit 110 for electrically connecting the charger may be provided separately from the pair of electrical terminals 111t.
  • the power supply unit 110 may have a remaining amount estimation unit that estimates the remaining amount of the aerosol source provided in the atomization unit 120.
  • the remaining amount estimation unit is configured by the above-described second electric circuit C2.
  • the remaining amount estimation unit includes a second switch 182, a shunt resistor 190, and a voltage sensor 152.
  • the shunt resistor 190 is electrically connected in series with the load 121R.
  • the voltage sensor 152 is connected in parallel with the shunt resistor 190.
  • the voltage sensor 152 can measure or estimate the voltage drop across the shunt resistor 190.
  • the voltage sensor 152 outputs a measured value of the voltage drop amount in the shunt resistor 190 to the control unit 50.
  • the remaining amount estimation unit estimates the remaining amount of the aerosol source based on the temperature of the load 121R.
  • the current value Is flowing through the shunt resistor 190 is obtained by the following equation (1).
  • Vs Vs / Rs (1)
  • Vs is a voltage drop amount at the shunt resistor 190
  • Rs is an electric resistance value of the shunt resistor 190.
  • the value of the current flowing through the load 121R connected in series with the shunt resistor 190 is the same as Is.
  • Rh is an electric resistance value of the load 121R. From the above equations (1) and (2), the electrical resistance value Rh of the load 121R can be calculated or estimated by the following equation.
  • Rh Rs ⁇ (Vo ⁇ Vs) / Vs (3)
  • the resistance value Rs of the shunt resistor 190 is known. Therefore, the control unit 50 can calculate or estimate the electric resistance value Rh of the load 121R based on the resistance value Rs of the shunt resistor 190, the voltage drop amount Vs acquired by the voltage sensor 152, and the output value Vo of the power source 10.
  • the load 121R has a positive temperature coefficient (PTC) characteristic, and may have an electric resistance value Rh that is substantially directly proportional to the temperature of the load 121R. Therefore, the control unit 50 can estimate the temperature of the load 121R based on the electric resistance value Rh of the load 121R.
  • PTC positive temperature coefficient
  • the temperature change of the electric resistance value of the shunt resistor 190 is smaller than the temperature change of the electric resistance value of the load 121R. Thereby, the accuracy of the estimated value of the temperature of the load 121R calculated using the above equation (3) is improved. More preferably, the shunt resistor 190 has a substantially constant electrical resistance value in the range of operating temperatures of the flavor generating device.
  • the correlation between the remaining amount of the aerosol source and the value related to the electrical resistance value of the load 121R can be determined by an experiment performed in advance.
  • the result of this experiment is stored in the memory 52, for example.
  • the control part 50 can estimate the residual amount of an aerosol source based on the comparison with the experimental result memorize
  • the control unit 50 When estimating the remaining amount of the aerosol source, the control unit 50 turns on the second switch 182 and acquires the amount of voltage drop at the shunt resistor 190 using the above-described second electric circuit C2. As described above, when estimating the remaining amount of the aerosol source, the control unit 50 preferably estimates the voltage drop amount at the shunt resistor 190, that is, the electric resistance value of the load 121R, using the weak current. Thereby, the control part 50 can estimate the residual amount of the aerosol source with energy saving.
  • control unit 50 is configured to be able to estimate the remaining amount of the aerosol source based on the electric resistance value of the load 121R. Not only this but the control part 50 may be comprised so that the residual amount of an aerosol source can be estimated based on the value regarding the electrical resistance value of the load 121R.
  • the value related to the electric resistance value of the load 121R may be the resistance value (Rh) of the load 121R itself, or may be another physical quantity that can be converted into the resistance value (Rh) of the load 121R.
  • Another physical quantity that can be converted into the resistance value (Rh) of the load 121R is, for example, a voltage applied to the load 121R, that is, a potential difference between the pair of connection terminals 111t in a state where the load 121R is connected. Good.
  • the other physical quantity that can be converted into the resistance value (Rh) of the load 121R may be a current value passing through the load 121R.
  • the other physical quantity that can be converted into the resistance value (Rh) of the load 121R may be the temperature of the load 121R.
  • the control unit 50 may be configured to be able to estimate not only the remaining amount of the aerosol source but also the remaining amount of the flavor source.
  • the remaining amount estimation unit is configured to estimate the remaining amount of the aerosol source by measuring the temperature of the load 121R from the resistance value of the shunt resistor 190.
  • the remaining amount estimation unit is configured to estimate the remaining amount of the aerosol source by acquiring the electrical resistance value of the load 121R and measuring the temperature of the load 121R from the acquired electrical resistance value of the load 121R. May be.
  • the electrical resistance value of the load 121R is expressed by the following (3) using the known electrical resistance value of the shunt resistor 190, the voltage value (potential difference) Vh applied to the load 121R, and the output voltage value Vo of the power source 10.
  • Rh Rs ⁇ Vh / (Vo ⁇ Vh) (3)
  • the voltage value (potential difference) Vh applied to the load 121R can be acquired by the voltage sensor 150.
  • the remaining amount of the aerosol source can be estimated by estimating the temperature of the load 121R from the electric resistance value of the load 121R.
  • FIG. 6 shows a flowchart relating to detection of attachment / detachment of the load 121R.
  • the control unit 50 measures or estimates an electrical resistance value between the pair of connection terminals 111t to which the electrical load 121R is to be connected (step S100).
  • the electrical resistance value can be calculated based on, for example, a potential difference between the pair of connection terminals 111t measured by the voltage sensor 150.
  • step S100 is preferably performed in a state where the first switch 180 is OFF and the second switch 182 is ON.
  • control unit 50 detects whether or not the load 121R is connected based on the electric resistance value measured or estimated in step S100 (step S102). When determining that the load 121R is not connected, the control unit 50 sets the power supply to the pair of connection terminals 111t prohibited (step S110).
  • the control unit 50 can inhibit the power supply to the pair of connection terminals 111t by turning off both the first switch 180 and the second switch 182.
  • the prohibition of power supply to the pair of connection terminals 111t is continued until the next time the resistance value between the pair of connection terminals 111t is measured or estimated, or until the connection of the load 121R is detected next. .
  • the control unit 50 determines that the load 121R is connected to the pair of connection terminals 111t, the control unit 50 shifts to the power supply mode (steps S102 and S104).
  • the power supply mode is a mode in which power can be supplied to the pair of connection terminals 111t.
  • the controller 50 may measure or estimate the electrical resistance value of the electrical load 121R connected between the pair of connection terminals 111t even in the power supply mode (step S106). Note that this step S106 is also preferably performed in a state where the first switch 180 is OFF and the second switch 182 is ON, as in step S100. After step S106, the control unit 50 may detect whether or not the load 121R is removed based on the electrical resistance value measured or estimated in step S106 (step S108).
  • control unit 50 determines that the load 121R has been removed, the control unit 50 sets a state in which power supply to the pair of connection terminals 111t is prohibited (step S110). In this case, in order to detect the connection of the load 121R again, the control unit 50 periodically measures or estimates the electrical resistance value between the pair of connection terminals 111t to which the electrical load 121R should be connected. Good.
  • control unit 50 may continue the power supply mode.
  • FIG. 7 is a flowchart illustrating an example of a control method in the power supply mode of the flavor generating apparatus.
  • the power supply mode is a mode in which power can be supplied from the power supply 10 to the load 121R.
  • the power supply mode can be implemented when at least the atomization unit 120 is connected to the power supply unit 110.
  • the control unit 50 may control to shift to the power supply mode by detecting that the load 121R is connected to the connection unit 111t.
  • the control unit 50 determines whether or not a suction request operation by the user has been detected in the power supply mode (step S200).
  • the suction request operation can be detected by the suction sensor 20 or the push button 30 as described above.
  • the control unit 50 controls the first switch 180 based on signals from the suction detection unit such as the sensor 20 and the push button 30, and starts supplying power to the load 121R (step S204). Thereby, the control part 50 supplies the some 121st electric power pulse which can atomize an aerosol source to load 121R.
  • the control unit 50 adjusts, for example, the first power pulse supplied from the power supply 10 to the load 121R by pulse width modulation (PWM) control.
  • PWM pulse width modulation
  • the duty ratio related to the pulse width may be a value smaller than 100%.
  • the control unit 50 may control the amount of power supplied from the power supply 10 to the load 121R by pulse frequency modulation (PFM) control instead of pulse width control.
  • Pulse width modulation and pulse frequency modulation can be implemented by switching the first switch 180 on and off.
  • the control unit 50 may change the power supplied to the load 121R according to the type of the load 121R (atomization unit 120) attached to the pair of connection terminals 111t.
  • the power pulse may be supplied to the load 121R with a duty ratio corresponding to the type of the load 121R (atomization unit 120).
  • the electrical resistance value of the load 121R when the electrical resistance value of the load 121R is high, it is possible to suppress the power supplied to the load 121R from being lowered by increasing the duty ratio. Further, when the electrical resistance value of the load 121R is low, it is possible to suppress the power supplied to the load 121R from becoming too high by reducing the duty ratio. In particular, when the load 121R is an electric heater, overheating and insufficient heating can be prevented by controlling the duty ratio.
  • the power supplied to the load 121R may be lowered by reducing the duty ratio.
  • the power supplied to the load 121R may be increased by increasing the duty ratio. In this case, the power supplied to the load 121R can be appropriately changed according to the characteristics and type of the load 121R.
  • the control unit 50 may start a timer before turning on the first switch 180 as necessary (step S202).
  • the timer can measure the time that has elapsed since the start of power supply to the load 121R.
  • control unit 50 acquires or estimates the temperature of the load 121R (step S206) and acquires or estimates a value related to the resistance value (Rh) of the load 121R as necessary during the control of the power to the load 121R. (Step S208) may be performed.
  • the acquisition or estimation of the temperature and the acquisition or estimation of the value related to the resistance value (Rh) of the load 121R may be performed a plurality of times at an arbitrary timing while the control of the power supply to the load 121 is continued.
  • the control part 50 is comprised so that predetermined
  • step S208 the control unit 50 acquires a value related to the electrical resistance value of the load 121R while flowing a current that can vaporize or atomize the flavor source or the aerosol source to the load 121R. That is, step S208 is performed using a value related to the resistance value (Rh) of the load 121R obtained by turning on the first switch 180.
  • the value related to the resistance value (Rh) of the load 121R may be the resistance value (Rh) of the load 121R itself, or may be another physical quantity that can be converted into the resistance value (Rh) of the load 121R.
  • Another physical quantity that can be converted into the resistance value (Rh) of the load 121R is, for example, a voltage applied to the load 121R, that is, a potential difference between the pair of connection terminals 111t in a state where the load 121R is connected. Good.
  • the other physical quantity that can be converted into the resistance value (Rh) of the load 121R may be a current value passing through the load 121R.
  • the temperature of the load 121R can be acquired by the temperature sensor 160 described above. Alternatively, the temperature of the load 121R can be estimated from the resistance value of the load 121R. Since it is known that the resistance value of the load 121R changes monotonously with temperature, the temperature of the load 121R can be easily estimated from the resistance value of the load 121R.
  • FIG. 8 is a graph showing the timing of various controls during power feeding to the load 121R.
  • the control unit 50 starts supplying power to the load 121 ⁇ / b> R using the first switch 180. Specifically, under the control of the first switch 180, the control unit 50 supplies a plurality of first power pulses that can vaporize or atomize the flavor source or the aerosol source to the load 121R.
  • the control unit 50 may be configured to supply the second power pulse to the load 121R during the period between the first power pulses by the first switch 180 (see FIG. 8).
  • the current value of the second power pulse is smaller than the current value of the first power pulse.
  • the second power pulse is supplied to the load 121R by turning on the second switch 182.
  • the control unit 50 may be configured to acquire a value related to the electrical resistance value of the load 121R connected to the connection unit 111t using the second power pulse by the second switch 182. Thereby, the control unit 50 can detect the presence or absence of the connection of the load 121R, that is, the removal of the load 121R even while supplying power to the load 121R.
  • control unit 50 may detect the remaining amount of the aerosol source using the second power pulse by the second switch 182 as described above. When determining that the aerosol source is exhausted, the control unit 50 may notify the user by the notification unit 40 and stop the supply of power to the load 121R by the first switch 180.
  • control unit 50 determines that the power supply to the load 121R is finished, the control unit 50 turns off the first switch 180 (step S210). When it is not the end timing of the power supply to the load 121R, the control unit 50 continues the power supply to the load 121R by the first switch 180.
  • the end of power supply to the load 121R can be determined, for example, by detecting the end of the suction request operation by the user.
  • the end of the suction request operation may be determined at the timing when the suction sensor 20 detects the end of the suction operation by the user.
  • the end of the suction request operation may be determined at the timing when the release of the push button 30 is detected.
  • the end of the power supply to the load 121R may be determined by elapse of a predetermined cut-off time from the start of power supply to the load 121R.
  • the predetermined cut-off time may be set in advance based on a period required for a general user to perform one suction operation.
  • the predetermined cut-off time may be in the range of about 2 to 5 seconds.
  • control unit 50 may perform the above-described control shown in FIG.
  • FIG. 9 shows an example of a flowchart of a predetermined determination performed based on the value related to the electrical resistance value of the load 121R acquired during power supply to the load 121.
  • the predetermined determination is authentication of the load 121R.
  • the type of the load 121R attached to the connection terminal 111t can be specified, or the regular load 121R and the non-regular load 121R can be determined.
  • the control unit 50 first determines whether the value related to the resistance value of the load 121R acquired in step S208 satisfies the first condition. For example, when the value regarding the resistance value of the load 121R satisfies the first condition, the control unit 50 determines that the type of the load 121R is type A (step S302, step S304). For example, when the value regarding the resistance value of the load 121R satisfies the second condition, the control unit 50 determines that the type of the load 121R is type B (steps S312 and S314).
  • the first condition and the second condition are different from each other.
  • the first condition and the second condition may be in a range of different electrical resistance values.
  • the control is performed.
  • the unit 50 can determine the type of the load 121R.
  • the control unit 50 may perform predetermined control according to the authentication result of the load 121R.
  • the control unit 50 may change control of power supplied to the load 121R according to the type of the load 121R. For example, as described above, the control unit 50 may supply power pulses to the load 121R with a duty ratio corresponding to the type of the load 121R (atomization unit 120).
  • the memory 52 stores information associating the value related to the electrical resistance value of the load 121R with the load 121R. This information can be set by an experiment performed in advance.
  • the control unit 50 can authenticate the load 121R by comparing the acquired value related to the electrical resistance value of the load 121R with the information stored in the memory 52.
  • the control unit 50 determines that an abnormality has occurred (step S320). In this case, the control unit 50 determines that something different from the previously planned load 121R is connected to the connection terminal 111t. In this case, the control unit 50 prohibits the supply of power to the load 121R (S322). The prohibition of power supply to the load 121R is preferably continued until at least removal of the load 121R is detected (S108).
  • step S322 the supply of power to the load 121R is prohibited, but the present invention is not limited to this. For example, if the control unit 50 determines that an abnormality has occurred (step S320), the power supplied to the load 121R may be reduced.
  • Prohibition of power supply to the load 121R can be realized by turning off both the first switch 180 and the second switch 182.
  • the prohibition of power supply to the load 121R may be performed by a switch different from the first switch 180 and the second switch 182 or may be performed by means such as a fuse.
  • the result of authentication of the load 121R described above may be notified to the user by the notification unit 40.
  • the notification unit 40 notifies the user of the result of load authentication by at least one of light, sound, and vibration.
  • the control unit 50 is configured to stop supplying power to the load 121R (step S322) and notify the abnormality via the notification unit 40. It is preferable (step S324).
  • the notification of abnormality by the notification unit 40 is performed by a pattern different from the notification performed when the regular load 121R is detected.
  • step S208 timing for executing step S208, that is, timing for acquiring or estimating a value related to the resistance value of the load 121R for authenticating the load 121R will be described.
  • the value related to the resistance value acquired or estimated in step S208 is used for authentication of the load 121R as shown in FIG. 9, for example. Therefore, the value related to the resistance value of the load 121R is preferably acquired or estimated with high accuracy in step S208.
  • the temperature of the load 121R increases with time.
  • the broken line indicates the temperature rise of the load 121R when power is supplied to the load 121R with a large current by the first switch 180.
  • the solid line indicates the temperature rise of the load 121R when power is supplied to the load 121R with a minute current by the second switch 182.
  • the control unit 50 preferably measures or estimates the electrical resistance value of the load 121R while the temperature of the load 121R is as stable as possible.
  • the control unit 50 acquires a value related to the electrical resistance value of the load 121R based on the rate of change of the value related to the electrical resistance value of the load 121R (step S208), and acquires the acquired value related to the electrical resistance value of the load. It is preferable that a predetermined determination such as authentication of the load 121R is executed based on (FIG. 9).
  • control unit 50 acquires a value related to the electrical resistance value of the load 121R when the rate of change of the value related to the electrical resistance value of the load 121R becomes less than a predetermined threshold (step S208). It is preferable to perform a predetermined determination such as authentication of the load 121R based on a value related to the electrical resistance value of the load (FIG. 9).
  • This predetermined threshold value may be set in advance by an experiment in order to obtain a highly accurate electric resistance value. This predetermined threshold may be 10%, for example.
  • the control unit 50 acquires a value related to the electrical resistance value of the load 121R based on the temperature of the load 121R (step S208), and performs a predetermined determination such as authentication of the load 121R based on the acquired value related to the electrical resistance value of the load. May be configured to execute (FIG. 9).
  • the control unit 50 acquires a value related to the electrical resistance value of the load 121R (step S208), and relates to the acquired electrical resistance value of the load. It is preferable to perform a predetermined determination such as authentication of the load 121R based on the value (FIG. 9).
  • the aforementioned predetermined threshold value related to the temperature of the load 121R may be set in advance by experiments in order to obtain a highly accurate electric resistance value.
  • the temperature of the load 121R increases with time.
  • the temperature of the load 121R is maintained at a certain temperature (hereinafter referred to as “the highest temperature of the aerosol source that reaches normal time”) or “the aerosol generation temperature” It also converges in the vicinity. This is a phenomenon that occurs because the thermal energy used to raise the temperature of the load 121R and the aerosol source is used for evaporation (phase transition) of the aerosol source.
  • the aerosol source is composed of a single solvent
  • the highest temperature of the aerosol source reached at normal time coincides with the boiling point of the solvent.
  • the maximum temperature of the aerosol source reached at normal time varies depending on the composition of various solvents constituting the mixed solvent and the molar ratio thereof.
  • the rate of change of the temperature of the load 121R that is, the rate of change of the value related to the electrical resistance value of the load 121R becomes smaller when the temperature of the load 121R becomes a certain threshold value or more.
  • the rate of change in temperature that is, the rate of change in the value related to the electrical resistance value
  • control unit 50 may be configured to measure the electrical resistance value of the load 121R when the temperature of the load 121R reaches a temperature at which the flavor source or aerosol source can be vaporized or atomized. Thereby, while the value regarding the electrical resistance value of the load 121R is stable, the electrical resistance value of the load 121R can be acquired.
  • step S208 timing for acquiring or estimating a value related to the resistance value of the load 121R for performing authentication of the load 121R will be described.
  • the control unit 50 acquires a value related to the electrical resistance value of the load 121R after a predetermined time has elapsed from the start of power supply to the load 121R (step S208), and based on the acquired value related to the electrical resistance value of the load 121R, It may be configured to execute a predetermined determination such as authentication (FIG. 9).
  • the control unit 50 acquires a value related to the electrical resistance value of the load 121R after a predetermined time has elapsed after detecting the suction request operation by the suction detection unit (step S208), and relates to the acquired electrical resistance value of the load. It may be configured to execute a predetermined determination such as authentication of the load 121R based on the value (FIG. 9).
  • the control unit 50 loads the load 121R while the value related to the electric resistance value is stable.
  • the electrical resistance value of 121R can be acquired.
  • the control unit 50 determines a value related to the electrical resistance value of the load 121R when the number of first power pulses counted from the start of supply of the first power pulse by the first switch 180 reaches a predetermined number. (Step S208), and a predetermined determination such as authentication of the load 121R may be performed based on the acquired value related to the electrical resistance value of the load (FIG. 9).
  • a predetermined determination such as authentication of the load 121R may be performed based on the acquired value related to the electrical resistance value of the load (FIG. 9).
  • the control unit 50 loads the load 121R while the value related to the electric resistance value is stable.
  • the electrical resistance value of 121R can be acquired.
  • control part 50 may be comprised so that the value regarding the electrical resistance value of the load 121R may be acquired with all the 1st electric power pulses. Even in this case, authentication of the load 121R may be performed using the electrical resistance value of the load 121R acquired at the timing described above.
  • control unit 50 may include a program that causes the power supply unit 110 and / or the flavor generation apparatus 100 to execute the above-described method, and a storage medium that stores the program.
  • the flavor generating apparatus 100 includes both an aerosol source that generates an aerosol and a flavor source that includes a tobacco raw material that generates a flavor component and an extract derived from a tobacco raw material.
  • the flavor generating apparatus 100 may include only one of the aerosol source and the flavor source.
  • flavor is defined as a broad concept including not only the flavor component generated from the flavor source but also “aerosol”.
  • the electrical load 121R is configured to act on the aerosol source to vaporize or atomize the aerosol source.
  • the electrical load 121R may be configured to heat the flavor source or flavor unit and release the flavor.
  • the electrical load 121R may be configured to heat both the aerosol source and the flavor source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

香味源又はエアロゾル源を気化又は霧化する電気的な負荷に電力を供給する電源ユニットは、電源と、制御部と、電源と負荷とを電気的に接続する接続部と、を有する。制御部は、負荷への電力の供給から所定時間経過後に、又は負荷の電気抵抗値に関する値の変化率、負荷の温度、もしくは前記負荷に供給する電力パルスの数に基づき、負荷の電気抵抗値に関する値を取得するよう構成されている。

Description

電源ユニット、香味生成装置、方法及びプログラム
 本発明は、電源ユニット及び香味生成装置や、電源ユニット及び香味生成装置に適用される方法及びプログラムに関する。
 シガレットに代わり、香味源をヒータのような電気的負荷で霧化することによって生じた香味(エアロゾルを含む)を味わう電子たばこのような電気式の蒸気吸引装置が知られている(特許文献1及び特許文献2)。
 特許文献1は、加熱対象となる液体の種類に応じて適切な加熱制御を行うために、加熱部の電気抵抗値を読み取ることによって液体の種類を識別し、液体の種類に応じた最適な電力供給を行う技術を開示する。
 特許文献2は、香味生成装置において、加熱部の電気抵抗値を計測する方法を開示する。特許文献2に記載された方法では、カートマイザの加熱部に微弱電流を流しつつ、カートマイザの加熱部の電気抵抗値が計測される。
米国特許公開第2012/0174914号 米国特許公開第2017/0048928号
 第1の特徴は、香味源又はエアロゾル源を気化又は霧化する電気的な負荷に電力を供給する電源ユニットであって、電源と、制御部と、前記電源と前記負荷とを電気的に接続する接続部と、を有し、前記制御部は、前記負荷への電力の供給から所定時間経過後に、又は前記負荷の電気抵抗値に関する値の変化率、前記負荷の温度、もしくは前記負荷に供給する電力パルスの数に基づき、前記負荷の電気抵抗値に関する値を取得するよう構成されていることを要旨とする。
 第2の特徴は、第1の特徴における電源ユニットであって、前記制御部は、取得した前記負荷の電気抵抗値に関する値に基づいて、所定の判断を実行するよう構成されていることを要旨とする。
 第3の特徴は、第2の特徴における電源ユニットであって、前記所定の判断は、前記接続部に接続された負荷の認証であることを要旨とする。
 第4の特徴は、第1の特徴又は第2の特徴における電源ユニットであって、前記負荷の電気抵抗値に関する値と、前記負荷と、を関連づける情報を記憶するメモリを有し、前記制御部は、取得した前記負荷の電気抵抗値に関する値と、前記メモリに記憶されている前記情報との比較によって、前記負荷の認証を行うよう構成されていることを要旨とする。
 第5の特徴は、第3の特徴又は第4の特徴における電源ユニットであって、光、音及び振動のうちの少なくとも1つによって前記負荷の認証の結果を通知する通知部を有することを要旨とする。
 第6の特徴は、第3の特徴から第5の特徴のいずれかにおける電源ユニットであって、前記制御部は、前記負荷の認証の結果が異常である場合、前記負荷への電力を小さくし又は停止し、前記通知部を介して異常を通知するよう構成されていることを要旨とする。
 第7の特徴は、第1の特徴から第6の特徴のいずれかにおける電源ユニットであって、前記所定の判断を実行するために前記負荷の電気抵抗値に関する値を取得するよう構成された第1電気回路と、前記接続部に電気的に連結され、前記第1電気回路と異なる第2電気回路と、を有することを要旨とする。
 第8の特徴は、第7の特徴における電源ユニットであって、前記第1電気回路の電気抵抗値は、前記第2電気回路の電気抵抗値よりも小さいことを要旨とする。
 第9の特徴は、第7の特徴又は第8の特徴における電源ユニットであって、前記第2電気回路は、シャント抵抗を有し、前記シャント抵抗の電気抵抗値の温度変化は、前記負荷の電気抵抗値の温度変化よりも小さいことを要旨とする。
 第10の特徴は、第7の特徴から第9の特徴のいずれかにおける電源ユニットであって、前記制御部は、前記第2電気回路を用いて、前記接続部への負荷の接続の有無、又は前記接続部へ接続された前記負荷の電気抵抗値に関する値を取得するよう構成されていることを要旨とする。
 第11の特徴は、第7の特徴から第10の特徴のいずれかにおける電源ユニットであって、前記制御部は、前記第2電気回路を用いて取得した前記負荷の電気抵抗値に関する値に基づき、前記エアロゾル源又は前記香味源の残量を推定可能に構成されていることを要旨とする。
 第12の特徴は、第1の特徴から第11の特徴のいずれかにおける電源ユニットであって、ユーザによる吸引要求動作を検知する吸引検知ユニットを有し、前記制御部は、前記吸引検知ユニットからの信号に基づき、前記香味源又は前記エアロゾル源を気化又は霧化可能な第1電力パルスを前記負荷に供給するよう構成されていることを要旨とする。
 第13の特徴は、第12の特徴における電源ユニットであって、前記制御部は、前記第1電力パルスを前記負荷に供給することによって前記負荷の電気抵抗値に関する値を取得するよう構成されていることを要旨とする。
 第14の特徴は、第12の特徴又は第13の特徴における電源ユニットであって、前記制御部は、すべての前記第1電力パルスで前記負荷の電気抵抗値に関する値を取得するよう構成されていることを要旨とする。
 第15の特徴は、第12の特徴から第14の特徴のいずれかにおける電源ユニットであって、前記制御部は、前記第1電力パルスの供給開始から数えた前記第1電力パルスの数が所定回数に達した場合に、前記負荷の電気抵抗値に関する値を取得するよう構成されていることを要旨とする。
 第16の特徴は、第12の特徴から第15の特徴のいずれかにおける電源ユニットであって、前記制御部は、前記第1電力パルスどうしの間の期間に、第2電力パルスを前記負荷に供給するよう構成されており、前記第2電力パルスの電流値は、前記第1電力パルスの電流値よりも小さいことを要旨とする。
 第17の特徴は、第12の特徴から第16の特徴のいずれかにおける電源ユニットであって、前記制御部は、前記第2電力パルスを用いて、前記接続部への負荷の接続の有無を取得するよう構成されていることを要旨とする。
 第18の特徴は、第1の特徴から第13の特徴のいずれかにおける電源ユニットであって、前記制御部は、前記負荷の電気抵抗値の変化率が所定の閾値未満になった場合に、前記負荷の電気抵抗値を計測するよう構成されていることを要旨とする。
 第19の特徴は、第1の特徴から第13の特徴のいずれかにおける電源ユニットであって、前記制御部は、前記負荷の温度が、前記香味源又は前記エアロゾル源が気化又は霧化可能な温度に達した場合に、前記負荷の電気抵抗値を計測するよう構成されていることを要旨とする。
 第20の特徴は、第1の特徴から第13の特徴のいずれかにおける電源ユニットであって、前記制御部は、前記負荷へ、前記香味源又は前記エアロゾル源を気化又は霧化可能な第1電力パルスの供給開始から数えた前記第1電力パルスの数が所定回数に達した場合、前記負荷の電気抵抗値に関する値を取得するよう構成されていることを要旨とする。
 第21の特徴は、香味源又はエアロゾル源を気化又は霧化する電気的な負荷に電力を供給する電源ユニットであって、電源と、制御部と、前記電源と前記負荷とを電気的に接続する接続部と、を有し、前記制御部は、前記香味源又は前記エアロゾル源を気化又は霧化可能な電流を前記負荷に流しつつ、前記負荷の電気抵抗値に関する値を取得するよう構成されていることを要旨とする。
 第22の特徴は、香味生成装置であって、第1の特徴から第21の特徴のいずれかの電源ユニットと、前記香味源又は前記エアロゾル源と、前記香味源又は前記エアロゾル源を気化又は霧化する電気的な負荷と、を有することを要旨とする。
 第23の特徴は、香味源又はエアロゾル源を気化又は霧化する電気的な負荷と電源とを電気的に接続する接続部への前記負荷の電気的接続から所定時間経過後に、又は前記負荷の電気抵抗値に関する値の変化率、前記負荷の温度、もしくは前記負荷に供給する電力パルスの数に基づき、前記負荷の電気抵抗値に関する値を取得するステップと、取得した前記負荷の電気抵抗値に関する値に基づいて、所定の判断を実行するステップと、を有する方法を要旨とする。
 第24の特徴は、香味源又はエアロゾル源を気化又は霧化する電気的な負荷に、前記香味源又は前記エアロゾル源を気化又は霧化可能な電流を流しつつ、前記負荷の電気抵抗値に関する値を取得するステップと、取得した前記負荷の電気抵抗値に関する値に基づいて、所定の判断を実行するステップと、を有する、方法を要旨とする。
 第25の特徴は、第23の特徴又は第24の特徴における方法であって、前記所定の判断は、前記接続部に接続された負荷の認証であることを要旨とする。
 第26の特徴は、第23の特徴から第25の特徴のいずれかにおける方法を電子装置に実行させるプログラムを要旨とする。
図1は、一実施形態に係る香味生成装置の模式図である。 図2は、一実施形態に係る霧化ユニットの模式図である。 図3は、一実施形態に係る吸引センサの構成の一例を示す模式図である。 図4は、香味生成装置のブロック図である。 図5は、霧化ユニット及び電源ユニットの電気回路を示す図である。 図6は、負荷の着脱検知に関するフローチャートである。 図7は、給電モードにおける制御方法の一例を示すフローチャートである。 図8は、負荷121Rへの給電中における各種制御のタイミングを示すグラフである。 図9は、所定の判断の一例を示すフローチャートである。 図10は、負荷121Rの温度変化の様子を示すグラフである。
 以下において、実施形態について説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合があることは勿論である。
 [開示の概要]
 前述したように、特許文献2は、カートマイザの加熱部に微弱電流を流しつつ、カートマイザの加熱部の電気抵抗値を計測することを開示する。しかしながら、微弱電流を用いる場合、電流値に対するノイズの影響が高くなることがある。したがって、電気抵抗値の測定値又は推定値の精度が低下することがある。
 また、微弱電流に伴い加熱部の温度が変化すると、加熱部の温度変化に伴い加熱部の電気抵抗値も変化し得る。したがって、加熱部が急激に温度変化している間に加熱部の電気抵抗値を測定又は推定しようとすると、測定又は推定の精度を低下させることもある。
 したがって、前述した少なくとも1つの課題を解決可能な手法が望まれる。
 一態様によれば、香味源又はエアロゾル源を気化又は霧化する電気的な負荷に電力を供給する電源ユニットは、電源と、制御部と、前記電源と前記負荷とを電気的に接続する接続部と、を有する。制御部は、前記負荷への電力の供給から所定時間経過後に、又は前記負荷の電気抵抗値に関する値の変化率、前記負荷の温度、もしくは前記負荷に供給する電力パルスの数に基づき、前記負荷の電気抵抗値に関する値を取得するよう構成されている。
 負荷へ電力の供給を開始したタイミングでは、負荷の温度変化が大きくなり、負荷の電気抵抗値が大きく変化することがある。したがって、負荷への電力の供給から所定時間経過後に、負荷の電気抵抗値に関する値を取得することで、負荷の電気抵抗値の測定値又は推定値の精度の低下を抑制することができる。
 また、負荷の電気抵抗値に関する値の変化率、負荷の温度もしくは負荷に供給する電力パルスの数を測定又は推定すれば、負荷の電気抵抗値が安定しているかどうかを判断することもできる。したがって、負荷の電気抵抗値に関する値の変化率もしくは負荷の温度に基づき負荷の電気抵抗値に関する値を取得すれば、負荷の電気抵抗値の測定値又は推定値の精度の低下を抑制することができる。
 別の態様によれば、香味源又はエアロゾル源を気化又は霧化する電気的な負荷に電力を供給する電源ユニットは、電源と、制御部と、前記電源と前記負荷とを電気的に接続する接続部と、を有する。制御部は、前記香味源又は前記エアロゾル源を気化又は霧化可能な電流を前記負荷に流しつつ、前記負荷の電気抵抗値に関する値を取得するよう構成されている。
 香味源又はエアロゾル源を気化又は霧化可能なくらい大きな電流の場合、微弱電流を用いる場合と比較して、電流値に対するノイズの影響が低くなる。したがって、電気抵抗値の測定値又は推定値の精度の低下を抑制することができる。
 [第1実施形態]
 (香味生成装置)
 以下において、一実施形態に係る香味生成装置について説明する。図1は、一実施形態に係る香味生成装置を示す分解図である。図2は、一実施形態に係る霧化ユニットを示す図である。図3は、一実施形態に係る吸引センサの構成の一例を示す模式図である。図4は、香味生成装置の電気的構成を示すブロック図である。図5は、霧化ユニット及び電源ユニットの電気回路を示す図である。
 香味生成装置100は、燃焼を伴わずに香味を吸引するための非燃焼型の香味吸引器であってよい。香味生成装置100は、非吸口端E2から吸口端E1に向かう方向である所定方向Aに沿って延びる形状を有していてよい。この場合、香味生成装置100は、香味を吸引する吸口141を有する一方の端部E1と、吸口141とは反対側の他方の端部E2と、を含んでいてよい。
 香味生成装置100は、電源ユニット110及び霧化ユニット120を有していてよい。霧化ユニット120は、電源ユニット110に対して機械的な接続部分111,121を介して着脱可能に構成されていてよい。霧化ユニット120と電源ユニット110とが互いに機械的に接続されたときに、霧化ユニット120内の後述する負荷121Rは、電気的な接続端子111t,121tを介して、電源ユニット110に設けられた電源10に電気的に接続される。すなわち、電気的な接続端子111t,121tは、負荷121Rと電源10を電気的に接続可能な接続部を構成する。
 霧化ユニット120は、ユーザにより吸引されるエアロゾル源と、電源10からの電力によりエアロゾル源を霧化する電気的な負荷121Rと、を有する。
 負荷121Rは、電力を受けることによってエアロゾル源121Pからエアロゾルを発生させることができる素子であればよい。例えば、負荷121Rは、電気ヒータのような発熱素子、又は超音波発生器のような素子であってよい。発熱素子としては、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。
 以下では、図1及び図2を参照しつつ、霧化ユニット120のより詳細な一例について説明する。霧化ユニット120は、リザーバ121Pと、ウィック121Qと、負荷121Rと、を有していてよい。リザーバ121Pは、液状のエアロゾル源を貯留するよう構成されていてよい。リザーバ121Pは、例えば、樹脂ウェブ等材料によって構成される多孔質体であってよい。ウィック121Qは、リザーバ121Pから毛管現象を利用してエアロゾル源を引き込む液保持部材であってよい。ウィック121Qは、例えば、ガラス繊維や多孔質セラミックなどによって構成することができる。
 負荷121Rは、ウィック121Qに保持されるエアロゾル源を加熱する。負荷121Rは、例えば、ウィック121Qに巻き回される抵抗発熱体(例えば、電熱線)によって構成される。
 インレット125から流路122Aを通って流入した空気は、霧化ユニット120の内の負荷121R付近を通過する。負荷121Rによって生成されたエアロゾルは、空気とともに吸口141の方へ流れる。
 エアロゾル源は、常温で液体であってよい。例えば、エアロゾル源としては、多価アルコールを用いることができる。エアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。
 なお、上記実施形態では、常温で液体のエアロゾル源についての例を詳細に説明したが、この代わりに、エアロゾル源は、常温で固体のものを用いることもできる。この場合、負荷121Rは、固体状のエアロゾル源からエアロゾルを発生させるため、固体状のエアロゾル源に接し、又は近接していてよい。
 霧化ユニット120は、交換可能に構成された香味ユニット(カートリッジ)130を備えていてもよい。香味ユニット130は、香味源を収容する筒体131を有していてよい。筒体131は、空気やエアロゾル等が通過可能な膜部材133とフィルタ132とを含んでいてよい。膜部材133とフィルタ132とにより構成される空間内に香味源が設けられていてよい。
 好ましい実施形態の一例によれば、香味ユニット130内の香味源は、霧化ユニット120の負荷121Rによって生成されたエアロゾルに香喫味成分を付与する。香味源によってエアロゾルに付与される香味は、香味生成装置100の吸口141に運ばれる。
 香味ユニット130内の香味源は、常温で固体であってよい。一例として、香味源は、エアロゾルに香喫味成分を付与する植物材料の原料片によって構成される。香味源を構成する原料片としては、刻みたばこやたばこ原料のようなたばこ材料を粒状に成形した成形体を用いることができる。この代わりに、香味源は、たばこ材料をシート状に成形した成形体であってもよい。また、香味源を構成する原料片は、たばこ以外の植物(例えば、ミント、ハーブ等)によって構成されてもよい。香味源には、メントールなどの香料が付与されていてもよい。
 香味生成装置100は、使用者が吸引成分を吸引するための吸引口を有するマウスピースを含んでいてよい。マウスピースは、霧化ユニット120又は香味ユニット130に着脱可能に構成されていてもよく、一体不可分に構成されていてもよい。
 電源ユニット110は、電源10、通知部40及び制御部50を有していてよい。電源10は、香味生成装置100の動作に必要な電力を蓄える。電源10は、電源ユニット110に対して着脱可能であってよい。電源10は、例えばリチウムイオン二次電池のような再充電可能な電池であってよい。
 香味生成装置100は、吸引センサ20と、押しボタン30と、電圧センサ150,152と、温度センサ160と、を含んでいてよい。電圧センサ150は、一対の接続端子111tどうしの間の電位差を測定又は推定するよう構成されていてよい。電圧センサ152は、後述するシャント抵抗152の電圧降下を測定又は推定するよう構成されていてよい。温度センサ160は、負荷121Rの温度を測定又は推定するよう構成されていてよい。温度センサ160は、負荷121Rの近くに配置されていてよい。
 制御部50は、電圧センサ150の出力値に応じて、香味生成装置100の動作に必要な各種の制御を行ってもよい。例えば、制御部50は、電源10から負荷121Rへの電力を制御する。また、制御部50は、香味生成装置100の動作に必要な各種の制御を実施するために必要な情報を記憶するメモリ52を有していてもよい。
 霧化ユニット120が電源ユニット110に接続されたとき、霧化ユニット120に設けられた負荷121Rは、電源ユニット110の電源10と電気的に接続される(図5参照)。
 香味生成装置100は、負荷121Rと電源10とを電気的に接続及び切断可能な第1スイッチ180及び第2スイッチ182を含んでいてよい。第1スイッチ180及び第2スイッチ182のそれぞれは、制御部50によって開閉される。第1スイッチ180及び第2スイッチ182は、例えばMOSFETにより構成されていてよい。第1スイッチ180と第2スイッチ182の少なくとも一方がONになると、電源から負荷121Rまでの電気経路が導通し、電源10から負荷121Rへ電力が供給される。
 電源ユニット110は、負荷121Rが電気端子111tに接続されたか否かを判定する判定手段を有していてよい。判定手段は、例えば、一対の電気端子111tどうしの間の電位差、又は電気抵抗値に基づき、負荷121Rの接続の有無を判定すればよい。
 具体的一例として、図5に示すように、電源ユニット110は、負荷121Rの電気抵抗値に関する値を取得するよう構成された第1電気回路C1と、接続部111tに電気的に連結され、第1電気回路C1と異なる第2電気回路C2と、を有していてよい。第1電気回路C1は第1スイッチ180を有しており、第2電気回路2は第2スイッチ182を有している。ここで、第2電気回路C2は、電源10を基準にして第1電気回路C1と並列に接続されていてよい。
 図5に示す電気回路において、第1電気回路C1は、電源10の正極から第1スイッチ180と負荷121Rを経て電源10の負極へ戻る回路である。第2電気回路C2は、電源10の正極から、第2スイッチ182とシャント抵抗190と負荷121Rを経て、電源10の負極へ戻る回路である。第2スイッチ182及びシャント抵抗190は、電源10を基準にして、第1スイッチ180と並列に接続されている。
 第1電気回路C1の電気抵抗値は、第2電気回路C2の電気抵抗値よりも小さい。図5に示す例では、第2電気回路C2がシャント抵抗190を有するため、第2電気回路C2の電気抵抗値は、シャント抵抗190の電気抵抗値の分だけ、第1電気回路C1の電気抵抗値よりも大きくなっている。
 第1スイッチ180がONで、第2スイッチ182がOFFの場合、相対的に大きな電流が負荷121Rへ流れる。本実施形態では、第1スイッチ180がONの場合、香味源又はエアロゾル源を気化又は霧化可能な電流が負荷121Rに流れる。第2スイッチ182がONの場合、相対的に小さい電流が負荷121Rへ流れる。本実施形態では、第2スイッチ182がONの場合、香味源又はエアロゾル源を気化又は霧化するために不十分な電流が負荷121Rに流れることが好ましい。第2スイッチ182がONで、第1スイッチ180がOFFの場合、相対的に小さい電流が負荷121Rへ流れる。第1スイッチ180と第2スイッチ182がOFFの場合、負荷121Rに電流は流れない。
 制御部50は、ユーザによる吸引要求動作を検知する吸引検知ユニットを含んでいてよい。吸引検知ユニットは、例えばユーザにより押される押しボタン30、又はユーザの吸引動作を検出する吸引センサ20であってよい。制御部50は、吸引検知ユニットによって吸引要求動作が検出されたら、負荷121Rを動作させるための指令を生成する。具体的一例では、制御部50は、負荷121Rを動作させるための指令を第1スイッチ180へ出力し、この指令に応じて第1スイッチ180がONになる。
 より具体的には、制御部50は、第1スイッチ180のON、OFFを繰り返すことによって、電力パルスの形態で負荷121Rに電力を供給することが好ましい。このように、制御部50は、吸引検知ユニットからの信号に基づき、エアロゾル源を気化又は霧化可能な第1電力パルスを負荷121Rに供給するよう構成される。電源10から負荷121Rへ電力が供給されると、負荷121Rによりエアロゾル源が気化又は霧化される。
 吸引センサ20は、吸口からの吸引に応じて変動する出力値を出力するよう構成されていてよい。具体的には、吸引センサ20は、非吸口側から吸口側に向けて吸引される空気の流量(すなわち、ユーザのパフ動作)に応じて変化する値(例えば、電圧値又は電流値)を出力するセンサであってよい。そのようなセンサとして、例えば、コンデンサマイクロフォンセンサや公知の流量センサなどが挙げられる。
 図3は、吸引センサ20の具体的一例を示している。図3に例示された吸引センサ20は、センサ本体21と、カバー22と、基板23と、を有する。センサ本体21は、例えば、コンデンサによって構成されている。センサ本体21の電気容量は、インレット125から吸引される空気(すなわち、非吸口側から吸口側に向けて吸引される空気)によって生じる振動(圧力)によって変化する。カバー22は、センサ本体21に対して吸口側に設けられており、開口22Aを有する。開口22Aを有するカバー22を設けることによって、センサ本体21の電気容量が変化しやすく、センサ本体21の応答特性が向上する。基板23は、センサ本体21(コンデンサ)の電気容量を示す値(ここでは、電圧値)を出力する。
 通知部40は、各種の情報をユーザに知らせるための通知を発する。通知部40は、例えばLEDのように光を発する発光素子であってよい。この代わりに、通知部40は、音を発生する素子、又は振動を発するバイブレータであってもよい。また、通知部40は、光、音又は振動を発する素子の組み合わせによって構成されていてもよい。
 香味生成装置100、より具体的には電源ユニット110は、電源ユニット110内の電源10を充電する充電器と接続可能に構成されていてよい。充電器が電源ユニット110に接続されたとき、充電器200は電源ユニット110の電源10と電気的に接続される。充電器を電気的に接続するための電源ユニット110の一対の電気端子は、負荷121Rを電気的に接続するための電源ユニット110の一対の電気端子111tと同じものであってよい。この代わりに、充電器を電気的に接続するための電源ユニット110の一対の電気端子は、一対の電気端子111tとは別個に設けられていてもよい。
 電源ユニット110は、霧化ユニット120に設けられたエアロゾル源の残量を推定する残量推定ユニットを有していてもよい。本実施形態では、残量推定ユニットは、前述の第2電気回路C2によって構成される。具体的には、残量推定ユニットは、第2スイッチ182と、シャント抵抗190と、電圧センサ152とを含む。
 図5に示すように、シャント抵抗190は、負荷121Rと電気的に直列に接続されている。電圧センサ152は、シャント抵抗190と並列に接続されている。電圧センサ152は、シャント抵抗190での電圧降下を測定又は推定することができる。電圧センサ152は、シャント抵抗190における電圧降下量の測定値を制御部50へ出力する。
 残量推定ユニットは、負荷121Rの温度に基づいてエアロゾル源の残量を推定する。シャント抵抗190に流れる電流値Isは、以下の式(1)で求められる。
  Is=Vs/Rs ・・・(1)
 ここで、Vsはシャント抵抗190での電圧降下量であり、Rsはシャント抵抗190の電気抵抗値である。なお、シャント抵抗190に直列に接続された負荷121Rに流れる電流値は、Isと同一である。
 また、電源10の電圧の出力値Voは、以下の式(2)で求められる。
  Vo=Is×(Rs+Rh)・・・(2)
 ここで、Rhは負荷121Rの電気抵抗値である。上記式(1)及び(2)より、負荷121Rの電気抵抗値Rhは、以下の式によって算出又は推定できる。
  Rh=Rs×(Vo-Vs)/Vs・・・(3)
 シャント抵抗190の抵抗値Rsは既知である。したがって、制御部50は、シャント抵抗190の抵抗値Rsと、電圧センサ152によって取得した電圧降下量Vsと、電源10の出力値Voと、によって負荷121Rの電気抵抗値Rhを算出又は推定できる。
 負荷121Rは、正温度係数(PTC)特性を有しており、負荷121Rの温度にほぼ正比例する電気抵抗値Rhを有していてよい。したがって、制御部50は、負荷121Rの電気抵抗値Rhに基づいて負荷121Rの温度を推定することができる。
 シャント抵抗190の電気抵抗値の温度変化は、負荷121Rの電気抵抗値の温度変化よりも小さいことが好ましい。これにより、上記式(3)を用いて算出した負荷121Rの温度の推定値の精度が向上する。より好ましくは、シャント抵抗190は、香味生成装置の使用温度の範囲で実質的に一定の電気抵抗値を有する。
 エアロゾル源の残量と負荷121Rの電気的抵抗値に関する値との相関は、予め行う実験により決定することができる。この実験の結果は、例えばメモリ52に記憶される。これにより、制御部50は、メモリ52に記憶された実験結果と、推定した負荷121Rの温度との比較に基づいて、エアロゾル源の残量を推定することができる。
 エアロゾル源の残量を推定する場合、制御部50は、第2スイッチ182をONにし、前述の第2電気回路C2を用いてシャント抵抗190での電圧降下量を取得する。このように、エアロゾル源の残量を推定する場合、制御部50は、微弱電流を用いて、シャント抵抗190での電圧降下量、すなわち負荷121Rの電気抵抗値を推定することが好ましい。これにより、制御部50は、省エネルギーでエアロゾル源の残量を推定することができる。
 前述したように、制御部50は、負荷121Rの電気抵抗値に基づき、エアロゾル源の残量を推定可能に構成されている。これに限らず、制御部50は、負荷121Rの電気抵抗値に関する値に基づき、エアロゾル源の残量を推定可能に構成されていてよい。ここで、負荷121Rの電気抵抗値に関する値は、負荷121Rの抵抗値(Rh)そのものであってもよく、負荷121Rの抵抗値(Rh)に換算可能な他の物理量であってもよい。負荷121Rの抵抗値(Rh)に換算可能な他の物理量は、例えば、負荷121Rに印加される電圧、すなわち負荷121Rが接続された状態で一対の接続端子111tどうしの間の電位差であってもよい。この他に、負荷121Rの抵抗値(Rh)に換算可能な他の物理量は、負荷121Rを通る電流値であってもよい。また、負荷121Rの抵抗値(Rh)に換算可能な他の物理量は、負荷121Rの温度であってもよい。なお、制御部50は、エアロゾル源の残量だけでなく、香味源の残量を推定可能に構成されていてもよい。
 前述した例では、残量推定ユニットは、シャント抵抗190の抵抗値から負荷121Rの温度を測定することによってエアロゾル源の残量を推定するよう構成されている。この代わりに、残量推定ユニットは、負荷121Rの電気抵抗値を取得し、取得した負荷121Rの電気抵抗値から負荷121Rの温度を測定することによってエアロゾル源の残量を推定するよう構成されていてもよい。この場合、負荷121Rの電気抵抗値は、シャント抵抗190の既知の電気抵抗値と、負荷121Rにかかる電圧値(電位差)Vhと、電源10の出力電圧値Voと、を用いて、以下(3)式のように表される。
 Rh=Rs×Vh/(Vo-Vh)・・・(3)
 なお、負荷121Rにかかる電圧値(電位差)Vhは、電圧センサ150によって取得することができる。
 前述したように、負荷121Rの電気抵抗値から負荷121Rの温度を推定することによって、エアロゾル源の残量を推定することができる。
 (負荷の着脱検知)
 図6は、負荷121Rの着脱検知に関するフローチャートを示す。まず、制御部50は、電気的な負荷121Rが接続されるべき一対の接続端子111tどうしの間の電気抵抗値を測定又は推定する(ステップS100)。この電気抵抗値は、例えば、電圧センサ150によって測定された一対の接続端子111tどうしの間の電位差に基づいて算出することができる。
 負荷121Rの接続の検知では、制御部50は、一対の接続端子111tどうしの間の電位差が比較的大きく変化したことを検知できれば十分である。したがって、一対の接続端子111tどうしの間の電位差の絶対値を精度良く検知する必要は無い。むしろ、省エネルギーで負荷121Rの接続を検知するため、負荷121Rの接続の検知では、電源10から一対の接続端子111tのところへ供給する電流量を小さくすることが好ましい。この観点から、ステップS100は、第1スイッチ180がOFF、かつ第2スイッチ182がONの状態で行われることが好ましい。
 次に、制御部50は、ステップS100で測定又は推定された電気抵抗値に基づき、負荷121Rが接続されたかどうかを検出する(ステップS102)。制御部50は、負荷121Rが接続されていないと判断すると、一対の接続端子111tへの電力供給を禁止した状態にする(ステップS110)。
 制御部50は、第1スイッチ180及び第2スイッチ182の両方をOFFにすることによって一対の接続端子111tへの電力供給を禁止することができる。なお、一対の接続端子111tへの電力供給の禁止は、次に一対の接続端子111tどうしの間の電気抵抗値を測定又は推定するまで、又は次に負荷121Rの接続を検出するまで継続される。
 制御部50は、一対の接続端子111tに負荷121Rが接続されていると判断すると、給電モードに移行する(ステップS102,S104)。ここで、給電モードは一対の接続端子111tへの電力供給が可能なモードであり、給電モード中にユーザにより押しボタン30が押され、又はユーザの吸引動作を吸引センサ20が検出されると、制御部50は、第1スイッチ180をONにし、負荷121Rへ電力の供給を開始する。
 制御部50は、給電モードにおいても、一対の接続端子111tどうしの間に接続された電気的な負荷121Rの電気抵抗値を測定又は推定していてよい(ステップS106)。なお、本ステップS106も、ステップS100と同様に、第1スイッチ180がOFF、かつ第2スイッチ182がONの状態で行われることが好ましい。ステップS106の後、制御部50は、ステップS106で測定又は推定された電気抵抗値に基づき、負荷121Rが取り外されたかどうかを検出すればよい(ステップS108)。
 制御部50は、負荷121Rが取り外されたと判断すると、一対の接続端子111tへの電力供給を禁止した状態にする(ステップS110)。この場合、制御部50は、再度、負荷121Rの接続を検知するため、定期的に電気的な負荷121Rが接続されるべき一対の接続端子111tどうしの間の電気抵抗値を測定又は推定すればよい。
 ステップS108において、負荷121Rが接続されていると判断されると、制御部50は給電モードを継続すればよい。
 (給電モード)
 図7は、香味生成装置の給電モードにおける制御方法の一例を示すフローチャートである。図7に示す制御フローは、制御部50によって実施される。給電モードは、電源10から負荷121Rへ給電可能なモードである。給電モードは、少なくとも電源ユニット110に霧化ユニット120が接続されている場合に実施可能である。制御部50は、接続部111tに負荷121Rが接続されたことを検知することによって、給電モードに移行するよう制御してもよい。
 制御部50は、給電モードにおいて、ユーザによる吸引要求動作を検出したかどうか判断する(ステップS200)。吸引要求動作は、前述したように、吸引センサ20や押しボタン30によって検出可能である。
 制御部50は、センサ20や押しボタン30のような吸引検知ユニットからの信号に基づき、第1スイッチ180を制御し、負荷121Rへ電力の供給を開始する(ステップS204)。これにより、制御部50は、エアロゾル源を霧化可能な複数の第1電力パルスを負荷121Rに供給する。
 制御部50は、例えば、電源10から負荷121Rへ供給する第1電力パルスを、パルス幅変調(PWM)制御によって調整する。パルス幅に関するデューティ比は、100%よりも小さい値であってよい。なお、制御部50は、パルス幅制御に代えてパルス周波数変調(PFM)制御によって、電源10から負荷121Rへ供給する電力量を制御してもよい。パルス幅変調及びパルス周波数変調は、第1スイッチ180のONとOFFの切り替えによって実施できる。
 制御部50は、一対の接続端子111tに取り付けられた負荷121R(霧化ユニット120)の種別に応じて負荷121Rに供給する電力を変えてもよい。例えば、負荷121R(霧化ユニット120)の種別に応じたデューティ比で負荷121Rに電力パルスを供給してもよい。
 より具体的には、負荷121Rの電気抵抗値が高い場合には、デューティ比を高くすることによって負荷121Rに供給される電力が低くなることを抑制することができる。また、負荷121Rの電気抵抗値が低い場合には、デューティ比を低くすることによって負荷121Rに供給される電力が高くなりすぎることを抑制することができる。特に、負荷121Rが電気ヒータの場合には、上記のデューティ比の制御により、過加熱や加熱不足を防止することができる。
 代替的に、負荷121Rの電気抵抗値が高い場合には、デューティ比を低くすることによって負荷121Rに供給される電力を低くしてもよい。同様に、負荷121Rの電気抵抗値が低い場合には、デューティ比を高くすることによって負荷121Rに供給される電力を高くしてもよい。この場合、負荷121Rの特性や種類に応じて、負荷121Rへ供給する電力を適切に変えることができる。
 制御部50は、必要に応じて、第1スイッチ180をONにする前に、タイマを起動してもよい(ステップS202)。この場合、タイマは、負荷121Rに給電を開始した時点から経過した時間を計測することができる。
 また、制御部50は、必要に応じて、負荷121Rへの電力の制御中に、負荷121Rの温度の取得又は推定(ステップS206)と、負荷121Rの抵抗値(Rh)に関する値の取得又は推定(ステップS208)と、を行ってもよい。温度の取得又は推定、及び負荷121Rの抵抗値(Rh)に関する値の取得又は推定は、負荷121への電力供給の制御を継続している間、任意のタイミングで複数回実施すればよい。また、制御部50は、ステップS208で取得した負荷121Rの電気抵抗値に関する値に基づいて、後述するように所定の判断を実行するよう構成されている(図9も参照)。
 ステップS208では、制御部50は、香味源又はエアロゾル源を気化又は霧化可能な電流を負荷121Rに流しつつ、負荷121Rの電気抵抗値に関する値を取得する。すなわち、ステップS208は、第1スイッチ180をONにすることによって取得した負荷121Rの抵抗値(Rh)に関する値を用いて実施する。
 負荷121Rの抵抗値(Rh)に関する値は、負荷121Rの抵抗値(Rh)そのものであってもよく、負荷121Rの抵抗値(Rh)に換算可能な他の物理量であってもよい。負荷121Rの抵抗値(Rh)に換算可能な他の物理量は、例えば、負荷121Rに印加される電圧、すなわち負荷121Rが接続された状態で一対の接続端子111tどうしの間の電位差であってもよい。この他に、負荷121Rの抵抗値(Rh)に換算可能な他の物理量は、負荷121Rを通る電流値であってもよい。
 負荷121Rの温度は、前述した温度センサ160によって取得することができる。この代わりに、負荷121Rの温度は、負荷121Rの抵抗値から推定することもできる。負荷121Rの抵抗値は、温度によって単調に変化することが知られているため、負荷121Rの温度を負荷121Rの抵抗値から容易に推定することができる。
 図8は、負荷121Rへの給電中における各種制御のタイミングを示すグラフである。図8に示す態様では、制御部50は、吸引センサ20によってユーザの吸引動作(流路内の流速の上昇)を検知すると、第1スイッチ180によって負荷121Rへ電力の供給を開始する。具体的には、制御部50は、第1スイッチ180の制御により、香味源又はエアロゾル源を気化又は霧化可能な複数の第1電力パルスを負荷121Rに供給する。
 制御部50は、第1スイッチ180による第1電力パルスどうしの間の期間に、第2電力パルスを負荷121Rに供給するよう構成されていてよい(図8参照)。第2電力パルスの電流値は、前述の第1電力パルスの電流値よりも小さい。具体的には、第2電力パルスは、第2スイッチ182をONにすることによって負荷121Rに供給される。
 制御部50は、第2スイッチ182による第2電力パルスを用いて、接続部111tへ接続された負荷121Rの電気抵抗値に関する値を取得するよう構成されていてよい。これにより、制御部50は、負荷121Rへ電力を供給している間であっても、負荷121Rの接続の有無、すなわち負荷121Rの取り外しを検知することができる。
 また、制御部50は、第2スイッチ182による第2電力パルスを用いて、前述したようにエアロゾル源の残量を検知してもよい。制御部50は、エアロゾル源が枯渇したと判断すると、通知部40によってユーザに通知し、第1スイッチ180による負荷121Rへの電力の供給を停止してもよい。
 制御部50は、負荷121Rへの電力供給を終了すると判断すると、第1スイッチ180をOFFにする(ステップS210)。制御部50は、負荷121Rへの電力供給の終了タイミングではない場合、第1スイッチ180による負荷121Rへの電力供給を継続する。
 負荷121Rへの電力供給の終了は、例えば、ユーザによる吸引要求動作の終了を検出することによって判断できる。例えば、吸引要求動作の終了は、吸引センサ20がユーザによる吸引動作の終了を検知したタイミングで判断されてもよい。この代わりに、吸引要求動作の終了は、押しボタン30の押下の解除を検知したタイミングで判断されてもよい。
 さらに、負荷121Rへの電力供給の終了は、負荷121Rへの電力供給の開始から所定のカットオフ時間を経過したことで判断されてもよい。所定のカットオフ時間は、一般的なユーザが1回の吸引動作に要する期間に基づき予め設定されていてよい。例えば、所定のカットオフ時間は、2~5秒程度の範囲であってよい。
 ユーザが、再び吸引動作を開始した場合、制御部50は、再び図7に示す前述した制御を行えばよい。
 図9は、負荷121への電力供給中に取得した負荷121Rの電気抵抗値に関する値に基づいて行われる所定の判断のフローチャートの一例を示している。本実施形態では、所定の判断は、負荷121Rの認証である。負荷121Rの認証では、例えば、接続端子111tに取り付けられた負荷121Rの種別を特定したり、正規の負荷121Rと非正規の負荷121Rとを判別したりすることができる。
 負荷121Rの認証プロセスにおいて、制御部50は、まず、ステップS208で取得した負荷121Rの抵抗値に関する値が第1条件を満たすかどうか判断する。例えば負荷121Rの抵抗値に関する値が第1条件を満たす場合、制御部50は、負荷121Rの種別がタイプAであると判断する(ステップS302,ステップS304)。また、例えば負荷121Rの抵抗値に関する値が第2条件を満たす場合、制御部50は、負荷121Rの種別がタイプBであると判断する(ステップS312,ステップS314)。ここで、第1条件と第2条件は互いに異なる条件である。
 一例として、第1条件と第2条件は、互いに異なる電気抵抗値の範囲のであってよい。例えば、タイプAの負荷121Rの抵抗値と、タイプBの負荷121Rの抵抗値とが互いに異なる場合、これらの抵抗値に応じて第1条件と第2条件を適切に設定しておけば、制御部50は、負荷121Rの種別を判別することができる。
 制御部50は、負荷121Rの認証結果に応じた所定の制御を行ってもよい。制御部50は、負荷121Rの種別に応じて、負荷121Rに供給する電力の制御を変更してもよい。例えば、前述したように、制御部50は、負荷121R(霧化ユニット120)の種別に応じたデューティ比で負荷121Rに電力パルスを供給してもよい。
 この場合、メモリ52は、負荷121Rの電気抵抗値に関する値と、負荷121Rと、を関連づける情報を記憶する。この情報は、予め行われた実験により設定することができる。制御部50は、取得した負荷121Rの電気抵抗値に関する値と、メモリ52に記憶されている上記情報との比較によって、負荷121Rの認証を行うことができる。
 また、負荷121Rの抵抗値に関する値が第1条件も第2条件も満たさない場合、制御部50は、異常が発生したと判断する(ステップS320)。この場合、制御部50は、予め予定された負荷121Rとは異なるものが、接続端子111tに接続されたと判断する。この場合、制御部50は、負荷121Rへの電力の供給を禁止する(S322)。負荷121Rへの電力の供給を禁止は、少なくとも負荷121Rの取り外しが検出される(S108)まで継続されることが好ましい。
 また、ステップS322では、負荷121Rへの電力の供給が禁止されたが、これに限定されない。例えば、制御部50が異常が発生したと判断する(ステップS320)と、負荷121Rへ供給する電力を低下させてもよい。
 負荷121Rへの電力供給の禁止は、第1スイッチ180と第2スイッチ182の両方をOFFにすることによって実現できる。この代わりに、負荷121Rへの電力供給の禁止は、第1スイッチ180及び第2スイッチ182とは別のスイッチにより行われてもよく、又はヒューズのような手段によって行われてもよい。
 前述した負荷121Rの認証の結果は、通知部40によってユーザに通知されてもよい。通知部40は、例えば、光、音及び振動のうちの少なくとも1つによって負荷の認証の結果をユーザに通知する。
 特に、制御部50は、負荷121Rの認証の結果が異常である場合(ステップS320)、負荷121Rへの電力の供給を停止し(ステップS322)、通知部40を介して異常を通知するよう構成されていることが好ましい(ステップS324)。通知部40による異常の通知は、正規の負荷121Rを検出したときに行われる通知とは異なるパターンによって行われる。
 (負荷の抵抗値に関する値の取得又は推定1)
 次に、ステップS208を実行するタイミング、すなわち負荷121Rの認証を行うための負荷121Rの抵抗値に関する値を取得又は推定するタイミングについて説明する。ステップS208で取得又は推定した抵抗値に関する値は、例えば図9で示すような負荷121Rの認証に使用される。したがって、負荷121Rの抵抗値に関する値は、ステップS208において高い精度で取得又は推定されることが好ましい。
 ここで、図10に示すように、負荷121Rに電力を供給した場合、負荷121Rの温度は時間とともに上昇する。図10において、破線は、第1スイッチ180により大電流で負荷121Rに電力を供給したときの負荷121Rの温度上昇を示している。実線は、第2スイッチ182により微小電流で負荷121Rに電力を供給したときの負荷121Rの温度上昇を示している。
 例えば電気ヒータのような負荷121Rに大電流が供給されたとき、ジュール熱により負荷121Rの温度は急激に上昇する。一方、負荷121Rに微小電流が供給されたとき、負荷121Rの温度は緩やかに上昇する。ここで、負荷121Rの温度が変化すると、負荷121Rの電気抵抗値も温度に応じて変化する。したがって、負荷121Rの電気抵抗値を精度良く検出するため、制御部50は、負荷121Rの温度がなるべく安定している間に負荷121Rの電気抵抗値を測定又は推定することが好ましい。
 このような観点から、制御部50は、負荷121Rの電気抵抗値に関する値の変化率に基づき、負荷121Rの電気抵抗値に関する値を取得し(ステップS208)、取得した負荷の電気抵抗値に関する値に基づいて負荷121Rの認証のような所定の判断を実行するよう構成されることが好ましい(図9)。
 より具体的には、制御部50は、負荷121Rの電気抵抗値に関する値の変化率が所定の閾値未満になったときに、負荷121Rの電気抵抗値に関する値を取得し(ステップS208)、取得した負荷の電気抵抗値に関する値に基づいて負荷121Rの認証のような所定の判断を実行するよう構成されることが好ましい(図9)。この所定の閾値は、精度の高い電気抵抗値を取得するために実験により予め設定すればよい。この所定の閾値は、例えば10%であってよい。
 (負荷の抵抗値に関する値の取得又は推定2)
 次に、ステップS208を実行するタイミング、すなわち負荷121Rの認証を行うための負荷121Rの抵抗値に関する値を取得又は推定するタイミングの別の例について説明する。
 制御部50は、負荷121Rの温度に基づき、負荷121Rの電気抵抗値に関する値を取得し(ステップS208)、取得した負荷の電気抵抗値に関する値に基づいて負荷121Rの認証のような所定の判断を実行するよう構成されていてよい(図9)。
 より具体的には、制御部50は、負荷121Rの温度が所定の閾値以上になったときに、負荷121Rの電気抵抗値に関する値を取得し(ステップS208)、取得した負荷の電気抵抗値に関する値に基づいて負荷121Rの認証のような所定の判断を実行するよう構成されることが好ましい(図9)。負荷121Rの温度に関する前述の所定の閾値は、精度の高い電気抵抗値を取得するために実験により予め設定すればよい。
 図10に示すように、負荷121Rに電力を供給した場合、負荷121Rの温度は時間とともに上昇する。ただし、エアロゾル源が十分にある限り、負荷121Rの温度は、電源10から負荷121Rに給電を継続しても、ある温度(以下、「正常時に到達するエアロゾル源の最高温度」や「エアロゾル生成温度」とも呼ぶ)付近で収束する。これは、負荷121R及びエアロゾル源の昇温に用いられていた熱エネルギーが、エアロゾル源の蒸発(相転移)に用いられるために生じる現象である。エアロゾル源が単一溶媒から構成される場合、正常時に到達するエアロゾル源の最高温度は、当該溶媒の沸点と一致する。一方、エアロゾル源が混合溶媒から構成される場合、正常時に到達するエアロゾル源の最高温度は、混合溶媒を構成する各種溶媒の組成とそのモル比に応じて変化する。
 したがって、負荷121Rの温度の変化率、すなわち負荷121Rの電気抵抗値に関する値の変化率は、負荷121Rの温度がある閾値以上になると、小さくなる。特に、負荷121Rの温度が、香味源又はエアロゾル源が気化又は霧化可能な温度、より具体的には前述の正常時に到達するエアロゾル源の最高温度やエアロゾル生成温度に達した場合に、負荷121Rの温度の変化率(すなわち電気抵抗値に関する値の変化率)が小さくなる。そのため、特に、制御部50は、負荷121Rの温度が、香味源又はエアロゾル源が気化又は霧化可能な温度に達した場合に、負荷121Rの電気抵抗値を計測するよう構成されていてよい。これにより、負荷121Rの電気抵抗値に関する値が安定している間に負荷121Rの電気抵抗値を取得することができる。
 (負荷の抵抗値に関する値の取得又は推定3)
 次に、ステップS208を実行するタイミング、すなわち負荷121Rの認証を行うための負荷121Rの抵抗値に関する値を取得又は推定するタイミングのさらに別の例について説明する。
 制御部50は、負荷121Rへの電力の供給開始から所定時間経過後に、負荷121Rの電気抵抗値に関する値を取得し(ステップS208)、取得した負荷の電気抵抗値に関する値に基づいて負荷121Rの認証のような所定の判断を実行するよう構成されていてよい(図9)。言い換えると、制御部50は、吸引検知ユニットによって吸引要求動作を検出してから、所定時間経過後に、負荷121Rの電気抵抗値に関する値を取得し(ステップS208)、取得した負荷の電気抵抗値に関する値に基づいて負荷121Rの認証のような所定の判断を実行するよう構成されていてよい(図9)。
 負荷121Rへの電力の供給開始から所定時間経過すると、負荷121Rの温度はある程度高くなる。特に、所定時間が、香味源又はエアロゾル源が気化又は霧化可能な温度に達する時間に設定されていれば、制御部50は、負荷121Rの電気抵抗値に関する値が安定している間に負荷121Rの電気抵抗値を取得することができる。
 前述した態様の代わりに、制御部50は、第1スイッチ180による第1電力パルスの供給開始から数えた第1電力パルスの数が所定回数に達した場合に、負荷121Rの電気抵抗値に関する値を取得し(ステップS208)、取得した負荷の電気抵抗値に関する値に基づいて負荷121Rの認証のような所定の判断を実行するよう構成されていてよい(図9)。第1電力パルスの数が所定回数に達すると、負荷121Rの温度はある程度高くなると考えられる。特に、所定回数が、香味源又はエアロゾル源が気化又は霧化可能な温度に達する回数に設定されていれば、制御部50は、負荷121Rの電気抵抗値に関する値が安定している間に負荷121Rの電気抵抗値を取得することができる。
 なお、前述した態様において、制御部50は、すべての第1電力パルスで負荷121Rの電気抵抗値に関する値を取得するよう構成されていてもよい。この場合であっても、負荷121Rの認証は、前述したタイミングで取得した負荷121Rの電気抵抗値を用いて行えばよい。
 (プログラム及び記憶媒体)
 図6~9を用いて説明した前述のフローは、制御部50が実行することができる。すなわち、制御部50は、電源ユニット110及び/又は香味生成装置100に前述の方法を実行させるプログラム、及び当該プログラムが格納された記憶媒体を有していてよい。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、前述した実施形態では、香味生成装置100は、エアロゾルを発生するエアロゾル源と、香喫味成分を発生するたばこ原料やたばこ原料由来の抽出物を含む香味源との両方を含む。この代わりに、香味生成装置100は、エアロゾル源と香味源のいずれか一方のみを含んでいてもよい。
 なお、本明細書において、「香味」という用語は、香味源から生成された香喫味成分のみでなく、「エアロゾル」をも含む広い概念として規定されることに留意されたい。
 また、前述した実施形態では、電気的な負荷121Rは、エアロゾル源に作用しエアロゾル源を気化又は霧化するよう構成されている。この代わりに、電気的な負荷121Rは、香味源又は香味ユニットを加熱し香味を放出するよう構成されていてもよい。さらに、電気的な負荷121Rは、エアロゾル源と香味源の両方を加熱するよう構成されていてもよい。

Claims (26)

  1.  香味源又はエアロゾル源を気化又は霧化する電気的な負荷に電力を供給する電源ユニットであって、
     電源と、
     制御部と、
     前記電源と前記負荷とを電気的に接続する接続部と、を有し、
     前記制御部は、前記負荷への電力の供給から所定時間経過後に、又は前記負荷の電気抵抗値に関する値の変化率、前記負荷の温度、もしくは前記負荷に供給する電力パルスの数に基づき、前記負荷の電気抵抗値に関する値を取得するよう構成されている、電源ユニット。
  2.  前記制御部は、取得した前記負荷の電気抵抗値に関する値に基づいて、所定の判断を実行するよう構成されている、請求項1に記載の電源ユニット。
  3.  前記所定の判断は、前記接続部に接続された負荷の認証である、請求項2に記載の電源ユニット。
  4.  前記負荷の電気抵抗値に関する値と、前記負荷と、を関連づける情報を記憶するメモリを有し、
     前記制御部は、取得した前記負荷の電気抵抗値に関する値と、前記メモリに記憶されている前記情報との比較によって、前記負荷の認証を行うよう構成されている、請求項1又は2に記載の電源ユニット。
  5.  光、音及び振動のうちの少なくとも1つによって前記負荷の認証の結果を通知する通知部を有する、請求項3又は4に記載の電源ユニット。
  6.  前記制御部は、前記負荷の認証の結果が異常である場合、前記負荷への電力を小さくし又は停止し、前記通知部を介して異常を通知するよう構成されている、請求項3から5のいずれか1項に記載の電源ユニット。
  7.  前記所定の判断を実行するために前記負荷の電気抵抗値に関する値を取得するよう構成された第1電気回路と、
     前記接続部に電気的に連結され、前記第1電気回路と異なる第2電気回路と、を有する、請求項1から6のいずれか1項に記載の電源ユニット。
  8.  前記第1電気回路の電気抵抗値は、前記第2電気回路の電気抵抗値よりも小さい、請求項7に記載の電源ユニット。
  9.  前記第2電気回路は、シャント抵抗を有し、
     前記シャント抵抗の電気抵抗値の温度変化は、前記負荷の電気抵抗値の温度変化よりも小さい、請求項7又は8に記載の電源ユニット。
  10.  前記制御部は、前記第2電気回路を用いて、前記接続部への負荷の接続の有無、又は前記接続部へ接続された前記負荷の電気抵抗値に関する値を取得するよう構成されている、請求項7から9のいずれか1項に記載の電源ユニット。
  11.  前記制御部は、前記第2電気回路を用いて取得した前記負荷の電気抵抗値に関する値に基づき、前記エアロゾル源又は前記香味源の残量を推定可能に構成されている、請求項7から10のいずれか1項に記載の電源ユニット。
  12.  ユーザによる吸引要求動作を検知する吸引検知ユニットを有し、
     前記制御部は、前記吸引検知ユニットからの信号に基づき、前記香味源又は前記エアロゾル源を気化又は霧化可能な第1電力パルスを前記負荷に供給するよう構成されている、請求項1から11のいずれか1項に記載の電源ユニット。
  13.  前記制御部は、前記第1電力パルスを前記負荷に供給することによって前記負荷の電気抵抗値に関する値を取得するよう構成されている、請求項12に記載の電源ユニット。
  14.  前記制御部は、すべての前記第1電力パルスで前記負荷の電気抵抗値に関する値を取得するよう構成されている、請求項12又は13に記載の電源ユニット。
  15.  前記制御部は、前記第1電力パルスの供給開始から数えた前記第1電力パルスの数が所定回数に達した場合に、前記負荷の電気抵抗値に関する値を取得するよう構成されている、請求項12から14のいずれか1項に記載の電源ユニット。
  16.  前記制御部は、前記第1電力パルスどうしの間の期間に、第2電力パルスを前記負荷に供給するよう構成されており、
     前記第2電力パルスの電流値は、前記第1電力パルスの電流値よりも小さい、請求項12から15のいずれか1項に記載の電源ユニット。
  17.  前記制御部は、前記第2電力パルスを用いて、前記接続部への負荷の接続の有無を取得するよう構成されている、請求項12から16のいずれか1項に記載の電源ユニット。
  18.  前記制御部は、前記負荷の電気抵抗値の変化率が所定の閾値未満になった場合に、前記負荷の電気抵抗値を計測するよう構成されている、請求項1から13のいずれか1項に記載の電源ユニット。
  19.  前記制御部は、前記負荷の温度が、前記香味源又は前記エアロゾル源が気化又は霧化可能な温度に達した場合に、前記負荷の電気抵抗値を計測するよう構成されている、請求項1から13のいずれか1項に記載の電源ユニット。
  20.  前記制御部は、前記負荷へ、前記香味源又は前記エアロゾル源を気化又は霧化可能な第1電力パルスの供給開始から数えた前記第1電力パルスの数が所定回数に達した場合、前記負荷の電気抵抗値に関する値を取得するよう構成されている、請求項1から13のいずれか1項に記載の電源ユニット。
  21.  香味源又はエアロゾル源を気化又は霧化する電気的な負荷に電力を供給する電源ユニットであって、
     電源と、
     制御部と、
     前記電源と前記負荷とを電気的に接続する接続部と、を有し、
     前記制御部は、前記香味源又は前記エアロゾル源を気化又は霧化可能な電流を前記負荷に流しつつ、前記負荷の電気抵抗値に関する値を取得するよう構成されている、電源ユニット。
  22.  請求項1から21のいずれか1項に記載の電源ユニットと、
     前記香味源又は前記エアロゾル源と、
     前記香味源又は前記エアロゾル源を気化又は霧化する電気的な負荷と、を有する香味生成装置。
  23.  香味源又はエアロゾル源を気化又は霧化する電気的な負荷と電源とを電気的に接続する接続部への前記負荷の電気的接続から所定時間経過後に、又は前記負荷の電気抵抗値に関する値の変化率、前記負荷の温度、もしくは前記負荷に供給する電力パルスの数に基づき、前記負荷の電気抵抗値に関する値を取得するステップと、
     取得した前記負荷の電気抵抗値に関する値に基づいて、所定の判断を実行するステップと、を有する、方法。
  24.  香味源又はエアロゾル源を気化又は霧化する電気的な負荷に、前記香味源又は前記エアロゾル源を気化又は霧化可能な電流を流しつつ、前記負荷の電気抵抗値に関する値を取得するステップと、
     取得した前記負荷の電気抵抗値に関する値に基づいて、所定の判断を実行するステップと、を有する、方法。
  25.  前記所定の判断は、前記接続部に接続された負荷の認証である、請求項23又は24に記載の方法。
  26.  請求項23から25のいずれか1項に記載の方法を電子装置に実行させるプログラム。
PCT/JP2018/022762 2018-06-14 2018-06-14 電源ユニット、香味生成装置、方法及びプログラム WO2019239548A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020525033A JPWO2019239548A1 (ja) 2018-06-14 2018-06-14 電源ユニット、香味生成装置、方法及びプログラム
CN201880095652.4A CN112533498A (zh) 2018-06-14 2018-06-14 电源单元、香味生成装置、方法以及程序
EP18922596.4A EP3808197A4 (en) 2018-06-14 2018-06-14 POWER SUPPLY UNIT AND DEVICE, METHOD AND PROGRAM FOR AROMA GENERATION
PCT/JP2018/022762 WO2019239548A1 (ja) 2018-06-14 2018-06-14 電源ユニット、香味生成装置、方法及びプログラム
TW107120947A TW202000051A (zh) 2018-06-14 2018-06-19 電源單元、香味產生裝置、方法及程式
US17/110,644 US20210084985A1 (en) 2018-06-14 2020-12-03 Power-supply unit, and flavor generating device, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022762 WO2019239548A1 (ja) 2018-06-14 2018-06-14 電源ユニット、香味生成装置、方法及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/110,644 Continuation US20210084985A1 (en) 2018-06-14 2020-12-03 Power-supply unit, and flavor generating device, method and program

Publications (1)

Publication Number Publication Date
WO2019239548A1 true WO2019239548A1 (ja) 2019-12-19

Family

ID=68842119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022762 WO2019239548A1 (ja) 2018-06-14 2018-06-14 電源ユニット、香味生成装置、方法及びプログラム

Country Status (6)

Country Link
US (1) US20210084985A1 (ja)
EP (1) EP3808197A4 (ja)
JP (1) JPWO2019239548A1 (ja)
CN (1) CN112533498A (ja)
TW (1) TW202000051A (ja)
WO (1) WO2019239548A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019180909A1 (ja) * 2018-03-23 2021-02-12 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
JP6923771B1 (ja) * 2021-03-31 2021-08-25 日本たばこ産業株式会社 誘導加熱装置
CN113412068A (zh) * 2020-01-16 2021-09-17 韩国烟草人参公社 气溶胶生成装置
CN113825420A (zh) * 2020-04-13 2021-12-21 韩国烟草人参公社 气溶胶生成装置及其控制方法
CN113973492A (zh) * 2020-05-22 2022-01-25 韩国烟草人参公社 气溶胶生成装置、其工作方法和气溶胶生成装置的烟弹
CN114304736A (zh) * 2020-09-30 2022-04-12 日本烟草产业株式会社 用于气雾剂生成装置的电源单元
WO2023047549A1 (ja) * 2021-09-24 2023-03-30 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
JP2023514733A (ja) * 2020-12-21 2023-04-07 ケーティー アンド ジー コーポレイション エアロゾル生成装置
EP4212982A4 (en) * 2020-12-30 2024-03-13 Jiangmen Moore Technology., Ltd ATOMIZER, HEATING CIRCUIT, METHOD AND READABLE STORAGE MEDIUM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728509B1 (ja) * 2020-03-05 2020-07-22 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット
JP6899012B1 (ja) * 2020-03-05 2021-07-07 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120174914A1 (en) 2011-01-08 2012-07-12 Nasser Pirshafiey Electronic vapor inhaling device
JP2014501107A (ja) * 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 液体気質の消費を取り扱う手段を有するエアロゾル生成システム
JP2016513453A (ja) * 2013-03-07 2016-05-16 アール・ジエイ・レイノルズ・タバコ・カンパニー 電子喫煙具に対する使用済カートリッジ検出方法およびシステム
JP2016531549A (ja) * 2013-08-14 2016-10-13 ピクサン・オーユー 電気気化器を制御するための装置および方法
JP2017501805A (ja) * 2013-12-23 2017-01-19 パックス ラブズ, インク. 気化装置のシステムおよび方法
US20170048928A1 (en) 2014-02-28 2017-02-16 Beyond Twenty Ltd. Electronic vaporiser system
JP2017527266A (ja) * 2014-07-11 2017-09-21 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム カートリッジ検出を備えたエアロゾル発生システム
JP2018514191A (ja) * 2015-03-26 2018-06-07 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム ヒーター管理

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439455B2 (en) * 2010-04-30 2016-09-13 Fontem Holdings 4 B.V. Electronic smoking device
US9814262B2 (en) * 2012-07-11 2017-11-14 Sis Resources, Ltd. Hot-wire control for an electronic cigarette
GB2507104A (en) * 2012-10-19 2014-04-23 Nicoventures Holdings Ltd Electronic inhalation device
TWI659702B (zh) * 2014-04-30 2019-05-21 瑞士商菲利浦莫里斯製品股份有限公司 氣溶膠產生裝置、控制氣溶膠產生裝置之方法、用於氣溶膠產生裝置之電氣電路及電腦程式產品
CN106455718B (zh) * 2014-06-14 2022-07-15 进化有限公司 具有温度感测和限值的电子汽化器
TR201809782T4 (tr) * 2014-07-11 2018-07-23 Philip Morris Products Sa Bir çıkarılabilir ısıtıcı içeren aerosol üretici sistem.
CN104323428B (zh) * 2014-10-24 2017-10-17 林光榕 温控电子烟及其温度控制方法
WO2016091658A1 (en) * 2014-12-11 2016-06-16 Philip Morris Products S.A. Inhaling device with user recognition based on inhalation behaviour
US20170042231A1 (en) * 2015-08-11 2017-02-16 Lunatech, Llc Demonstrative interface for electronic vaporizing device
GB2542012B (en) * 2015-09-01 2020-04-01 Ayr Ltd Electronic vaporiser system
US10278423B2 (en) * 2016-03-11 2019-05-07 Altria Client Services Llc E-vaping device cartridge with internal conductive element
AU2017304338A1 (en) * 2016-07-25 2018-12-13 Philip Morris Products S.A. Heater management
CN109068736B (zh) * 2017-03-06 2021-12-21 日本烟草产业株式会社 电池组件、香味吸入器、控制电池组件的方法、及记录介质
WO2018198152A1 (ja) * 2017-04-24 2018-11-01 日本たばこ産業株式会社 エアロゾル生成装置並びにエアロゾル生成装置の制御方法及びプログラム
CN110418582B (zh) * 2017-04-24 2022-06-14 日本烟草产业株式会社 气溶胶生成装置以及气溶胶生成装置的控制方法及程序
EA039494B1 (ru) * 2017-10-18 2022-02-02 Джапан Тобакко Инк. Устройство, генерирующее компонент для вдыхания, способ управления устройством, генерирующим компонент для вдыхания, и программа
CA3079164C (en) * 2017-10-18 2022-11-01 Japan Tobacco Inc. Inhalation component generation device, method for controlling inhalation component generation device, and program
CA3079154C (en) * 2017-10-18 2023-03-14 Japan Tobacco Inc. Inhalation component generation device, system, control method, and program
PL3692828T3 (pl) * 2017-10-18 2024-01-03 Japan Tobacco Inc. Urządzenie wytwarzające składniki inhalacyjne
EA202091024A1 (ru) * 2017-10-23 2020-07-24 Джапан Тобакко Инк. Устройство, генерирующее компонент для вдыхания, способ управления устройством, генерирующим компонент для вдыхания, и программа
EP3701816B1 (en) * 2017-10-23 2022-07-27 Japan Tobacco Inc. Inhalant component generation device, method for controlling inhalant component generation device, and program
EP4094605A1 (en) * 2017-10-24 2022-11-30 Japan Tobacco Inc. Aerosol generating apparatus and method and program for actuating the same
JP6833075B2 (ja) * 2018-02-02 2021-02-24 日本たばこ産業株式会社 吸引成分生成装置用の外部ユニット、吸引成分生成システム、吸引成分生成装置用の外部ユニットを制御する方法、及びプログラム
PL3738454T3 (pl) * 2018-02-02 2024-05-20 Japan Tobacco Inc. Jednostka zasilająca dla urządzenia wytwarzającego składnik do wdychania

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501107A (ja) * 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 液体気質の消費を取り扱う手段を有するエアロゾル生成システム
US20120174914A1 (en) 2011-01-08 2012-07-12 Nasser Pirshafiey Electronic vapor inhaling device
JP2016513453A (ja) * 2013-03-07 2016-05-16 アール・ジエイ・レイノルズ・タバコ・カンパニー 電子喫煙具に対する使用済カートリッジ検出方法およびシステム
JP2016531549A (ja) * 2013-08-14 2016-10-13 ピクサン・オーユー 電気気化器を制御するための装置および方法
JP2017501805A (ja) * 2013-12-23 2017-01-19 パックス ラブズ, インク. 気化装置のシステムおよび方法
US20170048928A1 (en) 2014-02-28 2017-02-16 Beyond Twenty Ltd. Electronic vaporiser system
JP2017527266A (ja) * 2014-07-11 2017-09-21 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム カートリッジ検出を備えたエアロゾル発生システム
JP2018514191A (ja) * 2015-03-26 2018-06-07 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム ヒーター管理

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3808197A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019180909A1 (ja) * 2018-03-23 2021-02-12 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
JP7352634B2 (ja) 2020-01-16 2023-09-28 ケーティー アンド ジー コーポレイション エアロゾル生成装置
CN113412068B (zh) * 2020-01-16 2024-03-08 韩国烟草人参公社 气溶胶生成装置及其控制方法
CN113412068A (zh) * 2020-01-16 2021-09-17 韩国烟草人参公社 气溶胶生成装置
JP2022520322A (ja) * 2020-01-16 2022-03-30 ケーティー アンド ジー コーポレイション エアロゾル生成装置
CN113825420A (zh) * 2020-04-13 2021-12-21 韩国烟草人参公社 气溶胶生成装置及其控制方法
CN113825420B (zh) * 2020-04-13 2024-02-09 韩国烟草人参公社 气溶胶生成装置及其控制方法和计算机可读记录介质
JP2022533501A (ja) * 2020-04-13 2022-07-25 ケーティー アンド ジー コーポレイション エアロゾル生成装置及びそれを制御する方法
JP7352642B2 (ja) 2020-04-13 2023-09-28 ケーティー アンド ジー コーポレイション エアロゾル生成装置及びそれを制御する方法
CN113973492A (zh) * 2020-05-22 2022-01-25 韩国烟草人参公社 气溶胶生成装置、其工作方法和气溶胶生成装置的烟弹
CN113973492B (zh) * 2020-05-22 2024-03-29 韩国烟草人参公社 气溶胶生成装置及其工作方法
CN114304736A (zh) * 2020-09-30 2022-04-12 日本烟草产业株式会社 用于气雾剂生成装置的电源单元
JP2023514733A (ja) * 2020-12-21 2023-04-07 ケーティー アンド ジー コーポレイション エアロゾル生成装置
JP7403675B2 (ja) 2020-12-21 2023-12-22 ケーティー アンド ジー コーポレイション エアロゾル生成装置
EP4212982A4 (en) * 2020-12-30 2024-03-13 Jiangmen Moore Technology., Ltd ATOMIZER, HEATING CIRCUIT, METHOD AND READABLE STORAGE MEDIUM
JP2022156285A (ja) * 2021-03-31 2022-10-14 日本たばこ産業株式会社 誘導加熱装置
WO2022210636A1 (ja) * 2021-03-31 2022-10-06 日本たばこ産業株式会社 誘導加熱装置
JP6923771B1 (ja) * 2021-03-31 2021-08-25 日本たばこ産業株式会社 誘導加熱装置
WO2023047549A1 (ja) * 2021-09-24 2023-03-30 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット

Also Published As

Publication number Publication date
CN112533498A (zh) 2021-03-19
EP3808197A1 (en) 2021-04-21
US20210084985A1 (en) 2021-03-25
EP3808197A4 (en) 2022-01-12
JPWO2019239548A1 (ja) 2021-06-17
TW202000051A (zh) 2020-01-01

Similar Documents

Publication Publication Date Title
WO2019239548A1 (ja) 電源ユニット、香味生成装置、方法及びプログラム
US11412579B2 (en) Battery unit, flavor inhaler, method of controlling battery unit, and program
US10966465B2 (en) Non-combustion-type flavor inhaler, method, program, and recording medium
TWI702917B (zh) 電池單元、香味吸嚐器、控制電池單元的方法及程式產品
US11589420B2 (en) Battery unit, flavor inhaler, method of controlling battery unit, and program
JP6577113B1 (ja) エアロゾル生成装置、エアロゾル生成装置用の制御ユニット、方法及びプログラム
US20200237009A1 (en) Battery unit, flavor inhaler, method for controlling battery unit, and program
RU2750885C1 (ru) Батарейный блок, устройство для вдыхания ароматизирующего вещества, способ управления батарейным блоком и компьютерно-читаемый носитель данных
JP7308174B2 (ja) エアロゾル生成装置、エアロゾル生成装置用の制御ユニット、方法及びプログラム
JP2020054338A (ja) 電源ユニット
EA041162B1 (ru) Батарейный блок, устройство для вдыхания ароматизирующего вещества, способ управления батарейным блоком и программа

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018922596

Country of ref document: EP

Effective date: 20210114