JP6725836B2 - 切断ガラス板の製造方法及びガラス素板の切断装置 - Google Patents

切断ガラス板の製造方法及びガラス素板の切断装置 Download PDF

Info

Publication number
JP6725836B2
JP6725836B2 JP2016138092A JP2016138092A JP6725836B2 JP 6725836 B2 JP6725836 B2 JP 6725836B2 JP 2016138092 A JP2016138092 A JP 2016138092A JP 2016138092 A JP2016138092 A JP 2016138092A JP 6725836 B2 JP6725836 B2 JP 6725836B2
Authority
JP
Japan
Prior art keywords
infrared
glass
crack
planned cutting
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016138092A
Other languages
English (en)
Other versions
JP2018008842A (ja
Inventor
多門 宏幸
宏幸 多門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2016138092A priority Critical patent/JP6725836B2/ja
Publication of JP2018008842A publication Critical patent/JP2018008842A/ja
Application granted granted Critical
Publication of JP6725836B2 publication Critical patent/JP6725836B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱衝撃を用いたガラス板の切断方法に関するものであり、特に建築用ガラス板の切断方法に関するものである。
従来、一般的な建築用板ガラス(例えばJIS R3202に記載の板ガラス)として用いられる、厚み2mm以上、25mm以下程度のガラス板を切断する方法は、タングステンカーバイトや多結晶ダイヤモンドなどの超硬工具刃によって、切断予定線上の表面にスクライブ線(傷)を入れ、スクライブ線に直行する方向に曲げ応力を加えて折割るという、機械的な手法が用いられて来た。
ところが、上記のような超硬工具刃を用いてスクライブ線を入れると、ガラス板の表層部が必要以上に抉られる事になり、目に見えないような微細なクラックが生じると共に、微小なガラス屑が発生してしまう。クラックは切断面の強度を低下させたり、切断後のガラス板のガラスエッジ品質を悪化させることがある。また、ガラス屑は切断面を汚染し、切断面に新たな傷を生じさせたり、洗浄によって除去し難いという問題があった。
そこで、超硬工具刃等を用いずにガラス板を切断する方法が検討されている。良好な切断面を得られる代表的な方法として、レーザ照射による熱衝撃を利用する種々の手法が挙げられる。例えば特許文献1には、ガラスリボンを割断して矩形状のガラス板を得る割断方法が開示されている。当該文献によると、ガラス板のガラスエッジに予備亀裂を形成し、該予備亀裂の端部近傍に局所的な加熱を加え、その加熱点を移動させることにより亀裂を伝播させ、最後に折割りを行ってガラス板を割断している。尚、局所的な加熱手段としては、レーザや燃焼炎が挙げられている。しかし、レーザによる加熱手段を用いた切断方法は、レーザ出力が高出力なものでも数100Wオーダーであるために、ガラス板の厚みが厚くなると切断出来なくなるという問題があった。
また、特許文献2には、加熱バーナーによって切断予定線付近の温度が130℃以上、該切断予定線を中心に10mm幅の両端部領域左右の温度が最高温度の45%以上となるように加熱し、この加熱部をミストで局所冷却することよって、始点に設けたクラック(亀裂)を伝播させ、最後に折割りを行う切断方法が開示されている。当該文献では、切断予定の領域を加熱する事によって残留応力を緩和させ、該加熱領域をミストで局所冷却することにより、冷却部分に大きな熱衝撃を与え、切断に必要な亀裂を伝播させる引っ張り応力を発生させている。
また、本出願人も、熱衝撃を利用したガラス板の切断装置を出願している(特許文献3)。当該装置は赤外線ラインヒータを集光照射し、ガラス板を非接触かつフルボディで切断する事を可能としており、キリコやマイクロクラック等を生じないものである。
特開平8−231239号公報 特許第4892975号公報 特開2015−44729号公報
前述した熱衝撃を利用してガラス板を切断する方法は、切断面の品質が良好になる為、従来の超硬工具を用いる切断方法よりも有用である。
しかし、特許文献2に開示された方法では、加熱手段がバーナーの燃焼炎である為に、切断予定線に対し両端10mmの領域を加熱するため、亀裂がこの領域内で蛇行する可能性があり、亀裂を直線的に進展させることが難しいと予想される。
また、前述したように本出願人が提案した赤外線ラインヒータを集光照射する装置は、上記の特許文献2に開示された手法よりも切断工程が少なく、簡単な操作で直線性に優れた切断を可能とする。赤外線ラインヒータの出力を上げると切断に必要な時間が短くなるが、その場合、切断予定線の始端付近で亀裂がやや蛇行してしまうという新たな問題が生じることがわかった。
従って、本発明は、熱衝撃を利用したガラス板の切断方法において、亀裂が蛇行しない切断方法を得ることを目的とした。
本出願人が赤外線ラインヒータを用いて鋭意検討を行ったところ、切断予定線の始端付近で生じる亀裂の蛇行は、始端側のガラスエッジよりもガラス板のやや内部側で見られることがわかった。これはガラス板に与えた熱が過剰になる為だと考えられ、ガラスエッジは大気と接する為に放熱するが、ガラスエッジよりガラス板の内部側は放熱が抑えられることにより、熱が溜まってしまったことに起因すると推測される。
上記で得られた知見から、赤外線ラインヒータよりも出力の低い赤外線スポットヒータを始端側のガラスエッジ近傍に照射したところ、上記課題を解決出来ることを見出した。さらに、上記の赤外線スポットヒータの照射位置を、始端側のガラスエッジよりもガラス板のやや内側にすることにより、該ガラスエッジからの亀裂の発生時間が短くなることが新たにわかった。
従って、本発明は、熱衝撃を用いた切断ガラス板の製造方法において、ガラス素板の切断予定線の始端側の端部上に、赤外光を点状に照射し、該ガラス素板を透過する赤外光によって該始端側のガラスエッジから初期伝播亀裂を伝播させる工程1、及び該切断予定線上の該初期伝播亀裂上又は該初期伝播亀裂前方に、赤外光を集光照射し、該初期伝播亀裂を該切断予定線に沿って伝播させた伝播亀裂を形成する工程2、を有し、前記工程1の赤外光の照射領域に、切断予定線の始端側のガラスエッジを含まないことを特徴とする切断ガラス板の製造方法である。
また、本発明は、熱衝撃を用いたガラス素板の切断装置において、載置台上に設置されたガラス素板に、赤外光を照射可能な位置に赤外線照射装置を有し、該赤外線照射装置は赤外光を点状に照射する点状照射装置及び赤外線ラインヒータであることを特徴とするガラス素板の切断装置である。
以上より、本発明により、熱衝撃を利用したガラス板の切断方法において、切断予定線の始端付近で亀裂が蛇行しない切断方法を得る事が可能となった。
本発明の切断予定線、その両端部、及び切断予定線の始端側及び終端側のガラスエッジの位置関係を説明する簡易図である。 本発明の切断装置の好適な実施形態のひとつを示した概略図である。 本発明の切断方法を説明する簡易図である。 切断予定線の終端の終端亀裂について説明する簡易図である。 比較例1の(a)赤外光の照射位置と、(b)形成された初期伝播亀裂と、を説明する簡易図である。 比較例2の(a)COレーザーの照射位置と、(b)形成された初期伝播亀裂と、を説明する簡易図である。
1:用語の説明
本明細書で用いる用語について以下に説明する。また、図1の(a)、(b)には、ガラス素板G、切断予定線L、切断予定線の端部10、及び切断予定線の始端側及び終端側のガラスエッジ1の位置関係を示した。また、本明細書においては、伝播亀裂の進行方向(又はガラス素板の長さ方向)をX方向、X方向と直交するガラス素板の幅方向をY方向、及びガラス切断後に切断面となるガラス素板の板厚方向をZ方向とした。
(ガラス素板)
ガラス素板Gとは、切断の対象とするガラス板のことを指すものとする。例えば、採板直後のフロート板ガラスや、所定形状のガラス板を得る為に材料となるガラス板等が挙げられる。
(切断ガラス板)
切断ガラス板とは、前述したガラス素板Gを切断して得たガラス板を指すものとする。また、本発明によって得られる切断ガラス板は、切断直後の切断面に鏡面を有する。
(切断予定線)
切断予定線Lとは、ガラス素板G上の切断を行う位置を定める直線のラインを指すものとする。また、「切断予定線の端部10」とは、X−Y面上における切断予定線Lの末端部を指し、特に初期伝播亀裂を発生させるX方向マイナス側を「切断予定線の始端10a」、X方向プラス側を「切断予定線の終端10b」としてもよい。また、「切断予定線上」とは、切断予定線Lを含むX−Y面上を指すものとする。また、切断予定線Lを含むX−Z面は切断後に切断面となるが、切断前において切断面に相当する仮想の面を「切断予定面」とする。
(ガラスエッジ)
ガラスエッジ1は、切断予定線Lと接するガラス素板Gの稜部を指す。また、該稜部からY−Z面に垂直に下ろしたライン上も含むとしてよい。一般的に、ガラスエッジ1はガラス素板G内で比較的強度が弱いとされている部分である。
(照射領域)
照射領域とは、赤外光が照射されたガラス素板Gの範囲を指すものとする。また、X−Y面上の照射領域を「照射点」と記載することもある。赤外光を集光照射する場合、焦点がX−Y面上にある時は焦点と照射点がほぼ一致する。また、照射点よりZ方向に進んだガラス素板Gの内部では、赤外光が進行した範囲を指すものとする。
(点状)
「赤外光を点状に照射する」等の「点状」とは、一般的な発光装置で「点状」「スポット状」と呼ぶ程度でよく、幅や長さを特に限定するものではない。例えば、幅、長さともに20mm以下程度としてもよい。
(赤外光)
本明細書における赤外光とは、近赤外線〜中赤外線の波長の光を指すものとする。また、具体的に波長780〜4000nmの赤外線としてもよい。
2:ガラス素板の切断装置
以下に図2を参照しながら本発明の切断装置について説明する。図2は赤外線照射装置として赤外線スポットヒータ20と赤外線ラインヒータ21を1台ずつ用いているが、これに限定されず、それぞれ複数台用いてもよい。また、赤外線スポットヒータ20の代わりに半導体レーザ等を用いて、赤外線ラインヒータ21の代わりに赤外線スポットヒータ20等を用いるものでもよい。また、図2ではガラス素板Gを載せる載置台40として回転ロール41、赤外線照射装置を門型フレーム30に固定しているが、これらに限定されるものではない。
本発明は、熱衝撃を用いたガラス素板Gの切断装置において、載置台40上に設置されたガラス素板Gに、赤外光22を照射可能な位置に赤外線照射装置を有し、該赤外線照射装置は赤外光を点状に照射する点状照射装置(図では赤外線スポットヒータ20)及び赤外線ラインヒータ21であることを特徴とするガラス素板Gの切断装置である。
(ガラス素板G)
ガラス素板Gとしては、一般的な建築用板ガラス(例えばJIS R3202に記載の板ガラス)として用いられる、厚み2mm以上、25mm以下の板状のガラスが好ましい。ただし、この厚みに限定されるものではなく、より厚いガラス板でも本発明の方法によって切断可能である。
ガラス素板Gとしては、赤外光22を吸収するものであれば特に限定するものではないが、例えばソーダライムガラス、石英ガラス、ホウ珪酸ガラス、アルミノシリケートガラス等が挙げられる。また、ガラスのように赤外光22を吸収し、熱歪みが生じる脆性材料であれば、ガラス素板G同様に切断可能であると考えられる。このような脆性材料としては、例えばアルミナ板等の各種セラミック板が挙げられる。
(赤外線照射装置)
赤外線照射装置は、赤外光22を切断予定線L及び切断予定面に集光照射する装置であり、赤外光22を発光する赤外線光源を有する。また、赤外線ラインヒータ21や赤外線スポットヒータ20のように赤外光22を集光する光源の場合は、さらに赤外光22を集光させる集光部とを有する。本明細書では、赤外線照射装置として、少なくとも赤外線スポットヒータ20を用い、図2に示したような好ましい様態として、赤外線スポットヒータ20と赤外線ラインヒータ21を用いている。
赤外線照射装置から照射された赤外光22は、ガラス素板G内への入射時に一部吸収され、吸収されなかった赤外光22はガラス素板G内部を進行する。また、ガラス素板G内部を進行する赤外光22についても一部吸収され、吸収されなかった赤外光22はさらにガラス素板G内部を進行することになる。このようにして、吸収された赤外光22は照射点や切断予定面の温度を上昇させる。そして、照射点のガラス素板G最高温度が約60〜70℃以上になると、亀裂2の伝播が発生する。亀裂2の伝播が生じる際の最高温度や加熱時間は、赤外線照射装置の出力、ガラス素板Gの板厚やガラスエッジの強度、ガラスの種類等によって異なるが、前述した一般的なソーダライムガラスの建築用板ガラスであれば、赤外線スポットヒータ20を用いて集光照射し、ガラス素板Gの照射点の最高温度が約100℃以上になった時、亀裂2の伝播が発生する傾向にある。
赤外線照射装置から発する赤外光22の波長は、近赤外線、中赤外線等から適宜選択すればよい。また、ガラスは一般的に近赤外線領域における透過率が30〜85%程度であり、他の波長領域の光よりも近赤外線領域の光を、ガラスの板厚方向全域で吸収し易い。
また、赤外線照射装置をX方向に搬送させることによって、赤外光22の照射領域よりも切断予定線Lが長い場合でも、切断予定線Lの終端10bまで亀裂2を伝播させることが可能となる。また、Y方向に搬送させると切断予定線Lの位置を適宜選択することが可能となる。また、集光部を有する赤外線照射装置の場合、集光部をZ方向に上下させると焦点の位置を変更することが可能となる。上記のように赤外線照射装置を各方向へ動かす移動機構を、それぞれ設けてもよい。
図示しない集光部は、上記の赤外光22を集光させるものであればよいが、例えば凹面鏡等の反射鏡が挙げられる。反射鏡を用いる場合は、赤外線光源を挟んでガラス素板Gの照射面と向き合うように設置する。また、赤外線光源から発する赤外光22を無駄なく集光するために、赤外線光源を覆うように反射鏡を設置するのが好ましい。また、反射鏡表面を金メッキ処理すると反射率が向上し、より赤外光22を無駄なく集光することができる。
上記の反射鏡の他にも、例えばシリンドリカルレンズ等の各種レンズを用いてもよい。シリンドリカルレンズを用いる場合は、赤外線光源とガラス素板Gとの間に設置する。
また、切断精度を上げることを目的として、赤外光22の照射点における照射幅や照射径は極力狭くするのが好ましい。例えば、赤外線ラインヒータ21の場合は照射幅を1〜5mm程度とするのが一般的であるが、これに限定されるものではない。また、さらに照射幅を狭くするために、図示しない遮光スリットを用いてもよい。
また、赤外線照射装置は、赤外線光源のフィラメントを冷却可能な冷却装置(図示しない)を備えるのが好ましい。該冷却装置はフィラメントを冷却可能であればよく、例えばフィラメント近傍に流路を備え、該流路に冷却水を流す循環冷却装置が挙げられる。フィラメントの発熱が過ぎると、赤外線光源の寿命を短くしたり、装置の故障等の原因となるが、上記の循環冷却装置を用いると過度の発熱を抑制することが可能となる。また、該冷却装置は既存のものであれば特に限定するものではなく、上記の冷却水を用いる装置の他に風冷装置等であってもよい。
(点状照射装置)
点状照射装置は赤外光22を点状に照射する赤外線照射装置であり、前述した赤外光(波長780〜4000nmの赤外線)を発光するものであれば、特に限定されるものではない。例えば赤外線スポットヒータ20、半導体レーザ、チタンサファイアレーザ、ファイバーレーザ、ディスクレーザ、及びYAGレーザ等が挙げられる。目視可能で安全に利用可能なことから赤外線スポットヒータ20を用いて集光照射することが好ましい。また、半導体レーザ、チタンサファイアレーザ、ファイバーレーザ、ディスクレーザ、及びYAGレーザ等の波長780〜4000nmの範囲内の光を発するレーザを用いると、照射径を小さくしやすく切断精度の向上が期待できるため好ましい。また、これらレーザは集光してもしなくても良い。
以下に、点状照射装置として赤外線スポットヒータ20を用いた実施形態について説明する。
(赤外線スポットヒータ20)
赤外線スポットヒータ20は、切断予定線Lの始端側の端部上に赤外光22を集光照射することによって、図3に示すように初期伝播亀裂2bを発生させる。この時、照射領域に該始端側のガラスエッジ1を含まないようにすることで、ガラスエッジ1と赤外光22の照射領域23との温度差を大きくし、ガラスエッジ1に発生する引っ張り応力を高めて、初期伝播亀裂2bを発生させ易くすることが可能である。
赤外線スポットヒータ20の焦点の照射径は、前述したように小さい程切断精度が良くなる。本明細書の実施例では8mmφ程度として、切断精度の良い初期伝播亀裂2bを発生させることができた。また、本発明者の検討によって、照射径が大きくなり過ぎると切断予定線L外のガラスエッジから亀裂が伝播してしまう場合がある事がわかった。従って、照射径を例えば1mmφ以上、20mmφ未満としてもよい。
赤外線スポットヒータ20の赤外光22照射時の出力は、初期伝播亀裂2bが蛇行しない程度の強さであればよい。出力が約2kW程度の赤外線ラインヒータ21を用いて、本発明の赤外線スポットヒータ20と同様の方法で初期伝播亀裂2bを発生させようとしたところ、初期伝播亀裂2bが蛇行してしまうことが本発明者の検討によりわかった。これは過度に加熱してしまった事が原因であると考えられる。本実施例で使用した赤外線スポットヒータ20は約100Wであることから、使用する赤外線スポットヒータ20の出力を、例えば500W以下としてもよい。
(赤外線ラインヒータ21)
赤外線ラインヒータ21は、初期伝播亀裂2bの伝播方向の切断予定線L上に赤外光22を集光照射することによって、初期伝播亀裂2bからさらに亀裂を伝播させ、伝播亀裂2cを発生させる。この時、初期伝播亀裂2bと照射領域が重なるようにしても、初期伝播亀裂2bと数ミリ程度前方(X方向プラス側)の切断予定線L上を照射するものでもよい。
赤外線ラインヒータ21は、赤外光22によって切断予定面を含む領域の温度を上昇させるものであれば、ランプ長やランプ出力は適宜選択すればよい。なお、本発明の実施例においては、赤外線ラインヒータ22として赤外線ランプの長さが120mmで出力が2100Wのものを用いた。
また、同じ出力の赤外線ラインヒータ21同士を比較すると、赤外線光源である赤外線ランプの長さが長い方が、切断速度が速い傾向にある。赤外線ランプの長さを長くするために、赤外線ランプの長い赤外線ラインヒータ21を用いてもよいが、例えば複数の赤外線ラインヒータ21を直線状に並べることで対応することも可能である。この時、赤外線ランプ間の間隔が広いと良好な切断面が得られない事があるため、間隔は極力狭くすることが望ましい。上記の間隔は、例えば2cm程度開いていた場合であっても、ガラス素板Gの切断において支障は生じない。
赤外線ラインヒータ21を用いると伝播亀裂2cを効率良く形成することが可能な為好ましいが、他の赤外線照射装置を用いても差し支えない。例えば出力が1000W以上となるような赤外線スポットヒータ20を用いても良く、また、複数台をライン状に並べて集光照射するのでもよい。
(搬送機構)
図2は、赤外線照射装置の移動機構として門型フレーム30及び搬送レール36を備えている。上記の門型フレーム30は、支持柱31と架橋ロッド32を備え、赤外線スポットヒータ20及び赤外線ラインヒータ21と連結したスライダ33を介して、架橋ロッド32に沿って各赤外線照射装置をX方向へ動かす。また、搬送レール36は門型フレーム30をY方向へ動かすのを可能とする。図2では門型フレーム30と搬送レール36の両方を備えているが、これに限定されるものではない。
(門型フレーム30)
図2では、赤外線照射装置の保持と搬送に門型フレーム30を用いている。門型フレーム30はガラス素板Gを幅方向(X方向)に横切るように配置され、赤外線照射装置とガラス素板Gの表面(X−Y面)とが、平行を保つように赤外線照射装置を保持する。門型フレーム30は、ガラス素板Gの真上をX方向に移動可能なスライダ33を備える。スライダ33はX方向に貫通孔を有し、架橋ロッド32が該貫通孔に挿通されている。また、スライダ33は赤外線照射装置とも連結することによって、赤外線照射装置のY方向及びZ方向の位置を固定し、同時にスライダ33によって赤外線照射装置をX方向へ移動させ、X方向の位置決めを可能としている。
また、図2では、各赤外線照射装置とスライダ33との間に回転部34を有している。当該回転部34によって赤外線照射装置の向きを変えたり、位置を調整することが可能である。また、赤外線ラインヒータ21のように赤外光22をライン状に集光照射する場合は、回転部34によって90度向きを変えることによって、Y方向に亀裂2を伝播させる事が可能になる。
また、図2では門型フレーム30に赤外線スポットヒータ20と赤外線ラインヒータ21の両方を設置している。このようにすることで、照射点を切断予定線L上に揃えることが容易になる。また、赤外線スポットヒータ20は切断予定線Lの始端10a上に照射するものであることから、赤外線ラインヒータ21よりも切断予定線Lの始端10a側に設置するのが望ましい。また、上記のような門型のフレーム30でなくとも、ポール等で各赤外線照射装置を支持するものでもよい。
(搬送レール36)
上記の門型フレーム30は、搬送レール36上を移動可能に設置される。門型フレーム30は支持柱31の下部に搬送スライダ35を備え、搬送スライダ35を介することによって、搬送レール36上をY方向へ移動する。ガラス素板Gを搬送させないで赤外光22を照射する場合や、搬送させながら赤外光22を照射して伝播亀裂2cの伝播速度を調整する場合等に有効である。
また、門型フレーム30は、赤外線照射装置を昇降させる昇降装置(図示しない)を有してもよい。赤外線照射装置を昇降可能とすることによって、赤外線照射装置が集光部を有する場合に、赤外光22の焦点位置を自在に調整することができる。
(載置台40)
載置台40は、ガラス素板Gを所定位置に保持するものである。図2では複数の回転ロール41を載置台40として用いているが、搬送機能のない通常の作業台でもよい。また、切断予定線Lの直下は、ガラス素板Gの裏面と接触しないようにするのが望ましい。これは、赤外線照射装置の照射により、長期使用を経ると載置台40の熱による損傷が懸念されるためである。また、切断予定線L上のガラス素板Gの裏面と接触することによって、載置台40の材質によっては裏面からの放熱を妨げたり、逆に裏面を不必要に冷却することが考えられる。
(制御部)
本発明の切断装置は、図示しない制御部を設けてもよい。制御部は載置台40や赤外線照射装置、搬送機構等と接続し、各装置をコンピューター等で遠隔操作することを可能にする。
(冷却機構)
本発明の切断装置は、図示しない冷却機構を設けてもよい。冷却機構は噴出口を有し、噴出口からガラス素板Gの切断予定線Lの終端10b上に、冷却用の流体を吹き付ける。伝播亀裂2cは、切断予定線Lの終端10b付近で伝播速度が低下する傾向にある為、当該冷却機構を設けることによって、ガラス素板Gの表面から裏面にかけて終端亀裂2dを伝播させることが可能となる。
冷却用の流体は特に限定するものではないが、圧縮空気を用いるのが好ましい。強制冷却を行うことによって被加熱部の表面と内部との間に温度差を生じさせ、表面に引っ張り応力を発生させることが出来れば良いので、例えば、圧縮していない空気や水、ミスト等でもよい。また、この時流体の温度は特に限定するものではないが、例えば噴出口付近での温度が40℃以下、好ましくは室温以下としてもよい。
また、冷却装置は赤外線ラインヒータ21等に連結してもよく、作業者が手持ち等により操作を行うものでもよい。
3:切断ガラス板の製造方法
本発明の切断ガラス板の製造方法について、以下に図3を参照しながら説明する。
本発明は、熱衝撃を用いた切断ガラス板の製造方法において、ガラス素板の切断予定線の始端側の端部上に、赤外光を点状に照射し、該ガラス素板を透過する赤外光によって該始端側のガラスエッジから初期伝播亀裂を伝播させる工程1、及び該切断予定線上の該初期伝播亀裂上又は該初期伝播亀裂前方に、赤外光を集光照射し、該初期伝播亀裂を該切断予定線に沿って伝播させた伝播亀裂を形成する工程2、を有し、前記工程1の赤外光の照射領域に、切断予定線の始端側のガラスエッジを含まないことを特徴とする切断ガラス板の製造方法である。
(工程1)
まず、図2の(a)に示したように、ガラス素板Gの切断予定線Lの始端側の端部10上に、赤外光22を点状に照射(図では赤外線スポットヒータ20を使用)し、図2の(b)に示したように該ガラス素板Gを透過する赤外光22によってガラスエッジ1から初期伝播亀裂2bを伝播させる。この時、前述したように、赤外光22の照射領域に切断予定線Lの該始端側のガラスエッジ1を含まないようにする。
赤外線スポットヒータ20の照射領域23は、上記始端側のガラスエッジ1からX方向プラス側に数ミリ離れた範囲とする。これは、該ガラスエッジ1を加熱しないことで該ガラスエッジ1と照射領域23との間の温度差を大きくし、該ガラスエッジ1に効率良く引っ張り応力を発生させるためである。この時、該ガラスエッジ1と照射領域23との距離は、赤外線スポットヒータ20の照射径や出力に応じて決定すればよい。また、例えば切断予定線Lの始端側のガラスエッジから1〜20mm、X方向プラス側に離れた切断予定線L上を照射するとしてもよい。
赤外線スポットヒータ20の照射時間は特に限定されるものではない。焦点近傍のガラス素板Gの最高温度が60〜70℃以上になると、初期伝播亀裂2bが発生することから、初期伝播亀裂2bが発生するまで該赤外線スポットヒータ20を照射すればよい。尚、本明細書の実施例では、赤外線スポットヒータ20の照射開始から20〜30秒程度で初期伝播亀裂2bの発生が見られた。
発生する初期伝播亀裂2bは、ガラス素板Gの全板厚に亘るものであり、照射領域まで伝播する。また、初期伝播亀裂2bは直線性が良く、切断面にソゲ等が見られないものである。
また、該工程1の前に、切断予定線L上の始端側のガラスエッジ1に初期亀裂2aを形成するのが好ましい。初期亀裂2aの形成方法は特に限定されるものではなく、ガラスカッター等で浅く傷を付ける程度でよい。初期亀裂2aを形成することによって始端側のガラスエッジ1の強度が大きく低下するため、該初期亀裂2aが初期伝播亀裂2bの起点となり、赤外光22の照射時間を短縮させることが可能となる。
(工程2)
次に、図3の(c)に示したように、切断予定線L上の該初期伝播亀裂2b上又は該初期伝播亀裂2b前方に、赤外光22を集光照射し、該初期伝播亀裂2bを該切断予定線Lに沿って伝播させた伝播亀裂2cを形成する。なお、上記の「前方」とは、切断予定線LのX方向プラス側を指すものとする。赤外光22の照射領域に初期伝達亀裂2bが重なっていても、該初期伝達亀裂2bから数ミリ程度前方を照射するのでもよい。また、前方を照射する際の照射領域と初期伝播亀裂2bとの距離は、初期伝達亀裂2bが伝播するのであれば特に限定するものではないが、例えば20mm程度以下としてもよい。
伝播亀裂2cは、初期伝播亀裂2bがさらに伝播した亀裂であり、初期伝播亀裂2bと伝播亀裂2cとは、見た目に大きな違いはない。赤外線ラインヒータ21を用いて初期伝播亀裂2bを形成すると、過度に加熱してしまい、初期伝播亀裂2bが蛇行してしまうが、本発明は赤外線スポットヒータ20を用いて初期伝播亀裂2bを形成することによって上記の蛇行を改善した。しかし、赤外線スポットヒータ20を用いてさらに伝播亀裂2cを形成すると、光源の出力の低さや照射領域の狭さ等の原因により、伝播亀裂2cの伝播速度が不十分になりやすい。従って、伝播亀裂2cを形成する際の赤外線照射装置としては、赤外線ラインヒータ21を用いるのが好ましい。また、赤外線スポットヒータ20を用いる場合でも、例えば高出力の赤外線光源を用いたり、楕円状に集光照射し長軸を切断予定線Lに沿わせたりする事によって、伝播速度を向上させる事が可能である。
また、伝播亀裂2cを形成する際、ガラス素板Gの表面の温度が室温程度まで下がる前に赤外光22の照射を開始してもよい。本発明者が検討した結果、初期伝播亀裂2bの形成と、伝播亀裂2cの形成とでは、前者の方が形成に必要な時間が長い傾向にあり、初期伝播亀裂2bが生じた後の伝播亀裂2cは比較的短時間で形成可能なことがわかった。本実施例では、初期伝播亀裂2bが発生した後、すぐに赤外光22を照射し始めると、照射開始から1秒程度で伝播亀裂2cが発生した。
赤外線照射装置を動かさない場合、伝播亀裂2cは照射領域の終端まで伝播する。ここで赤外光22の照射領域が切断予定線Lの長さより短い場合、伝播亀裂2cが発生した後、図3の(d)に示したように、赤外線照射装置をガラス素板Gに対して相対的に移動させるのが望ましい。このように移動させることによって、切断予定線Lの終端10bまで伝播亀裂2cを伝播させることが可能となる。また、この時、ガラス素板Gを動かすのでも、載置台を動かすのでも、どちらでもよい。
赤外線照射装置を相対的に移動させる場合、移動速度は伝播亀裂2cの伝播速度に合わせればよく、特に限定するものではない。例えば、図3の(d)に示したように、伝播亀裂2cの先端に合わせて赤外線照射装置を移動させてもよい。
伝播亀裂2cは、切断予定線Lの終端10b付近で伝播速度が遅くなる傾向にある。従って、伝播亀裂2cが終端10bまで伝播した後、切断予定線Lの終端10bの表面を冷却するのが好ましい。冷却は、エアガン等の冷却機構から圧縮空気や水、ミストを吹き付ける等によって行うことが可能である。終端10bの表面を冷却することによって、図4に示したように、ガラス素板Gの表面から裏面に亘って終端亀裂2dが生じる。これは、圧縮空気等によってガラス素板G表面が急冷され、ガラス素板G表面と内部との温度差によって、引っ張り応力がガラス素板G表面に誘起される為と推測される。
切断予定線Lの終端10b上を冷却する際、赤外光22は照射していても、照射をやめた状態でも、どちらでもよい。また、表面に引張り応力を誘起させることから、ガラス素板Gの表面の温度が極力高い状態の時に、冷却を開始するのが好ましい。また、冷却を開始するタイミングは、伝播亀裂2cの伝播速度が大きく低下した時としてもよい。このタイミングは装置やガラス素板Gの厚み、大きさ等によって異なるが、切断予定線Lの終端10b側のガラスエッジ1からの距離が20〜50mm程度の位置で伝播速度が大きく低下する傾向にある。
図4に示したように、終端亀裂2dはガラス素板Gの全板厚に亘る亀裂ではない場合がある。その場合は、終端亀裂2dを形成した後に、切断予定線Lの始端10a側からガラス素板Gを割くように力を加えると、図3の(e)に示したように切断予定線Lの全長に渡って亀裂2を伝播させることが可能となる。
また、上記の冷却工程を設けずに伝播亀裂2cを切断予定線Lの終端10bまで伝播させても良い。また、亀裂2の未伝播の部分が数ミリ程度であれば、冷却工程を設けずに始端10a側から割くように力を加えて切断を完了してもよい。
(切断ガラス板)
得られる切断ガラス板は、切断面が鏡面を有する。また、切断面の直線性が良く、切断面の蛇行が抑制されていた。
本発明の実施例及び比較例を以下に示す。
使用した各赤外線照射装置とガラス素板を以下に示す。
赤外線スポットヒータ:ヒートテック社製HPF−35(出力100W、集光径8mmφ、焦点距離30mm)
半導体レーザ:コヒレント社製HL−FAP60(波長808nm、出力20W、集光1mm□、焦点距離70mm)
赤外線ラインヒータ:ハイベック社製 HYL25−28(出力2100W、ランプ長さ12cm、焦点距離25mm)
ガラス素板:フロート板ガラス(ソーダライムガラス、250mm×300mm、厚み15、19、25mm)
載置台としては回転ロールを有する載置台を用いて、切断予定線直下の裏面が空気と触れるように配置した。また、門型フレームを用いて、上記の各赤外線照射装置を連結し、切断予定線に沿って搬送可能とした。
(実施例1)
まず、載置台上にガラス素板を設置し、切断予定線上に集光照射可能な位置に赤外線スポットヒータ及び赤外線ラインヒータを設置した。この時、切断予定線はY方向の中心(Y方向に125mm)とした。次に、切断予定線上の始端側のガラスエッジにガラスカッターで浅く加傷し、初期亀裂を形成した。
(工程1)
次に、始端側の該ガラスエッジから切断予定線のX方向プラス側に10mm離れた位置に、赤外線スポットヒータを集光照射した。この時、赤外線スポットヒータは動かさず、固定照射した。照射開始後約20〜30秒で、該初期亀裂を起点として初期伝播亀裂が発生した。
(工程2)
次に、初期伝播亀裂の先端と重なるように、赤外線ラインヒータを切断予定線上に集光照射した。この時、焦点をガラス素板のX−Y面に合わせ、X−Y面における照射幅を3mmとした。照射開始から1〜3秒程度で伝播亀裂が発生した。次に、赤外線ラインヒータを約1m/分で搬送させ、切断予定線の終端を約5mm程度残した状態で亀裂の伝播速度が低下した為、赤外線ラインヒータを消灯した。
次に、切断予定線の始端側を手で持ち、ガラス素板を水平方向に開くことによって、伝播亀裂を伝播させ切断を完了した。
得られた切断ガラスの切断面は鏡面であり、切断面の蛇行のないものとなった。また、キリコ等のガラス屑が発生も見られなかった。また、使用したいずれの厚みのガラス素板でも、同様に切断面が鏡面で蛇行のない切断ガラスを得た。
(実施例2)
赤外線スポットヒータの代わりに半導体レーザを用いた他は、実施例1と同様の方法で工程1を行い、初期伝播亀裂の形成を行ったところ、照射開始から20〜30秒後に初期亀裂を起点として初期伝播亀裂が発生した。次に、実施例1と同様の方法で工程2以降を行ったところ、実施例1とほぼ同様に切断を完了した。得られた切断ガラスの切断面は鏡面であり、切断面の蛇行のないものとなった。また、キリコ等のガラス屑が発生も見られなかった。また、使用したいずれの厚みのガラス素板でも、同様に切断面が鏡面で蛇行のない切断ガラスを得た。
(比較例1)
赤外線照射装置として赤外線ラインヒータを使用し、図5の(a)に示したように切断予定線Lの始端側のガラスエッジからの距離が10mmの照射領域23を集光照射した他は、実施例1と同様の方法で工程1を行い、初期伝播亀裂2bを作成した。この時、焦点をガラス素板のX−Y面に合わせ、X−Y面における照射幅を3mmとした。集光照射開始後、約8秒で初期伝播亀裂2bが照射領域23内に発生したが、発生した初期伝播亀裂2bは図5の(b)に示したように、切断予定線Lに対しY方向に約3mm蛇行したものとなった。なお、実施例1の照射径の8mmφよりも、本比較例の照射幅が狭い(3mm)にも関わらず、亀裂は照射領域23内で蛇行していた。
(比較例2)
工程1の赤外線照射装置として、COレーザー(コヒレント製GEM−100、ビーム径4mm、出力20W)を用い、切断予定線Lの始端側のガラスエッジから8mmの照射領域23を照射した他は、実施例1と同様の方法で工程1を行い、初期伝播亀裂2bを作成した。照射開始後、約6秒で初期伝播亀裂2bが発生したが、初期伝播亀裂2bは切断予定線L上の照射領域23を越えて約20mm伝播した。また、亀裂の先端は蛇行し、最終的に切断予定線Lに対しY方向に3mm離れた位置に亀裂先端が伝播したところで伝播が終了した。
以上より、本発明により初期伝播亀裂の蛇行を抑制出来ることが明らかとなった。また、比較例1は加熱時の熱量が過度に高かった為に亀裂が蛇行したと考えられる。
また、比較例2で用いたCOレーザは波長が10600nm程度である。当該波長の光はガラス素板の照射点近傍で大部分が吸収され、板厚方向に透過しない。具体的なメカニズムは不明だが、上記のような吸収が生じた結果、照射点近傍の温度が上昇し、ガラス素板の照射点側の表面と、該表面に対向する裏面との間に温度差が生じた為に、実施例とは異なる圧縮応力や引張り応力がガラス素板に生じて、亀裂が照射点を大きく超えて伝播し、さらには先端が蛇行してしまったと考えられる。比較例2のようにCOレーザを用いると、初期伝播亀裂2bの形成時間は短時間だが、亀裂の伝播方向をコントロールするのが難しいことが明らかとなった。
G:ガラス素板、L:切断予定線、1:ガラスエッジ、2:亀裂、2a:初期亀裂、2b:初期伝播亀裂、2c:伝播亀裂、2d:終端亀裂、10:切断予定線の端部、10a:切断予定線の始端、10b:切断予定線の終端、20:赤外線スポットヒータ、21:赤外線ラインヒータ、22:赤外光、23:照射領域、30:門型フレーム、31:支持柱、32:架橋ロッド、33:スライダ、34:回転部、35:搬送スライダ、36:搬送レール、40:載置台、41:回転ロール

Claims (7)

  1. 熱衝撃を用いた切断ガラス板の製造方法において、
    ガラス素板の切断予定線の始端側の端部上に、赤外光を点状に照射し、該ガラス素板を透
    過する赤外光によって該始端側のガラスエッジから初期伝播亀裂を伝播させる工程1、及

    該切断予定線上の該初期伝播亀裂上又は該初期伝播亀裂前方に、赤外光を集光照射し、該
    初期伝播亀裂を該切断予定線に沿って伝播させた伝播亀裂を形成する工程2、を有し、
    前記工程1の赤外光の照射領域に、切断予定線の始端側のガラスエッジを含まないことを
    特徴とする切断ガラス板の製造方法。
  2. 前記工程2が、赤外線ラインヒータを用いて赤外光を集光照射するものであることを特徴
    とする請求項1記載の切断ガラス板の製造方法。
  3. 前記工程1の赤外光の照射領域が、始端側のガラスエッジから1〜20mm離れた切断予
    定線上にあることを特徴とする請求項1又は請求項2に記載の切断ガラス板の製造方法。
  4. 前記工程1が、赤外線スポットヒータを用いて集光照射するものであることを特徴とする
    請求項1乃至請求項3のいずれかに記載の切断ガラス板の製造方法。
  5. 前記工程1が、波長780〜4000nmの範囲内の光を発するレーザを用いるものであ
    ることを特徴とする請求項1乃至請求項3のいずれかに記載の切断ガラス板の製造方法。
  6. 前記工程1の前に、切断予定線上の始端側のガラスエッジに初期亀裂を形成することを特
    徴とする請求項1乃至請求項5のいずれかに記載の切断ガラス板の製造方法。
  7. 前記ガラス素板の厚みが、2〜25mmであることを特徴とする請求項1乃至請求項6の
    いずれかに記載の切断ガラス板の製造方法。
JP2016138092A 2016-07-13 2016-07-13 切断ガラス板の製造方法及びガラス素板の切断装置 Expired - Fee Related JP6725836B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016138092A JP6725836B2 (ja) 2016-07-13 2016-07-13 切断ガラス板の製造方法及びガラス素板の切断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016138092A JP6725836B2 (ja) 2016-07-13 2016-07-13 切断ガラス板の製造方法及びガラス素板の切断装置

Publications (2)

Publication Number Publication Date
JP2018008842A JP2018008842A (ja) 2018-01-18
JP6725836B2 true JP6725836B2 (ja) 2020-07-22

Family

ID=60994941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016138092A Expired - Fee Related JP6725836B2 (ja) 2016-07-13 2016-07-13 切断ガラス板の製造方法及びガラス素板の切断装置

Country Status (1)

Country Link
JP (1) JP6725836B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201946882A (zh) * 2018-05-07 2019-12-16 美商康寧公司 透明氧化物玻璃的雷射誘導分離

Also Published As

Publication number Publication date
JP2018008842A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
CN110121396B (zh) 激光加工层压工件堆叠体的方法
JP5113462B2 (ja) 脆性材料基板の面取り方法
JP5525491B2 (ja) レーザスコアリングにおける亀裂深さの制御
TWI395721B (zh) 由雷射導引迴旋管光束之玻璃片切割
JP6500917B2 (ja) 脆性材料の切断方法、脆性材料の切断装置、切断脆性材料の製造方法及び切断脆性材料
JP5102846B2 (ja) 脆性材料基板の面取り加工方法および面取り加工装置
WO2007094160A1 (ja) ガラス基板の面取り方法および装置
JPH03258476A (ja) レーザ切断方法
RU2011130891A (ru) Способ и система для резки пластины из хрупкого материала, и оконное стекло для транспортного средства
WO2014175147A1 (ja) ガラス板の切断方法
JP2009084089A (ja) ガラス切断装置及び方法
JP2015112644A (ja) 基板切断方法
TW201309608A (zh) 板玻璃、其製造方法、及其製造裝置
JP2000313630A (ja) ガラス融着方法、ガラス融着装置、融着ガラスおよび融着ガラスの製造方法
JP6725836B2 (ja) 切断ガラス板の製造方法及びガラス素板の切断装置
WO2014010600A1 (ja) 湾曲板の製造方法
JP6468385B2 (ja) 板ガラスの切断装置及び方法
TW201328810A (zh) 玻璃板之切斷方法、及玻璃板之切斷裝置
JP2012006795A (ja) 割断方法および割断装置
WO2017002656A1 (ja) ガラス板の切断方法、ガラス板の切断装置、及び切断ガラス板の製造方法
WO2014175146A1 (ja) ガラス板の切断方法
JP2009262408A (ja) 脆性材料基板のスクライブ方法および装置
EP2586751A1 (en) Cutting method and cutting apparatus
WO2014171396A1 (ja) ガラス板の切断方法
JP2020001933A (ja) 切断ガラス板の製造方法、及びガラス板の切断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6725836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees