JP6722718B2 - 燃料電池スタック及びダミーセルの製造方法 - Google Patents

燃料電池スタック及びダミーセルの製造方法 Download PDF

Info

Publication number
JP6722718B2
JP6722718B2 JP2018104760A JP2018104760A JP6722718B2 JP 6722718 B2 JP6722718 B2 JP 6722718B2 JP 2018104760 A JP2018104760 A JP 2018104760A JP 2018104760 A JP2018104760 A JP 2018104760A JP 6722718 B2 JP6722718 B2 JP 6722718B2
Authority
JP
Japan
Prior art keywords
porous body
conductive porous
dummy
adhesive layer
resin frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018104760A
Other languages
English (en)
Other versions
JP2019212378A (ja
Inventor
井上 大輔
大輔 井上
智史 青木
智史 青木
健輔 梅澤
健輔 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018104760A priority Critical patent/JP6722718B2/ja
Priority to US16/354,345 priority patent/US10964968B2/en
Priority to DE102019203743.7A priority patent/DE102019203743B4/de
Priority to CN201910207344.2A priority patent/CN110311160B/zh
Publication of JP2019212378A publication Critical patent/JP2019212378A/ja
Application granted granted Critical
Publication of JP6722718B2 publication Critical patent/JP6722718B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、電解質膜・電極構造体と、電解質膜・電極構造体の外周を周回する樹脂枠部材と、セパレータとを有する発電セルを複数積層した積層体、及び積層体の積層方向の少なくとも一方の端部に配設されるダミーセル備える燃料電池スタック及びダミーセルの製造方法に関する。
一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜(以下、単に電解質膜ともいう)を採用している。燃料電池は、電解質膜の一方の面にアノード電極が配設され、他方の面にカソード電極が配設された電解質膜・電極構造体(MEA)を備えている。
電解質膜・電極構造体をセパレータで挟持することにより、発電セルが構成され、複数個の発電セルを積層することにより、積層体が構成される。この積層体の積層方向両端に、各発電セルによって発電された電荷を集める電力取り出し用のターミナルプレートや、発電セルを積層状態で保持するためのエンドプレート等が設けられて燃料電池スタックが構成される。
ところで、積層体の積層方向の端部側(以下、単に端部側ともいう)は、ターミナルプレート等を介した放熱が促されること等から、該積層体の積層方向の中央側に比べ低温となり易い。外気温等の影響を受けて積層体の端部側が低温となり結露が生じると、反応ガスの拡散性が低下し、燃料電池スタックの発電安定性が低下する懸念がある。
そこで、例えば、特許文献1に開示されている燃料電池スタックでは、積層体の積層方向の少なくとも一方の端部側に、いわゆる、ダミーセルが配設されている。ダミーセルでは、電解質膜の代わりに金属板を用いていることから、発電を行わず、生成水も生じない。このため、ダミーセル自体が、ターミナルプレートと積層体との間で、断熱層として機能する。従って、上記のようにダミーセルを配設することで、積層体の端部側の温度低下を抑制できる。つまり、燃料電池スタックが外気温の影響を受けることを抑制して、発電安定性を向上させることができる。
特許第4727972号公報
本発明は、この種の技術に関連してなされたものであり、局所的な面圧上昇を抑制しつつ発電セルに積層することが可能なダミーセルにより、電解質膜の耐久性を低下させることなく発電安定性を向上させることが可能な燃料電池スタック及びダミーセルの製造方法を提供することを目的とする。
上記の目的を達成するため、本発明は、電解質膜の両側に導電性多孔質体からなるガス拡散層を有する電極がそれぞれ配設された電解質膜・電極構造体と、電解質膜・電極構造体の外周を周回する樹脂枠部材と、電解質膜・電極構造体を挟むセパレータとを有する発電セルを複数積層した積層体、及び積層体の積層方向の少なくとも一方の端部に配設されるダミーセルを備える燃料電池スタックであって、ダミーセルは、電解質膜・電極構造体に対応するダミー構造体と、ダミー構造体の外周を周回するダミー樹脂枠部材と、ダミー構造体を挟むダミーセパレータと、を備え、ダミー構造体は、第1導電性多孔質体と、第1導電性多孔質体より平面寸法が大きい第2導電性多孔質体と、第2導電性多孔質体より平面寸法が大きい第3導電性多孔質体とを積層方向にこの順に積層して形成され、第3導電性多孔質体の外周縁部に樹脂枠部材が接合され、第1導電性多孔質体と第2導電性多孔質体の間に介在して互いを接合する第1接着剤層を硬化させた第1接合層と、第2導電性多孔質体と第3導電性多孔質体の間に介在して互いを接合する第2接着剤層を硬化させた第2接合層との積層方向の位置が互いに異なることを特徴とする。
この燃料電池スタックでは、積層体の積層方向の少なくとも一方の端部に、発電セルの電解質膜・電極構造体に代えて、ダミー構造体を備えるダミーセルが配設される。ダミー構造体では、第1導電性多孔質体及び第2導電性多孔質体を接合する第1接合層と、第2導電性多孔質体及び第3導電性多孔質体とを接合する第2接合層との積層方向の位置が互いに異なる。このため、例えば、第1接合層及び第2接合層が積層方向に同位置に設けられる場合に比して、ダミーセルの厚さが部分的に増大することを抑制できる。このようなダミーセルによれば、発電セルに積層しても、該発電セルに局所的な面圧上昇が生じることを抑制できるため、電解質膜にクリープ等が生じて該電解質膜の耐久性が低下することを抑制できる。
また、ダミーセルは、固体高分子電解質膜や電極触媒層を備えていないため、発電を行うことがなく、発電による生成水も生じない。これによって、ダミーセル自体が断熱層として機能するとともに、ダミーセルで結露が生じることを抑制できる。このダミーセルを、上記のように、積層体の積層方向の少なくとも一方の端部側に設けることで、積層体の端部側の断熱性を高めることができる。このため、低温環境下においても、積層体の端部側の温度が中央側に比して低温となることを抑制できる。つまり、発電安定性を向上させることができる。
さらに、積層体の端部側の断熱性を高めることができるため、燃料電池スタックを氷点下環境で始動する場合であっても、積層体の全体を有効に昇温させることができる。これによって、積層体の端部側で生成水等が凍結して、電圧低下が生じることを抑制できる。
以上から、この燃料電池スタックによれば、局所的な面圧上昇を抑制しつつ発電セルに積層することが可能なダミーセルにより、電解質膜の耐久性を低下させることなく発電安定性を向上させることが可能になる。
上記の燃料電池スタックにおいて、第1接合層は、第1導電性多孔質体及び第2導電性多孔質体の積層部である第1積層部の縁部に断続的に設けられるスポット状であり、第2接合層は、第2導電性多孔質体及び第3導電性多孔質体の積層部である第2積層部の縁部に断続的に設けられるスポット状である。この場合、第1積層部及び第2積層部の外周に連続して第1接合層及び第2接合層を設けるよりも、簡素な工程でダミー構造体を得ることができるため、燃料電池スタックの製造効率を向上させることが可能になる。
上記の燃料電池スタックにおいて、第1積層部及び第2積層部の周方向に、第1接合層と第2接合層とが交互に配置されることが好ましい。この場合、第1導電性多孔質体と、第2導電性多孔質体と、第3導電性多孔質体とを、簡素な接合工程により十分な強度で接合することができ、しかも、ダミーセルに積層された発電セルに局所的な面圧上昇が生じることを効果的に抑制することが可能になる。
上記の燃料電池スタックにおいて、第1導電性多孔質体と第2導電性多孔質体と第3導電性多孔質体とのそれぞれの平面寸法は矩形状であり、該矩形状の短辺を除く長辺に第1接合層及び第2接合層が設けられることが好ましい。この場合、発電セルにダミーセルを積層することによる内部抵抗の増加を抑制できるため、発電性能に影響を及ぼすことなくダミーセルを設けることが可能になる。
上記の燃料電池スタックにおいて、第2導電性多孔質体は、第1導電性多孔質体より平面寸法が大きく、第3導電性多孔質体は、第2導電性多孔質体より平面寸法が大きく、ダミー樹脂枠部材は、外周縁部と、外周縁部の内周端から第1段差面を介して全周に亘って内方に突出した棚部と、棚部の内周端から第2段差面を介して全周に亘って内方に突出した薄肉部とを有し、第3導電性多孔質体の外周縁部は、ダミー樹脂枠部材の棚部に重なり、第2導電性多孔質体の外周縁部は、ダミー樹脂枠部材の薄肉部に臨み、第1導電性多孔質体の外周端面は、ダミー樹脂枠部材の内周端面に対向することが好ましい。
上記の燃料電池スタックにおいて、第2導電性多孔質体の厚さは、第2段差面の高さよりも大きいことが好ましい。
上記の燃料電池スタックにおいて、ダミー樹脂枠部材の薄肉部と、第3導電性多孔質体との間には、空間が形成されることが好ましい。
また、本発明は、電解質膜の両側に導電性多孔質体からなるガス拡散層を有する電極がそれぞれ配設された電解質膜・電極構造体と、電解質膜・電極構造体の外周を周回する樹脂枠部材と、電解質膜・電極構造体を挟むセパレータとを有する発電セルを複数積層した積層体を備える燃料電池スタックの積層体の積層方向の少なくとも一方の端部に配設されるダミーセルの製造方法であって、第1導電性多孔質体と、第1導電性多孔質体より平面寸法が大きい第2導電性多孔質体と、第2導電性多孔質体より平面寸法が大きい第3導電性多孔質体とを、第1導電性多孔質体と第2導電性多孔質体の間に第1接着剤層を介在させ、且つ第2導電性多孔質体と第3導電性多孔質体との間に第2接着剤層を介在させて積層方向にこの順に積層する第1積層工程と、第1接着剤層及び第2接着剤層を硬化させて、第1導電性多孔質体と第2導電性多孔質体とを接合する第1接合層、及び第2導電性多孔質体と第3導電性多孔質体とを接合する第2接合層をそれぞれ形成することで、電解質膜・電極構造体に対応するダミー構造体を得る硬化工程と、ダミー構造体の第3導電性多孔質体の外周縁部に、該ダミー構造体の外周を周回するダミー樹脂枠部材を接合して樹脂枠付きダミー構造体を得る樹脂枠接合工程と、樹脂枠付きダミー構造体をダミーセパレータで挟んでダミーセルを得る第2積層工程と、を有し、第1積層工程により、積層方向の位置が互いに異なるように第1接着剤層及び第2接着剤層を設けることで、硬化工程により、積層方向の位置が互いに異なる第1接合層と第2接合層とを形成すること、を特徴とする。
このダミーセルの製造方法によれば、積層方向における位置が互いに異なる第1接合層及び第2接合層が設けられたダミー構造体を備えるダミーセルを得ることができる。このようなダミーセルでは、第1接合層及び第2接合層が互いに同位置に設けられた場合に比して、厚さが部分的に増大することを抑制できるため、発電セルに積層しても、該発電セルに局所的な面圧上昇が生じることを抑制できる。これによって、発電セルの電解質膜にクリープ等が生じて耐久性が低下することを抑制できる。
また、ダミーセルは、発電を行うことがなく、生成水も生じないため、断熱層として機能する。このようなダミーセルを、積層体の積層方向の少なくとも一方の端部に設けた燃料電池スタックでは、該積層体の端部側の断熱性を高めることができるため、発電安定性を向上させることができる。
以上から、このダミーセルの製造方法によれば、局所的な面圧上昇を抑制しつつ発電セルに積層することが可能なダミーセルを得ることができ、このダミーセルを備える燃料電池スタックの電解質膜の耐久性を低下させることなく発電安定性を向上させることが可能になる。
上記のダミーセルの製造方法において、硬化工程では、第1積層工程で積層した第1導電性多孔質体と第2導電性多孔質体と第3導電性多孔質体とに、燃料電池スタックの発電動作時に付与される面圧と同じ大きさの面圧を付与した状態で、第1接着剤層及び第2接着剤層を硬化させることが好ましい。このようにして面圧を付与した状態で第1接合層及び第2接合層を形成したダミーセルでは、燃料電池スタックに組み込まれた際に、発電セルに局所的な面圧上昇が生じることを一層効果的に抑制できる。
上記のダミーセルの製造方法において、第1積層工程では、第1導電性多孔質体と第2導電性多孔質体の積層部である第1積層部の縁部に断続的にスポット状の第1接着剤層を設け、第2導電性多孔質体と第3導電性多孔質体の積層部である第2積層部の縁部に断続的にスポット状の第2接着剤層を設ける。この場合、例えば、第1積層部及び第2積層部の縁部に連続して第1接合層及び第2接合層を設ける場合より、簡素な工程で効率的にダミーセルを得ることができる。
上記のダミーセルの製造方法において、第1積層工程では、第1積層部及び第2積層部の周方向に、第1接着剤層と第2接着剤層とを交互に配置することが好ましい。この場合、第1導電性多孔質体と、第2導電性多孔質体と、第3導電性多孔質体とを、簡素な接合工程により十分な強度で接合することができ、しかも、発電セルに積層した際に局所的な面圧上昇が生じることを効果的に抑制可能なダミーセルを得ることができる。
上記のダミーセルの製造方法において、第1積層工程では、平面寸法がそれぞれ矩形状である第1導電性多孔質体と第2導電性多孔質体と第3導電性多孔質体との短辺を除く長辺に第1接着剤層及び第2接着剤層を設けることが好ましい。この場合、発電セルにダミーセルを積層することによる内部抵抗の増加を抑制でき、発電性能に影響を及ぼすことなく燃料電池スタックに組み込むことが可能なダミーセルを得ることが可能になる。
本発明によれば、局所的な面圧上昇を抑制しつつ発電セルに積層することが可能なダミーセルにより、電解質膜の耐久性を低下させることなく燃料電池スタックの発電安定性を向上させることができる。
本発明の実施形態に係る燃料電池スタックの分解斜視図である。 図1の燃料電池スタックのII−II線矢視断面図である。 発電セルの分解斜視図である。 第1セパレータの酸化剤ガス流路側の正面図である。 第2セパレータの酸化剤ガス流路側の正面図である。 第3セパレータの冷却媒体流路側の正面図である。 樹脂枠付きMEAのアノード電極側の正面図である。 図7のVIII−VIII線矢視断面図である。 樹脂枠付きダミー構造体の第3導電性多孔質体側の正面図である。 図9のX−X線矢視断面図である。 ダミー構造体の分解斜視図である。 ダミー構造体の第1導電性多孔質体側の平面図である。 図12のXIII−XIII線矢視断面図である。 ダミー第1セパレータ及びダミー第2セパレータの第2空間側の正面図である。
本発明に係る燃料電池スタック及びダミーセルの製造方法について好適な実施形態を挙げ、添付の図面を参照しながら詳細に説明する。なお、以下の図において、同一又は同様の機能及び効果を奏する構成要素に対しては同一の参照符号を付し、繰り返しの説明を省略する場合がある。
図1及び図2に示すように、本実施形態に係る燃料電池スタック10は、複数の発電セル12が水平方向(矢印A1、A2方向)又は重力方向(矢印C1、C2方向)に積層された積層体14を備える。この燃料電池スタック10は、例えば、図示しない燃料電池電気自動車等の燃料電池車両に搭載される。
図2に示すように、積層体14の積層方向一端側(矢印A1側)には、第1端部発電ユニット16、第1ダミーセル18及び第2ダミーセル20が外方に向かって配置される。また、積層体14の積層方向他端側(矢印A2側)には、第2端部発電ユニット22及び第3ダミーセル24が外方に向かって配置される。積層体14の第2ダミーセル20よりも外方側(矢印A1側)には、ターミナルプレート26a、インシュレータ28a及びエンドプレート30aがこの順に積層される。積層体14の第3ダミーセル24よりも外方側(矢印A2側)には、ターミナルプレート26b、インシュレータ28b及びエンドプレート30bがこの順に積層される。
図1に示すように、矩形状からなるエンドプレート30a、30bの各辺間には、連結バー(不図示)が配置される。各連結バーは、両端をエンドプレート30a、30bの内面にボルト(不図示)等を介して固定され、複数の積層された発電セル12に積層方向(矢印A1、A2方向)の締め付け荷重を付与する。なお、燃料電池スタック10では、エンドプレート30a、30bを端板とする筐体を備え、前記筐体内に積層体14等を収容するように構成してもよい。
図3に示すように、発電セル12は、第1セパレータ32と、樹脂枠付きMEA34と、第2セパレータ36と、樹脂枠付きMEA34と、第3セパレータ38とがこの順に積層されて構成される。第1セパレータ32、第2セパレータ36及び第3セパレータ38(各セパレータ)のそれぞれは、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板等により構成され、平面が矩形状であるとともに、プレス加工等により、断面凹凸形状に成形される。
図1及び図3に示すように、各セパレータの長辺方向の一端側(矢印B1側)の縁部には、それぞれ矢印A1、A2方向(積層方向)に個別に連通して、酸化剤ガス入口連通孔40及び燃料ガス出口連通孔42が設けられる。酸化剤ガス入口連通孔40は、酸化剤ガス、例えば、酸素含有ガスを供給する。燃料ガス出口連通孔42は、燃料ガス、例えば、水素含有ガスを排出する。これらの酸化剤ガス及び燃料ガスを総称して反応ガスともいう。
各セパレータの長辺方向の他端側(矢印B2側)の縁部には、それぞれ矢印A1、A2方向に個別に連通して、燃料ガスを供給する燃料ガス入口連通孔44及び酸化剤ガスを排出する酸化剤ガス出口連通孔46が設けられる。なお、これらの酸化剤ガス入口連通孔40、燃料ガス出口連通孔42、燃料ガス入口連通孔44、酸化剤ガス出口連通孔46を総称して反応ガス連通孔ともいう。
各セパレータの短辺方向(矢印C1、C2方向)両端縁部の矢印B1側には、矢印A1、A2方向に個別に連通して、冷却媒体を供給するための一対の冷却媒体入口連通孔48がそれぞれ設けられる。各セパレータの短辺方向の両端縁部の矢印B2側には、矢印A1、A2方向に個別に連通して、冷却媒体を排出するための一対の冷却媒体出口連通孔50がそれぞれ設けられる。
図3に示すように、第1セパレータ32の矢印A1側の面32aには、冷却媒体入口連通孔48と冷却媒体出口連通孔50とを連通する冷却媒体流路52が形成される。冷却媒体入口連通孔48と冷却媒体流路52との間には、複数本の入口連結溝54aが形成される。冷却媒体流路52と冷却媒体出口連通孔50との間には、複数本の出口連結溝54bが形成される。また、第1セパレータ32の面32aには、冷却媒体入口連通孔48、冷却媒体出口連通孔50、冷却媒体流路52、入口連結溝54a、出口連結溝54bを一体に囲んで、その内部を面方向の外部とシールするシール部材55が設けられている。
図4に示すように、第1セパレータ32の矢印A2側の面32bには、酸化剤ガス入口連通孔40と酸化剤ガス出口連通孔46とに連通する酸化剤ガス流路56が形成される。酸化剤ガス流路56は、互いに並列する複数本の波状流路溝(又は直線状流路溝)からなる。
酸化剤ガス流路56の入口側端部には、発電領域外に位置して酸化剤ガス入口バッファ部58が連なる一方、該酸化剤ガス流路56の出口側端部には、発電領域外に位置して酸化剤ガス出口バッファ部60が連なる。
酸化剤ガス入口バッファ部58と酸化剤ガス入口連通孔40との間には、複数本の入口連結溝62aが形成される。酸化剤ガス出口バッファ部60と酸化剤ガス出口連通孔46との間には、複数本の出口連結溝62bが形成される。第1セパレータ32の面32bには、酸化剤ガス入口連通孔40、酸化剤ガス出口連通孔46、酸化剤ガス流路56、酸化剤ガス入口バッファ部58、酸化剤ガス出口バッファ部60、入口連結溝62a、出口連結溝62bを一体に囲んで、その内部を面方向の外部とシールするシール部材63が設けられている。第1セパレータ32では、酸化剤ガス流路56の裏面形状が、冷却媒体流路52の一部を構成する(図2及び図3参照)。
図3に示すように、第2セパレータ36の矢印A1側の面36aには、燃料ガス入口連通孔44と燃料ガス出口連通孔42とに連通する燃料ガス流路66が形成される。燃料ガス流路66は、互いに並列する複数本の波状流路溝(又は直線状流路溝)からなる。
燃料ガス流路66の入口側端部には、発電領域外に位置して燃料ガス入口バッファ部68が連なる一方、該燃料ガス流路66の出口側端部には、発電領域外に位置して燃料ガス出口バッファ部70が連なる。燃料ガス入口バッファ部68と燃料ガス入口連通孔44との間には、第2セパレータ36を厚さ方向に貫通する複数個の燃料ガス供給孔部72aが設けられる。燃料ガス出口バッファ部70と燃料ガス出口連通孔42との間には、第2セパレータ36を厚さ方向に貫通する複数個の燃料ガス排出孔部72bが設けられる。
第2セパレータ36の面36aには、燃料ガス流路66、燃料ガス入口バッファ部68、燃料ガス出口バッファ部70、燃料ガス供給孔部72a、燃料ガス排出孔部72bを一体に囲んで、その内部を面方向の外部とシールするシール部材73が設けられている。
図5に示すように、第2セパレータ36の矢印A2側の面36bは、シール部材71で囲われた燃料ガス供給孔部72a及び燃料ガス排出孔部72bが設けられていることを除いて、第1セパレータ32の矢印A2側の面32b(図4参照)と同様に構成することができる。すなわち、第2セパレータ36の面36bには、酸化剤ガス入口連通孔40と酸化剤ガス出口連通孔46とに連通する酸化剤ガス流路56が設けられる。また、第2セパレータ36の面36bには、酸化剤ガス入口バッファ部58と、酸化剤ガス出口バッファ部60と、入口連結溝62aと、出口連結溝62bと、シール部材63とが形成される。
第2セパレータ36の面36b側では、燃料ガス供給孔部72a及び燃料ガス排出孔部72bの各々と、酸化剤ガス入口バッファ部58及び酸化剤ガス出口バッファ部60とがシール部材63、71によって遮断されている。
図3に示すように、第3セパレータ38の矢印A1側の面38aは、第2セパレータ36の矢印A1側の面36aと同様に構成することができる。すなわち、第3セパレータ38の面38aには、燃料ガス入口連通孔44と燃料ガス出口連通孔42とに連通する燃料ガス流路66が設けられる。また、第3セパレータ38の面38aには、燃料ガス入口バッファ部68と、燃料ガス出口バッファ部70と、燃料ガス供給孔部72aと、燃料ガス排出孔部72bと、シール部材73とが形成される。
図6に示すように、第3セパレータ38の矢印A2側の面38bは、シール部材71で囲われた燃料ガス供給孔部72a及び燃料ガス排出孔部72bが設けられていることを除いて、第1セパレータ32の矢印A1側の面32a(図3参照)と同様に構成することができる。すなわち、第3セパレータ38の面38bには、冷却媒体流路52と、入口連結溝54aと、出口連結溝54bと、シール部材55とが設けられる。第3セパレータ38の面38b側では、燃料ガス供給孔部72a及び燃料ガス排出孔部72bの各々と、冷却媒体流路52、入口連結溝54a及び出口連結溝54b等とがシール部材55、71によって遮断されている。
図2に示すように、互いに隣接する第3セパレータ38の矢印A2側の面38bの冷却媒体流路52と、第1セパレータ32の矢印A1側の面32aの冷却媒体流路52とが対向して、その内部を冷却媒体が流通可能となっている。
図3、図5及び図6に示すように、第2セパレータ36及び第3セパレータ38では、上記のようにシール部材71、73が設けられるため、燃料ガス入口連通孔44を矢印A1側から矢印A2側へと流通する燃料ガスは、燃料ガス供給孔部72aを、矢印A2側から矢印A1側へと流通して燃料ガス入口バッファ部68及び燃料ガス流路66へ流入する。また、燃料ガス流路66を流通して燃料ガス出口バッファ部70に流入した燃料ガスは、燃料ガス排出孔部72bを矢印A1側から矢印A2側へと流通した後、燃料ガス出口連通孔42を矢印A2側から矢印A1側へと流通する。
各セパレータの両面には、該各セパレータの外周端縁部を周回する不図示の弾性体からなるシール部材がそれぞれ一体成形される。
図3、図7及び図8に示すように、樹脂枠付きMEA34は、電解質膜・電極構造体(MEA)80の外周に樹脂枠部材82が接合されて構成される。図8に示すように、電解質膜・電極構造体80は、例えば、水分を含んだパーフルオロスルホン酸の薄膜である固体高分子電解質膜(以下、単に電解質膜ともいう)84を備える。なお、電解質膜84は、フッ素系電解質の他、HC(炭化水素)系電解質を使用してもよい。電解質膜84は、カソード電極86及びアノード電極88により挟持される。
電解質膜・電極構造体80は、カソード電極86の平面寸法がアノード電極88及び電解質膜84の平面寸法よりも小さい段差型MEAを構成している。なお、カソード電極86、アノード電極88及び電解質膜84は、同一の平面寸法に設定してもよい。また、アノード電極88は、カソード電極86及び電解質膜84よりも小さな平面寸法を有してもよい。
カソード電極86は、電解質膜84の一端側(矢印A1側)の面84aに接合される第1電極触媒層90と、該第1電極触媒層90に積層される第1ガス拡散層92とを有する。第1電極触媒層90は、第1ガス拡散層92よりも大きな平面寸法であり、第1ガス拡散層92の外周端面92aから外方に突出する外周露呈部90aを有する。また、第1電極触媒層90は、電解質膜84よりも小さな平面寸法である。
アノード電極88は、電解質膜84の他端側(矢印A2側)の面84bに接合される第2電極触媒層94と、該第2電極触媒層94に積層される第2ガス拡散層96とを有する。第2電極触媒層94及び第2ガス拡散層96は、同一の平面寸法を有するとともに、電解質膜84と同一(又は同一未満)の平面寸法に設定される。
第1電極触媒層90は、例えば、白金合金が表面に担持された多孔質カーボン粒子が、イオン導電性高分子バインダとともに第1ガス拡散層92の表面に一様に塗布して形成される。第2電極触媒層94は、例えば、白金合金が表面に担持された多孔質カーボン粒子が、イオン導電性高分子バインダとともに第2ガス拡散層96の表面に一様に塗布して形成される。
第1ガス拡散層92及び第2ガス拡散層96は、カーボンペーパ又はカーボンクロス等の導電性多孔質体から形成される。第2ガス拡散層96の平面寸法は、第1ガス拡散層92の平面寸法よりも大きく設定される。
樹脂枠部材82は、例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)、LCP(リキッドクリスタルポリマー)、PVDF(ポリフッ化ビニリデン)、シリコーン樹脂、フッ素樹脂、m−PPE(変性ポリフェニレンエーテル樹脂)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)又は変性ポリオレフィン等の樹脂材から構成される。この樹脂材は、例えば、フィルム等により構成してもよい。
図3に示すように、樹脂枠部材82は枠形状であり、酸化剤ガス入口連通孔40を含む連通孔40、42、44、46、48、50からなる連通孔群の内側に配置され、各連通孔40、42、44、46、48、50が形成されない。また、図8に示すように、樹脂枠部材82は、外周端82a(図7参照)からその内側に所定の長さに亘って外周縁部82bが設けられ、該外周縁部82bからさらに内側に内側膨出部82cが設けられる。
内側膨出部82cは、外周縁部82bの内周端から内側に向かって第1段差面82dを介して延在する棚部82eと、該棚部82eの内周端から内側に向かって第2段差面82fを介して延在する薄肉部82gとが設けられる。棚部82eは、外周縁部82bより薄肉であり、薄肉部82gは、棚部82eより薄肉である。また、第1段差面82d、棚部82e、第2段差面82f及び薄肉部82gは、樹脂枠部材82の全周に亘って設けられている。棚部82eの矢印A2側の面82eaには、電解質膜84の面84bの外周縁部が当接する。薄肉部82gの内側端には、第1電極触媒層90の外周露呈部90aに対向する土手部82hが全周に亘って設けられる。また、薄肉部82gの、土手部82hと第2段差面82fとの間には溝部82haが設けられる。
電解質膜84の面84aの溝部82haに臨む部分及び第1電極触媒層90の外周露呈部90aには、該外周露呈部90aを周回するように接着剤98aが充填されて接着部98が設けられる。この接着部98は、樹脂枠部材82の内周端面82iと第1ガス拡散層92の外周端面92aとの間にも満たされる。接着剤98aとしては、例えば、フッ素樹脂系、シリコーン樹脂系、エポキシ樹脂系等を好適に用いることができるが、特にこれに限定されるものではない。接着剤98aは、液体や固体、熱可塑性や熱硬化性等に制限されるものではない。
樹脂枠部材82と第2ガス拡散層96の外周縁部とは、接着用樹脂を用いた第1接合部100により一体化される。図7に示すように、第1接合部100は、第2ガス拡散層96の外周縁部を周回するように設けられる。図8に示すように、第1接合部100は、例えば、樹脂枠部材82に対して、その外周縁部82bの内側端部を周回し且つ矢印A2側に突出するように一体成形された樹脂突起部100aを加熱変形させて構成することができる。この第1接合部100は、第1樹脂含浸部100bと、第1溶融凝固部100cとから形成される。
第1樹脂含浸部100bは、溶融した樹脂突起部100aを、第2ガス拡散層96の外周縁部に含浸させることで形成される。第1溶融凝固部100cは、互いに離間して配置された樹脂枠部材82の第1段差面82dと、電解質膜84及びアノード電極88の外周端面101との間に、溶融させた樹脂突起部100aを流入させて凝固させることで形成される。図8では、第1溶融凝固部100cと一体化した棚部82eの表面及び第1段差面82dを二点鎖線で示す。
第1電極触媒層90の外周露呈部90a及び第1ガス拡散層92の外周端面92aを周回するように接着部98が設けられることや、第2ガス拡散層96の外周縁部を周回するように第1接合部100が設けられることにより、カソード電極86及びアノード電極88間のクロスリーク等が防止されている。
図3に示すように、樹脂枠部材82のカソード電極86側(矢印A1側)の面82jには、酸化剤ガス入口バッファ部102a及び酸化剤ガス出口バッファ部102bが設けられる。樹脂枠部材82のアノード電極88側(矢印A2側)の面82kには、図7に示すように、燃料ガス入口バッファ部105a及び燃料ガス出口バッファ部105bが設けられる。
図2に示すように、第1端部発電ユニット16は、矢印A1側から矢印A2側に向かって、第1セパレータ32と、樹脂枠付きダミー構造体106と、ダミー第1セパレータ108と、樹脂枠付きMEA34と、第3セパレータ38とが、この順に積層されて構成される。
図9及び図10に示すように、樹脂枠付きダミー構造体106は、ダミー構造体110の外周にダミー樹脂枠部材111が接合されて構成される。図10、図11及び図12に示すように、ダミー構造体110は、平面寸法(表面積/外形寸法)がそれぞれ異なる3枚の第1導電性多孔質体112と、第2導電性多孔質体114と、第3導電性多孔質体116とを、矢印A1側から矢印A2側に向かってこの順に積層して構成される。平面寸法の大きさの関係は、第1導電性多孔質体112<第2導電性多孔質体114<第3導電性多孔質体116となっている。
このため、図10及び図12に示すように、第3導電性多孔質体116の外周縁部には、全周に亘って第2導電性多孔質体114の外周端面114aよりも外方に突出する外周露呈部116aが設けられる。第2導電性多孔質体114の外周縁部には、全周に亘って第1導電性多孔質体112の外周端面112aよりも外方に突出する外周露呈部114bが設けられる。
第1導電性多孔質体112と第2導電性多孔質体114と第3導電性多孔質体116は同じ材料からなるとともに、第1ガス拡散層92又は第2ガス拡散層96を構成する導電性多孔質体と同一の材料を用いて構成することができる。
また、本実施形態では、第1導電性多孔質体112、第2導電性多孔質体114、第3導電性多孔質体116のそれぞれの厚さを、第2ガス拡散層96を構成する導電性多孔質体と同一の厚さに設定した。これによって、該導電性多孔質体の平面寸法を上記のように調整することで、ダミー構造体110をさらに容易に得ることができる。
図12及び図13に示すように、積層された第1導電性多孔質体112と第2導電性多孔質体114は、互いに間に介在する第1接合層118aにより接合される。第2導電性多孔質体114と第3導電性多孔質体116は、互いの間に介在する第2接合層118bにより接合される。第1接合層118a及び第2接合層118bは、後述するように、第1接着剤層119a及び第2接着剤層119bをそれぞれ硬化させることで形成される。第1接着剤層119a及び第2接着剤層119bの材料としては、接着剤98aを用いることができる。
図12に示すように、第1接合層118aは、第1導電性多孔質体112と第2導電性多孔質体114の積層部である第1積層部112bの長辺に断続的に(スポット状に)設けられる。また、第2接合層118bは、第2導電性多孔質体114と第3導電性多孔質体116の積層部である第2積層部114cの長辺に断続的に(スポット状に)設けられる。また、第1積層部112b及び第2積層部114cの長辺の延在方向(矢印B1、B2方向)に、第1接合層118aと第2接合層118bとが交互に配置される。
図13に示すように、第1接合層118aのそれぞれと、第2接合層118bのそれぞれとは、積層方向(矢印A1、A2方向)の位置が互いに異なるように配設される。
図9及び図10に示すように、ダミー樹脂枠部材111は、図7及び図8の樹脂枠付きMEA34を構成する樹脂枠部材82と同一の構成からなり、外周縁部82bと、内側膨出部82cとを有する。図10に示すように、内側膨出部82cの棚部82eには、第3導電性多孔質体116の外周露呈部116aの矢印A1側が当接する。薄肉部82gには、第3導電性多孔質体116の外周露呈部116aの矢印A1側の一部と、第2導電性多孔質体114の外周露呈部114bの矢印A1側の一部が臨む。土手部82hの突出端面には、第2導電性多孔質体114の外周露呈部114bの矢印A1側が当接する。
矢印A1、A2方向において、第2導電性多孔質体114の外周端面114aは、第3導電性多孔質体116と薄肉部82gとの間に配置される。ダミー樹脂枠部材111の内周端面82iは、積層方向(矢印A1、A2方向)と垂直な方向において、第2導電性多孔質体114の外周端面114aと、第1導電性多孔質体112の外周端面112aとの間に位置する。ダミー樹脂枠部材111の内周端面82iに、第1導電性多孔質体112の外周端面112aが間隔を置いて臨む。第2段差面82fの高さは、第2導電性多孔質体114の厚さよりも小さい。
第3導電性多孔質体116の外周露呈部116aと、ダミー樹脂枠部材111の棚部82eの矢印A2側の面82eaとが第2接合部120を介して接合されることで、樹脂枠付きダミー構造体106が構成される。図9に示すように、第2接合部120は、第3導電性多孔質体116の外周縁部に対して、周方向に断続的に設けられる。なお、第2接合部120は、ダミー構造体110を周回するように形成されてもよい。
図10に示すように、第2接合部120は、例えば、ダミー樹脂枠部材111に一体成形される樹脂突起部120aを部分的に加熱変形させて構成することができる。この場合、第2接合部120は、第2樹脂含浸部120bと、第2溶融凝固部120cとから形成される。なお、樹脂突起部120aのうち、第2接合部120を構成しない部分、換言すると、加熱変形させずに残存した部分は、機械加工等により除去してもよい。
第2樹脂含浸部120bは、溶融した樹脂突起部120aを、第3導電性多孔質体116の外周縁部に含浸させることで形成される。第2溶融凝固部120cは、互いに離間して配置されたダミー樹脂枠部材111の第1段差面82dと、第3導電性多孔質体116の外周端面116bとの間に、溶融させた樹脂突起部120aを流入させて凝固させることで形成される。図10では、第2溶融凝固部120cと一体化した棚部82eの表面及び第1段差面82dを二点鎖線で示す。
なお、第1接合部100及び第2接合部120は、接着部98と同様に、接着剤98aを使用してもよい。
図2、図3及び図14に示すように、ダミー第1セパレータ108は、燃料ガス供給孔部72aに代えて入口遮断部122aが設けられ、燃料ガス排出孔部72bに代えて出口遮断部122bが設けられていることを除いて第2セパレータ36と同様に構成されている。つまり、ダミー第1セパレータ108の他端側(矢印A2側)の面108bは、図4に示す第1セパレータ32の他端側(矢印A2側)の面32bと同様に構成される。
図2及び図4に示すように、ダミー第1セパレータ108の他端側(矢印A2側)の面108bと樹脂枠付きMEA34のカソード電極86側(矢印A1側)との間には、酸化剤ガス流路56に対応する第1空間124が設けられる。第1空間124は、入口連結溝62a及び出口連結溝62b内に形成された連通路125を介して、酸化剤ガス入口連通孔40と酸化剤ガス出口連通孔46とに連通する。このため、酸化剤ガス流路56と同様に酸化剤ガスが流通可能となっている。
図2及び図14に示すように、ダミー第1セパレータ108の一端側(矢印A1側)の面108aと樹脂枠付きダミー構造体106の第3導電性多孔質体116側(矢印A2側)との間には、燃料ガス流路66に対応する第2空間126が設けられる。第2空間126は、入口遮断部122aにより、燃料ガス入口連通孔44と遮断されるとともに、出口遮断部122bにより、燃料ガス出口連通孔42とを遮断される。つまり、入口遮断部122a及び出口遮断部122b(以下、これらを総称して遮断部ともいう)により、第2空間126に燃料ガスが流れることが規制されるため、該第2空間126の内部には断熱空間が形成される。
なお、入口遮断部122a及び出口遮断部122bの何れか一方のみを設けることによって、第2空間126に燃料ガスが流れることを規制し、断熱空間を形成してもよい。また、本実施形態では、遮断部は、ダミー第1セパレータ108に燃料ガス供給孔部72a及び燃料ガス排出孔部72b(図3参照)を貫通形成しないことで構成される。しかしながら、特にこれに限定されるものではなく、例えば、遮断部は、ダミー第1セパレータ108に貫通形成された燃料ガス供給孔部72a及び燃料ガス排出孔部72bを閉塞して構成することも可能である。図14に示すように、ダミー第1セパレータ108の面108aには、第2空間126を囲んで、その内部を面方向の外部とシールするシール部材127が設けられている。
図2に示すように、第1ダミーセル18は、矢印A1側から矢印A2側に向かって、第1セパレータ32(ダミーセパレータ)と、樹脂枠付きダミー構造体106と、ダミー第1セパレータ108(ダミーセパレータ)と、樹脂枠付きダミー構造体106と、ダミー第2セパレータ130(ダミーセパレータ)とが、この順に積層されて構成される。
図2、図3及び図14に示すように、ダミー第2セパレータ130は、燃料ガス供給孔部72aに代えて入口遮断部122aが設けられ、燃料ガス排出孔部72bに代えて出口遮断部122bが設けられていることを除いて第3セパレータ38と同様に構成されている。
つまり、図2及び図3及び図6に示すように、ダミー第2セパレータ130の他端側(矢印A2側)の面130bは、シール部材71で囲われた燃料ガス供給孔部72a及び燃料ガス排出孔部72bが設けられていないことを除いて、第3セパレータ38の矢印A2側の面38bと同様に構成される。このため、ダミー第2セパレータ130の面130bは、図3に示す第1セパレータ32の一端側(矢印A1側)の面32aと同様に構成することができる。また、図2及び図14に示すように、ダミー第2セパレータ130の矢印A1側の面130aは、ダミー第1セパレータ108の矢印A1側の面108aと同様に構成される。
図2に示すように、第1ダミーセル18では、ダミー第2セパレータ130の矢印A2側の面130bと第1端部発電ユニット16の第1セパレータ32との間に、冷却媒体流路52が設けられる。図2及び図11に示すように、第1ダミーセル18では、ダミー第2セパレータ130の矢印A1側の面(130a)と樹脂枠付きダミー構造体106の第3導電性多孔質体116側(矢印A2側)との間に、燃料ガス流路66に対応する第2空間126が設けられる。
第2ダミーセル20は、矢印A1側から矢印A2側に向かって、第1セパレータ32(ダミーセパレータ)、樹脂枠付きダミー構造体106、ダミー第2セパレータ130(ダミーセパレータ)の順に積層される。このため、第2ダミーセル20では、ダミー第2セパレータ130の矢印A1側の面130aと樹脂枠付きダミー構造体106の第3導電性多孔質体116側(矢印A2側)との間に第2空間126が設けられる。第3ダミーセル24は、第2ダミーセル20と同様に構成される。
第2端部発電ユニット22は、矢印A1側からA2側に向かって、第1セパレータ32と、樹脂枠付きMEA34と、第2セパレータ36と、樹脂枠付きダミー構造体106と、ダミー第2セパレータ130とが、この順に積層されて構成される。このため、第2端部発電ユニット22では、ダミー第2セパレータ130の矢印A1側の面130aと樹脂枠付きダミー構造体106の第3導電性多孔質体116側(矢印A2側)との間に第2空間126が設けられる。
ターミナルプレート26a、26bは、電気導電性を有する材料から構成され、例えば、銅、アルミニウム又はステンレススチール等の金属で構成される。図1に示すように、ターミナルプレート26a、26bの略中央には、積層方向外方に延在する端子部132a、132bがそれぞれ設けられる。
端子部132aは、絶縁性筒体134aに挿入されてインシュレータ28aの孔部136a及びエンドプレート30aの孔部138aを貫通し、該エンドプレート30aの外部に突出する。端子部132bは、絶縁性筒体134bに挿入されてインシュレータ28bの孔部136b及びエンドプレート30bの孔部138bを貫通し、該エンドプレート30bの外部に突出する。
インシュレータ28a、28bは、絶縁性材料、例えば、ポリカーボネート(PC)やフェノール樹脂等で形成される。インシュレータ28a、28bの中央部には、積層体14に向かって開口される凹部140a、140bが形成され、該凹部140a、140bは、孔部136a、136bに連通する。
インシュレータ28a及びエンドプレート30aには、反応ガス連通孔が設けられる。一方、インシュレータ28b及びエンドプレート30bには、冷却媒体入口連通孔48及び冷却媒体出口連通孔50が設けられる。
凹部140aには、ターミナルプレート26a及び断熱体142が収容され、凹部140bには、ターミナルプレート26b及び断熱体142が収容される。断熱体142は、一対の電気伝導性を有する断熱プレート144間に電気伝導性を有する断熱部材146が挟持されて構成される。断熱プレート144は、例えば、平坦な形状を有する多孔性カーボンプレートで構成されるとともに、断熱部材146は、断面波板状の金属製のプレートで構成される。
なお、断熱プレート144は、断熱部材146と同一の材料で構成してもよい。また、断熱体142は、1枚の断熱プレート144と1枚の断熱部材146とを備えてもよい。さらに、ターミナルプレート26a、26bと、インシュレータ28a、28bの凹部140a、140bの底部との間に、樹脂製スペーサ(不図示)を介装してもよい。
燃料電池スタック10は、基本的には上記のように構成される。以下、本実施形態に係るダミーセルの製造方法について、燃料電池スタック10の第1ダミーセル18を得る場合を例に挙げて説明する。
先ず、図11〜図13に示すように、第3導電性多孔質体116に、第2接着剤層119bを介して第2導電性多孔質体114を積層した後、該第2導電性多孔質体114に第1接着剤層119aを介して第1導電性多孔質体112を積層する第1積層工程を行う。
例えば、第1積層工程では、第3導電性多孔質体116及び第2導電性多孔質体114の少なくとも何れか一方に対して、第2接着剤層119bを設ける。具体的には、第3導電性多孔質体116と第2導電性多孔質体114とを積層した場合に第2積層部114cを形成することになる矩形状の部分の長辺に沿って断続的に第2接着剤層119bを設ける。その後、第3導電性多孔質体116と第2導電性多孔質体114を積層して第2積層部114cを形成する。
また、第2導電性多孔質体114及び第1導電性多孔質体112の少なくとも何れか一方に対して、第1接着剤層119aを設ける。具体的には、第2導電性多孔質体114と第1導電性多孔質体112とを積層した場合に第1積層部112bを形成することになる矩形状の部分の長辺に沿って断続的に第1接着剤層119aを設ける。この際、第1接着剤層119aと第2接着剤層119bとは、積層方向(矢印A1、A2方向)における位置が互いに重ならないように配設される。その後、第2導電性多孔質体114に第1導電性多孔質体112を積層して第1積層部112bを形成する。
次に、第1接着剤層119a及び第2接着剤層119bを硬化させて、第1接合層118a及び第2接合層118bをそれぞれ形成することでダミー構造体110を得る硬化工程を行う。この硬化工程では、第1積層工程で積層した第1導電性多孔質体112と第2導電性多孔質体114と第3導電性多孔質体116とに、燃料電池スタック10の発電動作時に付与される面圧と同じ大きさ(例えば、1.0〜10.0MPa程度)の面圧を付与した状態で、第1接着剤層119a及び第2接着剤層119bを硬化させて、第1接合層118a及び第2接合層118bをそれぞれ形成する。
次に、図9及び図10に示す通り、硬化工程で得られたダミー構造体110の外周を周回するようにダミー樹脂枠部材111を設けて、樹脂枠付きダミー構造体106を得る樹脂枠接合工程を行う。
具体的には、第3導電性多孔質体116の外周露呈部116aの矢印A1側を、ダミー樹脂枠部材111の棚部82eに重ね、第2導電性多孔質体114の外周露呈部114bをダミー樹脂枠部材111の薄肉部82gに臨ませ、第1導電性多孔質体112の外周端面112aをダミー樹脂枠部材111の内周端面82iに対向させる。この際、土手部82hの突出端面には、第2導電性多孔質体114の外周露呈部114bの矢印A1側が当接する。
そして、ダミー樹脂枠部材111に設けられた樹脂突起部120aを不図示の加熱装置により加熱しつつ荷重を付与して溶融変形させることで、第2樹脂含浸部120b及び第2溶融凝固部120cからなる第2接合部120を形成する。これによって、ダミー樹脂枠部材111の棚部82eと、第3導電性多孔質体116の外周縁部とを接合して樹脂枠付きダミー構造体106を得ることができる。
上記のようにして2個の樹脂枠付きダミー構造体106を得た後、図2に示すように、第1セパレータ32、樹脂枠付きダミー構造体106、ダミー第1セパレータ108、樹脂枠付きダミー構造体106、ダミー第2セパレータ130をこの順に積層する第2積層工程を行う。これによって、第1ダミーセル18を得ることができる。
第2ダミーセル20及び第3ダミーセル24は、樹脂枠付きダミー構造体106を第1セパレータ32とダミー第2セパレータ130で挟持することにより得ることができる。なお、第2ダミーセル20及び第3ダミーセル24を構成可能なセパレータは、上記に限定されるものではない。例えば、第2ダミーセル20は、樹脂枠付きダミー構造体106の矢印A1側にダミー第1セパレータ108を積層し、且つ樹脂枠付きダミー構造体106の矢印A2側に第1セパレータ32を積層して構成してもよい。また、第3ダミーセル24は、樹脂枠付きダミー構造体106の矢印A1側に第1セパレータ32を積層し、樹脂枠付きダミー構造体106の矢印A2側にダミー第1セパレータ108を積層して構成してもよい。
上記のようにして得られる第1ダミーセル18、第2ダミーセル20及び第3ダミーセル24を備える燃料電池スタック10の動作について、以下に説明する。先ず、図1に示すように、酸素含有ガス等の酸化剤ガスは、エンドプレート30aの酸化剤ガス入口連通孔40に供給される。水素含有ガス等の燃料ガスは、エンドプレート30aの燃料ガス入口連通孔44に供給される。純水やエチレングリコール、オイル等の冷却媒体は、エンドプレート30bの冷却媒体入口連通孔48にそれぞれ供給される。
酸化剤ガス入口連通孔40に供給された酸化剤ガスは、図4及び図5に示すように、入口連結溝62aの内部に形成された連通路125を介して酸化剤ガス流路56及び第1空間124に流入する。これによって、酸化剤ガスが、矢印B1、B2方向に移動しながら、各電解質膜・電極構造体80のカソード電極86と、ダミー構造体110に供給される。
図3に示すように、燃料ガス入口連通孔44に供給された燃料ガスは、燃料ガス供給孔部72aを介して、第2セパレータ36及び第3セパレータ38の燃料ガス流路66にそれぞれ流入する。これによって、燃料ガスが、矢印B1、B2方向に移動しながら、各電解質膜・電極構造体80のアノード電極88に供給される。一方、図14に示すように、ダミー第1セパレータ108及びダミー第2セパレータ130の第2空間126は、入口遮断部122aによって燃料ガスの流入が遮断される。
上記のようにして反応ガスが供給された電解質膜・電極構造体80では、各カソード電極86に供給される酸化剤ガスと、各アノード電極88に供給される燃料ガスとが、第1電極触媒層90及び第2電極触媒層94内で電気化学反応により消費されて発電が行われる。
次いで、各カソード電極86に供給されて一部が消費された酸化剤ガスは、酸化剤ガス流路56及び第1空間124のそれぞれから出口連結溝62bの内部に形成された連通路125を介して酸化剤ガス出口連通孔46に排出される。そして、エンドプレート30aの酸化剤ガス出口連通孔46を介して燃料電池スタック10の外部に排出される。
同様に、各アノード電極88に供給されて一部が消費された燃料ガスは、燃料ガス流路66から燃料ガス排出孔部72bの内部を介して燃料ガス出口連通孔42に排出される。そして、エンドプレート30aの燃料ガス出口連通孔42を介して燃料電池スタック10の外部に排出される。
この際、第2空間126は、出口遮断部122bによって燃料ガス出口連通孔42とも遮断されている。このため、第2空間126には、上記の通り、入口遮断部122aによって燃料ガスの流入が遮断されることに加えて、出口遮断部122bによって燃料ガス出口連通孔42から燃料ガスが進入することも回避されている。その結果、第2空間126は、遮断部によって燃料ガスの流通が遮断され、断熱空間として機能する。
また、各冷却媒体入口連通孔48に供給された冷却媒体は、互いに隣接するダミー第2セパレータ130と第1セパレータ32間の冷却媒体流路52、及び互いに隣接する第3セパレータ38と第1セパレータ32との間の冷却媒体流路52に導入される。矢印C1側の各冷却媒体入口連通孔48から導入された冷却媒体と、矢印C2側の冷却媒体入口連通孔48から導入された冷却媒体は、互いに接近するように矢印C1、C2方向に沿って流通してから、矢印B2側に向かって流通し、電解質膜・電極構造体80を冷却しながら、互いに離間するように矢印C1、C2方向に沿って流通し、各冷却媒体出口連通孔50から排出される。
上記の通り、本実施形態に係る燃料電池スタック10の各ダミーセル(第1ダミーセル18、第2ダミーセル20、第3ダミーセル24)は、発電セル12の電解質膜・電極構造体80に対応してダミー構造体110を備える。つまり、各ダミーセルは、電解質膜84や第1電極触媒層90及び第2電極触媒層94を備えていないため、発電を行うことがなく、発電による生成水も生じない。これによって、各ダミーセル自体が断熱層として機能するとともに、各ダミーセルで結露が生じることを抑制できる。
このような第1ダミーセル18及び第2ダミーセル20を積層体14の矢印A1側の端部に配設し、第3ダミーセル24を積層体14の矢印A2側の端部に配設することで、積層体14の端部側の断熱性を高めることができる。このため、低温環境下においても、積層体14の端部側の温度が中央側に比して低温となることを抑制できる。
さらに、積層体14の端部側の断熱性を高めることができるため、燃料電池スタック10を氷点下環境で始動する場合であっても、積層体14の全体を有効に昇温させることができる。これによって、積層体14の端部側で生成水等が凍結して、電圧低下が生じることを抑制できる。
各ダミーセルのダミー構造体110では、第1導電性多孔質体112及び第2導電性多孔質体114を接合する第1接合層118aと、第2導電性多孔質体114及び第3導電性多孔質体116とを接合する第2接合層118bとの積層方向の位置が互いに異なる。このため、例えば、第1接合層118a及び第2接合層118bが積層方向に同位置に設けられる場合に比して、各ダミーセルの厚さが部分的に増大することを抑制できる。このような各ダミーセルによれば、発電セル12に積層しても、該発電セル12に局所的な面圧上昇が生じることを抑制できるため、電解質膜84にクリープ等が生じて該電解質膜84の耐久性が低下することを抑制できる。
以上から、この燃料電池スタック10によれば、局所的な面圧上昇を抑制しつつ発電セル12に積層することが可能な各ダミーセルにより、電解質膜84の耐久性を低下させることなく発電安定性を向上させることが可能になる。
上記のように、燃料電池スタック10では、第1接合層118aは、第1積層部112bの縁部に断続的に設けられ、第2接合層118bは、第2積層部114cの縁部に断続的に設けられることとした。この場合、第1積層部112b及び第2積層部114cの縁部に連続して第1接合層118a及び第2接合層118bを設けるよりも、簡素な工程でダミー構造体110を得ることができるため、燃料電池スタック10の製造効率を向上させることが可能になる。
上記のように、燃料電池スタック10では、第1積層部112b及び第2積層部114cの周方向に、第1接合層118aと第2接合層118bとが交互に配置されることとした。この場合、第1導電性多孔質体112と、第2導電性多孔質体114と、第3導電性多孔質体116とを、簡素な接合工程により十分な強度で接合することでき、しかも、各ダミーセルに積層された発電セル12に局所的な面圧上昇が生じることを効果的に抑制することが可能になる。
上記のように、燃料電池スタック10では、第1導電性多孔質体112と第2導電性多孔質体114と第3導電性多孔質体116とのそれぞれの平面寸法が矩形状であり、該矩形状の短辺を除く長辺に第1接合層118a及び第2接合層118bが設けられることとした。この場合、発電セル12に各ダミーセルを積層することによる内部抵抗の増加を抑制できるため、発電性能に影響を及ぼすことなく燃料電池スタック10に各ダミーセルを組み込むことが可能になる。
上記の硬化工程では、第1積層工程で積層した第1導電性多孔質体112と第2導電性多孔質体114と第3導電性多孔質体116とに、燃料電池スタック10の発電動作時に付与される面圧と同じ大きさの面圧を付与した状態で、第1接着剤層119a及び第2接着剤層119bを硬化させた。このようにして面圧を付与した状態で第1接合層118a及び第2接合層118bを形成した各ダミーセルでは、燃料電池スタック10に組み込まれた際に、発電セル12に局所的な面圧上昇が生じることを一層効果的に抑制できる。
本発明は、上記した実施形態に特に限定されるものではなく、その要旨を逸脱しない範囲で種々の変形が可能である。
例えば、第1接合層118a及び第2接合層118bは、積層方向における互いの位置が異なっていれば、各々の形状や個数、第1積層部112b及び第2積層部114cに対するその他の配置等は、上記した実施形態に特に限定されるものではない。例えば、第1接合層118a及び第2接合層118bは、第1積層部112b及び第2積層部114cの長辺及び短辺の両方に設けられていてもよいし、短辺にのみ設けられていてもよい。第1接合層118a及び第2接合層118bは、第1積層部112b及び第2積層部114cの外周縁部に設けられることに限定されず、中央部に設けられてもよいし、外周縁部及び中央部の両方に設けられてもよい。
また、第1接合層118a及び第2接合層118bは、第1積層部112b及び第2積層部114cに対して、交互に設けられていなくてもよいし、それぞれ連続的に設けられていてもよい。
上記の実施形態に係る燃料電池スタック10では、積層体14の矢印A1側に第1端部発電ユニット16と、第1ダミーセル18と、第2ダミーセル20とを積層し、積層体14の矢印A2側に第2端部発電ユニット22と、第3ダミーセル24とを積層することとした。
このように、積層体14の矢印A1側、換言すると、酸化剤ガスの入口側に対して、積層体14の矢印A2側、換言すると、酸化剤ガスの出口側よりも多数のダミーセルを配設することで、発電セル12に結露水が進入することをより効果的に抑制することを可能とした。しかしながら、燃料電池スタック10は、積層体14の積層方向の少なくとも一端側にダミーセルを備えていればよく、該ダミーセルの個数も特に限定されるものではない。
また、発電セル12と第1ダミーセル18又は第3ダミーセル24との間に第1端部発電ユニット16又は第2端部発電ユニット22を介在させることで、積層体14の積層方向の両端部で発電を行う第1端部発電ユニット16及び第2端部発電ユニット22内の電解質膜・電極構造体80を、他の電解質膜・電極構造体80と同様の条件で冷却することを可能とした。その結果、積層体14全体における発熱と冷却のバランスを同等とすることができるため、発電性能及び発電安定性のさらなる向上を図ることができる。
しかしながら、第1端部発電ユニット16及び第2端部発電ユニット22は必須の構成要素ではなく、燃料電池スタック10は、第1端部発電ユニット16及び第2端部発電ユニット22の何れか一方のみを備えてもよいし、何れも備えていなくてもよい。
10…燃料電池スタック 12…発電セル
14…積層体 18…第1ダミーセル
106…樹脂枠付きダミー構造体 110…ダミー構造体
111…ダミー樹脂枠部材 112…第1導電性多孔質体
112b…第1積層部 114…第2導電性多孔質体
114c…第2積層部 116…第3導電性多孔質体
118a…第1接合層 118b…第2接合層
119a…第1接着剤層 119b…第2接着剤層

Claims (10)

  1. 電解質膜の両側に導電性多孔質体からなるガス拡散層を有する電極がそれぞれ配設された電解質膜・電極構造体と、前記電解質膜・電極構造体の外周を周回する樹脂枠部材と、前記電解質膜・電極構造体を挟むセパレータとを有する発電セルを複数積層した積層体、及び前記積層体の積層方向の少なくとも一方の端部に配設されるダミーセルを備える燃料電池スタックであって、
    前記ダミーセルは、前記電解質膜・電極構造体に対応するダミー構造体と、前記ダミー構造体の外周を周回するダミー樹脂枠部材と、前記ダミー構造体を挟むダミーセパレータと、を備え、
    前記ダミー構造体は、第1導電性多孔質体と、該第1導電性多孔質体より平面寸法が大きい第2導電性多孔質体と、該第2導電性多孔質体より平面寸法が大きい第3導電性多孔質体とを積層方向にこの順に積層して形成され、
    前記第3導電性多孔質体の外周縁部に前記樹脂枠部材が接合され、
    前記第1導電性多孔質体と前記第2導電性多孔質体の間に介在して互いを接合する第1接着剤層を硬化させた第1接合層と、前記第2導電性多孔質体と前記第3導電性多孔質体の間に介在して互いを接合する第2接着剤層を硬化させた第2接合層との前記積層方向の位置が互いに異なり、
    前記第1接合層は、前記第1導電性多孔質体及び前記第2導電性多孔質体の積層部である第1積層部の縁部に断続的に設けられるスポット状であり、
    前記第2接合層は、前記第2導電性多孔質体及び前記第3導電性多孔質体の積層部である第2積層部の縁部に断続的に設けられるスポット状であることを特徴とする燃料電池スタック。
  2. 請求項記載の燃料電池スタックにおいて、
    前記第1積層部及び前記第2積層部の周方向に、前記第1接合層と前記第2接合層とが交互に配置されることを特徴とする燃料電池スタック。
  3. 請求項1又は2記載の燃料電池スタックにおいて、
    前記第1導電性多孔質体と前記第2導電性多孔質体と前記第3導電性多孔質体とのそれぞれの平面寸法は矩形状であり、該矩形状の短辺を除く長辺に前記第1接合層及び前記第2接合層が設けられることを特徴とする燃料電池スタック。
  4. 請求項1〜の何れか1項に記載の燃料電池スタックにおいて
    記ダミー樹脂枠部材は、外周縁部と、該外周縁部の内周端から第1段差面を介して全周に亘って内方に突出した棚部と、前記棚部の内周端から第2段差面を介して全周に亘って内方に突出した薄肉部とを有し、
    前記第3導電性多孔質体の外周縁部は、前記ダミー樹脂枠部材の前記棚部に重なり、
    前記第2導電性多孔質体の外周縁部は、前記ダミー樹脂枠部材の前記薄肉部に臨み、
    前記第1導電性多孔質体の外周端面は、前記ダミー樹脂枠部材の内周端面に対向することを特徴とする燃料電池スタック。
  5. 請求項記載の燃料電池スタックにおいて、
    前記第2導電性多孔質体の厚さは、前記第2段差面の高さよりも大きいことを特徴とする燃料電池スタック。
  6. 請求項又は記載の燃料電池スタックにおいて、
    前記ダミー樹脂枠部材の前記薄肉部と、前記第3導電性多孔質体との間には、空間が形成されることを特徴とする燃料電池スタック。
  7. 電解質膜の両側に導電性多孔質体からなるガス拡散層を有する電極がそれぞれ配設された電解質膜・電極構造体と、前記電解質膜・電極構造体の外周を周回する樹脂枠部材と、前記電解質膜・電極構造体を挟むセパレータとを有する発電セルを複数積層した積層体を備える燃料電池スタックの前記積層体の積層方向の少なくとも一方の端部に配設されるダミーセルの製造方法であって
    1導電性多孔質体と、該第1導電性多孔質体より平面寸法が大きい第2導電性多孔質体と、該第2導電性多孔質体より平面寸法が大きい第3導電性多孔質体とを、前記第1導電性多孔質体と前記第2導電性多孔質体の間に第1接着剤層を介在させ、且つ前記第2導電性多孔質体と前記第3導電性多孔質体との間に第2接着剤層を介在させて積層方向にこの順に積層する第1積層工程と、
    前記第1接着剤層及び前記第2接着剤層を硬化させて、前記第1導電性多孔質体と前記第2導電性多孔質体とを接合する第1接合層、及び前記第2導電性多孔質体と前記第3導電性多孔質体とを接合する第2接合層をそれぞれ形成することで、前記電解質膜・電極構造体に対応するダミー構造体を得る硬化工程と、
    前記ダミー構造体の前記第3導電性多孔質体の外周縁部に、該ダミー構造体の外周を周回するダミー樹脂枠部材を接合して樹脂枠付きダミー構造体を得る樹脂枠接合工程と、
    前記樹脂枠付きダミー構造体をダミーセパレータで挟んで前記ダミーセルを得る第2積層工程と、
    を有し、
    前記第1積層工程により、前記積層方向の位置が互いに異なるように前記第1接着剤層及び前記第2接着剤層を設けることで、前記硬化工程により、前記積層方向の位置が互いに異なる前記第1接合層と前記第2接合層とを形成し、
    前記第1積層工程では、前記第1導電性多孔質体と前記第2導電性多孔質体の積層部である第1積層部の縁部に断続的にスポット状の前記第1接着剤層を設け、前記第2導電性多孔質体と前記第3導電性多孔質体の積層部である第2積層部の縁部に断続的にスポット状の前記第2接着剤層を設けること、を特徴とするダミーセルの製造方法。
  8. 請求項記載のダミーセルの製造方法において、
    前記硬化工程では、前記第1積層工程で積層した前記第1導電性多孔質体と前記第2導電性多孔質体と前記第3導電性多孔質体とに、前記燃料電池スタックの発電動作時に付与される面圧と同じ大きさの面圧を付与した状態で、前記第1接着剤層及び前記第2接着剤層を硬化させることを特徴とするダミーセルの製造方法。
  9. 請求項7又は8記載のダミーセルの製造方法において、
    前記第1積層工程では、前記第1積層部及び前記第2積層部の周方向に、前記第1接着剤層と前記第2接着剤層とを交互に配置することを特徴とするダミーセルの製造方法。
  10. 請求項の何れか1項に記載のダミーセルの製造方法において、
    前記第1積層工程では、平面寸法がそれぞれ矩形状である前記第1導電性多孔質体と前記第2導電性多孔質体と前記第3導電性多孔質体との短辺を除く長辺に前記第1接着剤層及び前記第2接着剤層を設けることを特徴とするダミーセルの製造方法。
JP2018104760A 2018-03-20 2018-05-31 燃料電池スタック及びダミーセルの製造方法 Active JP6722718B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018104760A JP6722718B2 (ja) 2018-05-31 2018-05-31 燃料電池スタック及びダミーセルの製造方法
US16/354,345 US10964968B2 (en) 2018-03-20 2019-03-15 Fuel cell stack and method of producing dummy cell
DE102019203743.7A DE102019203743B4 (de) 2018-03-20 2019-03-19 Brennstoffzellenstapel und Verfahren zum Herstellen einer Dummyzelle
CN201910207344.2A CN110311160B (zh) 2018-03-20 2019-03-19 燃料电池堆和虚设单电池的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018104760A JP6722718B2 (ja) 2018-05-31 2018-05-31 燃料電池スタック及びダミーセルの製造方法

Publications (2)

Publication Number Publication Date
JP2019212378A JP2019212378A (ja) 2019-12-12
JP6722718B2 true JP6722718B2 (ja) 2020-07-15

Family

ID=68846949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018104760A Active JP6722718B2 (ja) 2018-03-20 2018-05-31 燃料電池スタック及びダミーセルの製造方法

Country Status (1)

Country Link
JP (1) JP6722718B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166304A (ja) * 2003-11-28 2005-06-23 Toyota Motor Corp 燃料電池
JP2007328935A (ja) * 2006-06-06 2007-12-20 Toyota Motor Corp 燃料電池に用いられる膜電極接合体、燃料電池、および、膜電極接合体の製造方法
JP5366469B2 (ja) * 2008-08-04 2013-12-11 本田技研工業株式会社 電解質膜・電極構造体
JP5781958B2 (ja) * 2012-02-21 2015-09-24 本田技研工業株式会社 燃料電池スタック
JP5935778B2 (ja) * 2013-09-27 2016-06-15 トヨタ自動車株式会社 ダミーセル及び燃料電池スタック
KR20150048407A (ko) * 2013-10-28 2015-05-07 현대자동차주식회사 더미 셀을 가지는 연료전지 스택
JP6602244B2 (ja) * 2016-03-17 2019-11-06 本田技研工業株式会社 燃料電池用樹脂枠付き段差mea及びその製造方法
JP6715278B2 (ja) * 2018-03-15 2020-07-01 本田技研工業株式会社 燃料電池スタック

Also Published As

Publication number Publication date
JP2019212378A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6715278B2 (ja) 燃料電池スタック
JP6368807B2 (ja) 燃料電池スタックの製造方法及び燃料電池用金属セパレータの製造方法
JP6118225B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5180484B2 (ja) 燃料電池スタック
JP6633127B2 (ja) 燃料電池スタック、燃料電池スタック用のダミーセル及びダミーセルの製造方法
JP6778249B2 (ja) 燃料電池スタック
JP5587347B2 (ja) 燃料電池
JP5839122B2 (ja) 燃料電池スタック
CN111668526B (zh) 燃料电池堆以及虚设单电池的制造方法
CN110021762B (zh) 发电单电池
CN111697258B (zh) 虚设单电池的制造方法以及虚设单电池的制造装置
JP6951296B2 (ja) 燃料電池用セパレータ部材及び燃料電池スタック
CN110277581B (zh) 燃料电池堆、燃料电池堆用虚设单电池及其制造方法
JP6715277B2 (ja) 燃料電池スタック及び燃料電池スタック用ダミーセル
CN110311160B (zh) 燃料电池堆和虚设单电池的制造方法
JP7038692B2 (ja) 燃料電池用セパレータ及び発電セル
CN104798239B (zh) 燃料电池堆
JP6659770B2 (ja) 燃料電池スタック
JP6722718B2 (ja) 燃料電池スタック及びダミーセルの製造方法
CN111989810A (zh) 燃料电池
JP6633114B2 (ja) 燃料電池スタック及びダミーセルの製造方法
JP7075962B2 (ja) 燃料電池スタック
JP6694913B2 (ja) 燃料電池スタック及びダミーセルの製造方法
JP6659771B2 (ja) 燃料電池スタック
JP5804587B2 (ja) 燃料電池スタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6722718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150