JP6706551B2 - 制震装置、制震システム及び制震方法 - Google Patents

制震装置、制震システム及び制震方法 Download PDF

Info

Publication number
JP6706551B2
JP6706551B2 JP2016127723A JP2016127723A JP6706551B2 JP 6706551 B2 JP6706551 B2 JP 6706551B2 JP 2016127723 A JP2016127723 A JP 2016127723A JP 2016127723 A JP2016127723 A JP 2016127723A JP 6706551 B2 JP6706551 B2 JP 6706551B2
Authority
JP
Japan
Prior art keywords
damping
building
natural period
spring
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016127723A
Other languages
English (en)
Other versions
JP2018003317A (ja
Inventor
武 中井
武 中井
栗野 治彦
治彦 栗野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2016127723A priority Critical patent/JP6706551B2/ja
Publication of JP2018003317A publication Critical patent/JP2018003317A/ja
Application granted granted Critical
Publication of JP6706551B2 publication Critical patent/JP6706551B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、建物に適用される制震装置、制震システム及びそれらを利用した制震方法に関する。
建物の制震技術として、特許文献1に開示されているような同調質量ダンパ(Tuned Mass Dumper:TMD)が知られている。同調質量ダンパは、制震対象である建物に連結される弾性体と弾性体に取り付けられる質量体とを有する。同調質量ダンパは、建物が加震されたとき、質量体が振動することにより、建物に生じる振動の振幅や加速度を低減する。
特開平6−212834号公報
同調質量ダンパは、例えば、建物の固有周期の近傍において所望の制震効果が発揮されるように設計される。従って、建物の固有周期が変化したとき、制震効果が発揮される周期と建物の固有周期とが互いにずれるので、制震効果が低下する虞がある。
そこで、本発明は、建物の固有周期の変化に対応することにより制震効果の低下を抑制可能な制震装置、制震システム及び制震方法を提供することを目的とする。
本発明の一形態は、建物に適用される制震装置であって、質量部と、質量部を建物に連結する連結部と、を備え、連結部は、建物と質量部との連結方向における第1の弾性係数を有する第1の弾性部と、連結方向における第2の弾性係数を有し、第1の弾性部に対して直列に連結される第2の弾性部と、第2の弾性部に対して並列に設けられ、所定の減衰力を発生させると共に、減衰係数を調整可能な第1の減衰部と、を有する。
この制震装置は、質量部と第1の弾性部と第2の弾性部と減衰部とにより構成される。さらに第1の弾性部及び第2の弾性部が一定の弾性係数を有するものとしながら、第2の弾性部に対して並列に設けられた減衰部の減衰係数を調整させる。従って、減衰部が設けられた第2の弾性部の弾性係数を見かけ上調整することができる。弾性係数が調整されると、制震装置の固有周期が変化する。従って、減衰係数を制御することにより、建物の固有周期の変化に対応するように制震装置の固有周期を調整することが可能になるので、建物の固有周期の変化に伴う制震効果の低下を抑制することができる。
第2の弾性部の一端は、質量部に連結され、第2の弾性部の他端は、第1の弾性部の一端に連結され、第1の弾性部の他端は、建物に連結されてもよい。これらの構成によれば、簡易な構成で制震装置の特性を建物の固有周期の変化に対して好適に追従させることができる。
第1の弾性部の一端は、質量部に連結され、第1の弾性部の他端は、第2の弾性部の一端に連結され、第2の弾性部の他端は、建物に連結されてもよい。これらの構成によれば、簡易な構成で制震装置の特性を建物の固有周期の変化に対して好適に追従させることができる。
連結部は、第1の弾性部に対して並列に接続される第2の減衰部と、第1の弾性部と第2の弾性部とを有する合成弾性部に対して並列に接続される第3の減衰部と、をさらに有してもよい。この構成によれば、制震装置の特性を建物の固有周期の変化に対して好適に追従させることができる。
連結部は、連結方向における第3の弾性係数を有し、第1の弾性部又は第2の弾性部に対して直列に連結される第3の弾性部をさらに有してもよい。この構成によれば、制震装置の制震効果を建物の固有周期の変化に対してさらに好適に追従させることができる。
連結部は、第3の弾性部に対して並列に接続される第4の減衰部をさらに有してもよい。また、連結部は、第2の弾性部と、第2の弾性部に連結された第1の弾性部又は第3の弾性部とを含む合成弾性部に対して並列に接続される第3の減衰部をさらに有してもよい。これらの構成によれば、制震装置の特性を建物の固有周期の変化に対してさらに好適に追従させることができる。
第1の減衰部は、可変減衰ダンパであってもよい。この構成によれば、制震装置を簡易な構成とすることができる。
本発明の別の形態は、建物に適用される制震システムであって、上記の制震装置と、建物の固有周期を得る固有周期取得部と、固有周期を利用して、第1の減衰部における減衰係数を制御する制御部と、を備える。この制震システムによれば、上記制震装置が、固有周期取得部で得られた建物の固有周期に対応するように制御部によって制御される。従って、建物の固有周期の変化に対応することが可能となり、制震効果の低下を抑制することができる。
上記の制震システムが設けられた建物の制震方法であって、建物の固有周期を得る第1のステップと、固有周期を利用して、第1の減衰部における減衰係数を決定する第2のステップと、第2のステップにおいて決定された減衰係数となるように、第1の減衰部を制御する第3のステップと、を有する。この制震方法によれば、固有周期取得部で得られた建物の固有周期に対応するように制御部によって上記制震装置を制御する。従って、建物の固有周期の変化に対応することが可能となり、制震効果の低下を抑制することができる。
本発明によれば、建物の固有周期の変化に対応することにより制震効果の低下を抑制可能な制震装置、制震システム及び制震方法が提供される。
図1は実施形態に係る制震装置を示すモデル図である。 図2は図1に示された制震装置の具体例を示す図である。 図3は変形例1に係る制震装置を示すモデル図である。 図4は変形例2に係る制震装置を示すモデル図である。 図5の(a)部は変形例3に係る制震装置を示すモデル図であり、図5の(b)部は変形例4に係る制震装置を示すモデル図である。 図6は実施例1の結果を示すグラフである。 図7は実施例2の結果を示すグラフである。 図8は周期ずれと最適減衰係数との関係を示すグラフである。 図9の(a)部は実施例3の結果を示すグラフであり、図9の(b)部は実施例4の結果を示すグラフである。 図10は、建物の最大応答変位を示すグラフである。 図11は、制震装置を建物に適用した構成における最大応答ストロークを示す。 図12の(a)部は、比較例1に係る制震装置を示すモデル図であり、図12の(b)部は、比較例2に係る制震装置を示すモデル図である。
以下、添付図面を参照しながら本発明を実施するための形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
図1は、本発明の実施形態に係る制震システム1のモデル図である。図1に示されるように、制震システム1は、建物100に適用される。制震システム1は、地震等により基礎101から建物100に振動が印加されたとき、建物100の振動を抑制する。具体的には、制震システム1は、水平方向における建物100の振幅を低減する。
制震システム1は、制震装置10と、制御装置20と、を有する。制震装置10は、建物100の振動を低減させる力を発生させるものであり、いわゆる同調質量ダンパ(TMD)である。制御装置20は、制震装置10の特性を制御する。具体的には、制震対象である建物100の固有周期(T)の変化に対応するように、制震装置10の固有周期(Td)を制御する。
なお、以下の説明において、固有周期(T)、固有周期(T0)、及び固有周期(Td)を適宜用いる。固有周期(T0)は、周期変動前の建物100の固有周期である。固有周期(T)は、周期変動後の建物100の固有周期であり、T=η×T0(ηは建物100の周期ずれ(詳細は後述))として示される。固有周期(Td)は、制震装置10の固有周期であり、Td=(1+μ)×Tとして示される(ただし、μ=M/M0(質量体11の質量(M)と建物100の質量(M0)との質量比))。固有周期(Td)は、建物100の固有周期と等しくされるわけではなく、固有周期(Td)を(1+μ)×建物100の固有周期とした場合に、制震効果が大きくなる。
制震装置10は、質量体11(質量部)と、連結部12と、を有する。質量体11は、連結部12を介して建物100に連結される。質量体11は、建物100に対して水平方向に移動可能とされる。
連結部12は、第1のバネ13(第1の弾性部)と、第2のバネ14(第2の弾性部)と、可変減衰ダンパ16(第1の減衰部)と、を有する。第1のバネ13は、一端が建物100に連結され、他端が第2のバネ14の一端に連結される。第1のバネ13は、第1のバネ定数(k1)(第1の弾性係数)を有する。第2のバネ14は、一端が第1のバネ13の他端に連結され、他端が質量体11に連結される。第2のバネ14は、第2のバネ定数(k2)(第2の弾性係数)を有する。第1のバネ13と第2のバネ14とは、互いに直列に連結される。
可変減衰ダンパ16は、第2のバネ14の両端の速度差に対応する減衰力を発生させる。また、可変減衰ダンパ16は、減衰器としての機能に加えて、第2のバネ14の見かけ上のバネ定数(k2n)を調整する機能を併せ持っている。第2のバネ14の見かけ上のバネ定数(k2n)を調整する機能の詳細については、後述する。
可変減衰ダンパ16は、第2のバネ14に対して並列に連結される。具体的には、可変減衰ダンパ16は、一端が第2のバネ14の一端に連結され、他端が第2のバネ14の他端に接続される。また、可変減衰ダンパ16は、一端が第1のバネ13の他端に連結され、他端が質量体11に連結されているともいえる。可変減衰ダンパ16は、減衰係数(C)が変更可能である。すなわち、可変減衰ダンパ16は、第2のバネ14の両端の速度差に対応する減衰力の大きさを変化させることができる。このような可変減衰ダンパ16として、例えば、可変減衰機能を有するオイルダンパが挙げられる。可変減衰ダンパ16の減衰係数(C)は、制御装置20から提供される信号に基づいて、電気的に制御される。
制御装置20は、センサ21(固有周期取得部)と、制御部22と、を有する。センサ21は、建物100に取り付けられて、建物100の固有周期(T)に関する情報を得る。このようなセンサ21としては、例えば、加速度センサが挙げられる。センサ21に加速度センサを用いた場合には、取得された加速度を利用して制御部22において建物100の固有周期(T)が算出される。センサ21は、固有周期(T)に関する情報を制御部22に出力する。
制御部22は、センサ21から提供された情報を利用して、制震装置10を制御する。制御部22は、例えば、コンピュータである。制御部22は、固有周期入力部22aと、データベース22bと、制御信号出力部22cと、を有する。固有周期入力部22aは、センサ21から提供された情報を利用して、固有周期(T)を得る。センサ21から提供されたデータは、固有周期(T)そのものを示す情報であってもよいし、固有周期(T)を算出可能なデータであってもよい。固有周期入力部22aは、固有周期(T)を示す情報を制御信号出力部22cに提供する。データベース22bは、建物100の固有周期(T)と、可変減衰ダンパ16の減衰係数(C)とが関連付けられた情報を保持する。この情報は、あらかじめ数値計算などにより準備されて、メモリ等に記録されたものである。データベース22bは、制御信号出力部22cから参照可能に構成される。制御信号出力部22cは、固有周期入力部22aから提供された固有周期(T)を示す情報を利用して、当該固有周期(T)に対応する減衰係数(C)をデータベース22bから読み出す。そして、可変減衰ダンパ16の減衰係数(C)が読み出した減衰係数(C)となるように、可変減衰ダンパ16を制御する信号を生成し、当該信号を可変減衰ダンパ16に出力する。
図2は、図1に示された制震システム1の例示である。図2の制震システム1Aは、建物100の屋上に配置される。制震システム1Aは、制震装置10Aと、制御装置20と、を有する。制震装置10Aは、筐体31と、吊りワイヤ32と、錘33と、可変減衰ダンパ34と、支承装置36と、を有する。吊りワイヤ32は、図1における第2のバネ14に対応する。錘33は、図1における質量体11に対応する。可変減衰ダンパ34は、図1における可変減衰ダンパ16に対応する。支承装置36は、図1における第1のバネ13に対応する。支承装置36には、積層ゴム構造、転がり支承、すべり支承、球面すべり支承等が挙げられる。また、筐体31と吊りワイヤ32と可変減衰ダンパ34と支承装置36とが組み合わされた構成は、図1における連結部12に対応する。
筐体31は、吊りワイヤ32と、錘33と、可変減衰ダンパ34とを収容する。筐体31は、例えば、鉄性や鋼製の部材を組み合わせた鉄骨構造で有り得る。筐体31は、吊りワイヤ32と、錘33と、可変減衰ダンパ34とを所定の位置に配置するための構造体である。
吊りワイヤ32は、上端が筐体31の上部横梁に連結され、下端には錘33が連結される。このような構造によれば、錘33は、水平方向に移動可能である。可変減衰ダンパ34は、一端が錘33の側部に連結され、他端が筐体31の柱に連結される。このような構造によれば、錘33が水平方向に移動したとき、錘33の速度に対応する減衰力が可変減衰ダンパ34により発生する。
次に、制震装置10及び制震システム1が建物100の固有周期(T)の変化に対応できる理由について説明する。まず、建物100の固有周期(T)に対応するとは、固有周期(T)を有する建物100に振動が印加されたとき、振動によって生じる建物100の振幅(或いは加速度)を低減するように、制震装置10の固有周期(Td)が設定されていることをいう。従って、建物100の固有周期(T)の変化に対応するとは、建物100の固有周期(T)の変化に追従して、制震装置10の固有周期(Td)も変化することをいう。
図1に示されるように、制震装置10は、第1のバネ13と第2のバネ14とを有する。今、可変減衰ダンパ16の減衰係数(C)がゼロとして設定され、減衰力が発生しない状態を仮定する。そうすると、制震装置10の固有周期(Td)は、質量体11の質量(M)と、第1のバネ13のバネ定数(k1)と第2のバネ14のバネ定数(k2)により決定される。すなわち、制震装置10の固有周期(Td)は、下記式(1)及び式(2)により示される。
Figure 0006706551

Td:制震装置10の固有周期
M:質量体11の質量
ka:第1のバネ13と第2のバネ14とを直列に連結した場合の合成バネ定数
Figure 0006706551
次に、可変減衰ダンパ16の減衰係数(C)が大きく設定され、大きな減衰力が生じる状態を仮定する。そうすると、質量体11の移動に対して第2のバネ14が伸縮し難くなる。そして、最終的に第2のバネ14は、剛体としてみなされることとなり、弾性体としての機能を奏しない。この場合には、制震装置10の固有周期(Td)は、質量体11の質量(M)と、第1のバネ13のバネ定数(k1)とにより決定される。すなわち、制震装置10の固有周期(Td)は、下記式(3)により示される。
Figure 0006706551
さらに、第2のバネ14の見かけのバネ定数(k2n)、すなわち質量体11の移動量と第2のバネ14の伸びとの関係は、可変減衰ダンパ16の減衰係数(C)に対応する。従って、可変減衰ダンパ16の減衰係数(C)を制御することにより、第2のバネ14の見かけのバネ定数(k2n)を変化させることが可能になる。具体的には、第2のバネ14の見かけのバネ定数(k2n)は、(k2<k2n<∞)の範囲を取り得る。第2のバネ14のバネ定数(k2n)は、制震装置10の固有周期(Td)に関係するので(式(4)及び式(5)参照)、可変減衰ダンパ16の減衰係数(C)を制御することにより、制震装置10の固有周期(Td)を所望の値に設定することができる。具体的には、制震装置10の最大固有周期(Tmax)は、式(1)に示される値であり、制震装置10の最小固有周期(Tmin)は式(3)に示される値である。そして、最大固有周期(Tmax)と最小固有周期(Tmin)の間の固有周期(Td)は、式(4)及び式(5)により示される値である。
Figure 0006706551

Figure 0006706551
次に、制震システム1を用いた建物100の制震方法について説明する。まず、建物100の固有周期(T)の範囲に基づいて、第1のバネ13のバネ定数(k1)と第2のバネ14のバネ定数(k2)を決定する。具体的には、建物100の最小固有周期(Tmin)と最大固有周期(Tmax)とを設定する。建物100の最小固有周期(Tmin)によれば、第1のバネ13のバネ定数(k1)が決定される。すなわち、式(3)のTdが(1+μ)×T0に等しくなるように第1のバネ13のバネ定数(k1)を設定する。同様にして、建物100の最大固有周期(Tmax)によれば、第1のバネ13と第2のバネ14とを直列に連結した場合の合成バネ定数(ka)が得られる(式(1)参照)。第1のバネ定数(k1)は、別に決定されているので、合成バネ定数(ka)と第1のバネ定数(k1)から、第2のバネ定数(k2)が得られる。
次に、可変減衰ダンパ16の減衰係数(C)を得る。具体的には、建物100の固有周期(T)を最小固有周期(Tmin)から最大固有周期(Tmax)までの間の所望の値に設定する。続いて、建物100の固有周期(T)と、質量体11の質量(M)、第1のバネ定数(k1)、第2のバネ定数(k2)と、可変減衰ダンパ16の減衰係数(C)とを利用して、振動に対する建物100の平均応答を得る。このとき、可変減衰ダンパ16の減衰係数(C)を変化させて、複数の応答を得る。そして、平均応答が最小となる減衰係数(C)を、固有周期(T)と関連付けて保存する。このような処理を、建物100の固有周期(T)を変化させながら、繰り返し行う。
この建物100の固有周期(T)と可変減衰ダンパ16の減衰係数(C)との関係を得る作業は、制震システム1を建物100に設ける前に行われる。
次に、地震が発生し、建物100に横揺れが生じたときにおける制震方法について説明する。建物100に横揺れが生じたとき、センサ21は、建物100の固有周期(T)に関する情報を取得する(第1のステップ)。すなわち、地震が作用している間の建物100の固有周期をオンラインで同定する。当該情報は、制御部22に出力される。制御部22は、固有周期(T)に関する情報を利用して、可変減衰ダンパ16のための制御信号を発生する(第2のステップ)。具体的には、固有周期(T)に関する情報を利用して、可変減衰ダンパ16の減衰係数(C)を決定する。まず、制御部22の固有周期入力部22aは、固有周期(T)を得る。次に、制御信号出力部22cは、固有周期(T)に対応する減衰係数(C)をデータベース22bから読み出す。そして、制御信号出力部22cは、読み出された減衰係数(C)となるように、可変減衰ダンパ16を設定するための制御信号を生成する。そして、制御信号出力部22cは、制御信号を可変減衰ダンパ16に出力することにより、可変減衰ダンパ16の減衰係数(C)を所定の値に制御する(第3のステップ)。
上記の第1のステップ、第2のステップ及び第3のステップは、建物100の横揺れが生じている間、繰り返し実行される。
次に、制震装置10、制震システム1及び制震方法の作用効果について、比較例1に係る制震装置200及び比較例2に係る制震装置300と対比しつつ説明する。
図12の(a)部には、比較例1に係る制震装置200のモデルが示される。比較例1の制震装置200は、基本的な同調質量ダンパ(TMD)構成を有する。具体的には、制震装置200は、質量体201と、質量体201を建物100に連結するバネ202と、バネ202に並列に設けられたダンパ203とを有する。バネ202は、所定のバネ定数を有する。ダンパ203も同様に、所定の減衰係数を有する。従って、比較例1の制震装置200は、バネが単独である点と、ダンパ203の減衰係数が固定である点とで、本実施形態の制震装置10と相違する。比較例1に係る制震装置200は、振動特性(ここでは制震装置200の固有周期(Td))が一つの値しか取り得ない。すなわち、比較例1の制震装置200は、建物100のある固有周期(T)に対応するように設計されているので、建物100の固有周期(T)の変化に対応することができない。従って、建物100の固有周期(T)が変化すると、制震効果が低下することがあり得る。例えば、地震等により建物100にひび割れが生じた場合には、建物100の固有周期(T)がひび割れのない建物100の固有周期(T)よりも大きくなることがある。
そこで、図12の(b)部に示されるように、比較例2に係る制震装置300が考えられる。比較例2の制震装置300は、第1の制震部301と第2の制震部302とを備えている。第1の制震部301は、質量体303と、質量体303を建物100に連結するバネ304と、ダンパ305と、を有する。そして、これら質量体303の質量とバネ304のバネ定数とに基づく第1の固有周期を有する。また、第2の制震部302は、質量体306と、質量体306を建物100に連結するバネ307と、ダンパ308と、を有する。そして、これら質量体306の質量とバネ307のバネ定数とに基づく第2の固有周期を有する。第1の制震部301の第1の固有周期と第2の制震部302の第2の固有周期とは互いに異なっている。このような制震装置300によれば、建物100の固有周期(T)が第1の固有周期の近傍であるときと、建物100の固有周期(T)が第2の固有周期の近傍であるときと、に対応できる。しかし、建物100の固有周期(T)が第1の固有周期と第2の固有周期との間である場合には、制震効果が低下することがあり得る。また、対応可能な固有周期の範囲を広げる場合には、制震部を増やす等の対応が必要となる。従って、制震装置の規模が大きくなり易い。
さらに、制震のための制御力を発生する機構としてアクチュエータを利用する構成も考えられる。しかし、大地震下においては制震に要する力が非常に大きいため、要求される力を得るためには、アクチュエータが巨大になる虞がある。また、能動的な駆動を行うアクチュエータでは、そもそも要求される力が得られないこともあり得る。
本実施形態の制震装置10は、質量体11と第1のバネ13と第2のバネ14と可変減衰ダンパ16とにより構成される。さらにバネ自体は一定のバネ定数(k1,k2)を有するものとしながら、可変減衰ダンパ16の減衰係数(C)を調整することにより第2のバネ14が有する第2のバネ定数(k2)を見かけ上調整することができる。従って、建物100の固有周期(T)の変化に対応するように、制震装置10の固有周期(Td)を調整することが可能になるので、建物100の固有周期(T)の変化に伴う制震効果の低下を抑制し得る。また、本実施形態の制震装置10は、バネとダンパとにより構成される単純な機構であり、アクチュエータのように能動的な駆動を行う必要ないため、大質量を有する質量体11を採用することが可能になる。従って、許容可能な地震の大きさを拡大することができる。
また、本実施形態の制震装置10によれば、制震装置10が有する第1のバネ13及び第2のバネ14のそれら自体の剛性条件を変更することなく、可変減衰ダンパ16の減衰係数(C)の制御のみで、制震装置10の特性を建物100の周期変動に追従させることができる。従って、第1のバネ13及び第2のバネ14のそれぞれの剛性は一定でよく、制震装置10の構造を単純化できる。
さらに、本実施形態の制震装置10は、建物100に作用する比較的小さい横揺れ(例えば風による揺れ)と、比較的大きい揺れ(例えば大地震による揺れ)の両方に好適に対応することができる。そのうえ、制震装置10が図2に示されるような構成として適用された場合に、錘33の吊り長さの制限が緩和されるので、制震装置10を小型化することが可能になる。また、大地震時におけるダンパストロークを低減することができる。
以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
例えば、図3に示されるように、変形例1に係る制震装置10Bの連結部12Bは、第1の可変減衰ダンパとしての可変減衰ダンパ16に加えて、可変減衰ダンパ16A(第2の減衰部)と可変減衰ダンパ16B(第3の減衰部)とをさらに有していてもよい。可変減衰ダンパ16Aは、第1のバネ13に対して並列に接続される。具体的には、可変減衰ダンパ16Aは、一端が第1のバネ13の一端に連結され、他端が第1のバネ13の他端に連結される。可変減衰ダンパ16Bは、第1のバネ13及び第2のバネ14のそれぞれに対して並列に接続される。即ち、可変減衰ダンパ16Bは、合成バネ15(合成弾性部)に対して並列に接続される。合成バネ15は、互いに直列に連結された第1のバネ13と第2のバネ14と、により構成される。具体的には、可変減衰ダンパ16Bは、一端が第1のバネ13の一端に連結され、他端が第2のバネ14の他端に連結される。このような連結部12Bを有する制震装置10Bによれば、制震装置10Bの振動特性をより細かく調整することが可能になるので、建物100の固有周期(T)の変化に伴う制震効果の低下をさらに抑制し得る。
また、制震装置は、合成バネ(合成弾性部)を構成する直列バネの数が2個に限定されることはなく、例えば、図4に示されるように、変形例2に係る制震装置10Cは、3個以上のバネを有していてもよい。制震装置10Cは、連結部12Cを有する。連結部12Cは、第3のバネ17(第3の弾性部)と、可変減衰ダンパ18(第4の減衰部)とを有する。第3のバネ17は、連結方向における第3の弾性係数(k3)を有する。第3のバネ17は、一端が第1のバネ13の他端に連結され、他端が第2のバネ14の一端に連結される。可変減衰ダンパ18は、一端が第3のバネ17の一端に連結され、他端が第3のバネ17の他端に連結される。このような連結部12を有する制震装置10Cによれば、制震装置10Cの制震特性をより細かく調整することが可能になるので、建物100の固有周期(T)の変化に伴う制震効果の低下をさらに抑制し得る。
また、変形例3に係る制震装置は、図5の(a)部に示される構成を備えていてもよい。図5の(a)部に示されるように、制震装置10Dは、質量体11と、質量体11を建物100に連結する連結部12Dとを有している。連結部12Dは、第1のバネ13Dと第2のバネ14Dとを有している。第2のバネ14Dには可変減衰ダンパ16が設けられている。ここで、第1のバネ13Dは、一端が質量体11に連結され、他端が第2のバネ14Dの一端に連結されている。また、第2のバネ14Dは、一端が第1のバネ13Dの他端に連結され、他端が建物100に連結されている。すなわち、制震装置10Dは可変減衰ダンパ16が設けられた第2のバネ14Dが建物100に直接に連結されている点で、可変減衰ダンパ16が設けられた第2のバネ14が第1のバネ13を介して建物100に連結されている実施形態に係る制震装置10と相違する。このような構成によっても、制震装置10Dは、制震装置10と同様の効果を得ることができる。
また、変形例4に係る制震装置は、図5の(b)部に示される構成を備えていてもよい。図5の(b)部に示されるように、制震装置10Eは、制震装置10D(図5の(a)部参照)に対して、2個の可変減衰ダンパ16A,16Bを追加したものである。可変減衰ダンパ16Aは、第1のバネ13Eに設けられている。可変減衰ダンパ16Bは、第1のバネ13Eと第2のバネ14Eとが直列に接続された合成バネに対して設けられている。このような連結部12Eを有する制震装置10Eによっても、制震装置10Eの振動特性をより細かく調整することが可能になるので、建物100の固有周期(T)の変化に伴う制震効果の低下をさらに抑制し得る。
次に、比較例1の制震装置200及び比較例2の制震装置300の特性と比較しながら、制震装置10,10Bの特性を実施例1〜6により確認した。例えば、実施例1の制震装置10Bは、図3に示された変形例1に係る構成を有する。実施例2〜6の制震装置10は、主系の質量(M0)である建物100と副系の質量(M)である質量体11とを第1のバネ13及び第2のバネ14により連結した。そして、第2のバネ14に可変減衰要素としての可変減衰ダンパ16を設けた。このような振動系を有する制震装置10は、直列可変型の同調質量ダンパ(TMD)と呼ぶこともできる。直列可変型の制震装置10によれば、可変減衰ダンパ16の減衰係数(C)を制御することにより、同調周期を制御することが可能である。例えば、減衰係数(C)を大きくすると、第2のバネ14のバネ定数(k2)が見かけ上大きくなるので、制震装置10の固有周期(Td)が式(3)に示される周期に漸近する。本実施例2では、このときの制震装置10の固有周期(Td)が、周期変動前の建物100の固有周期(T0)に同調するように、下記式(6)によって第1のバネ定数(k1)を設定した。
Figure 0006706551
制震装置10が対応可能な範囲は、質量比(μ)や、剛性比(k2/k1)による。以下の実施例1〜6においては、2倍程度の周期ずれ(η)を想定した建物100を対象とし、基本的な設定として、質量比(μ=5.0%)、剛性比(k2/k1=0.50)とした。ここで、周期ずれ(η)は、式(7)により示される。
Figure 0006706551

T:周期変動後の建物の固有周期
T0:周期変動前の建物の固有周期
実施例1〜4では、ランダム振動論に基づき、伝達関数を利用して各制震装置を設置したときの建物の平均応答(σ)を得ることにより種々の確認を行った。
<実施例1>
実施例1では、変形例1の制震装置10Bにおいて、可変減衰ダンパ16の減衰係数(C)、可変減衰ダンパ16Aの減衰係数(CA)及び可変減衰ダンパ16Bの減衰係数(CB)を変化させたときの応答を確認した。制震装置10Bに対して、下記式(8)により伝達関数を利用して、その平均応答(σ)を得た。具体的には、式(7)に示される建物100の周期ずれ(η)を設定し、当該周期ずれ(η)のもとに、可変減衰ダンパ16、可変減衰ダンパ16A及び可変減衰ダンパ16Bの減衰係数(C,CA,CB)を変化させて平均応答(σ)を得た。
Figure 0006706551

H(iω):建物の伝達関数
ω :角振動数
図6は、計算の結果を示すグラフである。横軸は周期ずれ(η)を示し、縦軸は平均応答(σ)を示す。グラフG5aは、平均応答(σ)が最小となるように可変減衰ダンパ16、可変減衰ダンパ16A及び可変減衰ダンパ16Bの減衰係数(C,CA,CB)を変化させた場合の結果である。グラフG5bは、平均応答(σ)が最小となるように可変減衰ダンパ16のみ減衰係数(C)を変化させた場合の結果である。なお、可変減衰ダンパ16A及び可変減衰ダンパ16Bの減衰係数(CA,CB)はゼロとした。すなわち、グラフG5bを得た設定は、制震装置10(図1参照)に対応する。
グラフG5a及びグラフG5bに示されるように、周期ずれ(η)が1から2.5の間では、グラフG5a及びグラフG5b共に同様の傾向を示すことがわかった。従って、制震装置10のように、第2のバネ14にのみ可変減衰ダンパ16を設けた構成であっても、変形例1の制震装置10Bと同等の制震効果を得られることが確認できた。これにより、制震装置10は、簡易な構造で広い範囲の建物100の周期変動に対応可能な合理的な構成であることがわかった。
<実施例2>
実施例2では、制震装置10,200,300において、周期ずれ(η)と平均応答(σ)との関係を確認した。制震装置10,200,300における設定は、表1のとおりである。なお、制震装置10の剛性比(k2/k1)は、0.50とした。また、制震装置200,300の減衰係数(C)は、式(9)に示す定点理論による最適減衰定数(h)をもとにして算定した。なお、表1において、質量比(μ1)は、μ1=M1/M0である。質量比(μ2)は、μ2=M2/M0である。
Figure 0006706551

Figure 0006706551
図7は、計算の結果を示すグラフである。横軸は周期ずれ(η)を示し、縦軸は平均応答(σ)を示す。グラフG6aは制震装置10の応答であり、グラフG6bは制震装置200の応答であり、グラフG6cは制震装置300の応答である。グラフG6aに示されるように、周期ずれ(η)が1から2までの範囲において、制震装置10は、周期ずれ(η)に対応可能であり、良好な制震効果を有することがわかった。グラフG6bに示されるように、周期ずれ(η)に対応できない制震装置200は、周期ずれ(η)がない(即ちη=1)であるときには、良好な特性が得られる。しかし、周期ずれ(η)が大きくなると平均応答(σ)が大きくなり、制震効果が低下していることがわかった。また、グラフG6cに示されるように、比較例2の制震装置300によれば、制震装置300が有する第1の固有周期と第2の固有周期の近傍において平均応答(σ)を低減させる効果が得られることがわかった。従って、例えば、第1の固有周期と第2の固有周期の間では、平均応答(σ)が大きくなりやすいことがわかった。
さらに、実施例2の制震装置10において、図8に示されるように、周期ずれ(η)と平均応答(σ)が最小となる減衰係数(C)との関係を得た。図8において、横軸は周期ずれ(η)であり、縦軸は減衰係数(C)である。算定条件は、T0=3秒、質量比(μ)=5.0%、剛性比(k2/k1)=0.50である。範囲(η>1)における近似式は、式(10)であることがわかった。式(10)は、図の破線に対応する。
Figure 0006706551
<実施例3>
実施例3では、制震装置10における質量比(μ)と平均応答(σ)との関係を確認した。図9の(a)部は、計算の結果を示すグラフである。横軸は周期ずれ(η)を示し、縦軸は平均応答(σ)を示す。グラフG8aは質量比(μ=2.5%)であり、グラフG8bは質量比(μ=5.0%)であり、グラフG8cは質量比(μ=10.0%)であり、グラフG8dは質量比(μ=20.0%)である。また、剛性比は(k2/k1=0.50)である。グラフG8a〜G8dに示されるように、質量比(μ)が大きくなるほど、平均応答(σ)が低減されることがわかった。さらに、質量比(μ)が大きくなるほど、周期ずれ(η)に対する対応可能な範囲が拡大することがわかった。
<実施例4>
実施例4では、制震装置10における剛性比(k2/k1)と平均応答(σ)との関係を確認した。図9の(b)部は、計算の結果を示すグラフである。横軸は周期ずれ(η)を示し、縦軸は平均応答(σ)を示す。グラフG8eは剛性比(k2/k1=0.33)であり、グラフG8fは剛性比(k2/k1=0.50)であり、グラフG8gは剛性比(k2/k1=1.00)であり、グラフG8hは剛性比(k2/k1=2.00)である。また、質量比は(μ=5.0%)である。グラフG8e〜G8hに示されるように、剛性比(k2/k1)が小さくなるほど、対応可能な周期ずれ(η)の範囲が拡大するが、中間領域における制震効果は小さくなることがわかった。
実施例5,6では、地震応答解析を行い、制震装置10,200,300の特性を確認した。また、実施例5では、比較例3として、同調質量ダンパを備えない場合の建物の変位も確認した。実施例5,6における制震対象である建物は、RC造超高層建物を想定した40質点モデルとした。建物における復元力特性は、武田モデルを採用し、瞬間剛性比例型減衰(h=3%)を与えた。計算に利用される制震装置の設定は、表2のとおりである。
Figure 0006706551
実施例5,6の解析における直列可変型の制震装置10は、次のような動作を行う。まず、予め準備された入力地震動に対してローパスフィルタを適用し、高周波成分を除く。次に、各階(質点)の加速度応答をモード分解し、1次モードの波形を得る。そして、ローパスフィルタを適用し、高周波成分を除く。地動加速度を入力、1次モード波形を出力とみなして、ARX(Auto-Regressive with eXogenous)モデルを適用し、建物の1次の固有周期を同定する。そして、得られた固有周期に対応する制震装置の減衰係数(C)を得る。この実施例5,6では、周期ずれ(η)と減衰係数(C)との関係を示す近似式(例えば式(9)参照)を予め準備し、当該近似式を用いて建物の固有周期(T)から減衰係数(C)を得た。
<実施例5>
実施例5では、制震装置10,200,300を建物に適用した構成における地震応答解析を行い、建物の最大応答変位を確認した。図10は、建物の最大応答変位を示す。グラフG9aは、制震装置10を適用した場合の変位である。グラフG9bは、制震装置200を適用した場合の変位である。グラフG9cは、制震装置300を適用した場合の変位である。グラフG9dは、制震装置を適用しない場合の変位である。周期ずれ(η)に対応できない比較例1,3の変位(グラフG9b,G9d)と、周期ずれ(η)に対応可能な制震装置10の変位(グラフG9a)との違いが確認された。従って、制震装置10によれば、周期変動をおこす建物においても地震動に起因する水平方向への変位を好適に抑制し得ることがわかった。
<実施例6>
実施例6では、制震装置10、制震装置200及び制震装置300を建物に適用した構成における、最大応答ストロークを確認した。図11は、制震装置を建物に適用した構成における最大応答ストロークを示す。まず、制震装置200である場合(比較例1)は、周期ずれに対応できないため、制震装置が効いておらず、応答ストロークが大きくならないことが確認できた。また、実施例6の場合には、周期ずれに対応可能であり、なおかつ、並列固定型である制震装置300(比較例2)よりもストロークが小さいことが確認できた。ストロークが小さいことは、制震装置の設置スペースの縮小につながり、実施において有利である。
1…制震システム、10,10A,10B,10C,10D,10E,200,300…制震装置、11,201…質量体(質量部)、12,12B,12E…連結部、13,13D,13E…第1のバネ(第1の弾性部)、14,14D,14E…第2のバネ(第2の弾性部)、16…可変減衰ダンパ(減衰部)、16A…可変減衰ダンパ(第2の減衰部)、16B…可変減衰ダンパ(第3の減衰部)、17…第3のバネ(第3の弾性部)、18…可変減衰ダンパ(第4の減衰部)、20…制御装置、21…センサ(固有周期取得部)、22…制御部、22a…固有周期入力部、22b…データベース、22c…制御信号出力部、31…筐体、32…ワイヤ、33…錘、34…可変減衰ダンパ、36…支承装置、100…建物、101…基礎、202…バネ、203…ダンパ、T0…周期変動前の建物の固有周期、T…周期変動後の建物の固有周期、Td…制震装置の固有周期。

Claims (4)

  1. 建物に適用される制震装置であって、
    質量部と、
    前記質量部を前記建物に連結する連結部と、を備え、
    前記連結部は、
    前記建物と前記質量部との連結方向において、それぞれが固有の弾性係数を有し相互に直列に接続される少なくとも2つ以上の弾性部と、
    2つ以上の前記弾性部において少なくとも1つの前記弾性部に対して並列に設けられ、所定の減衰力を発生させると共に減衰係数を調整可能な、前記弾性部よりも少ない数の減衰部と、を有し、
    2つ以上の前記弾性部から選択される1つの前記弾性部は、前記建物に連結され、
    前記減衰部は、減衰係数を調整することにより、前記減衰部が並列に設けられた前記弾性部の見かけのバネ定数を制御する、制震装置。
  2. 記減衰部は、可変減衰ダンパである、請求項1に記載の制震装置。
  3. 建物に適用される制震システムであって、
    請求項1又は2に記載の制震装置と、
    前記建物の固有周期を得る固有周期取得部と、
    前記固有周期を利用して、前記減衰部における減衰係数を制御する制御部と、を備える、制震システム。
  4. 請求項に記載の制震システムが設けられた建物の制震方法であって、
    前記建物の固有周期を得る第1のステップと、
    前記固有周期を利用して、前記減衰部における減衰係数を決定する第2のステップと、
    前記第2のステップにおいて決定された前記減衰係数となるように、前記減衰部を制御する第3のステップと、を有する、制震方法。
JP2016127723A 2016-06-28 2016-06-28 制震装置、制震システム及び制震方法 Active JP6706551B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016127723A JP6706551B2 (ja) 2016-06-28 2016-06-28 制震装置、制震システム及び制震方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127723A JP6706551B2 (ja) 2016-06-28 2016-06-28 制震装置、制震システム及び制震方法

Publications (2)

Publication Number Publication Date
JP2018003317A JP2018003317A (ja) 2018-01-11
JP6706551B2 true JP6706551B2 (ja) 2020-06-10

Family

ID=60948302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127723A Active JP6706551B2 (ja) 2016-06-28 2016-06-28 制震装置、制震システム及び制震方法

Country Status (1)

Country Link
JP (1) JP6706551B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220100B2 (ja) * 2019-03-15 2023-02-09 鹿島建設株式会社 制震装置及び制震装置を設計する方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2617106B2 (ja) * 1987-10-16 1997-06-04 株式会社ブリヂストン 建物用振動制御装置
JP2938095B2 (ja) * 1989-08-11 1999-08-23 株式会社ブリヂストン 建物用動吸振装置
JPH07259911A (ja) * 1994-03-18 1995-10-13 Shimizu Corp 構造物の制振方法および制振装置
JP2010209625A (ja) * 2009-03-12 2010-09-24 Asahi Kasei Homes Co 制振建物

Also Published As

Publication number Publication date
JP2018003317A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
Tjepkema et al. Sensor fusion for active vibration isolation in precision equipment
JP6037888B2 (ja) 制振装置
TWI695128B (zh) 主動慣性阻尼器系統及方法
Beijen et al. Two-sensor control in active vibration isolation using hard mounts
JP6375930B2 (ja) サスペンションの減衰力制御装置
JP6706551B2 (ja) 制震装置、制震システム及び制震方法
JP3732314B2 (ja) 制振装置
O'Connor et al. Wave-based control of under-actuated flexible structures with strong external disturbing forces
JP6706550B2 (ja) 制震装置、制震システム及び制震方法
JP5630131B2 (ja) 建造物の中に設けられた嫌振部分の制御装置、及び、建造物の中に設けられた嫌振部分の制御方法
JP6636383B2 (ja) 免震構造及び免震構造を設計する方法
JP6442912B2 (ja) 制振システム
JP2013091970A (ja) 制震システム、及び建物の制震方法
JP2013029137A (ja) 制振装置
Shahadat et al. Active horizontal suspension system using negative stiffness control
JP2016056875A (ja) 制振機能付き免震構造物
Tsai et al. Robust control of novel pendulum-type vibration isolation system
JP7364476B2 (ja) チューンドマスダンパの性能評価方法
JP7220100B2 (ja) 制震装置及び制震装置を設計する方法
Tagami et al. Vibration damping and isolation systems using direct inertia force control
JP2903075B2 (ja) 多自由度動吸振装置
JP7220989B2 (ja) 振動解析装置、学習システム、振動解析方法及びプログラム
JP2024009059A (ja) 構造体の制振システム
Silva-Navarro et al. Adaptive-like vibration control in a three-story building-like structure with a PZT stack actuator
JP2007120711A (ja) アクティブ制振システムの設計方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6706551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250