JP6700751B2 - 撮像装置、撮像装置の制御方法およびプログラム - Google Patents

撮像装置、撮像装置の制御方法およびプログラム Download PDF

Info

Publication number
JP6700751B2
JP6700751B2 JP2015234312A JP2015234312A JP6700751B2 JP 6700751 B2 JP6700751 B2 JP 6700751B2 JP 2015234312 A JP2015234312 A JP 2015234312A JP 2015234312 A JP2015234312 A JP 2015234312A JP 6700751 B2 JP6700751 B2 JP 6700751B2
Authority
JP
Japan
Prior art keywords
pixel
read
correction
signal
reading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015234312A
Other languages
English (en)
Other versions
JP2017103568A (ja
Inventor
篤義 伊藤
篤義 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015234312A priority Critical patent/JP6700751B2/ja
Priority to US15/360,368 priority patent/US10009559B2/en
Publication of JP2017103568A publication Critical patent/JP2017103568A/ja
Application granted granted Critical
Publication of JP6700751B2 publication Critical patent/JP6700751B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/675Focus control based on electronic image sensor signals comprising setting of focusing regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/618Noise processing, e.g. detecting, correcting, reducing or removing noise for random or high-frequency noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/677Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction for reducing the column or line fixed pattern noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Description

本発明は、撮像装置で生成された画像信号のノイズを低減する技術に関するものである。
画像センサなどの光電変換素子が配列された撮像素子が広く使用されているが、ノイズ成分が含まれることで、画質が低下することがあるため、種々のノイズ低減方法が提案されている。
たとえば、画像内のノイズレベルに応じてノイズ低減アルゴリズムのパラメータを変更する方法として、特許文献1が知られている。特許文献1では、デジタル画像の座標の関数としてノイズ情報を取得し、ノイズ低減処理時に、ノイズ低減処理の1個以上のパラメータを、得られたノイズ情報に基づいて変更する方法が開示されている。
特許第5337049号公報
近年、新しい構造の撮像素子が提案され、上記のノイズ低減処理を使用しても十分なノイズ低減効果が得られない場合がある。たとえば、被写体の光学像を形成する撮影光学系の瞳分割機能を有する画素を複数備え、画素信号を用いて位相差検出方式の焦点検出を行うことを可能にした撮像素子が提案されている。このような撮像素子を用いた撮像装置では、画像全体から焦点検出用の信号を必ずしも読み出す必要はなく、一部の領域からのみ焦点検出用の信号を読み出しても良い。
しかしながら、同じ画像内で、焦点検出用の信号の読み出しを行う領域と、画像生成用の信号の読み出しを行う領域とが混在すると、それぞれの領域に対応する画像信号に重畳されるノイズ量が異なることになる。その理由について、1つの例を挙げて簡単に説明する。例えば、1つの画素に瞳分割機能を実現する2つのフォトダイオードが含まれている場合、焦点検出用の信号の読み出しを行う領域では、まず1つのフォトダイオードで得られる信号を出力してから、2つのフォトダイオードで得られる信号を加算して出力する。これに対し、画像生成用の信号の読み出しを行う領域では、2つのフォトダイオードで得られる信号を加算して出力する動作のみ行う。焦点検出用の信号の読み出しを行う領域では信号を出力する動作を2回行うため、信号を出力する動作を1回だけしか行わない画像生成用の信号の読み出す領域に比べて、リセット動作を行ってから読み出しが完了するまでの時間が長くなる。これにより、信号間の動作周波数が低下し、フリッカ雑音が増加してしまう。そのため、画像の一部分のみで焦点検出を行い、この一部分の領域に対してのみ焦点検出用の信号の読み出しを行うと、焦点検出を行った領域とそうでない領域の間で、ノイズ感が変わってしまうという課題が生じる。
特許文献1に記載の信号処理方法では、座標の関数としてのノイズレベル情報を用い、ノイズ低減を行うとしているが、同じ画像内で領域別に異なる信号の読み出し動作が適用される場合については何ら考慮されていない。
本発明はこのような課題に鑑みてなされたもので、撮像素子に対して領域別に複数の読み出し動作を適用した場合でも、適切なノイズ低減を行うことが可能な撮像装置およびその制御方法を提供することを目的とする。
上述の目的は、撮像素子を有し、前記撮像素子の第1の領域に含まれる画素に対して、蓄積された電荷に応じた信号を読み出す第1の読み出し動作を行い、前記第1の領域とは異なる第2の領域に含まれる画素に対して、前記第1の読み出し動作とは異なる、蓄積された電荷に応じた信号を読み出す第2の読み出し動作を行う読み出し手段と、前記第1の領域と前記第2の領域から得られた信号に基づく画像信号に対して補正を行う補正手段と、を有し、前記補正手段は、処理対象となる画素の周辺に位置する複数の周辺画素から得られた画像信号と、該複数の周辺画素のそれぞれに対応する係数を用いて、前記補正を行うものであって、同じ前記補正の処理対象となる画素に対して補正を行うとしても、同じ前記周辺画素に対して、該周辺画素が前記第1の読み出し動作と前記第2の読み出し動作のどちらが実行されたかに応じて、周辺画素に対応する係数を変更することを特徴とする撮像装置によって達成される。
撮像素子に対して領域別に複数の読み出し動作を適用した場合でも、適切なノイズ低減を行うことが可能な撮像装置およびその制御方法を提供することができる。
撮像装置の構成を示す図である。 (a)は撮像装置で使用される撮像素子の構成を示す図であり、(b)および(c)は画素アレイの構成を示す図である。 撮像素子の構成を示す図である。 (a)および(b)は撮像素子の読み出し動作のタイミングを示す図である。 (a)は読み出し動作の組合せの例を示す図であり、(b)は動画撮影の読み出し動作に関するフローチャートである。 (a)は画像処理部に入力されるラインごとの信号を示す図であり、(b)は画像処理部の構成を示す図である。 本発明の第1の実施形態に係る読み出し手段の変化に応じた加重係数の設定を説明するための図である。 ノイズ低減回路の構成を示す図である。 行内加算回路の構成を示す図である。 本発明の第2の実施形態に係る読み出し手段の変化に応じた加重係数の設定を説明するための図である。 本発明の第3の実施形態に係るノイズ低減回路の構成を示す図である。 使用画素判定回路の構成を示す図である。 本発明の第3の実施形態に係る読み出し手段の変化に応じた加重係数の設定を説明するための図である。 本発明の第4の実施形態に係るノイズ低減回路の構成を示す図である。 本発明の第4の実施形態に係る読み出し手段の変化に応じた加重係数の設定を説明するための図である。 本発明の第4の実施形態に係るノイズ低減回路の構成を示す図である。
以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。なお、以下の実施形態において示す構成は一例にすぎず、本発明は図示された構成に限定されるものではない。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る撮像装置の構成を示すブロック図である。同図において、撮像素子100は、撮影光学系で形成された被写体の光学像を電気信号に光電変換する。撮像素子100は後述する中央処理装置103等によって制御され、静止画または動画を撮影する。アナログフロントエンド(以下、これをAFEと称する)101は、撮像素子100から出力されたアナログの画像信号に対して、ゲイン調整や所定の量子化ビットに対応してデジタル変換を行う。タイミングジェネレータ(以下、これをTGと称する)102は、撮像素子100及びAFE101の駆動タイミングを制御する。本実施形態では、撮像素子100の外部にAFE101、TG102を配置しているが、それらは撮像素子内に内蔵される構成であってもかまわない。
上述のように、中央処理装置(以下、これをCPUと称する)103は撮像素子の各部を制御するためのプログラムを実行する。操作部104は、撮影命令や撮影条件等の設定をCPU103に対して行う。表示部105は、撮影した静止画像や動画像およびメニュー等の表示を行う。RAM106は、AFE101でデジタル変換された画像データや、後述の画像処理部108で処理された画像データを記憶する画像データ記憶手段の機能と、CPU103が動作を行う際のワークメモリの機能を兼備する。なお、本実施形態では、これらの機能を、RAM106を用いて行うようにしているが、アクセス速度が十分に速くて動作上問題のないレベルのメモリであれば、他のメモリを適用することも可能である。ROM107は、CPU103が各部の動作を制御するためにロードして実行するプログラムと、後述するノイズ低減回路で用いられる係数群を格納する。ここで、本実施形態では、フラッシュメモリを示すが、これは一例であり、アクセス速度が十分に速くて動作上問題のないレベルのメモリであれば、他のメモリを適用することも可能である。画像処理部108は、撮影された静止画または動画の補正や圧縮等の処理を行う。また、後述するA像データとB像データへの分離機能や、後述する画像の補正機能や、静止画像、動画像の生成機能を備える。
AF演算部109は、相関演算部120から出力される相関演算の結果を用いて、フォーカスレンズの駆動量を算出する。フラッシュメモリ110は、静止画データ及び動画データを記録するための、着脱可能なフラッシュメモリである。本実施形態では、記録媒体としてフラッシュメモリを適用しているが、その他のデータ書き込み可能な不揮発性メモリでもよい。また、これらの記録媒体を内蔵した形態でもよい。
フォーカルプレーンシャッタ111は、静止画撮影時に露光秒時を調節する。本実施形態では、フォーカルプレーンシャッタにて撮像素子100の露光秒時を調節する構成であるが、これに限られるものではなく、撮像素子100が電子シャッタ機能を有し、制御パルスで露光秒時を調節する構成であってもよい。フォーカス駆動回路112は、光学系の焦点位置を変更するものであり、AF演算部109の焦点検出結果に基づいてフォーカスアクチュエータ114の駆動を制御し、第3レンズ119を光軸方向に進退駆動して焦点調節を行う。絞り駆動回路113は、絞りアクチュエータ115の駆動を制御して絞り117の開口径を制御する。第1レンズ116は、撮影光学系(共通光学系)の先端に配置され、光軸方向に進退可能に保持される。絞り117は、その開口径を調節することで撮影時の光量を調節する。そして、前記絞り117及び第2レンズ118は一体となって光軸方向に進退し、前記第1レンズ116の進退動作との連動により、変倍作用(ズーム機能)を実現する。第3レンズ119は、光軸方向の進退により、撮影光学系の焦点を調節する。相関演算部120は、撮像素子100から出力される画素信号を用いて相関演算を行う。
次に撮像素子100の構成を、図2を参照して説明する。図2(a)は、撮像素子100の構成を示す。図2(a)において、撮像素子は、画素が二次元に配列された画素アレイ100aと、画素アレイ100aの画素の行を選択する垂直走査回路100d、画素アレイ100aの画素の列を選択する水平走査回路100cを持つ。また、撮像素子100はさらに、画素アレイ100aの画素のうち、垂直走査回路100d及び水平走査回路100cによって選択される画素の信号を読み出すための読み出し回路100bを備える。垂直走査回路100dは、画素アレイ100aの行を選択し、CPU103から出力される水平同期信号に基づいたTG102から出力される読み出しパルスを、選択行において有効にする。読み出し回路100bは列毎に設けられたアンプやメモリを有し、走査行の画素信号を、アンプを介してメモリに格納する。メモリに格納された1行分の画素信号は、水平走査回路100cによって列方向に順に選択され、出力回路100eを介して外部に出力される。この動作を繰り返し、全ての画素の信号を外部に出力する。
撮像素子100の画素アレイ100aを図2(b)に示す。図2(b)において、マイクロレンズ100fはマイクロレンズアレイを構成する。フォトダイオード(PD)100h、100gは光電変換を行う光電変換手段として、後述するA像用光電変換部、B像用光電変換部を構成する。各画素は、PD2つに対して1つのマイクロレンズ100fが上部に配置される構成となっている。すなわち、焦点検出用画素は、1つのマイクロレンズに対して光電変換部を複数備える。マイクロレンズ100fを共有している撮像領域を1画素とした場合、画素アレイ100aには、この画素が水平方向にh画素、垂直方向にv画素並んで配置されている。PD100hとPD100gで蓄積された信号は、後述する画素転送動作によって同時、または独立に電圧に信号に変換され、前述した読出し動作によって外部に出力される。PD100hとPD100gは、瞳分割構成となっており、互いに位相差を持った別々の像が入射される。そのため、PD100hとPD100gの信号を独立に読み出し、前述の相関演算部120において相関演算処理を行い、その結果を用いて前述のAF演算部109でフォーカスレンズの駆動量などを計算することができる。ここではPD100hをA像用光電変換部、PD100gをB像用光電変換部とする。図2(b)では、マイクロレンズ1つに対してPDが2つ配置される構成であるが、本発明は当該構成に限られるものではない。マイクロレンズ1つに対してPDが上下または左右に複数配置される構成であっても本発明を適用することができる。また、1つのマイクロレンズに3つ以上のPDを配置して瞳分割する構成においても適用することもできる。
以下においては、マイクロレンズ1つに対してPDが2つ配置される構成をもって実施形態を説明するが、本発明は、上述したようにPDが2つ配置される形態に限定して解釈されるべきでない。たとえば、図2(c)では、PDが4つ配置される例を示している。画素100iは、瞳分割PD100j、PD100k、PD100m及びPD100nから構成される。PD100j、PD100k、PD100m及びPD100nには、夫々異なる位相の像が入射し、別々に信号を読み出すことが可能である。もしくは、状況に応じ、PD100jとPD100kの信号を加算して読み出し、PD100mとPD100nの信号を加算して読み出すことも可能である。かくして、水平方向の位相差を相関演算部120での演算を経て取得することができる。または、PD100jとPD100mの信号を加算して読み出し、PD100kとPD100nの信号を加算して読み出す。かくして、垂直方向の位相差を相関演算部120での演算を経て取得することができ、PDから得られた信号を位相差検出のために使うことができる。
図3は、画素アレイ100aに設けられた複数の画素のうち、隣り合う2行(j行と(j+1)行)、2列(i列と(i+1)列)分の画素と、2列(i列と(i+1)列)分の読み出し回路100bの構成を示す等価回路図である。
j行目の画素301の転送スイッチ302aには制御信号ΦTXA(j)が入力され、転送スイッチ302bのゲートには、制御信号ΦTXB(j)が入力される。リセットスイッチ304は、リセット信号ΦR(j)により制御される。なお、制御信号ΦTXA(j)及びΦTXB(j)、リセット信号ΦR(j)、行選択信号ΦS(j)は、垂直走査回路100dにより制御される。同様に、(j+1)行目の画素320は、制御信号ΦTXA(j+1)及びΦTXB(j+1)、リセット信号ΦR(j+1)、及び行選択信号ΦS(j+1)により制御される。
また、画素列毎に垂直信号線308を設けており、各垂直信号線308は、各列に設けられた読み出し回路100bの電流源307及び転送スイッチ310a、310bに接続される。
転送スイッチ310aのゲートには制御信号ΦTNが入力し、転送スイッチ310bのゲートには制御信号ΦTSが入力する。また、転送スイッチ312a及び転送スイッチ312bのゲートには、水平走査回路100cから出力される制御信号ΦPH(i)が入力される。蓄積容量部311aは、転送スイッチ310aがオン状態で転送スイッチ312aがオフ状態にあるときに、垂直信号線308の出力を蓄積する。同様に、蓄積容量部311bは、転送スイッチ310bがオン状態で転送スイッチ312bがオフ状態にあるときに、垂直信号線308の出力をする。
水平走査回路100cの列選択信号ΦPH(i)によりi列目の転送スイッチ312a及び転送スイッチ312bをオン状態にすることで、蓄積容量部311a及び蓄積容量部311bの出力がそれぞれ別の水平出力線を介して出力回路100eに転送される。
上記構成を有する撮像素子100から信号を読み出す読み出し動作として、加算読み出し動作(第1の読み出し動作)と、分割読み出し動作(第2の読み出し動作)とを選択的に行うことが可能である。以下、図3及び図4を参照して、加算読み出し動作と分割読み出し動作について説明する。なお、本実施形態では、各制御信号がH(high)の状態の時に各スイッチがオンし、L(low)の時にオフとなるものとして説明する。
<加算読み出し動作>(第1の読み出し動作)
図4(a)は、加算読み出し動作により撮像素子100のj行目の画素から信号を読み出す動作のタイミングを示している。時刻T1において、リセット信号ΦR(j)をHにする。次に、時刻T2において、制御信号ΦTXA(j)とΦTXB(j)をHにして、j行目の画素100fのPD100h、100gをリセットする。
次に、時刻T3で制御信号ΦTXA(j)とΦTXB(j)をLにすると、PD100h、100gは電荷蓄積を開始する。続いて、時刻T4で行選択信号ΦS(j)をHにすると、行選択スイッチ306がオン状態となって垂直信号線308に接続され、ソースフォロアアンプ305が動作状態となる。
次に、時刻T5でリセット信号ΦR(j)をLにした後、時刻T6で制御信号ΦTNをHにすると、転送スイッチ310aがオン状態となり、垂直信号線308上のリセット解除後の信号(ノイズ信号)を蓄積容量部311aに転送する。
次に、時刻T7で制御信号ΦTNをLにし、蓄積容量部311aにノイズ信号を保持する。その後、時刻T8で制御信号ΦTXA(j)とΦTXB(j)をHにして、PD100h、100gの電荷をフローティングディフュージョン領域(FD領域)303に転送する。このとき、2つのPD100h、100gの電荷を同じFD領域303に転送するので、2つのPD100h、100gの電荷が混合された信号(1画素分の光信号+ノイズ信号)が垂直信号線308に出力される。
続いて時刻T9で制御信号ΦTXA(j)とΦTXB(j)をLにする。その後、時刻T10で制御信号ΦTSをHにすると、転送スイッチ310bがオン状態になり、垂直信号線308上の信号(1画素分の光信号+ノイズ信号)が蓄積容量部311bに転送される。次に時刻T11で制御信号ΦTSをLにし、蓄積容量部311bに1画素分の光信号+ノイズ信号が保持された後、時刻T12で行選択信号ΦS(j)をLにする。
この後、水平走査回路100cの列選択信号ΦPHを順にHにすることよって、第1画素列から最終画素列まで転送スイッチ312a、312bを順にオン状態にする。これにより、蓄積容量部311aのノイズ信号と、311bの1画素分の光信号+ノイズ信号をそれぞれ異なる水平出力線を介して出力回路100eに転送する。出力回路100eでは、この2つの水平出力線の差分(1画素分の光信号)を算出し、これに所定ゲインを乗じた信号を出力する。以下、上述した加算読み出しにより得られた信号を、「第1の加算信号」と呼ぶ。
<分割読み出し動作>(第2の読み出し動作)
次に、分割読み出し動作について図4(b)を用いて説明する。図4(b)は、分割読み出し動作により撮像素子100のj行目の画素から信号を読み出す動作のタイミングを示している。時刻T1においてリセット信号ΦR(j)をHにする。続いて、時刻T2においてΦTXA(j)とΦTXB(j)をHにして、j行目の画素301のPD100h、100gをリセットする。次に、時刻T3で制御信号ΦTXA(j)とΦTXB(j)をLにすると、PD100h、100gは電荷蓄積を開始する。続いて、時刻T4で行選択信号ΦS(j)をHにすると、行選択スイッチ306がオン状態となって垂直信号線308に接続され、ソースフォロアアンプ305が動作状態となる。
時刻T5でリセット信号ΦR(j)をLにした後、時刻T6で制御信号ΦTNをHにすると、転送スイッチ310aがオン状態となり、垂直信号線308上のリセット解除後の信号(ノイズ信号)が蓄積容量部311aに転送される。
次に、時刻T7で制御信号ΦTNをLにし、蓄積容量部311aにノイズ信号が保持された後、時刻T8でΦTXA(j)をHにすると、PD100hの電荷がFD領域303に転送される。このとき、2つのPD100h、100gのうち一方(ここではPD100h)の電荷をFD領域303に転送するので、PD100hの電荷に応じた信号だけを垂直信号線308に出力する。
次に、時刻T9で制御信号ΦTXA(j)をLにした後、時刻T10で制御信号ΦTSをHにすると、転送スイッチ310bがオン状態になり、垂直信号線308上の信号(1PD分の光信号+ノイズ信号)が蓄積容量部311bに転送される。次に時刻T11で制御信号ΦTSをLにする。
この後、水平走査回路100cの列選択信号ΦPHを順にHにすることによって、第1画素列から最終画素列まで転送スイッチ312a、312bを順にオン状態にする。これにより、蓄積容量部311aのノイズ信号と、311bの1PD分の光信号+ノイズ信号をそれぞれ別の水平出力線で出力回路100eに転送する。出力回路100eでは、この2つの水平出力線の差分(1PD分の光信号)を算出し、これに所定ゲインを乗じた信号を出力する。以下、上述した読み出しにより得られた信号を、「分割信号」と呼ぶ。
その後、時刻T12でΦTXA(j)及びΦTXB(j)をHとし、先に転送したPD100hの電荷に加えて、更にPD100gの電荷と新たに発生したPD100hの電荷とをFD領域303に転送する。このとき、2つのPD100h、100gの電荷を同じFD領域303に転送するので、2つのPD100h、100gの電荷を加算した信号(1画素分の光信号+ノイズ信号)を垂直信号線308に出力する。
続いて時刻T13で制御信号ΦTXA(j)とΦTXB(j)をLにした後、時刻T14で制御信号ΦTSをHにすると、転送スイッチ310bがオン状態になる。これにより、垂直信号線308上の信号(1画素分の光信号+ノイズ信号)を蓄積容量部311bに転送する。
次に時刻T15で制御信号ΦTSをLにし、蓄積容量部311bに1画素分の光信号+ノイズ信号が保持された後、時刻T16で行選択信号ΦS(j)をLにする。
この後、水平走査回路100cの列選択信号ΦPHを順にHにすることによって、第1画素列から最終画素列まで転送スイッチ312a、312bを順にオン状態にする。これにより、蓄積容量部311a、311bのノイズ信号と、1画素分の光信号+ノイズ信号をそれぞれ異なる水平出力線で出力回路100eに転送する。出力回路100eでは、この2つの水平出力線の差分(1画素分の光信号)を算出し、これに所定ゲインを乗じた信号を出力する。以下、上記読み出しにより得られた信号を、第1の加算信号と区別するために、「第2の加算信号」と呼ぶ。
このようにして読み出した第2の加算信号から、一方のPD100hに対応する分割信号を差し引くことで、他方のPD100gに対応する分割信号を得ることができる。このようにして得られた一対の分割信号を「焦点検出用信号」と呼ぶ。そして、得られた焦点検出用信号に対して公知の相関演算を行うことにより、信号間の位相差を算出することができる。
なお、リセット、電荷の蓄積、および、信号の読み出しという一連の動作をPD100hに対して行った後、同様の動作をPD100gに対して行うことで、1回の電荷蓄積動作に対して2つのPD100h、100gの信号を独立に読み出すようにしてもよい。このようにして2回に分けて読み出したPD100h、100gの信号は、加算することで第2の加算信号を得ることができる。また、以上にも述べたように、マイクロレンズ1つに対して2つのPDが配置される構成に限られるものではなく、3つ以上の複数のPDを複数回に分けて信号を読みだして、合成するようにしてもよい。
ここで、第2の加算信号は、第1の加算信号と比較して読み出しノイズが大きくなってしまう。たとえば、2つのPD100h、100gの信号を加算して読み出す場合には、第2の加算信号を取得する際に、まずノイズ信号を読み出す。その後に、2つのPD100h、100gのうち一方の電荷をFD領域303に転送して信号を読み出し、その後FD領域303をリセットすることなく2つのPD100h、100gの信号を加算して読み出して第2の加算信号を得る。この方法では、ノイズ信号を読み出してから第2の加算信号を読み出すまでに、第1の加算信号による読み出しよりも時間がかかるため、信号間の動作周波数が低下し、フリッカ雑音が増加してしまう。
また、たとえば、PD100h、100gの信号を夫々独立に読み出す場合は、単一画素を2回に分けて読みだして加算することによって画素信号を得るので、読み出しノイズが2回重畳されることになってしまう。そのため、第1の加算信号と比較すると、読み出しノイズが増加してしまう。
図5(a)は、読み出し動作の組み合わせの例を示す。前述の通りスイッチ302aとスイッチ302bを制御することによって、加算読み出し動作と分割読み出し動作を切り替えることができる。画像内で読み出し動作を切り替えることによって、画像内の一部の画素のみに対して分割読み出し動作行うことで、画像内の一部でのみ焦点検出を行うことができる。こうした焦点検出を行う画像内の一部を、焦点検出領域とする。これにより、画像の全ての画素に対して分割読み出し動作を行う場合に比較して、処理に要する時間を短縮することができる。領域342では、焦点検出用の信号を得るために、A像用信号を読み出し、それからA像用の信号とB像用の信号を同時に読み出す分割読み出し動作を行う。この領域342は、後述する測距枠の位置によって決定される。領域342以外の領域である領域341では、A像用の信号とB像用の信号を同時に読み出す加算読み出し動作を行う。なお、図5(a)では、ライン単位で読み出し動作の切り替えを示しているが、この限りでない。たとえば、画像内を複数の矩形領域に分割し、領域ごとで読み出し動作を切り替えてもよい。
領域343は、この画像の撮影時の測距枠を示している。領域343がカメラ動作の中でどのように決定されるかは後述する。本実施形態では読み出し動作の組み合わせの例として、図5(a)に示すように測距枠である領域343が重畳するラインにおいて、等間隔に配置された複数のラインを分割読み出し動作を行う領域とする例を示したが、この限りではない。たとえば、測距枠である領域343が重畳するラインを全て分割読み出し動作を行う領域としてもよいし、測距枠が重畳する領域のみを分割読み出し動作を行う領域として設定するようにしてもよい。
図5(b)は、動画撮影の読み出し動作に関するフローチャートである。動画モードにおいて操作部104に含まれている動画記録ボタンを押下することで動画の撮影を開始することができる。動画撮影が開始されると、ステップS301でAFスイッチの状態を調べる。OFF状態であればマニュアルフォーカス(MF)モードで動画の撮影を行う。ステップS301における判定の後、ステップS310へ遷移し、焦点検出用信号を得るための分割読み出し動作を行う必要がないため、全ての画素でA像用の信号とB像用の信号を同時に読み出す加算読み出し動作を行う。その後ステップS311で読み出した画像をRAM106に保存する。次にステップS312に遷移し、一連のシーケンスの間に動画記録ボタンが押下されていれば動画撮影を終了し、押下されていなければ次のフレームの読み出しを開始する。
一方ステップS301の判定の際に、AFスイッチがON状態で判定されると、動画サーボAFモードで動画の撮影を行う。ステップS302は測距枠である領域343の設定を行う。この領域343は、従来から知られている方法を用いて設定すればよい。例えば、ユーザーによるタッチパネルやダイヤル操作を反映して領域343の位置を設定してもよい。または、画像に含まれる被写体に対して追尾処理を行って新たなフレームにおける被写体の位置を検出し、この検出した被写体の位置やサイズに基づいて領域343を設定してもよい。ステップS303では、ステップS302で設定された領域343に応じて、焦点検出用の読み出し動作を行う領域342を設定する。
ステップS303で設定した読み出し動作に基づいて、ステップS304で各画素の信号の読み出しを行う。ステップS304において、CPU103はTG102を駆動し、垂直走査回路100dとスイッチ302a及びスイッチ302bを制御し、信号を読み出す。具体的には、領域342では測距枠である領域343が存在する行のうちの一部の行では、まずスイッチ302aのみをONにして、A像用の信号を読み出す。それから、スイッチ302aとスイッチ302bを同時にONにすることで、A像用の信号とB像用の信号を同時に読み出す。この信号とスイッチ302aのみをONにした場合の信号とを利用し、後述する画像処理部108でB像用の信号を算出することができる。かくして、A像用の信号とB像用の信号を両方取得し、焦点検出用の信号とする。それ以外の行(領域341)ではスイッチ302aとスイッチ302bを同時にONにすることで、A像用の信号とB像用の信号を同時に読み出す。このような読み出し動作を行うと、焦点検出用の読み出し動作をする行が、測距枠の設定によって変わることになる。
ステップS305では、ステップS304で読み出した信号に基づいて、相関演算部120で相関演算を行う。ステップS306では、ステップS305の相関演算結果に基づいてAF演算部109でAF用の演算を行う。相関演算及びAF用演算の具体的な方法に関しては、ここでは省略する。そしてステップS307でAF用演算の結果を、フォーカス駆動回路112に送り、フォーカス駆動を行う。
ステップS308では、ステップS304で読み出された画像をRAM106に保存する。記録後、ステップS309に遷移する。ステップS309は一連のシーケンスの間に動画記録ボタンが押下されたかどうかを判定するステップである。動画記録ボタンが押下されていた場合は、動画撮影を終了する。押下されていなかった場合は、ステップS302から同様の動作を繰り返す。
図6(a)は画像処理部108に入力される信号を示す図である。加算読み出し動作が行われたラインにおいては、A+B像の信号がラインごとに順に画像処理部108に入力される。これに対し、分割読み出し動作が行われたラインにおいては、まずそのラインの画素から読み出されたA像の信号が画像処理部108に入力され、それから同じラインの画素から読み出されたA+B像の信号が画像処理部108に入力される。つまり、図6(a)において、領域401が加算読み出し動作が行われたラインから読み出されたA+B像の信号を示す。同様に、領域402が分割読み出し動作が行われたラインから読み出されたA像信号を示し、領域403が分割読み出し動作が行われたラインから読み出されたA+B像信号を示す。
図6(b)は画像処理部108の構成を示す図である。画像処理部108に入力された信号は、どちらの読み出し動作で読み出された画素かを問わずにラインメモリ405に記憶される。演算制御回路406は、垂直同期信号と水平同期信号から画素の位置を特定し、それぞれの画素の読み出し動作に応じた処理を減算回路404とノイズ低減回路407に指示する。入力された信号のうち、分割読み出し動作が行われた画素の信号のA+B像の信号は、ラインメモリ405に入力されるだけでなく、減算回路404が読み込む。減算回路404はA+B像の信号が入力されると、そのA+B像の信号を読み出した画素と同じ画素から先に読み出したA像の信号を、ラインメモリ405から読み出し、A+B像の信号からA像の信号を減算することで、B像の信号を生成する。そして、減算回路404はラインメモリ405から読み出したA像の信号と、生成したB像の信号を図1に示す相関演算部120に出力する。
ノイズ低減回路407はノイズ低減の処理対象画素の信号と、その近傍に位置する所定範囲の周辺画素の信号をラインメモリ405から読み出し、処理対象画素に対してノイズ低減処理を行う。なお、演算制御回路406は、処理対象画素とその周辺画素のそれぞれが、加算読み出し動作で読み出されたのか、分割読み出し動作で読み出されたのかに応じて、ノイズ低減回路407に対して異なる演算処理を行わせる。
ここで図7乃至図9を参照して、ノイズ低減回路407の処理について説明する。本実施形態におけるノイズ低減回路407は、ノイズ低減の処理対象画素とその周辺画素を用いて、加重平均を計算し、加重平均値を用いてノイズ低減の処理対象画素の画素値を置換する方法である。
図7(a)に、本実施形態における撮像素子の読み出し動作と、ノイズ低減回路407の処理ウインドウを示す。前述のノイズ低減回路407はこのウインドウ501に示す範囲にある画素を用いて前述の加重平均の計算を行う。加重平均値を用いて、処理対象画素502を補正することでノイズ低減処理を行う。ウインドウ501では、処理対象画素502を含むラインのみが分割読み出し動作を行ったラインとなっている。ウインドウ503は、処理対象画素502を含むラインとは別の1つのラインのみが、分割読み出し動作を行ったラインとなっている。また、ウインドウ504は、分割読み出し動作を行ったラインを含んでいない。
図7(a)中のαおよびβは、各画素が処理対象画素となった時に使用する補正係数群を示すものである。αは、加算読み出し動作を行った画素に対する係数群である。βは、分割読み出し動作を行った画素に対する係数群である。係数群αは、単一の係数とすることもできるし、処理対象画素からの距離に応じて異なる係数としてもよい。係数群βも同様に、単一の係数とすることもできるし、処理対象画素からの距離に応じて異なる係数としてもよい。ただし、係数群αと係数群βは、互いに完全には一致しない。
適切なノイズ低減処理をするために、処理対象画素502に対応する係数は、その周辺画素に対応する係数と周辺画素のノイズ量とに基づいて変更させてよい。
図7(b)は、図7(a)のウインドウ中の係数群αおよび係数群βに対する具体的な数値の配置例を示している。(1)は、係数群αに単一の係数を用い、かつ、係数群βに係数群αとは異なる値の単一の係数を用いた場合である。具体的には、係数群αには全ての画素で係数として2を付し、係数群βには全ての画素で係数として1を付している。加算読み出し動作を行った画素に含まれるノイズのほうが、分割読み出し動作を行った画素に含まれるノイズよりも小さいため、係数群αの値を係数群βの値よりも大きくしたほうが、補正後の信号に含まれるノイズの量を小さくすることができる。(2)は、係数群αおよび係数群β内で複数の異なる係数を用いた場合である。この例では係数群α内、係数群β内でみればそれぞれガウシアンフィルタを実現するような係数配置になっている。図7(b)での係数配置の特徴は、係数群αが適用された行または列5つの係数の比が1:4:6:4:1となり、係数群βが適用された行または列が係数群αが適用される場合の半分になることである。
図8は、ノイズ低減回路407の具体的な回路の例を示した図である。601は行内加算回路であり、演算制御回路406からの係数を用いて乗算および加算を行う。詳細な動作は後述する。係数計算回路602では、演算制御回路406が選択した係数を全て足し合わせて出力する。この係数計算回路602の出力で、各行の行内加算回路601の出力結果の和を除することで、出力として加重加算平均値が得られる。この加重加算平均値がノイズ低減回路407の出力結果であり、この回路のデータ出力を前述の処理対象画素502の画素値と置換することによってノイズ低減処理を行っている。
図9は、前述の行内加算回路の動作を詳しく説明するための図である。遅延素子701は、1画素分だけ信号を遅延させる。この遅延素子701を用いて、ノイズ低減回路407の処理ウインドウの水平方向の画素を取り出せるようにする。それぞれの画素に演算制御回路406から送信された係数を乗じ、足し合わせる。以上の動作によって行内加算回路601はその計算を行っている。
以上述べた様に、本実施形態によれば、異なる読み出し動作によって得られた画素信号に異なる補正係数群を用いて補正を行うことが可能になる。これにより、異なる読み出し動作を組み合わせて得られた1枚の画像のノイズを低減する時に、読み出し動作によって量の変わるノイズを効果的に低減できる。
(第2の実施形態)
本発明の第2の実施形態に係る係数配置を、図10を参照して説明する。なお、本実施形態の撮像装置の構成は、第1の実施形態における構成と同様であるため、ここでの説明を省略する。第2の実施形態は、ノイズ低減回路407の加重加算平均の計算方法において第1の実施形態と異なる。
図10は本実施形態における撮像素子の読み出し動作と、ノイズ低減回路407の処理ウインドウを示す。処理対象画素502は左右の画素と読み出し動作は同じであるが、左右の画素に与えた補正係数群(ここでは係数群β)とは異なる係数γを乗じてノイズ低減処理を行う。ノイズ低減回路407の計算方法の中では、ノイズ低減の処理対象画素の係数が異なるのみで、回路の構成に変更はない。
ノイズ低減回路407の中の、ノイズ低減の処理対象画素を含む行の、行内加算回路601で係数の変更を行う。行内加算回路601の回路構成を示す図9の図中の係数3が、行内の中央の係数である。本実施形態は5×5の処理ウインドウで、中央に位置する画素に対してノイズ低減処理を行っているため、ノイズ低減の処理対象画素を含む行の行内加算回路において、係数3を係数γとすることによって、本実施形態を実現する構成となる。
この係数γは読み出し動作によらない係数とすることができる。例えば係数群αが全て2であって、係数群βが全て1である場合に、係数γに5を与えることなどが考えられる。
以上述べた様に、本実施形態によれば、処理対象画素502にのみ、読み出し動作によらない係数γを与えて補正を行うことが可能になる。処理対象画素に読み出し動作によらない係数を与えて加重加算平均処理を行うことによって、ノイズ処理効果の強さを調節することが可能となる。
(第3の実施形態)
本発明の第3の実施形態に係わる係数配置を、図11を参照して説明する。なお、本実施形態の撮像装置の構成は、第1の実施形態における構成と同様であるため、ここでの説明を省略する。第3の実施形態は、ノイズ低減回路407の加重加算平均の計算方法において第2の実施形態と異なる。
図11は本実施形態におけるノイズ低減回路407の構成を示す。第1及び第2の実施形態と異なる部分は、使用画素判定回路901を持つことである。このブロックを用いて、ノイズ処理対象画素502と類似の画素だけ選択してノイズ低減処理に用いることが考えられる。このような処理を行うことで、画像の高周波の構造を破壊することなくノイズ低減処理を行うことができる。
図12は、使用画素判定回路901の例である。絶対値計算部1001では、処理対象画素502と、ノイズ低減処理のウインドウ内の周辺画素を入力し、それら画素の信号の差分の絶対値を計算する。しきい値比較部1002では、絶対値計算部1001の計算結果を入力し、内部に設定されているしきい値と比較する。計算結果がしきい値より大きい場合は、処理対象画素と周辺画素が非類似画素であるということを意味しており、しきい値より小さい場合は処理対象画素と周辺画素が類似画素であるということを意味している。この類似画素判定をウインドウ内全ての画素に対して行い、判定結果の出力を演算制御回路406に伝える。演算制御回路406は、判定結果が類似の画素は通常通りの係数を用い、非類似である画素は係数として0を使用することによって、非類似画素を加重加算平均の計算に含めないという処理を行うことができる。なお、本実施形態では非類似画素の係数を0としたが、これを0以外の数にすることも可能である。例えば0.1程度に設定することによって、情報が失われることを防ぐという処理にすることも可能である。この方法を、第1あるいは第2の実施形態で説明した加重加算平均に利用することによって、画素の類似度と画素の読み出し動作の両方を考慮したノイズ低減処理を行うことが可能となる。
しかしながら、一般的に、ノイズ低減処理に用いる画素が多いほどノイズ低減効果が強まる。そのため処理対象画素502の係数γが常に一定である時、画像内で空間周波数が高い部分だけノイズが多く見えてしまう。そこで、処理対象画素502の係数γは、類似画素の個数によって計算されるのが望ましい。簡単のため、加重係数をa、類似画素の個数をn、画素のノイズ量は処理ウインドウ内で一定でσであり、処理後のノイズ量がrσになるとすると、次の式1が成立する。
Figure 0006700751
この式1からaを算出することで、類似画素の個数に応じた係数γを得る事ができる。aの解が存在しないような条件の場合、例えば1などに設定する。ただし、本実施形態では、加算読み出し動作を行った画素に含まれるノイズ量と、分割読み出し動作を行った画素に含まれるノイズ量には差があるため、上記の式1をそのまま用いたとしても、適切な係数γを得ることはできない。そこで、ノイズ低減処理の効果を最適化するため、処理対象画素の補正係数の計算において、それぞれの画素の補正係数と、複数の光電変換部の信号を同時に読み出した画素信号のノイズ量を基準とした、各画素のノイズ量の比を計算に反映する。なお、ノイズ量の基準は必ずしも複数の光電変換部の信号を同時に読み出した画素信号のノイズ量を基準とする必要はなく、任意の読み出し動作を選ぶことが可能である。ノイズ量の比は、例えば画素の読み出し動作などによって変わる。このノイズ量の比は、画素の座標によって判定する。例えば、図5(b)のフローチャートにおいて、焦点検出用の読み出し行の設定はCPU103で生成され、その設定でTG102を動作させることで読み出し動作を切り替えている。そこで、同じ設定を演算制御回路406に送信することで、演算制御回路406は座標によって各画素のノイズ量の比の設定を持つことができる。
図13は、本実施形態における撮像素子の読み出し動作と、ノイズ低減回路407の処理ウインドウを示す。処理ウインドウの各部には具体的な係数を与えてある。係数の与え方として、図7(b)(1)と同じ与え方にした。黒で示した画素1101は非類似画素である。この画素は非類似画素と判定されたため、ノイズ低減処理には使われない。
加重係数をa、A像とB像を同時に読み出した画素の個数をna、A像とB像を独立に読み出した画素の個数をnb、A像とB像を独立に読み出した画素のノイズ量の比をsとし、ノイズ低減処理後のノイズ量の比を1とすると、以下の式2が成り立つ。
Figure 0006700751
A像とB像を独立に読み出した時のノイズ量の比をNとすると、図13に示す例において、前記の式2は次の通りになる。
Figure 0006700751
例えば、読み出し動作に応じたノイズ量の比を予め測定しておいてNに代入することで、この式から、具体的にaを算出することができる。以上の計算によって得られたaを係数γとして用いてノイズ低減回路407で計算を行うことによって、好適にノイズの低減を行うことができる。
以上述べたように、本実施形態によれば、処理対象画素502の係数γを、ノイズ低減処理に用いる画素の個数と、それぞれの画素の補正係数と、それぞれの画素のノイズ量の比を基にして決定することができる。これにより、処理対象画素の周囲の画素のノイズ量が均一でない場合に、処理対象画素間におけるノイズ量の差をノイズ低減処理に反映させることができるため、より効果的なノイズ低減処理が可能になる。
(第4の実施形態)
本発明の第4の実施形態に係る係数配置を、図14を参照して説明する。なお、本実施形態の撮像装置の構成は、第一の実施形態における構成と同様であるため、ここでの説明を省略する。第4の実施形態は、ノイズ低減回路407の加重加算平均の計算に使用する画素とその係数において異なる。
図14は、本実施形態における画像処理部108を示している。1201は、ノイズ低減回路である。ラインメモリと、データ入力または減算回路404の出力結果と、ノイズ低減回路1201の出力結果を入力し、加重加算平均を計算することでノイズ低減処理を行う。このノイズ低減回路1201は、処理済みの画素を加重加算平均に用いる。この場合、処理済みの画素のノイズレベルはノイズ低減処理において基準としている画素のノイズレベルと同等のレベルにノイズの低減ができている。
図15は、本実施形態における撮像素子の読み出し動作と、ノイズ低減回路407の処理ウインドウとそれぞれの画素の係数を示す。図15において、中央の一行の画素に対し、第1の読み出し動作と第2の読み出し動作とを行い、ほかの行の画素に対し、第1の読み出し動作のみを行う。左から順に画素1301のノイズ低減処理を行っていくことを考える場合、処理対象画素502の左側の画素は処理済みの画素となる。ノイズ低減処理が行われた画素における信号は、読み出し動作によらずノイズ量が同等になると考えられる。このような場合、画素1301を含んで計算する加重加算平均の計算では、画素1301に用いる係数を、領域341の処理済み画素に用いる係数である係数群δと同じくして、計算を行うとノイズ低減処理をより効果的に行うことができる。
図16はノイズ低減回路407の内部回路を示す。データ出力をもう一度行内加算回路に戻すことによって、加重加算平均に使用している。1401は、データ出力に対して加算を行う行内加算回路である。処理対象画素の左に位置する2画素は、演算制御回路で係数を0にすることによって計算に使わず、その代わりにデータ出力の行内加算回路1401で処理対象画素の左の2画素を使用することができる。
以上述べたように、本実施形態によれば、ノイズ低減回路407でノイズ低減処理を行った画素を、次の画素のノイズ低減の計算に用いることができる。これにより、ノイズ低減処理後の画素を使わない場合と比較して、より効果的にノイズの低減を行うことができる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。また、以上に述べたような信号処理方法は、コンピュータや多機能携帯電話などに内蔵するプログラムで使用してもよい。
100 撮像素子
100a 画素アレイ
100b 読み出し回路
100c 水平走査回路
100d 垂直走査回路
100e 出力回路
100f、100i マイクロレンズ
100h、100g、100j、100k、100m、100n 光電変換部
404 減算回路
405 ラインメモリ
406 演算制御回路
407 ノイズ低減回路

Claims (28)

  1. 撮像素子を有し、
    前記撮像素子の第1の領域に含まれる画素に対して、蓄積された電荷に応じた信号を読み出す第1の読み出し動作を行い、前記第1の領域とは異なる第2の領域に含まれる画素に対して、前記第1の読み出し動作とは異なる、蓄積された電荷に応じた信号を読み出す第2の読み出し動作を行う読み出し手段と、
    前記第1の領域と前記第2の領域から得られた信号に基づく画像信号に対して補正を行う補正手段と、を有し、
    前記補正手段は、前記補正の処理対象となる画素の周辺に位置する複数の周辺画素から得られた画像信号と、該複数の周辺画素のそれぞれに対応する係数を用いて、前記補正を行うものであって、同じ前記補正の処理対象となる画素に対して補正を行うとしても、同じ前記周辺画素に対して、該周辺画素が前記第1の読み出し動作と前記第2の読み出し動作のどちらが実行されたかに応じて、周辺画素に対応する係数を変更することを特徴とする撮像装置。
  2. 前記読み出し手段は、前記第1の領域において、前記画像信号を得るために前記第1の読み出し動作を行い、前記第2の領域において、前記画像信号と位相差検出のための信号を得るために前記第2の読み出し動作を行うことを特徴とする請求項1に記載の撮像装置。
  3. 前記補正手段は、前記複数の周辺画素から得られた前記画像信号に前記複数の周辺画素のそれぞれに対応する係数を乗算し、該乗算によって得られた値を加算した値を用いて、前記補正を行うことを特徴とする請求項1または請求項2に記載の撮像装置。
  4. 前記係数が、予め定められた複数の係数からいずれかの係数を選択することを特徴とする請求項3に記載の撮像装置。
  5. 前記補正手段は、前記補正の処理対象となる画素の画像信号と、前記補正の処理対象となる画素に対応する係数も用いて、前記補正を行うことを特徴とする請求項1乃至4のいずれか1項に記載の撮像装置。
  6. 前記補正の処理対象となる画素に対応する係数と、前記複数の周辺画素に対応する係数が異なることを特徴とする請求項5に記載の撮像装置。
  7. 前記補正の処理対象となる画素に対応する係数が、前記複数の周辺画素に対応する係数より大きいことを特徴とする請求項6に記載の撮像装置。
  8. 前記複数の周辺画素のそれぞれに対応する係数は、前記補正に用いる前記複数の周辺画素の個数によって変わることを特徴とする請求項1乃至7のいずれか1項に記載の撮像装置。
  9. 前記第2の読み出し動作で読み出した信号に基づく画像信号に含まれるノイズレベルが、前記第1の読み出しで読み出した信号に基づく画像信号に含まれるノイズレベルに対して、異なることを特徴とする請求項1乃至8のいずれか1項に記載の撮像装置。
  10. 前記第2の読み出し動作で読み出した信号に基づく画像信号に含まれるノイズレベルが、前記第1の読み出し動作で読み出した信号に基づく画像信号に含まれるノイズレベルよりも高くなることを特徴とする請求項9に記載の撮像装置。
  11. 前記補正の処理対象となる画素に対応する係数は、前記複数の周辺画素に対応する係数と前記複数の周辺画素のノイズ量とに基づくことを特徴とする請求項1乃至10のいずれか1項に記載の撮像装置。
  12. 前記複数の周辺画素に対応する係数が、該周辺画素のノイズ量が小さいほど、小さいことを特徴とする請求項1乃至11のいずれか1項に記載の撮像装置。
  13. 前記補正手段は前記撮像素子に含まれる画素に対して順に前記補正を行うものであって、
    前記複数の周辺画素のうち、前記補正手段によって前記補正が行われた画像信号に対しては、共通の係数を用いて、前記補正を行うことを特徴とする請求項1乃至12のいずれか1項に記載の撮像装置。
  14. 前記読み出し手段は、前記第1の読み出し動作と前記第2の読み出し動作のどちらを実行するかを、前記撮像素子のライン単位で切り替えることを特徴とする請求項1乃至13のいずれか1項に記載の撮像装置。
  15. 前記撮像素子の少なくとも前記第2の領域に含まれるそれぞれの画素は、複数の光電変換部を有することを特徴とする請求項1乃至14のいずれか1項に記載の撮像装置。
  16. 前記第1の領域に含まれるそれぞれの画素は、複数の光電変換部を有し、
    前記第1の読み出し動作は、前記画素における複数の光電変換部のうち、2つ以上の光電変換部の信号を加算して読み出すことを特徴とする請求項15に記載の撮像装置。
  17. 前記第1の領域に含まれるそれぞれの画素は、複数の光電変換部を有し、
    前記第1の読み出し動作は、前記画素における複数の光電変換部の全部の信号を加算して読みだすことを特徴とする請求項1ないし14のいずれか1項に記載の撮像装置。
  18. 前記第2の読み出し動作は、前記第2の領域に含まれる画素における複数の光電変換部のうち、
    異なる組み合わせの複数の光電変換部の信号を加算して読み出すか、
    異なる1つ1つの光電変換部の信号を該光電変換部に存在する画素にある他の光電変換部に対し独立に読み出すか、または、
    第1の個数の光電変換部の信号を加算して読み出し、前記第1の個数よりも少ない第2の個数の光電変換部の信号を加算して該光電変換部に存在する画素にある他の光電変換部に対し独立に読み出すか、もしくは、いずれか1つの光電変換部の信号を該光電変換部に存在する画素にあるほかの光電変換部に対し独立に読み出すことを特徴とする請求項15に記載の撮像装置。
  19. 前記画素における複数の光電変換部のうち、2つ以上の光電変換部の信号を加算して読み出すことで得られた信号を、前記画像信号とする請求項15乃至18のいずれか1項に記載の撮像装置。
  20. 前記画素における前記複数の光電変換部の一部の光電変換部の信号を、前記画素にある他の光電変換部に対し独立に読み出す処理を、前記画素において複数回にわたって行い、前記処理において前記画素におけるすべての前記光電変換部の信号を読み出し、前記光電変換部の信号を合成したものを前記画像信号とすることを特徴とする請求項15乃至18のいずれか1項に記載の撮像装置。
  21. 前記読み出し手段は、同じ画素に対して、第1の読み出し動作と前記第2の読み出し動作とを切り替えることが可能であることを特徴とする請求項1乃至20のいずれか1項に記載の撮像装置。
  22. 前記撮像素子に被写体までの距離を検出するための焦点検出領域を設定する設定手段を有し、
    前記読み出し手段は、設定された前記焦点検出領域の位置に応じて、夫々の画素に対して、前記第1の読み出し動作を実行するか、または前記第2の読み出し動作を実行するのかを切り替えることを特徴とする請求項21に記載の撮像装置。
  23. 前記読み出し手段によって読み出された信号に基づく画像信号に基づいて、被写体の位置を検出する検出手段を有し、
    前記読み出し手段は、前記被写体の位置に応じて、それぞれの画素に対して前記第1の読み出し動作を実行するか、または前記第2の読み出し動作を実行するのかを切り替えることを特徴とする請求項21または22に記載の撮像装置。
  24. 撮像素子を備えた撮像装置において、
    撮像素子の第1の領域に含まれる画素に対して、蓄積された電荷に応じた信号を読み出す第1の読み出し動作を行い、前記第1の領域とは異なる第2の領域に含まれる画素に対して、前記第1の読み出し動作とは異なる、蓄積された電荷に応じた信号を読み出す第2の読み出し動作を行う読み出しステップと、
    前記第1の領域と前記第2の領域から得られた信号に基づく画像信号に対して補正を行う補正ステップとを含み、
    前記補正ステップでは、前記補正の処理対象となる画素の周辺に位置する複数の周辺画素から得られた画像信号と、該複数の周辺画素のそれぞれに対応する係数を用いて、前記補正を行うものであって、同じ前記補正の処理対象となる画素に対して補正を行うとしても、同じ前記周辺画素に対して、該周辺画素が前記第1の読み出し動作と前記第2の読み出し動作のどちらが実行されたかに応じて、周辺画素に対応する係数を変更することを特徴とする撮像装置の制御方法。
  25. 撮像素子を備えた撮像装置のコンピュータに動作させるプログラムにおいて、
    前記コンピュータに、
    撮像素子の第1の領域に含まれる画素に対して、蓄積された電荷に応じた信号を読み出す第1の読み出し動作を行い、前記第1の領域とは異なる第2の領域に含まれる画素に対して、前記第1の読み出し動作とは異なる、蓄積された電荷に応じた信号を読み出す第2の読み出し動作を行う読み出しステップと、
    前記第1の領域と前記第2の領域から得られた信号に基づく画像信号に対して補正を行う補正ステップとを行わせ、
    前記補正ステップでは、前記補正の処理対象となる画素の周辺に位置する複数の周辺画素から得られた画像信号と、該複数の周辺画素のそれぞれに対応する係数を用いて、前記補正を行うものであって、同じ前記補正の処理対象となる画素に対して補正を行うとしても、同じ前記周辺画素に対して、該周辺画素が前記第1の読み出し動作と前記第2の読み出し動作のどちらが実行されたかに応じて、周辺画素に対応する係数を変更することを特徴とするプログラム。
  26. 撮像素子を有し、
    前記撮像素子の第1の領域に含まれる画素に対して、蓄積された電荷に応じた信号を読み出す第1の読み出し動作を行い、前記第1の領域とは異なる第2の領域に含まれる画素に対して、前記第1の読み出し動作とは異なる、蓄積された電荷に応じた信号を読み出す第2の読み出し動作を行う読み出し手段と、
    前記第1の領域と前記第2の領域から得られた信号に基づく画像信号に対して補正を行う補正手段と、を有し、
    前記補正手段は、前記補正の処理対象となる画素の周辺に位置する複数の周辺画素から得られた画像信号と、該複数の周辺画素のそれぞれに対応する係数を用いて、前記補正を行うものであって、前記複数の周辺画素のそれぞれが前記第1の読み出し動作と前記第2の読み出し動作のどちらが実行されたかに応じて、前記複数の周辺画素のそれぞれに対応する係数を変更し、
    前記読み出し手段は、前記第1の読み出し動作と前記第2の読み出し動作のどちらを実行するかを、前記撮像素子のライン単位で切り替えることを特徴とする撮像装置。
  27. 撮像素子を備えた撮像装置において、
    前記撮像素子の第1の領域に含まれる画素に対して、蓄積された電荷に応じた信号を読み出す第1の読み出し動作を行い、前記第1の領域とは異なる第2の領域に含まれる画素に対して、前記第1の読み出し動作とは異なる、蓄積された電荷に応じた信号を読み出す第2の読み出し動作を行う読み出しステップと、
    前記第1の領域と前記第2の領域から得られた信号に基づく画像信号に対して補正を行う補正ステップと、を含み、
    前記補正ステップでは、前記補正の処理対象となる画素の周辺に位置する複数の周辺画素から得られた画像信号と、該複数の周辺画素のそれぞれに対応する係数を用いて、前記補正を行うものであって、前記複数の周辺画素のそれぞれが前記第1の読み出し動作と前記第2の読み出し動作のどちらが実行されたかに応じて、前記複数の周辺画素のそれぞれに対応する係数を変更し、
    前記読み出しステップでは、前記第1の読み出し動作と前記第2の読み出し動作のどちらを実行するかを、前記撮像素子のライン単位で切り替えることを特徴とする撮像装置の制御方法。
  28. 撮像素子を備えた撮像装置のコンピュータに動作させるプログラムにおいて、
    前記コンピュータに、
    前記撮像素子の第1の領域に含まれる画素に対して、蓄積された電荷に応じた信号を読み出す第1の読み出し動作を行い、前記第1の領域とは異なる第2の領域に含まれる画素に対して、前記第1の読み出し動作とは異なる、蓄積された電荷に応じた信号を読み出す第2の読み出し動作を行う読み出しステップと、
    前記第1の領域と前記第2の領域から得られた信号に基づく画像信号に対して補正を行う補正ステップと、を行わせ、
    前記補正ステップでは、前記補正の処理対象となる画素の周辺に位置する複数の周辺画素から得られた画像信号と、該複数の周辺画素のそれぞれに対応する係数を用いて、前記補正を行うものであって、前記複数の周辺画素のそれぞれが前記第1の読み出し動作と前記第2の読み出し動作のどちらが実行されたかに応じて、前記複数の周辺画素のそれぞれに対応する係数を変更し、
    前記読み出しステップでは、前記第1の読み出し動作と前記第2の読み出し動作のどちらを実行するかを、前記撮像素子のライン単位で切り替えることを特徴とするプログラム。
JP2015234312A 2015-11-30 2015-11-30 撮像装置、撮像装置の制御方法およびプログラム Expired - Fee Related JP6700751B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015234312A JP6700751B2 (ja) 2015-11-30 2015-11-30 撮像装置、撮像装置の制御方法およびプログラム
US15/360,368 US10009559B2 (en) 2015-11-30 2016-11-23 Imaging apparatus, method for controlling the same, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015234312A JP6700751B2 (ja) 2015-11-30 2015-11-30 撮像装置、撮像装置の制御方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2017103568A JP2017103568A (ja) 2017-06-08
JP6700751B2 true JP6700751B2 (ja) 2020-05-27

Family

ID=58777651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015234312A Expired - Fee Related JP6700751B2 (ja) 2015-11-30 2015-11-30 撮像装置、撮像装置の制御方法およびプログラム

Country Status (2)

Country Link
US (1) US10009559B2 (ja)
JP (1) JP6700751B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947590B2 (ja) * 2017-09-08 2021-10-13 オリンパス株式会社 撮像装置、撮像装置の制御方法
JP2020012879A (ja) * 2018-07-13 2020-01-23 オリンパス株式会社 撮像素子、焦点検出装置、撮像方法、および焦点検出方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250860A (ja) * 2001-02-26 2002-09-06 Canon Inc 撮像素子、撮像装置及び情報処理装置
JP4526445B2 (ja) * 2005-06-15 2010-08-18 オリンパス株式会社 撮像装置
US8018504B2 (en) 2006-12-22 2011-09-13 Eastman Kodak Company Reduction of position dependent noise in a digital image
JP2008154818A (ja) * 2006-12-25 2008-07-10 Konica Minolta Medical & Graphic Inc 放射線画像検出装置、放射線画像撮影システム
JP2015165280A (ja) * 2014-03-03 2015-09-17 キヤノン株式会社 撮像装置およびその制御方法
JP6381274B2 (ja) * 2014-05-07 2018-08-29 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム
JP5872011B2 (ja) * 2014-10-20 2016-03-01 キヤノン株式会社 画像処理装置及び方法、並びにプログラム及び記憶媒体

Also Published As

Publication number Publication date
US10009559B2 (en) 2018-06-26
JP2017103568A (ja) 2017-06-08
US20170155855A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US8890972B2 (en) Image capturing apparatus and image processing method
JP6222908B2 (ja) 画像処理装置、方法およびプログラム、並びに画像処理装置を有する撮像装置
RU2609540C2 (ru) Устройство захвата изображения и способ управления устройством захвата изображения
US20150009352A1 (en) Imaging apparatus and method for controlling the same
JP6016412B2 (ja) 撮像装置および信号処理方法
JP2007097085A (ja) ディジタルカメラ
US10225494B2 (en) Image capturing apparatus and control method thereof
US20160094776A1 (en) Imaging apparatus and imaging method
US10812704B2 (en) Focus detection device, method and storage medium, for controlling image sensor operations
US7349015B2 (en) Image capture apparatus for correcting noise components contained in image signals output from pixels
JP2014122957A (ja) 撮像装置
JP2018125730A (ja) 撮像装置およびその制御方法
JP6700751B2 (ja) 撮像装置、撮像装置の制御方法およびプログラム
JP6460669B2 (ja) 撮像装置
JP7277263B2 (ja) 撮像装置
JP2016058877A (ja) 撮像装置及びその制御方法
JP6444254B2 (ja) 焦点検出装置、撮像装置、焦点検出方法、プログラム、及び記憶媒体
JP6759088B2 (ja) 撮像装置とその制御方法及びプログラム
JP2006279652A (ja) 固体撮像装置および撮像制御方法
US9113098B2 (en) Image pickup apparatus and control method thereof, image pickup system, and non-transitory computer-readable storage medium
JP7218193B2 (ja) 撮像装置
JP2017142484A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
US10203206B2 (en) Image capture apparatus having signal readouts using distance measurement region
JP2018050267A (ja) 撮像装置及び撮像素子の制御方法
US11539903B2 (en) Imaging apparatus and method of controlling the same and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200501

R151 Written notification of patent or utility model registration

Ref document number: 6700751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees