JP6699772B2 - 光電変換素子、画像読取装置、画像形成装置及び画像読取方法 - Google Patents

光電変換素子、画像読取装置、画像形成装置及び画像読取方法 Download PDF

Info

Publication number
JP6699772B2
JP6699772B2 JP2019035492A JP2019035492A JP6699772B2 JP 6699772 B2 JP6699772 B2 JP 6699772B2 JP 2019035492 A JP2019035492 A JP 2019035492A JP 2019035492 A JP2019035492 A JP 2019035492A JP 6699772 B2 JP6699772 B2 JP 6699772B2
Authority
JP
Japan
Prior art keywords
pixel
photoelectric conversion
conversion element
circuit
pixel circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019035492A
Other languages
English (en)
Other versions
JP2019092221A (ja
Inventor
政元 中澤
政元 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2019035492A priority Critical patent/JP6699772B2/ja
Publication of JP2019092221A publication Critical patent/JP2019092221A/ja
Application granted granted Critical
Publication of JP6699772B2 publication Critical patent/JP6699772B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明は、光電変換素子、画像読取装置、画像形成装置及び画像読取方法に関する。
原稿を読取る画像読取装置では、原稿からの反射光を光電変換する光電変換素子として、従来CCDが主に使用されていた。近年は、画像読取装置に対する高速化及び低電力化の要求により、光電変換素子としてCMOSリニアイメージセンサが注目されている。CMOSリニアイメージセンサは、入射光をフォトダイオードによって光電変換する点はCCDと同じである。ただし、CCDが電荷をシフトレジスタによって転送し、転送後に電荷検出部によって電荷−電圧変換を行うのに対し、CMOSリニアイメージセンサは、画素付近で電荷−電圧変換を行って後段に出力する。
また、従来のCMOSリニアイメージセンサは、光電変換を行うフォトダイオード(PD)、PDが蓄積した電荷の電荷−電圧変換を行うフローティングディフュージョン(FD)、FDの電位をリセットするリセット回路、及びFDの電圧信号をバッファして後段に伝えるソースフォロワ(SF)が画素内に構成されている。つまり、従来のCMOSリニアイメージセンサは、フォトダイオード以外の部分(画素回路)が画素内に配置されていることにより、フォトダイオードの面積(開口)が制限され、感度が低くなるという問題がある。
この問題は、同じCMOSリニアイメージセンサであっても、等倍光学系用の密着イメージセンサ(CIS;Contact−Image−Sensor)よりも、画素サイズが小さい縮小光学系用のCMOSリニアイメージセンサでは特に顕著となる。
上記問題を解決する技術例として、例えば特許文献1には、複数の画素が一次元に配列された画素列が複数行で配列されたCMOSの固体撮像素子であって、各画素に対して個別に設けられ、各画素の内部に配置された第1の画素回路と、各列の画素に対して共通に設けられた第2の画素回路とを備え、前記第2の画素回路は、前記画素列の外部に配置されている固体撮像素子が開示されている。
しかしながら、従来のCMOSリニアイメージセンサは、画素回路の一部が画素内に構成されているため、感度がまだ低いという問題があった。また、画素回路に色間(RGB)で共通の部分があるため、一度にRGBの何れかしか読み出すことができず、高速化が困難であるという問題があった。
本発明は、上記に鑑みてなされたものであって、感度の低下を防止することができる光電変換素子、画像読取装置、画像形成装置及び画像読取方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、画素毎に受光量に応じて電
荷を発生させる複数の画素列と、各画素で蓄積された電荷を導き出す画素回路を前記各画素列に沿って画素毎に配置した複数の非画素領域と、を有し、前記各画素列、および、前記非画素領域それぞれ2ラインのピッチで設けられていることを特徴とする。
本発明によれば、感度の低下を防止することができるという効果を奏する。
図1は、CMOSエリアセンサの構成の概要を示す図である。 図2は、CMOSエリアセンサの列単位の画素構成を例示する図である。 図3は、CMOSエリアセンサの動作例を示す図である。 図4は、CMOSリニアイメージセンサの第1例の概要を示す図である。 図5は、CMOSリニアイメージセンサの動作例を示す図である。 図6は、CMOSリニアイメージセンサの第2例の概要を示す図である。 図7は、CMOSリニアイメージセンサの第2例の列単位の画素構成を例示する図である。 図8は、CMOSリニアイメージセンサの動作例を示す図である。 図9は、実施形態にかかる光電変換素子の構成の概要を例示する図である。 図10は、図9に示した光電変換素子の列単位の画素構成を例示する図である。 図11は、光電変換素子の動作例を示す図である。 図12は、画素回路が出力する信号を他の回路へ伝える信号線の位置を示す光電変換素子の断面の模式図である。 図13は、光電変換素子の第1実施例の概要を示す図である。 図14は、光電変換素子の第2実施例の概要を示す図である。 図15は、光電変換素子の列単位の画素構成を例示する図である。 図16は、光電変換素子の動作例を示す図である。 図17は、光電変換素子を有する画像読取装置を備えた画像形成装置の概要を示す図である。
まず、CCDイメージセンサからCMOSイメージセンサへの置き換えが先行しているCMOSエリアセンサを例として、本発明をするに至った背景について説明する。図1は、CMOSエリアセンサ10の構成の概要を示す図である。
CMOSエリアセンサ10の画素20は、受光量に応じて電荷を発生させる光電変換を行うフォトダイオード(PD)と、フォトダイオードが光電変換により発生させた電荷を、フォトダイオードから導き出すように動作する画素回路200とを有する。具体的には、画素回路200は、フォトダイオードが発生させた電荷を電圧信号に変換して後段の他の回路へ出力する。CMOSエリアセンサ10は、ベイアー配列のエリアセンサであり、R/G/G/Bの4画素を1つの単位としている。
図2は、図1に示したCMOSエリアセンサ10の列単位の画素構成を例示する図である。以下、実質的に同じ構成部分には、同一の符号が付してある。画素回路200は、PDが蓄積した電荷の電荷−電圧変換を行うフローティングディフュージョン(FD;電荷電圧変換部)、FDに電荷を転送する転送部(T、Tr2)、FDの電位をリセットするリセット部(RS、Tr1)、FDの電圧信号をバッファして後段の他の回路へ伝えるソースフォロワ(SF)、及び画素を選択する画素選択部(S、Tr3)を有する。画素回路200からの読出線(SIG(*))は、列単位で共通となっており、画素20の信号が行単位で読み出される。
このとき、画素20内に画素回路200が構成されているために、PDの面積(開口)が制限され、感度が低くなってしまう。特に、エリアセンサでは構成上2次元上に画素を敷き詰めるため、このような感度低下は避けられない問題となる。そのため、エリアセンサでは画素毎にオンチップレンズが形成されてPD面に光を集光することにより、開口を確保することが一般的であるが、コストアップや歩留まりの低下を招いてしまう。
図3は、CMOSエリアセンサ10の動作例を示す図である。CMOSエリアセンサ10は、画素回路200からの読出線が列単位で共通となっているため、画素20の信号が行単位で読み出される。図3(a)に示すように、SIG(1)ではR→G→R・・・と読み出され、SIG(2)ではG→B→G・・・と読み出される。読み出された信号はR/G/B(又はR/G/G/B)毎に並べ替えられ、図示しない後段の他の回路へ伝えられる。
また、図3(b)は、画素回路200の動作を示している。まず、読み出される画素20(行)が画素選択部によって選択される(SがONする)。選択された画素20では、FDがリセットされ(RSがONする)、次いで転送部がONされ(TがONする)、リセットされたFDにPDの電荷が転送される。FDで変換された電圧信号は、SFによってバッファされ、読出線を介してSIG(*)の信号として出力される。その後、次の画素行が画素選択部により選択され、順次読出し動作が行われる。
なお、SIGでは、一般的にサンプルホールド回路により信号が保持されるが、相関二重サンプリング(CDS)が行われる場合、RSがONした後(TがONする前)の信号が基準レベルとして保持される。
図4は、CMOSリニアイメージセンサの第1例の構成の概要を示す図である。図4に示すように、CMOSリニアイメージセンサ12は、例えば密着イメージセンサ(CIS;Contact−Image−Sensor)であり、CMOSエリアセンサ10に似た構成となっている。CMOSリニアイメージセンサ12は、図示しないフィルタを介して受光するR/G/Bの光の色毎に一方向に画素22が配列されている点がCMOSエリアセンサ10とは異なる。画素22は、フォトダイオード(PD)及び画素回路220を有する。
また、CMOSリニアイメージセンサ12は、画素回路220からの読出線が列単位で共通となっており、画素22の信号が行単位で読み出される。即ち、CMOSリニアイメージセンサ12は、RGBで共通の読出線となり、RGB毎に読み出されることになる。このように、CMOSリニアイメージセンサ12は、CMOSエリアセンサ10に似た構成となっているため、画素回路220による感度低下の問題がある。
図5は、CMOSリニアイメージセンサ12の動作例を示す図である。CMOSリニアイメージセンサ12は、画素回路220からの読出線がRGBで共通となっているため、画素22の信号がRGB毎に読み出される。このとき、SIG(1)〜SIG(n)は、全て同じ出力となり、R→G→B・・・と読み出される。画素回路220の動作は、図3(b)に示した動作と同様である。CMOSリニアイメージセンサ12は、相関二重サンプリング(CDS)が行われる場合、RSがONした後(TがONする前)の信号が基準レベルとして保持される点もCMOSエリアセンサ10と同様である。
図6は、CMOSリニアイメージセンサの第2例の構成の概要を示す図である。図7は、図6に示したCMOSリニアイメージセンサの第2例の列単位の画素構成を例示する図である。図6に示すように、CMOSリニアイメージセンサ14は、画素回路による感度低下を低減するために、画素に対して共通な画素回路と、画素に対して共通でない画素回路とが分けられ、共通な画素回路が画素外に配置されている。
つまり、図6に示すように、CMOSリニアイメージセンサ14は、画素回路が画素毎に独立した回路(第1画素回路240)と、RGBの画素24に共通した回路(第2画素回路242)とに分けられている。第1画素回路240は、転送部(Tr2、T)までを有する。第2画素回路242は、フローティングディフュージョン(FD)、リセット部(Tr1、RS)、及びソースフォロワ(SF)までをRGBで共通な画素回路として有する。CMOSリニアイメージセンサ14は、RGBで共通の読出線となっている点はCMOSリニアイメージセンサ12と同じである。なお、CMOSリニアイメージセンサ14は、RGB画素列のピッチが4/3ライン(画素副走査サイズの4/3倍)となっている。
CMOSリニアイメージセンサ14は、画素24内に構成する画素回路が小さくなるため、フォトダイオード(PD)の面積を増やすことができるが、画素24内に画素回路の一部(第1画素回路240)が残っており、感度が十分向上しているとは言えない。具体的には、正方形の画素24の領域に対してPDの副走査サイズが3/4にされており、残り1/4の領域に第1画素回路240が配置されている。即ち、第1画素回路240によってPD面積の1/4が削られているということを意味しており、PDの面積が画素回路によって制限されているという状況は変わっていない。つまり、CMOSリニアイメージセンサ14は、まだ感度向上の余地を残しており、画素領域は非効率である。
なお、CMOSリニアイメージセンサであっても、密着イメージセンサ(CIS)である場合は元々画素サイズが大きいため、図6に示したCMOSリニアイメージセンサ14のような構成であっても非効率さの影響はほとんどない。これに対し、CISの1/10以下の画素サイズとなる縮小光学系用のCMOSリニアイメージセンサでは、第1画素回路240による影響が大きく、CMOSリニアイメージセンサ14のような構成ではまだ感度が不十分である。これは、画素サイズが変わっても画素回路のサイズがほぼ同じであるために、PDの面積が小さいほど相対的に画素回路の影響が大きくなるためである。また、CMOSリニアイメージセンサ14の構成では、第2画素回路242がRGBで共通であるため、一度にRGBの何れかしか読み出すことができない(線順次読取)。このため、CMOSリニアイメージセンサ14の構成では読取動作を高速化することができないという問題がある。
図8は、CMOSリニアイメージセンサ14の動作例を示す図である。図8(a)に示すように、CMOSリニアイメージセンサ14の画素の読み出し方は、CMOSリニアイメージセンサ12と同様である。この場合も第2画素回路242からの読出線はRGBで共通となっているため、画素24の信号がRGB毎に読み出される。
また、図8(b)に示すように、第1画素回路240及び第2画素回路242の動作は、図3(b)に示した動作に対し、転送部(Tr2、T)が画素選択部を兼ねていることが異なる。そのため、CMOSリニアイメージセンサ14は、R→G→B→・・・といったように電荷転送部が順次ONすることによって読み出す画素列が選択されることになる。また、CMOSリニアイメージセンサ14は、相関二重サンプリング(CDS)が行われる場合、RSがONした後(TがONする前)の信号が基準レベルとして保持される点も図3(b)に示した動作と同様である。
CMOSリニアイメージセンサ14は、感度が向上しているが、画素24内には第1画素回路240が残っており、感度の向上が十分であるとは言えない。これは、RGBで共通な第2画素回路242があること、つまり線順次読取の構成であることに起因している。すなわち、線順次読取の場合、1ラインの期間にRGB3色分の画像信号を読み出す必要があるため時分割で読み出すことになるが、読み出すタイミングがRGBで異なるため、RGBで読んでいる位置が異なることになり、色ずれが発生してしまう。このため、RGB画素列のピッチを広げることができず、画素回路を配置する領域が確保できないため、PDの面積を削らざるを得なくなっている。また、線順次読取ではRGB各1色ずつ読み出すため、高速化もすることができない。
(実施形態)
次に、光電変換素子の実施形態を詳細に説明する。図9は、実施形態にかかる光電変換素子16の構成の概要を例示する図である。図10は、図9に示した光電変換素子16の列単位の画素構成を例示する図である。光電変換素子16は、例えばオンチップレンズを具備しないCMOSリニアカラーイメージセンサである。光電変換素子16は、図示しないフィルタを介して受光するR/G/Bの光の色毎にそれぞれ一方向にn個の画素26が配列されている。
各画素26には、受光量に応じて電荷を発生させる受光素子(フォトダイオード;PD)が後述する分離帯を除く略全ての領域を占めるように設けられている。また、複数の画素26は、受光する光の色毎に一方向に配列されてRGBの3つの画素列を形成している。3つの画素列は、それぞれ外部からの光を受光する受光領域に設けられている。
また、光電変換素子16には、各画素列それぞれに隣接して沿うように、非画素領域30が画素毎に設けられている。非画素領域30は、外部からの光を受光しない非受光領域となっている。また、非画素領域30には、PDが発生させた電荷を、PDから画素毎に導き出すように動作する画素回路300が設けられている。画素回路300は、PDが蓄積した電荷の電荷−電圧変換を行うフローティングディフュージョン(FD;電荷電圧変換部)、PDが発生させた電荷をFDに転送する転送部(T、Tr2)、FDの電位をリセットするリセット部(RS、Tr1)、及びFDの電圧信号をバッファして後段の他の回路へ伝えるソースフォロワ(SF;伝達部)を有する。n個の画素回路300は、それぞれ画素26の信号を独立に後段の他の回路へ出力する。
つまり、光電変換素子16は、RGBの反射光を同時に読み出すことが可能となり、線順次読取の場合に比べてRGBの画素列のピッチを大きくすることが可能となっている。例えば、図6に示したCMOSリニアイメージセンサ14において4/3ラインであったピッチは、光電変換素子16では2ラインのピッチに拡大されている。つまり、光電変換素子16は、画素26のサイズと同等の面積を持つ(画素回路の面積に対して十分な)非画素領域30が画素列と隣接するように形成されているため、画素回路を共通部分と非共通部分とに分ける必要がなく、画素回路の全てを非画素領域30に画素毎に配置することが可能となっている。なお、光電変換素子16は、画素毎に独立して信号の読み出しが可能であるため画素選択部は不要となっている。
このように、光電変換素子16は、画素26内の領域をPDが占有(後述する分離帯を除く)している。つまり、光電変換素子16は、画素(又は受光領域)におけるPD面積を最大化することが可能となっており、感度が最大化されている。また、光電変換素子16は、RGBの各画素26の信号を独立に読み出し可能となっていることから、読取動作を高速化することが可能となっている(単純に線順次読取方式の3倍以上の高速化が可能である)。
図11は、光電変換素子16の動作例を示す図である。光電変換素子16は、画素回路300からの読出線が各画素26で独立しているため、画素26の信号が例えばRGBそれぞれ同時に読み出される。また、図8(b)に示したCMOSリニアイメージセンサ14の動作がRGBの順次動作であるのに対し、各画素回路300は、各画素26に対して一斉に同じタイミングで動作する。また、光電変換素子16は、相関二重サンプリング(CDS)が行われる場合、RSがONした後(TがONする前)の信号が基準レベルとして保持される点はCMOSリニアイメージセンサ14と同様である。
図12は、画素回路300が出力する信号を他の回路へ伝える信号線(出力信号線)の位置を示す光電変換素子16の断面の模式図である。縮小光学系用のCMOSリニアイメージセンサでは、PDが配置される領域に対する信号線(配線)が配置される領域の割合がCISよりも大きくなる場合がある。光電変換素子16は、画素回路300から出力されるRGBの各信号線が配置される幅が、画素列内で隣接する画素(PD)を分離する分離帯(画素分離帯)40の幅以下となるようにされている。
具体的には、図12(a)に示すように、光電変換素子16は、分離帯40の主走査方向の幅をW0とし、Rの信号線42、Gの信号線44及びBの信号線46が配置される幅をWとした場合、W≦W0となるようにされている。これにより、光電変換素子16は、画素回路300からの信号線によってPDの開口が制限されることが防止されている。なお、図12におけるM1〜M3は、それぞれ配線層を表している。つまり、図12(a)では、光電変換素子16が3層配線の構造である場合の例が示されている。このように、画素回路300が出力する信号を他の回路へ伝える出力信号線は、画素列内でPD間の分離を行う分離帯40が配置されていない配線層に形成され、且つ分離帯40に重なる範囲内に配置されている。
また、複数の信号線が隣接して配置される場合、信号線の間隔が小さいと色間でのクロストークによって偽色が発生する場合がある。そのため、光電変換素子16は、図12(b)に示すように、信号線が各画素列毎に異なる配線層に配置されてもよい。これにより、光電変換素子16は、信号線による色間でのクロストークが防止され、画素回路300からの信号線によってPDの開口が制限されることが防止される。なお、RGBの各信号線は、図12(b)に示すように主走査方向の位置が分離帯40の中央部で必ずしも一致する必要はないが、感度低下のリスク、特性の対象性などの観点から、図12(b)に示すように配置されることが望ましい。
図13は、光電変換素子16の第1実施例(光電変換素子16a)の概要を示す図である。光電変換素子16は、画素回路300が出力する信号を伝える信号線に限らず、画素回路300に対して制御を行う制御信号を伝える制御線(制御信号線)もPDの開口を制限する場合がある。
光電変換素子16aは、画素回路300に対する制御線が非画素領域30などの非受光領域に配置されている。これにより、光電変換素子16aは、画素回路300への制御線がPDの開口を制限することが防止されている。
また、図13においては、制御線がRS/T/VDD(電源ライン)の3本によって示されているが、実際には複数本存在するため、配線スペースは無視できない。そこで、光電変換素子16aは、少なくとも同じ画素列内では画素回路300への制御線が共通とされている。これにより、光電変換素子16aは、制御線の規模が最小化され、PDの開口が制限されることが防止されている。
さらに、光電変換素子16aは、画素回路300への制御線が画素列間(RGB間)で共通とされている。これにより、光電変換素子16aは、RGBで露光タイミングを合わせた同時露光(グローバルシャッタ)が実現されるため、色ずれを防止することを可能にする。なお、図13においては、制御線をRGBで共通とすることによって露光タイミングを同時とすることを可能にしているが、制御線をRGBでそれぞれ独立に構成し、同タイミングの制御信号を用いても効果は同じである。
図14は、光電変換素子16の第2実施例(光電変換素子16b)の概要を示す図である。図15は、図14に示した光電変換素子16bの列単位の画素構成を例示する図である。光電変換素子16は、CMOSリニアカラーイメージセンサである場合、ロジック回路を内蔵できることから、画素回路300の後段に、可変ゲインアンプ(PGA;Programmable−Gain−Amplifier)やADC(Analog−Digital−Converter)を備えて高精度・低ノイズの画像読取を行う場合がある。また、光電変換素子16は、さらに高速化するためにPGAやADCを画素毎に備える場合もあるが、その場合には回路規模が大きくなってしまう。
図14及び図15に示すように光電変換素子16bは、非画素領域30に画素回路300及びアナログメモリ302(MEM,Cm)を画素毎に有する。アナログメモリCmは、画素回路300の後段に接続され、画素回路300の出力を一旦保持する。アナログメモリCmの後段のスイッチは画素選択部(S、Tr3)であり、RGBの出力を順次PGAやADCに出力するための選択スイッチである。
よって、光電変換素子16bは、画素回路300が出力する信号を一旦アナログメモリCmに保持することができるため、画素回路300の後段に配置され得るPGAやADCを共通化することが可能となる。つまり、光電変換素子16bは、PGAやADCによる処理をシリアルに行うことを可能にし、RGBの各信号を同一回路で独立処理することを可能にするので、回路規模を抑えることも可能にする。なお、光電変換素子16bは、画素選択部を備えてRGBの信号を順次後段の他の回路へ伝送するため、信号読み出し線がRGB共通となっている。
図16は、光電変換素子16bの動作例を示す図である。画素回路300の動作は、図8(b)に示した動作と同様である。光電変換素子16bでは、画素回路300から出力された信号はRGB毎にアナログメモリ(Cm(*))に一旦保持される。次いで、RGBの画素選択信号(S(*))が順次ONすると、アナログメモリ(Cm(*))に保持された信号がRGB共通の信号読み出し線(SIG)に読み出され、後段の図示しないPGAやADCなどに出力される。
また、光電変換素子16bは、相関二重サンプリング(CDS)が行われる場合、RSがONした後(TがONする前)の信号が基準レベルとして保持されればよい。ただし、この場合、光電変換素子16bは、基準レベル用のアナログメモリCmをさらに備える必要がある。
次に、光電変換素子16を有する画像読取装置を備えた画像形成装置について説明する。図17は、光電変換素子16を有する画像読取装置60を備えた画像形成装置50の概要を示す図である。画像形成装置50は、画像読取装置60と画像形成部70とを有する例えば複写機やMFP(Multifunction Peripheral)などである。
画像読取装置60は、例えば光電変換素子16、LEDドライバ(LED_DRV)600及びLED602を有する。LEDドライバ600は、タイミング制御部(TG)160が出力するライン同期信号などに同期して、LED602を駆動する。LED602は、原稿に対して光を照射する。光電変換素子16は、ライン同期信号などに同期して、原稿からの反射光を受光して図示しない複数の受光素子(PD)が電荷を発生させて蓄積を開始する。そして、光電変換素子16は、AD変換及びパラレルシリアル変換等を行った後に、LVDS162によって画像データを画像形成部70に対して出力する。
画像形成部70は、処理部80とプリンタエンジン82とを有し、処理部80とプリンタエンジン82とがインターフェイス(I/F)84を介して接続されている。
処理部80は、LVDS800、画像処理部802及びCPU804を有する。CPU804は、光電変換素子16などの画像形成装置50を構成する各部を制御する。また、CPU804(又はタイミング制御部160)は、各PDが受光量に応じて電荷を発生させることを略同時に開始するよう制御する。
LVDS162は、後段となるLVDS800に対して例えば画像読取装置60が読取った画像の画像データ、ライン同期信号及び伝送クロックなどを出力する。LVDS800は、受入れた画像データ、ライン同期信号及び伝送クロックなどをパラレル10ビットデータに変換する。画像処理部802は、変換された10ビットデータを用いて画像処理を行い、画像データなどをプリンタエンジン82に対して出力する。プリンタエンジン82は、受入れた画像データを用いて印刷を行う。
16、16a、16b 光電変換素子
30 非画素領域
40 分離帯
50 画像形成装置
60 画像読取装置
70 画像形成部
300 画素回路
302 MEM、Cm(アナログメモリ)
PD フォトダイオード(受光素子)
FD フローティングディフュージョン(電荷電圧変換部)
SF ソースフォロワ(伝達部)
Tr1 リセット部
Tr2 転送部
Tr3 画素選択部
特開2010−135464号公報

Claims (14)

  1. 画素毎に受光量に応じて電荷を発生させる複数の画素列と、
    各画素で蓄積された電荷を導き出す画素回路を前記各画素列に沿って画素毎に配置した複数の非画素領域と、
    を有し、
    前記各画素列、および、前記非画素領域それぞれ2ラインのピッチで設けられていること
    を特徴とする光電変換素子。
  2. 前記画素回路それぞれは、
    画素で蓄積された電荷を画素毎に転送する転送部と、
    前記転送部が転送した電荷を電圧に変換する電荷電圧変換部と、
    前記電荷電圧変換部の電位をリセットするリセット部と、
    前記電荷電圧変換部が変換した電圧を他の回路へ伝達する伝達部と
    を有すること
    を特徴とする請求項1に記載の光電変換素子。
  3. 前記画素列は、
    受光する光の色毎に一方向に配列されていること
    を特徴とする請求項1又は2に記載の光電変換素子。
  4. 前記画素回路を制御する制御信号を伝える制御信号線は、前記画素列内で共通であること
    を特徴とする請求項3に記載の光電変換素子。
  5. 前記制御信号線は、前記画素列間で共通であること
    を特徴とする請求項4に記載の光電変換素子。
  6. 前記制御信号線は、前記非画素領域を含む非受光領域に形成されていること
    を特徴とする請求項4又は5に記載の光電変換素子。
  7. 前記画素回路が出力する信号を他の回路へ伝える出力信号線は、前記画素列内で前記画素間の分離を行う分離帯が配置されていない配線層に形成され、且つ前記分離帯に重なる範囲内に配置されていること
    を特徴とする請求項3乃至6のいずれか1項に記載の光電変換素子。
  8. 前記出力信号線は、前記画素列毎に異なる配線層に形成されていること
    を特徴とする請求項7に記載の光電変換素子。
  9. 前記出力信号線は、
    前記画素回路毎に独立させて形成されていること
    を特徴とする請求項7又は8に記載の光電変換素子。
  10. 前記画素回路は、
    アナログメモリを介して信号を出力すること
    を特徴とする請求項1乃至9のいずれか1項に記載の光電変換素子。
  11. 請求項1乃至10のいずれか1項に記載の光電変換素子と、
    受光量に応じて電荷を発生させることを各画素で受光素子が同時に開始するよう制御する制御部と
    を有することを特徴とする画像読取装置。
  12. 請求項11に記載の画像読取装置と、
    前記画像読取装置の出力に基づいて画像を形成する画像形成部と
    を有することを特徴とする画像形成装置。
  13. 2ラインのピッチで設けられている複数の画素列、および、2ラインのピッチで設けられている複数の非画素領域により、画素毎に受光量に応じて電荷を発生させる工程と、
    前記各画素列に沿って画素毎に配置した複数の前記非画素領域の画素回路により、各画素で蓄積された電荷を導き出す工程と、
    を含む画像読取方法。
  14. 前記画素回路毎に独立させて形成された出力信号線によって前記画素回路それぞれが出力する信号を他の回路へ伝える工程、又は、前記画素回路それぞれがアナログメモリを介して信号を出力する工程をさらに含む請求項13に記載の画像読取方法。
JP2019035492A 2019-02-28 2019-02-28 光電変換素子、画像読取装置、画像形成装置及び画像読取方法 Active JP6699772B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019035492A JP6699772B2 (ja) 2019-02-28 2019-02-28 光電変換素子、画像読取装置、画像形成装置及び画像読取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019035492A JP6699772B2 (ja) 2019-02-28 2019-02-28 光電変換素子、画像読取装置、画像形成装置及び画像読取方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018019451A Division JP6489247B2 (ja) 2018-02-06 2018-02-06 光電変換素子、画像読取装置、画像形成装置及び画像読取方法

Publications (2)

Publication Number Publication Date
JP2019092221A JP2019092221A (ja) 2019-06-13
JP6699772B2 true JP6699772B2 (ja) 2020-05-27

Family

ID=66836801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019035492A Active JP6699772B2 (ja) 2019-02-28 2019-02-28 光電変換素子、画像読取装置、画像形成装置及び画像読取方法

Country Status (1)

Country Link
JP (1) JP6699772B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336383A (ja) * 1997-05-28 1998-12-18 Canon Inc 画像読み取り装置
JP2001298583A (ja) * 2000-04-13 2001-10-26 Minolta Co Ltd イメージセンサ
JP4508891B2 (ja) * 2005-01-28 2010-07-21 キヤノン株式会社 光電変換装置、マルチチップ型イメージセンサ、密着型イメージセンサおよび画像読取装置
JP4858281B2 (ja) * 2006-05-16 2012-01-18 コニカミノルタホールディングス株式会社 固体撮像装置
JP4505488B2 (ja) * 2007-09-05 2010-07-21 シャープ株式会社 固体撮像素子および電子情報機器
JP6053505B2 (ja) * 2012-01-18 2016-12-27 キヤノン株式会社 固体撮像装置

Also Published As

Publication number Publication date
JP2019092221A (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6287058B2 (ja) 縮小光学系用の光電変換素子、画像読取装置、画像形成装置及び画像読取方法
JP6668728B2 (ja) 光電変換素子、画像読取装置及び画像形成装置
US9781288B2 (en) Photoelectric conversion element, image reading device, and image forming apparatus
JP6225682B2 (ja) 撮像素子、画像読取装置及び画像形成装置
JP6570384B2 (ja) 撮像装置及び撮像システム
US9661306B2 (en) Solid-state imaging device and camera system
US10447976B2 (en) Solid state imaging device having a shared pixel structure and electronic apparatus
JP7159568B2 (ja) 光電変換素子、画像読取装置、および画像形成装置
KR20100112076A (ko) 고체 촬상 소자 및 카메라 시스템
US20130341750A1 (en) Solid-state imaging device, method for controlling the same, and electronic apparatus
WO2004049731A1 (ja) 固体撮像装置及びその信号読み出し方法
US20160205359A1 (en) Solid state imaging device, imaging device, and electronic device
US7209171B2 (en) Solid-state imaging apparatus and driving method thereof
KR101248436B1 (ko) 광역 동적범위를 가지는 이미지 센서의 화소 회로 및 그 구동 방법
JP6489247B2 (ja) 光電変換素子、画像読取装置、画像形成装置及び画像読取方法
JP6699772B2 (ja) 光電変換素子、画像読取装置、画像形成装置及び画像読取方法
JP2015008343A (ja) 撮像装置および撮像画像の形成方法
JP6701772B2 (ja) 光電変換素子、画像読取装置及び画像形成装置
KR20220051240A (ko) 이미지 캡쳐 방법, 카메라 어셈블리 및 모바일 터미널
JP2009100381A (ja) 固体撮像素子およびその駆動方法、並びにカメラシステム
EP1729504B1 (en) System for controlling image data readout from an imaging device
JP7447591B2 (ja) 光電変換装置、画像読取装置、画像形成装置、及び撮像システム
JP7065054B2 (ja) 光電変換素子、画像読取装置及び画像形成装置
JP6988874B2 (ja) 撮像素子および撮像装置
JP6551487B2 (ja) 撮像素子、画像読取装置及び画像形成装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151