JP6681687B2 - 炭化珪素単結晶インゴット製造用の黒鉛坩堝及び炭化珪素単結晶インゴットの製造方法 - Google Patents

炭化珪素単結晶インゴット製造用の黒鉛坩堝及び炭化珪素単結晶インゴットの製造方法 Download PDF

Info

Publication number
JP6681687B2
JP6681687B2 JP2015193113A JP2015193113A JP6681687B2 JP 6681687 B2 JP6681687 B2 JP 6681687B2 JP 2015193113 A JP2015193113 A JP 2015193113A JP 2015193113 A JP2015193113 A JP 2015193113A JP 6681687 B2 JP6681687 B2 JP 6681687B2
Authority
JP
Japan
Prior art keywords
raw material
crucible
silicon carbide
single crystal
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015193113A
Other languages
English (en)
Other versions
JP2017065969A (ja
Inventor
弘志 柘植
弘志 柘植
藤本 辰雄
辰雄 藤本
勝野 正和
正和 勝野
正史 中林
正史 中林
佐藤 信也
信也 佐藤
昌史 牛尾
昌史 牛尾
小桃 谷
小桃 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2015193113A priority Critical patent/JP6681687B2/ja
Publication of JP2017065969A publication Critical patent/JP2017065969A/ja
Application granted granted Critical
Publication of JP6681687B2 publication Critical patent/JP6681687B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

この発明は、種結晶を用いた昇華再結晶法によって炭化珪素単結晶を成長させ、炭化珪素単結晶インゴットを製造する際に用いられる炭化珪素単結晶インゴット製造用の黒鉛坩堝、及びこの黒鉛坩堝を用いて炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法に関する。
高熱伝導率を持ち、バンドギャップの大きい炭化珪素単結晶は、高温で用いられる電子材料や、高耐圧の求められる電子材料の基板として有用な材料である。
そして、このような炭化珪素単結晶の作製法の一つとして、昇華再結晶法(レーリー法)が知られている。この昇華再結晶法は、2000℃を超える高温において原料の炭化珪素粉末を昇華させ、生成したその昇華ガス(原料ガス)を低温部に再結晶化させることにより、炭化珪素単結晶を製造する方法である。また、このレーリー法において、炭化珪素単結晶からなる種結晶を用いて炭化珪素単結晶を製造する方法は、特に改良レーリー法と呼ばれ(非特許文献1)、バルク状の炭化珪素単結晶インゴットの製造に利用されている。
この改良レーリー法においては、種結晶を用いているために結晶の核形成過程を最適化することができ、また、不活性ガスによる雰囲気圧力を10Paから15kPa程度にすることにより、炭化珪素単結晶の成長速度等の再現性を良くすることができる。このため、一般に、原料と種結晶との間で適切な温度差を設け、種結晶の上に炭化珪素単結晶を成長させることが行われている。また、得られた炭化珪素単結晶(炭化珪素単結晶インゴット)については、電子材料の基板としての規格の形状にするために、研削、切断、研磨といった加工が施されて利用されている。
ここで、図6を用いて、改良レーリー法の原理を説明する。
昇華再結晶法で用いる炭化珪素原料3として炭化珪素結晶粉末〔通常、アチソン(Acheson)法で作製された炭化珪素結晶粉末を洗浄・前処理したものが使用される。〕が用いられ、また、黒鉛製坩堝1として上端開口筒状の坩堝本体1aとこの坩堝本体1aの上端開口部を閉塞する坩堝上蓋1bとを備えた坩堝が用いられる。そして、前記坩堝本体1a下部の原料充填部1c内に前記炭化珪素原料3が装填され、また、前記坩堝上蓋1bの内面に炭化珪素単結晶からなる種結晶2が設置される。坩堝1内では、前記炭化珪素原料3が、アルゴン等の不活性ガス雰囲気中(10Pa〜15kPa)で2400℃以上に加熱される。この加熱の際に、坩堝1内には炭化珪素原料3側に比べて種結晶2側がやや低温になるように温度勾配が設定され、加熱されて炭化珪素原料3から昇華した炭化珪素の昇華ガスは、温度勾配による流れ、及び、濃度勾配(温度勾配により形成される)による流れにより、種結晶2方向へと拡散・輸送され、この種結晶2の表面で再結晶し、結晶成長が進行して単結晶インゴット4が生成する。なお、図6中、符号5は断熱材である。
ところで、炭化珪素単結晶基板の口径については、電子デバイスを作製するための基板として用いる際の製造コストをできるだけ下げるために、大口径化が求められている。そして、このために、炭化珪素単結晶基板を製造するためのインゴットについては、その大口径化と同時に、一つのインゴットから多数の基板を製造することができ、また、切断加工時や研削加工時の生産性をより高めることができるように、結晶成長により得られるインゴットの長尺化も求められている。
しかしながら、改良レーリー法においては、前記のような方法で結晶成長を行っているため、炭化珪素原料を結晶成長の途中で追加することが困難である。そこで、大口径かつ長尺の炭化珪素単結晶インゴットを作製するためには、小口径のインゴットを結晶成長させる場合に比べて、坩堝の原料充填部により多量の炭化珪素原料を装填する必要があり、原料充填部の径及び深さをより大きくする必要が生じるが、このように多量に装填した炭化珪素原料を結晶成長のために有効に利用するためには、原料充填部内の炭化珪素原料全体を昇華温度まで効率良く加熱し、昇華させることが不可欠になる。
そして、坩堝内の炭化珪素原料を加熱する方法としては、一般に、高周波誘導加熱を用いて黒鉛製の坩堝を発熱させ、この発熱した坩堝を介して炭化珪素原料を加熱し、坩堝内に前述の温度勾配を形成することが行われている。また、このような高周波誘導加熱においては、誘導される高周波電流の発生が高周波の浸透深さに依存しているため、坩堝の形状によって定まる発熱分布が発生し、坩堝の側壁外周面近傍で強い発熱が生じ、この熱が熱伝導若しくは熱輻射により原料充填部内の炭化珪素原料へと伝達され、これによって炭化珪素原料が加熱される。これを坩堝の原料充填部内に装填された炭化珪素原料に着目してみると、坩堝が円筒状でその原料充填部内に炭化珪素原料が円柱状に装填されていると、誘導加熱により円柱状炭化珪素原料の側面が強く加熱されることから、炭化珪素原料の外周部(坩堝の原料充填部の外周部)近傍がより加熱され易く、炭化珪素原料の中心軸(坩堝の原料充填部の中心軸)近傍に比べてより高温に加熱され、炭化珪素原料に対する加熱温度が炭化珪素原料の外周部から中心軸に向けて低下する温度分布を持つ傾向がある。
このように原料充填部が加熱されると、原料充填部内の炭化珪素原料の高温部から昇華ガスが発生し、種結晶上に結晶成長が生じるが、原料充填部内の原料には不可避的に温度分布が生じ、原料充填部の中心軸近傍の原料は低温部となる。そして、この低温部の温度を昇華温度まで上昇させて低温部となる中心軸近傍の原料を昇華させるためには、誘導電流の電流値を大きくして黒鉛坩堝の側壁部分の温度をより高温にする必要がある。一方で、坩堝の側壁部分の温度を高くすると、坩堝全体の温度が高くなり、種結晶や成長中の単結晶の温度も高くなって、種結晶と原料との温度勾配が小さくなるため、温度勾配に基づいた結晶成長の駆動力が小さくなり、結晶成長が途中で停止する結晶成長停止の問題が発生する。
そこで、従来においても、原料充填部を加熱する方法について幾つかの提案がされており、例えば、坩堝の原料充填部の底壁部(坩堝底壁部)の温度低下を防ぐために前記坩堝底壁部に断熱材を配置することで、原料充填部の下部における再結晶化を抑制し、効率的に原料を加熱する方法が開示されている(特許文献1)。また、原料充填部の坩堝の側壁の形状を工夫し、原料内部の温度分布を均一化する方法が開示されている(特許文献2)。
そして、坩堝の原料充填部の底壁部(坩堝底壁部)を直接加熱する方法として、坩堝底壁部の下に誘導加熱コイルを配置する方法が開示されている(特許文献3)。また、坩堝の原料充填部の底壁部(坩堝底壁部)の電気伝導率を側壁部よりも高くし、坩堝底壁部の発熱を増大させて坩堝底壁部の温度を高くすることにより、坩堝底壁部まで加熱する方法が開示されている(特許文献4)。
更にまた、種結晶に向かうガスの流れを制御するために原料充填部の上部に原料ガス整流ガイドを設ける方法が開示されている(特許文献5)。
特開2010-76,990号公報 特開2007-230,846号公報 特開2013-216,549号公報 特開2010-206,876号公報 特許5,397,503号公報
Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, 52 (1981) pp.146
しかしながら、特許文献1の方法では、発熱部分が坩堝の側壁部分であることから、原料充填部の中心軸近傍の温度が外周部の温度よりも低下するという問題が依然とし残り、大口径化のために坩堝の口径を増大させた場合に、原料充填部の中心軸近傍の原料を効率良く加熱するという目的のためには採用し難い方法である。また、特許文献2の方法では、坩堝側壁の発熱分布が変化することに伴い、種結晶上に成長している結晶部分近傍での発熱分布も変化し、しかも、前記結晶成長は等温線に沿って進むと考えられることから、発熱分布の変化に伴って成長する結晶の成長面形状も影響を受けるので、原料充填部の前記結晶成長部分の温度の最適化とを両立させることが必要となり、これら均温化と最適化の両立が非常に難しい。
また、特許文献3の方法では、坩堝下部を直接加熱することができるが、装置の構造が複雑になると同時に、側部誘導加熱コイルと下部誘導加熱コイルとの相互作用があるために、それぞれの誘導加熱コイルに流す電流の最適化が非常に難しい。更に、特許文献4の方法では、坩堝側壁に近い部分での発熱を増大させているため、依然として、原料充填部の外周部の温度が高くなるという問題は残り、原料充填部の外周部と原料充填部の中心軸近傍の間に不可避に温度差が発生し、原料充填部の中心軸近傍の原料を効率的に昇華させることが困難である。
更に、特許文献5の方法では、原料充填部内に最初に装填された炭化珪素原料の上面位置から種結晶へ到達するまでの間の昇華ガスの流れを制御することはできるが、原料充填部の内部において昇華ガスの流れの制御することはできず、原料充填部の中心軸近傍の原料を加熱することは困難であり、原料充填部の中心軸近傍の温度を上げるためには坩堝全体の温度を上げる必要がある。坩堝全体の温度を上げた場合には、種結晶の結晶成長部が高温となることで再結晶した炭化珪素が再度昇華する場合があり、その部分に欠陥が発生し、良質の単結晶が得られない問題が有る。このため、この特許文献5の方法においても、原料充填部の中心軸近傍の炭化珪素原料を有効に加熱することは難しく、多量の昇華ガスを必要とするインゴットの大口径化、長尺化には不向きである。
本発明は、炭化珪素単結晶の成長中に坩堝の原料充填部に装填した炭化珪素原料を効率良く昇華させ、大口径かつ長尺の炭化珪素単結晶インゴットを製造するのに適した炭化珪素単結晶インゴットの製造方法を提供することを目的とする。
本発明者らは、高周波誘導加熱を用いて、大口径かつ長尺の炭化珪素単結晶インゴットを製造する場合に、黒鉛坩堝の原料充填部内に装填した炭化珪素原料を効率良く昇華させることができる方法について鋭意検討した。その結果、高温に加熱されて発生した高温の昇華ガスを熱源として利用すること、すなわち、略々中央部に隔壁開口部を有する隔壁を原料充填部の内部に配置してこの原料充填部内の炭化珪素原料中を流れる昇華ガスの流れを制御し、この高温の昇華ガスの流れを原料充填部内の比較的低温の炭化珪素原料部分に強制的に誘導し、この高温の昇華ガスによって原料充填部の中心軸近傍に位置する比較的低温の炭化珪素原料を加熱する方法に到達した。そして、この方法によれば、従来加熱され難かった坩堝の原料充填部中心軸近傍の原料を昇華させることを可能とし、坩堝内に装填した炭化珪素原料を効率良く昇華させ、大口径かつ長尺の炭化珪素単結晶インゴットを製造することができることを見出し、本発明を完成した。
すなわち、本発明の要旨は次の通りである。
〔1〕上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを備え、また、前記坩堝本体下部には炭化珪素原料を充填する原料充填部を有し、前記原料充填部内に装填された炭化珪素原料を加熱して昇華させ、生成した昇華ガスを前記坩堝上蓋の内面に設置された炭化珪素単結晶からなる種結晶の表面で再結晶化させる昇華再結晶法により炭化珪素単結晶を製造するための黒鉛坩堝において、
前記坩堝本体下部の原料充填部内には、周縁基部が原料充填部の側壁内面に固定され、略々中央部に隔壁開口部を有する円盤状の黒鉛製隔壁が設けられていることを特徴とする炭化珪素単結晶インゴット製造用の黒鉛坩堝。
〔2〕 前記黒鉛製隔壁の隔壁開口部の開口面積が、前記原料充填部内に装填された初期の炭化珪素原料の上面の面積の0.1倍以上0.5倍以下であることを特徴とする前記〔1〕に記載の炭化珪素単結晶インゴット製造用の黒鉛坩堝。
〔3〕 上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを備え、また、前記坩堝本体下部には炭化珪素原料を充填する原料充填部を有する黒鉛坩堝を用い、この黒鉛坩堝の坩堝本体下部の原料充填部内に炭化珪素原料を装填し、前記坩堝上蓋の内面には炭化珪素単結晶からなる種結晶を設置し、前記坩堝本体の側面を高周波誘導加熱して昇華ガスを発生させ、この発生した昇華ガスを前記種結晶上に再結晶させて炭化珪素単結晶を製造する方法において、
前記坩堝本体下部の原料充填部には周縁基部が坩堝本体内壁面に固定され、かつ、略々中央部に隔壁開口部を有する円盤状の黒鉛製隔壁を設け、この黒鉛製隔壁により隔壁下方で発生する昇華ガスを原料充填部の中心軸へと向う方向に案内し、この原料充填部内の中心軸周辺に位置する炭化珪素原料を昇華温度まで加熱することを特徴とする炭化珪素単結晶インゴットの製造方法。
本発明の炭化珪素単結晶インゴット製造用の黒鉛坩堝によれば、この黒鉛坩堝を用いて大口径かつ長尺の炭化珪素単結晶インゴットを成長させる際に、坩堝の原料充填部に装填された炭化珪素原料について、原料充填部の中心軸近傍の温度を外周部の温度と同等に高くすることが可能であり、従来、比較的低温である原料充填部の中心軸近傍での炭化珪素原料の再結晶化を防ぎ、原料充填部に装填した炭化珪素原料を有効に昇華させること、すなわち炭化珪素原料の結晶化率〔=(成長した炭化珪素単結晶インゴットの重量)/(装填した炭化珪素原料の重量)〕を高くすることができる。
また、本発明の炭化珪素単結晶インゴットの製造方法によれば、種結晶の結晶成長面に昇華ガスが効率的かつ安定的に供給されるようになり、種結晶の結晶成長面に昇華ガスの供給が変動することに起因する欠陥の発生を抑制することができ、高品質の炭化珪素インゴットを製造することができる。また、本発明の方法で製造された高品質の炭化珪素単結晶インゴットを用いて電子材料用の炭化珪素単結晶基板を製造すれば、炭化珪素原料に対して製造される基板の歩留まりが向上し、炭化珪素単結晶基板のコスト低減を図ることができる。
図1は、本発明の炭化珪素単結晶インゴットの製造方法の実施例1で用いる炭化珪素単結晶インゴットの製造装置全体を示す説明図である。 図2は、本発明の実施例1で用いられた黒鉛坩堝を説明するための拡大説明図である。 図3は、本発明の実施例2で用いられた黒鉛坩堝を説明するための図2と同様の説明図である。 図4は、本発明の実施例3で用いられた黒鉛坩堝を説明するための図2と同様の説明図である。 図5は、本発明の実施例4で用いられた黒鉛坩堝を説明するための図2と同様の説明図である。 図6は、改良レーリー法の原理を説明するための説明図である。
以下、添付図面に示す炭化珪素単結晶インゴットの製造装置を用いて、本発明の炭化珪素単結晶インゴット製造用の黒鉛坩堝、及びこの黒鉛坩堝を用いた本発明の炭化珪素単結晶インゴットの製造方法について、その実施の形態を説明する。
図1は、炭化珪素単結晶インゴットの製造装置の全体を説明するためのものであり、この製造装置において、二重石英管13内には黒鉛製の黒鉛坩堝1(以下、「坩堝」と略す。)とこの坩堝1を取り囲むように覆う黒鉛製の断熱材5とが配設されている。そして、前記坩堝1は、上端開口筒状に形成された黒鉛製の坩堝本体1aとその上端開口部を閉塞する黒鉛製の坩堝上蓋1bとで構成されており、また、前記坩堝本体1a下部には炭化珪素原料(以下、単に「原料」という。)3を充填する原料充填部1cが位置しており、更に、前記坩堝上蓋1bの内面には炭化珪素単結晶からなる種結晶2が取り付けられている。
なお、この図1において、符号6は切欠き孔を示し、符号10は坩堝支持体を示し、符号13は二重石英管を示し、符号14は真空排気装置を示し、符号15はArガス配管を示し、符号16はArガス用マスフローコントローラを示し、符号17は発熱部材として機能する前記坩堝1を発熱させるための高周波誘導加熱用のワークコイルを示し、前記ワークコイル17には高周波電流を流すための図示外の高周波電源が取り付けられている。
また、図1において、符号20は、周縁基部が原料充填部1cの側壁内面に固定されて前記坩堝本体1a下部の原料充填部1c内に位置する本発明の黒鉛製隔壁であり、その略々中央部には隔壁開口部21が形成されている。
この製造装置において、二重石英管13内部は、真空排気装置14により高真空排気(10-3Pa以下)することができ、かつArガス配管15とArガス用マスフローコントローラ16を用いて、内部雰囲気をArガスにより圧力制御することができるようになっている。そして、坩堝1の温度の計測は、坩堝1の上下部を覆う黒鉛製の断熱材5の中央部にそれぞれ光路を設け、坩堝1の上部(坩堝上蓋1b)及び下部〔坩堝本体1a下部の原料充填部1cの底壁部(坩堝底壁部)〕からの光を取り出して、二色温度計を用いて行い、坩堝1下部の温度から原料温度を判断し、また、坩堝1上部の温度から種結晶2の温度を判断する。
ここで、種結晶2上に炭化珪素単結晶の結晶成長させるためには、坩堝1内部の上下方向に温度勾配を形成し、原料充填部1cの温度を高くし、種結晶2の結晶成長部分の温度を相対的に低くして再結晶させる必要がある。つまり、坩堝1の中では原料充填部1cから種結晶2に向かった熱の流れを形成する必要がある。
しかるに、従来の方法(図1において、隔壁20の無い坩堝を用いた方法)では、坩堝1の側壁で高周波誘導により発生した熱を、原料充填部1c内の原料3から種結晶2を経由させて系外へと放出させている。この結果、原料充填部1c内の原料3の外周部の温度が高く、その中心軸近傍に向かって温度が低下し、更に、種結晶2に向かって温度勾配が発生する。
そして、このような黒鉛製の坩堝1を用いた高周波による誘導加熱では、発熱部材である黒鉛製の坩堝1の側壁は加熱され易いが、原料充填部1c内の原料3の中心軸近傍(坩堝本体1a下部の原料充填部1cの中心軸近傍)は加熱され難い。特に原料充填部1c内の原料3の底部は坩堝1の坩堝本体1a下部の原料充填部の底壁部(以下、単に「坩堝底壁部」ということがある。)と接している部分であって、坩堝1の側壁から原料充填部1c内の原料3に投入された熱が流出する部分であるため、坩堝底壁部の中央近傍を高周波誘導加熱により効果的に加熱することは難しい。また、加熱された原料3から発生する昇華ガスは、鉛直上方に上昇し、種結晶2の結晶成長面で再結晶する流れを生じる。すなわち高温に加熱されやすい側壁近傍の高温の昇華ガスは他の原料部分を加熱することなく種結晶2に向かう。
そこで、本発明は、原料充填部1cの外周部の高温に加熱されて発生した高温の昇華ガスを原料充填部1cの中心軸近傍を加熱する熱源として利用すること、すなわち、原料充填部1c内に配置した隔壁開口部21を有する円盤状の隔壁20を用いることで原料充填部1cの外周部の高温の昇華ガスが強制的に原料充填部1cの中心軸近傍を流れるように加熱する方法を用いることであり、種結晶上での結晶成長に必要な温度勾配を維持しつつ、従来は困難であった、坩堝の底面中央部1bの原料3を効率的に昇華させることが特徴である。以下、隔壁20より上の原料充填部1cを原料上室、下の原料充填部1cを原料下室とする。
隔壁20は、その機能から特に材質を規定するものではないが、昇華再結晶法を行うために必要な高温で機能する材料であるのがよく、成長する炭化珪素単結晶の不純物とならない材料の視点から、黒鉛材料であることが好ましい。
隔壁20の上面及び/又は下面は坩堝1の坩堝底壁部に対して平行であっても、また、この坩堝底壁部に対して角度をなしていてもよく、原料3の装填量を多くするためには厚さが薄い方が好ましい。一方で、黒鉛材料を用いて隔壁20を作製する場合には、昇華ガスと黒鉛の反応による隔壁20の浸食が起こるため、隔壁20の厚さは5mm以上であることが好ましい。
隔壁20について、その原料下室に面する側(下面側)の形状は平面形状でも、曲面形状でもよい。この隔壁20の下面側部分は昇華ガスを効果的に原料3の中心軸近傍に誘導するような曲面形状であることが好ましいが、隔壁20の下面側で昇華ガスの滞留が生じると、その部分で昇華ガスが再結晶を起こし、原料3が有効に利用できない場合があるので、隔壁20の下面側の形状についてはこの点を考慮して設計するのがよい。
原料充填部1cを原料上室と原料下室とに仕切る隔壁20の開口部の下面の原料充填部1c内部での高さ位置(以下、単に「隔壁高さ位置」という。)は、原料充填部1cの坩堝底壁部内面からの高さ〔すなわち、原料充填部1c内に装填された初期の炭化珪素原料3の中心軸方向の上面高さ(以下、単に「初期装填原料の上面高さ」という。)〕に対して1/3から2/3の高さに配設することが好ましい。また、このとき原料下室に充填された原料は、原料充填部1cに装填された原料に対する体積比が25%から75%の間であることが好ましい。この隔壁20高さ位置が高く、原料下室の体積比が大きい場合には、原料3内部の比較的低温部である中心軸近傍に高温の昇華ガスの流れを誘導する効果が小さくなる虞があり、反対に、隔壁20高さ位置が低く、原料下室の体積比が小さい場合には、原料3内部の比較的低温部である中心軸近傍に高温の昇華ガスの流れを誘導する効果は得易いが、高温の昇華ガスの供給源となる原料下室に装填される原料3の総量が少なくなるために、中心軸近傍の原料3を十分に加熱するだけの昇華ガスが得られ難くなる虞がある。
隔壁20の隔壁開口部21については、その開口面積が、好ましくは原料充填部内に装填された初期の炭化珪素原料の上面の面積(以下、単に「初期装填原料上面の面積」ということがある。)の0.1倍以上0.5倍以下、より好ましくは0.15倍以上0.4倍以下であることが好ましい。この隔壁開口部の開口面積が初期装填原料上面の面積の0.1倍より小さい場合には、原料充填部1cの中心軸近傍の原料3を加熱する効果は高くなるが、種結晶2に向かう供給口が狭くなり安定した昇華ガスの供給が得られ難くなる虞があり、反対に、0.5倍より大きくなると、供給口は大きく、安定した昇華ガスの供給は可能であるが、原料充填部1cの中心軸近傍の原料3を加熱する効果が得られ難くなる虞がある。
本発明の製造方法により成長高さが40mm以上200mm以下の炭化珪素単結晶インゴットを製造した場合には、坩堝1内に装填した炭化珪素原料3を有効に利用することができ、また、結晶成長中の結晶成長速度の変動が小さくなって高品質の炭化珪素単結晶を得ることができる。このため、電子材料用の炭化珪素単結晶を効率良く作製することが可能になり、炭化珪素単結晶インゴットをより安価に製造することができる。
〔実施例1〕
実施例1においては、図1に示す製造装置において、図2に示す黒鉛坩堝を用いた。この坩堝の坩堝本体下部の原料充填部内には、隔壁高さ位置が初期装填原料の上面高さの1/2の位置であり、上下面が坩堝底壁部と平行であって、その隔壁開口部の開口面積が原料充填部内に装填された初期装填原料上面の面積の0.35倍である円盤状の黒鉛製隔壁を配設した。
また、坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を2.3kg装填し、また、坩堝の坩堝上蓋には、種結晶として、口径105mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
このようにして準備された坩堝等からなる構成部材を前述のように二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を140時間継続して炭化珪素単結晶を成長させた。
その結果、成長速度は約0.4mm/時であって、炭化珪素単結晶の口径が105mm程度であり、かつ、高さが55mm程度の単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸近傍においても原料が効率良く昇華したことが認められ、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は1.5kg程度であり、結晶化率は68%であった。
更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
〔実施例2〕
実施例2においては、実施例1の図2に示す黒鉛坩堝に代えて、図3に示す黒鉛坩堝を用いた製造装置において、周縁基部が坩堝底壁部から初期装填原料の上面高さの1/3の位置に固定され、また、隔壁開口部側が周縁基部側より少し高くなって全体が坩堝底壁部と角度を有して固定され、上面側が平面状で下面側が凹状を有し、原料下室の昇華ガスの流れが原料中心軸近傍に誘導される形状を持つ円盤状の隔壁を配設した。また、隔壁開口部の開口面積は初期装填原料上面の面積の0.15倍とした。
また、坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を4.6kg装填し、また、坩堝の坩堝上蓋には、種結晶として、口径155mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
このようにして準備された坩堝等からなる構成部材を前述のように二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を140時間継続して炭化珪素単結晶を成長させた。
その結果、成長速度は約0.4mm/時であって、炭化珪素単結晶の口径が155mm程度であり、かつ、高さが55mm程度の単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸近傍においても原料が効率良く昇華したことが認められ、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は3.3kg程度であり、結晶化率は72%であった。
更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
〔実施例3〕
実施例3においては、実施例1の図2に示す黒鉛坩堝に代えて、図4に示す黒鉛坩堝を用いた製造装置において、周縁基部が坩堝底壁部から初期装填原料の上面高さの2/3の位置に固定され、また、隔壁開口部側が周縁基部上面より少し低くなって上面が坩堝底壁部と角度を有して固定され、上面側が平面状で下面側が凹状を有し、原料下室の昇華ガスの流れが原料中心軸近傍に誘導される形状を持つ円盤状の隔壁を配設した。また、隔壁開口部の開口面積は初期装填原料上面の面積の0.4倍とした。
また、坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を8.3kg装填し、また、坩堝の坩堝上蓋には、種結晶として、口径155mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
このようにして準備された坩堝等からなる構成部材を前述のように二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を150時間継続して炭化珪素単結晶を成長させた。
その結果、成長速度は約0.4mm/時であって、炭化珪素単結晶の口径が155mm程度であり、かつ、高さが60mm程度の単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸近傍においても原料が効率良く昇華したことが認められ、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は3.7kg程度であり、結晶化率は80%であった。
更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
〔実施例4〕
実施例4においては、実施例1の図2に示す黒鉛坩堝に代えて、図5に示す黒鉛坩堝を用いた製造装置において、周縁基部が坩堝底壁部から初期装填原料の上面高さの1/2の位置に固定され、また、隔壁開口部側が周縁基部側より少し低くなって上面及び下面共に坩堝底壁部と角度を有して固定され、上面及び下面共に平面状の円板状であり、原料下室の昇華ガスの流れが原料中心軸近傍に誘導されるように隔壁を配設した。また、隔壁開口部の開口面積は初期装填原料上面の面積の0.3倍とした。
また、坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を3.0kg装填し、また、坩堝の坩堝上蓋には、種結晶として、口径105mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
このようにして準備された坩堝等からなる構成部材を前述のように二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、炭化珪素単結晶の成長を開始させ、加熱を170時間継続して炭化珪素単結晶を成長させた。
その結果、成長速度は約0.3mm/時であって、炭化珪素単結晶の口径が105mm程度であり、かつ、高さが50mm程度の単結晶インゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸近傍においても原料が効率良く昇華したことが認められ、高周波誘導加熱の際に原料に対する加熱温度を効果的に変化させることができ、結果として中心軸近傍の原料も効率良く加熱することができた。また、得られた単結晶インゴットの重量は1.4kg程度であり、結晶化率は47%であった。
この実施例4の場合においても本発明の効果は得られるが、隔壁の周縁基部下面側に、原料下室の原料が再結晶していることが観察され、実施例1に比較して結晶化率が低いことが分かった。すなわち、原料を最大限に有効活用するためには、原料下室の周縁基部で昇華ガスの滞留が発生し難い構造であることが好ましい。
更に、得られた炭化珪素単結晶インゴットについて、X線回折及びラマン散乱により分析したところ、4Hの単一ポリタイプからなるインゴットであり、また、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。
このインゴットから切り出された炭化珪素単結晶基板は、電子デバイスを作製するための基板として有用である。
〔比較例1〕
実施例3と比較するために、隔壁20を配置せずに、実施例3と同じ操業条件にて結晶成長を実行した。
その結果、結晶の口径が155mm程度であり、かつ、高さが20mm程度のインゴットが得られた。坩堝内の原料の残渣を観察したところ、原料の中心軸で原料の再結晶が観察された。中心軸近傍の原料が有効に加熱されないため、原料の周辺部で昇華した原料ガスが結晶成長に利用されずに、原料の中心軸近傍で再結晶したものと考えられる。この原料の中心軸近傍での昇華ガスの再結晶のため、結晶成長の途中で原料ガスの供給が途絶え、成長した結晶の成長面が昇華し、成長面が炭化した。そのため、インゴットの結晶化率は15%と低い値であった。
得られた炭化珪素単結晶インゴットはインゴット高さが低いため、電子デバイスを作製するための基板切り出す際の歩留まりが低くなるという問題があった。また、装填した原料に対してインゴットの重量が小さく、原料を有効に利用できないという問題があった。
1…坩堝、1a…坩堝本体、1b…坩堝上蓋、1c…原料充填部、2…種結晶、3…炭化珪素原料(原料)、4…単結晶インゴット、5…断熱材、6…切欠き孔、10…坩堝支持体、13…二重石英管、14…真空排気装置、15…Arガス配管、16…Arガス用マスフローコントローラ、17…ワークコイル、20…隔壁、21…隔壁開口部。

Claims (3)

  1. 上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する黒鉛製の坩堝上蓋とを備え、また、前記坩堝本体下部には炭化珪素原料を充填する原料充填部を有し、前記原料充填部内に装填された炭化珪素原料を加熱して昇華させ、生成した昇華ガスを前記坩堝上蓋の内面に設置された炭化珪素単結晶からなる種結晶の表面で再結晶化させる昇華再結晶法により炭化珪素単結晶を製造するための黒鉛坩堝において、
    前記坩堝本体下部の原料充填部内には、周縁基部が原料充填部の側壁内面に固定され、略々中央部に隔壁開口部を有する円盤状の黒鉛製隔壁が設けられており、
    前記隔壁の開口部の下面の前記原料充填部内部での高さ位置は、前記原料充填部の坩堝底壁部内面からの高さに対して1/3から2/3の高さであることを特徴とする炭化珪素単結晶インゴット製造用の黒鉛坩堝。
  2. 前記黒鉛製隔壁の隔壁開口部の開口面積が、前記原料充填部内に装填された初期の炭化珪素原料の上面の面積の0.1倍以上0.5倍以下であることを特徴とする請求項1に記載の炭化珪素単結晶インゴット製造用の黒鉛坩堝。
  3. 上端開口筒状に形成された黒鉛製の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを備え、また、前記坩堝本体下部には炭化珪素原料を充填する原料充填部を有する黒鉛坩堝を用い、この黒鉛坩堝の坩堝本体下部の原料充填部内に炭化珪素原料を装填し、前記坩堝上蓋の内面には炭化珪素単結晶からなる種結晶を設置し、前記坩堝本体の側面を高周波誘導加熱して昇華ガスを発生させ、この発生した昇華ガスを前記種結晶上に再結晶させて炭化珪素単結晶を製造する方法において、
    前記坩堝本体下部の原料充填部には周縁基部が坩堝本体内壁面に固定され、かつ、略々中央部に隔壁開口部を有する円盤状の黒鉛製隔壁を設け、この黒鉛製隔壁により隔壁下方で発生する昇華ガスを原料充填部の中心軸へと向う方向に案内し、この原料充填部内の中心軸周辺に位置する炭化珪素原料を昇華温度まで加熱することを特徴とする炭化珪素単結晶インゴットの製造方法。
JP2015193113A 2015-09-30 2015-09-30 炭化珪素単結晶インゴット製造用の黒鉛坩堝及び炭化珪素単結晶インゴットの製造方法 Active JP6681687B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193113A JP6681687B2 (ja) 2015-09-30 2015-09-30 炭化珪素単結晶インゴット製造用の黒鉛坩堝及び炭化珪素単結晶インゴットの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193113A JP6681687B2 (ja) 2015-09-30 2015-09-30 炭化珪素単結晶インゴット製造用の黒鉛坩堝及び炭化珪素単結晶インゴットの製造方法

Publications (2)

Publication Number Publication Date
JP2017065969A JP2017065969A (ja) 2017-04-06
JP6681687B2 true JP6681687B2 (ja) 2020-04-15

Family

ID=58493848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193113A Active JP6681687B2 (ja) 2015-09-30 2015-09-30 炭化珪素単結晶インゴット製造用の黒鉛坩堝及び炭化珪素単結晶インゴットの製造方法

Country Status (1)

Country Link
JP (1) JP6681687B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925208B2 (ja) * 2017-09-08 2021-08-25 昭和電工株式会社 炭化珪素単結晶の製造方法
US11856678B2 (en) * 2019-10-29 2023-12-26 Senic Inc. Method of measuring a graphite article, apparatus for a measurement, and ingot growing system
JP7400450B2 (ja) * 2019-12-25 2023-12-19 株式会社レゾナック SiC単結晶製造装置およびSiC単結晶の製造方法
CN115679449B (zh) * 2022-12-30 2023-04-07 浙江晶越半导体有限公司 一种用于升华法生长碳化硅晶体的复合型坩埚

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220964A (ja) * 2012-04-13 2013-10-28 Bridgestone Corp 炭化珪素単結晶の製造装置
JP5828810B2 (ja) * 2012-07-18 2015-12-09 新日鐵住金株式会社 溶液成長法に用いられるSiC単結晶の製造装置、当該製造装置に用いられる坩堝及び当該製造装置を用いたSiC単結晶の製造方法

Also Published As

Publication number Publication date
JP2017065969A (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6338439B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP5402798B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP6111873B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP5560862B2 (ja) 炭化珪素単結晶インゴットの製造装置
JP6861555B2 (ja) 炭化珪素単結晶インゴットの製造装置及び製造方法
JP4388538B2 (ja) 炭化珪素単結晶製造装置
JP6681687B2 (ja) 炭化珪素単結晶インゴット製造用の黒鉛坩堝及び炭化珪素単結晶インゴットの製造方法
US20120304916A1 (en) Method of producing silicon carbide single crystal
US10443149B2 (en) Method of producing crystal
JP5482643B2 (ja) 炭化珪素単結晶インゴットの製造装置
US20160002820A1 (en) Crucible and method for producing single crystal
JP6015397B2 (ja) 炭化珪素単結晶の製造方法及びその製造装置
JP6628640B2 (ja) 炭化珪素単結晶インゴットの製造装置及び製造方法
JP6910168B2 (ja) 炭化珪素単結晶インゴットの製造装置及び製造方法
JP4833780B2 (ja) 蓋付き黒鉛坩堝及び炭化珪素単結晶成長装置
JP5375783B2 (ja) 炭化珪素単結晶の製造方法
JP4505202B2 (ja) 炭化珪素単結晶の製造方法および製造装置
JP6501494B2 (ja) 炭化珪素単結晶インゴットの製造方法及び製造装置
JP2006096578A (ja) 炭化珪素単結晶の製造方法及び炭化珪素単結晶インゴット
JP6190070B2 (ja) 結晶の製造方法
JP2011116600A (ja) 単結晶製造装置及び単結晶製造方法
KR20170073834A (ko) 탄화규소(SiC) 단결정 성장 장치
KR101629445B1 (ko) 대구경 단결정 성장장치
JP5376477B2 (ja) 単結晶炭化ケイ素基板
JP2019156708A (ja) 炭化珪素単結晶の製造方法及び製造装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200324

R150 Certificate of patent or registration of utility model

Ref document number: 6681687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350