JP6681476B2 - 電力変換装置および電力変換装置の制御方法 - Google Patents

電力変換装置および電力変換装置の制御方法 Download PDF

Info

Publication number
JP6681476B2
JP6681476B2 JP2018543526A JP2018543526A JP6681476B2 JP 6681476 B2 JP6681476 B2 JP 6681476B2 JP 2018543526 A JP2018543526 A JP 2018543526A JP 2018543526 A JP2018543526 A JP 2018543526A JP 6681476 B2 JP6681476 B2 JP 6681476B2
Authority
JP
Japan
Prior art keywords
power
phase
output
cells
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018543526A
Other languages
English (en)
Other versions
JPWO2018066087A1 (ja
Inventor
充弘 門田
充弘 門田
叶田 玲彦
玲彦 叶田
泰明 乗松
泰明 乗松
尊衛 嶋田
尊衛 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2018066087A1 publication Critical patent/JPWO2018066087A1/ja
Application granted granted Critical
Publication of JP6681476B2 publication Critical patent/JP6681476B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

本発明は、電力変換装置および電力変換装置の制御方法に関する。
高電圧または大容量の電力変換においては、複数の電力変換セル(以下、単にセルと略す)を直列または並列に接続した電力変換装置が用いられる。例えば、高電圧モータの駆動には、複数のインバータ(電力変換器の一種)の出力端子を直列に接続し、各インバータの出力電圧を合成して高電圧を出力する方式(多重インバータ方式等と呼ばれる)が利用されている。また、太陽光発電や風力発電といった自然エネルギー発電の導入が世界的に拡大している。自然エネルギーから得られる電力を変換して電力系統に出力するための電力変換装置として、PCS(パワーコンディショニングシステム)が知られている。このPCSにおいても、高電圧化や大容量化に対応する際には、上記のように複数のセルを用いる構成が有効と考えられる。
その一例として、下記特許文献1には、「本発明による太陽光電力変換装置(10)は、光を受信して直流電源を生成する少なくとも一つの太陽光アレイ(11、12)と、生成された直流電源の大きさを変換するコンバータ(20)と、コンバータの直流を受信して複数レベルを有する交流電力を出力し、複数のマルチレベルインバータを含むマルチレベルインバータ部(30)と、マルチレベルインバータ部と系統を絶縁する交流フィルタ(40)と、コンバータ及びマルチレベルインバータ部に制御信号を印加する制御部(60)と、を含む。」と記載されている(要約書参照)。下記特許文献1には、2台のマルチレベルインバータの出力を直列に接続する構成が記載されている。直列接続によって合成された出力は、フィルタと変圧器を介して電力系統に接続される。なお、各々のマルチレベルインバータの入力部は、コンバータを介して個別の太陽光アレイに接続される。
特開2012−257451号公報
大容量の発電システムにおいて、PCSの出力は三相交流の電力系統に接続されることが多い。そこで、上記のように複数のセルを備えたPCSを3台利用し、PCSの出力を三相結線することで、三相交流電力を出力することが考えられる。しかし、かかる構成では、一部の相のPCSの発電能力が低下することがある。例えば、太陽光発電システムにおいては、一部の太陽電池のみに影がかかり、影がかかった太陽電池の発電量が減少する状況が考えられる。一般的に、三相交流の電力系統には平衡な電力を供給することが要請されるため、一部の相のPCSの発電能力が低下すると、これに合せて、他相のPCSの出力電力も減少せざるを得ず、発電システムを効率的に運転できなくなるという問題があった。
この発明は上述した事情に鑑みてなされたものであり、高効率で運転できる電力変換装置および電力変換装置の制御方法を提供することを目的とする。
上記課題を解決するため本発明の電力変換装置は、各々が入力された電力を第1,第2および第3の方形波パルスに変換して出力するとともに、第1の電源に対して入力端子が並列に接続された、3台の第1の電力変換セルと、各々が入力された電力を第4,第5および第6の方形波パルスに変換して出力するとともに、第2の電源に対して、入力端子が並列に接続された、3台の第2の電力変換セルと、前記第1ないし第6の方形波パルスのパルス幅をローテーションパターンに従って循環的に変更し、前記第1の電源の発電量が通常の発電量よりも低下すると、前記第1の電源の出力電力を減少させるように前記ローテーションパターンを変更し、前記第2の電源の発電量が通常の発電量よりも低下すると、前記第2の電源の出力電力を減少させるように前記ローテーションパターンを変更する制御装置と、を有し、前記第1の電力変換セルの一部が出力する電力と、前記第2の電力変換セルの一部が出力する電力とを合成して、第1相の電力を出力し、前記第1の電力変換セルの他の一部が出力する電力と、前記第2の電力変換セルの他の一部が出力する電力とを合成して、第2相の電力を出力し、残りの前記第1の電力変換セルが出力する電力と、残りの前記第2の電力変換セルが出力する電力とを合成して、第3相の電力を出力し、前記第1相、前記第2相および前記第3相の電力を、三相システムの相電力または線間電力として出力することを特徴とする。
本発明によれば、高効率で運転できる電力変換装置および電力変換装置の制御方法を実現できる。
本発明の第1実施形態による太陽光発電システムのブロック図である。 第1実施形態における相変換器の詳細ブロック図である。 第1実施形態におけるセルの回路図である。 第1実施形態におけるセルの出力電圧波形と、相変換器の出力電圧波形とを示す図である。 第1実施形態における各相変換器の出力電圧波形を示す図である。 第2実施形態におけるセルの出力電圧波形と、相変換器の出力電圧波形とを示す図である。 第3実施形態による太陽光発電システムのブロック図である。 第4実施形態による太陽光発電システムのブロック図である。 第5実施形態による太陽光発電システムのブロック図である。 双方向に電力変換可能なセルの回路図である。 第5実施形態の小充電モードにおけるセルの出力電圧波形と、相変換器の出力電圧波形とを示す図である。 第5実施形態の大充電モードにおけるセルの出力電圧波形と、相変換器の出力電圧波形とを示す図である。
[第1実施形態]
〈第1実施形態の構成〉
第1実施形態では、電力変換装置を応用して太陽光発電システムを構成する。
図1は、本発明の第1実施形態による太陽光発電システムS1のブロック図である。
太陽光発電システムS1は、電力変換装置100と、電力変換装置100を制御する制御装置400と、電源として4台の太陽電池201,202,203,204と、を有している。
電力変換装置100は、太陽電池201〜204から入力される電力を変換し、三相電力系統300に三相交流電力を出力する。なお、電力変換装置100と三相電力系統300の間に、図示せぬフィルタや、変圧器等を接続してもよい。
太陽電池201は、一枚の太陽電池パネルであってもよく、複数の太陽電池パネルを直列および並列に接続したものであってもよい。太陽電池202〜204も同様である。
また、各太陽電池201〜204と電力変換装置100との間に、図示せぬ逆流防止用ダイオードやヒューズ等の保護部品、および/または、チョッパ回路等のコンバータを直列に挿入してもよい。
電力変換装置100は、三相交流における各相の出力電力を生成する相変換器110,120,130を備える。相変換器110,120,130は、それぞれU相出力電圧VUS,V相出力電圧VVS,W相出力電圧VWSを生成する。相変換器110,120,130は、それぞれ一対の出力端子を有している。これら出力端子のうち一方は、三相出力端子170として、三相電力系統300に接続されている。一方、他方の出力端子は、相互に接続され、中性点Nを構成する。
相変換器110,120,130の各々は、出力端子が直列に接続された複数の電力変換セル(以下、セルという)を備えている。すなわち、相変換器110は4台のセル111,112,113,114を備え、これらセル111〜114の出力端子は直列に接続されている。これらセル111,112,113,114の出力電圧をVU1,VU2,VU3,VU4とする。同様に、相変換器120は、直列接続された4台のセル121,122,123,124を有し、これらの出力電圧をVV1,VV2,VV3,VV4とする。同様に、相変換器130は、直列接続された4台のセル131,132,133,134を有し、これらの出力電圧をVW1,VW2,VW3,VW4とする。
U相出力電圧VUSは、出力電圧VU1,VU2,VU3,VU4を合成した電圧であり、V相出力電圧VVSは、出力電圧VV1,VV2,VV3,VV4を合成した電圧であり、W相出力電圧VWSは、出力電圧VW1,VW2,VW3,VW4を合成した電圧である。なお、図1では、各相変換器110,120,130が4台のセルを備える構成を示したが、セルの台数については任意に設定するとよい。
太陽電池201は、相変換器110が備えるセル111、相変換器120が備えるセル121、および相変換器130が備えるセル131の各入力端子に対して並列に接続される。同様に、太陽電池202はセル112,122,132の入力端子に対して並列に接続され、太陽電池203はセル113,123,133の入力端子に対して並列に接続され、太陽電池204はセル114,124,134の入力端子に対して並列に接続されている。
このように、太陽電池201〜204の各々は、全ての相変換器110,120,130内の何れかのセルと接続される。換言すれば、太陽電池201〜204の中には、特定の相変換器内のセルのみに接続されるものは存在しない。
電力変換装置100は、以上に示した構成の他に、保護用部品(リレー、ヒューズ、アレスタ等)やフィルタ用部品(リアクトル、コンデンサ)等の要素を備えてもよい。
制御装置400は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、CPUによって実行される制御プログラムや、各種データ等が格納されている。以下説明する制御装置400の各種機能は、これら制御プログラム等によって実現される。
電力変換装置100が出力する各相の出力電圧VUS,VVS,VWSを制御する際には、各相変換器110,120,130が備えるセル111〜134を協調制御することが好ましい。そこで、制御装置400は、かかる協調制御を実行する。また、太陽光発電用のPSCでは、三相電力系統300に出力する電流を制御することが一般的である。そこで、制御装置400は、電力変換装置100の出力電流を検出し、これを所望の値に制御するようにフィードバック制御演算を行う。この演算の結果として、各相の出力電圧VUS,VVS,VWSの目標値が得られる。
図2は、相変換器110の詳細ブロック図である。
図示のように、相変換器110は、電流検出器410を有している。
電流検出器410は、相変換器110のU相出力電流を検出し、その結果を制御装置400に供給する。制御装置400は、このU相出力電流の検出結果に基づいて、上述したフィードバック制御演算を行う。また、制御装置400は、セル111〜114の出力電圧VU1〜VU4、ひいては相変換器110のU相出力電圧VUSを制御するために、相変換器110が備えるセル111〜114に対して制御信号Scを出力する。また、セル111〜114から制御装置400に対して、各セルの電圧、電流、温度等の物理量と、異常有無等の状態とを表す検出信号Sdが出力される。
但し、図2では図面の煩雑化を防ぐため、制御装置400とセル111の間で入出力される信号のみを示した。実際には、制御装置400とセル112〜114の間でも同様に信号の入出力がなされる。また、図2において1本の矢印として表現した信号は、複数の情報を含んでいてもよい。
また、制御装置400の全ての要素が、1枚の基板上に実装される必要はない。各セル111〜114の構成要素が実装される基板上に、制御装置400の一部要素を実装してもよい。
以上、相変換器110について詳述したが、相変換器120,130(図1参照)も、電流検出器410と同様の電流検出器(図示せず)を有している。また、制御装置400は、相変換器110と同様に相変換器120,130を制御する。
図3は、セル111の回路図の一例である。
セル111は、コンバータ11とインバータ12とを有している。コンバータ11は、セル111に入力される直流電圧を変換して直流リンク電圧Vdc1を生成する。セル112〜114(図2参照)も同様にコンバータを備え、直流リンク電圧Vdc2〜Vdc4(図示せず)をそれぞれ生成する。
図3では、コンバータ11の具体的な回路方式として、絶縁型DC−DCコンバータの一種である共振型コンバータを適用した例を示す。共振型コンバータは、小型・高効率化に適した絶縁型DC−DCコンバータであり、産業から民生まで幅広い分野で利用されている。共振型コンバータ自体は周知であるため、詳細については省略するが、コンバータ11は、インバータ20と、トランス22と、整流回路24とを備えている。
インバータ20は、4個のスイッチング素子(図3の例ではMOSFET)を有し、そのオン・オフ動作によって、交流電圧を発生させる。発生した交流電圧は、トランス22と整流回路24とを介して直流リンク電圧Vdc1に変換される。制御装置400は、直流リンク電圧Vdc1が所定値になるように、インバータ20等を制御する。コンデンサ21,27は、コンバータ11の入出力端子における電圧変動を抑制する。なお、直流リンク電圧を生成できるのであれば、コンバータの具体的な回路方式については、他の方式のものを採用してもよい。
インバータ12は、直流リンク電圧Vdc1を変換してセル111の出力電圧VU1を生成する。セル112〜114(図2参照)も同様にインバータを備え、図示せぬ直流リンク電圧Vdc2〜Vdc4を変換して出力電圧VU2〜VU4をそれぞれ生成する。図3では、インバータ12の具体的な回路方式として、Hブリッジ方式の単相インバータを採用した例を示した。
Hブリッジ方式の単相インバータも周知であるため、詳細については省略するが、インバータ12は、4個のスイッチング素子(図3の例ではMOSFET)のオン・オフ動作によって、出力電圧VU1(の瞬時値)を、+Vdc1、0、または−Vdc1のうち何れかに制御する。すなわち、インバータ12は、直流リンク電圧Vdc1をそのまま出力するか、または、出力電圧を略ゼロにするか、または、直流リンク電圧Vdc1の極性を反転させて出力する。なお、インバータの具体的な回路方式については、他の方式のものを採用してもよい。
図3において、コンバータ11は、直流リンク電圧Vdc1を検出するための電圧検出器28を備える。電圧検出器28によって検出された直流リンク電圧Vdc1の値は、制御装置400に出力される。直流リンク電圧Vdc1の検出値は、図2において説明した検出信号Sdに含まれる。制御装置400は、直流リンク電圧Vdc1の検出値に基づいて、該直流リンク電圧Vdc1が所定の目標値に近づくようにフィードバック制御する。
なお、コンバータ11は、電圧検出器28の他に、電流や温度の検出器を備えていてもよい。また、インバータ12についても同様に、電圧、電流、温度の検出器を備えていてもよい。また、セル111は、以上に示した構成の他に、保護用部品(リレー、ヒューズ、アレスタ等)やフィルタ用部品(リアクトル、コンデンサ)等の要素を備えてもよい。また、相変換器120,130が備える各セルについても、同様の構成を適用できる。
以上、セル111の構成について説明したが、他のセル112〜134も、セル111と同様に構成されている。本実施形態によれば、各セルの入出力間が電気的に絶縁されているため、上述したように、太陽電池を複数の相変換器に対して並列に接続することが可能になる。また、図1において、各太陽電池201〜204の負極側を接地するようにしてもよい。
〈第1実施形態の動作〉
次に、本実施形態の動作を説明する。
図4は、本実施形態におけるセル111〜114の出力電圧VU1〜VU4の波形と、相変換器110のU相出力電圧VUSの波形とを示す図である。
図4では、電力変換装置100が出力する交流電圧の2周期分の波形を示した。該交流電圧の周期をTACとする。図4のU相出力電圧VUSの波形と重ねて示した破線の正弦波は、U相出力電圧VUSに含まれる基本波成分である。この基本波成分が、U相出力電圧VUSの目標値と考えてもよい。
上述のように、セル111は、出力電圧VU1の瞬時値として、+Vdc1、0、または−Vdc1の何れかの電圧を出力できる。そこで、制御装置400は、セル111に対して、図4に示すように、振幅がVdc1、パルス幅がT1であり、半周期TAC/2毎に正負の極性が入れ替わる出力電圧VU1を出力させる。
また、同様に、制御装置400は、セル112(図2参照)に対して、振幅がVdc2、パルス幅がT2であり、半周期TAC/2毎に正負の極性が入れ替わる出力電圧VU2を出力させる。また、同様に、制御装置400は、セル113(図2参照)に対して、振幅がVdc3、パルス幅がT3であり、半周期TAC/2毎に正負の極性が入れ替わる出力電圧VU3を出力させる。また、同様に、制御装置400は、セル114(図2参照)に対して、振幅がVdc4、パルス幅がT4であり、半周期TAC/2毎に正負の極性が入れ替わる出力電圧VU4を出力させる。
なお、図4に示したパルス幅T1〜T4および直流リンク電圧Vdc1〜Vdc4は一定値であってもよく、微調整できるようにしてもよい。U相出力電圧VUSは、出力電圧VU1〜VU4を合成した電圧であるため、図4に示すように、U相出力電圧VUSは正弦波に近似した波形を有する。ここで、各太陽電池201,202,203,204の発電量Pm1,Pm2,Pm3,Pm4は、「Pm1>Pm2>Pm3>Pm4」の関係を有しているとする。そこで、パルス幅T1〜T4には、「T1>T2>T3>T4」の関係を付与している。
ここで、各セル111〜114の直流リンク電圧Vdc1〜Vdc4はほぼ等しく、かつ、相変換器110の出力の力率はほぼ1であるとする。この場合、セル111〜114の出力電力をP111,P112,P113,P114とすると、これらの値は、「P111>P112>P113>P114」の関係を有する。このように、互いに接続される太陽電池とセルの間で、電力の大小関係が一致する。なお、Vdc1〜Vdc4、及び、T1〜T4を制御することで、セル111〜114の出力電力を調節可能であり、太陽電池の発電量と対応するセルが出力する電力を一致させることができる。
図5は、各相変換器110,120,130の出力電圧VUS,VVS,VWSの波形を示す。V相出力電圧VVSおよびW相出力電圧VWSは、U相出力電圧VUSに対して各々120°および240°遅れているが、これらの波形の形状は同一であり、出力電圧VUS,VVS,VWSは、三相交流電圧になっていることが解る。
ここで、部分影等の原因によって、太陽電池201の発電量Pm1が低下した場合の動作を検討する。太陽電池201の発電量Pm1が低下すると、太陽電池201に接続されているセル111,121,131の出力電力が減少するため、各相の相変換器110,120,130の出力電力が減少する。しかし、相変換器110,120,130の出力電力の減少量は均等であるため、三相平衡状態が崩れることはない。また、太陽電池202〜204から取り出す電力を減少させる必要はなく、全ての太陽電池からそれぞれ取り出し得る最大の電力量を取り出したとしても、三相平衡状態を維持することができる。
〈第1実施形態の効果〉
以上のように、何れかの電源の出力電力が低下したとしても、他方の電源の出力電力を低下させることなく三相平衡状態を維持することができる。
特に、本実施形態において、第1の電源(201)および第2の電源(202)は、太陽電池であり、部分影等によって出力電力が低下しやすい傾向があるが、かかる場合にも、太陽光発電システムS1を高効率で運転できる。
[第2実施形態]
次に、本発明の第2実施形態による太陽光発電システムについて説明する。
本実施形態のハードウエア構成は、第1実施形態のもの(図1〜図3参照)と同様である。但し、本実施形態においては、太陽電池201〜204の発電量Pm1〜Pm4は、ほぼ等しいこととする。
図6は、本実施形態におけるセル111〜114の出力電圧VU1〜VU4の波形と、相変換器110のU相出力電圧VUSの波形とを示す図である。
図6に示す出力電圧VU1は、半周期毎に、パルス幅をT1、T2、T3、T4の順にローテーションする。すなわちパルス幅を循環的に変更する。セル112〜114の出力電圧VU2,VU3,VU4は、出力電圧VU1に対して半周期、1周期および1.5周期進み位相になるが、出力電圧VU1と同様に、半周期毎に、パルス幅をT1、T2、T3、T4の順にローテーションする。これによって、交流出力の2周期間における各セルの出力電力の平均値は、全てのセルで等しくなる。
図3に示したコンデンサ21,27の静電容量が十分大きければ、太陽電池201〜204からセル111〜114に入力される電力も全て等しくなり、かつ、時間的にほぼ一定になる。
また、本実施形態においては、何らかの理由により、太陽電池201〜204の一部の発電量が低下した状況においても、ローテーションのパターンを工夫することによっても、セル111〜114の出力電力を調節可能であり、太陽電池の発電量と対応するセルが出力する電力を一致させることができる。例えば、セル111,112が通常通りの発電量を維持しており、何らかの理由によりセル113,114の発電量が低下した場合は、セル111,112の出力電圧VU1,VU2に対してパルス幅T1,T2を交互に適用し、セル113,114の出力電圧VU3,VU4に対してパルス幅T3,T4を交互に適用することが考えらえる。
以上のように、本実施形態によれば、第1実施形態と同様に、何れかの電源の出力電力が低下したとしても、他の電源の出力電力を低下させることなく三相平衡状態を維持することができ、太陽光発電システムを高効率で運転できる。
さらに、本実施形態によれば、各太陽電池の発電量が異なる状況においても、また、各太陽電池の発電量がほぼ等しい状況においても、セル111〜114の出力電圧(Vu1〜Vu4)波形パターンによって太陽電池の発電量と対応するセルが出力する電力を一致させることができる。
[第3実施形態]
図7は、本発明の第3実施形態による太陽光発電システムS3のブロック図である。なお、図7において、図1〜図5の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
本実施形態においては、第1実施形態(図1参照)の電力変換装置100に代えて、図7に示す電力変換装置103が適用される。また、本実施形態においては、2台の太陽電池221,222が第1および第2の電源として適用され、これら太陽電池221,222の発電量はほぼ等しい。
太陽電池221は、6個の第1の電力変換セル、すなわち相変換器110内のセル111,112、相変換器120内のセル121,122、および相変換器130内のセル131,132の各入力端子に対して並列に接続されている。
また、太陽電池222は、6個の第2の電力変換セル、すなわち相変換器110内のセル113,114、相変換器120内のセル123,124、および相変換器130内のセル133,134の各入力端子に対して並列に接続されている。
このように、1台の太陽電池に対して、一の相変換器に含まれる複数のセルを並列接続してもよい。セル1台の定格電力が太陽電池1台の発電量より小さい場合、本実施形態の構成は特に有用である。
以上のように、本実施形態によれば、第1,第2実施形態と同様に、何れかの電源の出力電力が低下したとしても、他の電源の出力電力を低下させることなく三相平衡状態を維持することができ、太陽光発電システムを高効率で運転できる。
さらに、本実施形態によれば、第1の電力変換セルのうち第1相に係るもの(111,112)の数と、第2の電力変換セルのうち第1相に係るもの(113,114)の数とは等しく、第1の電力変換セルのうち第2相に係るもの(121,122)の数と、第2の電力変換セルのうち第2相に係るもの(123,124)の数とは等しく、第1の電力変換セルのうち第3相に係るもの(131,132)の数と、第2の電力変換セルのうち第3相に係るもの(133,134)の数とは等しい。
これにより、本実施形態は、各電源(221,222)の発電量がほぼ等しい場合に特に有用である。
[第4実施形態]
図8は、本発明の第4実施形態による太陽光発電システムS4のブロック図である。なお、図8において、図1〜図7の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
本実施形態においては、第1実施形態(図1参照)の電力変換装置100に代えて、図8に示す電力変換装置104が適用される。また、本実施形態においては、2台の太陽電池231,232が第1および第2の電源として適用され、太陽電池232の発電量は、太陽電池231の発電量よりも大きい。
太陽電池231は、3個の第1の電力変換セル、すなわち相変換器110内のセル111、相変換器120内のセル121、および相変換器130内のセル131の各入力端子に対して並列に接続されている。
また、太陽電池232は、9個の第2の電力変換セル、すなわち相変換器110内のセル112,113,114、相変換器120内のセル122,123,124、および相変換器130内のセル132,133,134の各入力端子に対して並列に接続されている。
以上のように、本実施形態によれば、第1〜第3実施形態と同様に、何れかの電源の出力電力が低下したとしても、他の電源の出力電力を低下させることなく三相平衡状態を維持することができ、太陽光発電システムを高効率で運転できる。
さらに、本実施形態によれば、第1の電力変換セルのうち第1相に係るもの(111)の数は、第2の電力変換セルのうち第1相に係るもの(112,113,114)の数よりも少なく、第1の電力変換セルのうち第2相に係るもの(121)の数は、第2の電力変換セルのうち第2相に係るもの(122,123,124)の数よりも少なく、第1の電力変換セルのうち第3相に係るもの(131)の数は、第2の電力変換セルのうち第3相に係るもの(132,133,134)の数よりも少ない
これにより、本実施形態は、第1の電源(231)の発電量が第2の電源(232)の発電量よりも小さい場合に、特に有用である。
[第5実施形態]
〈第5実施形態の構成〉
図9は、本発明の第5実施形態による太陽光発電システムS5のブロック図である。なお、図9において、図1〜図8の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
本実施形態においては、第1実施形態(図1参照)の電力変換装置100に代えて、図9に示す電力変換装置105が適用される。また、本実施形態においては、第1の電源として蓄電池211が適用され、第2の電源として太陽電池202〜204が適用される。
電力変換装置105は、三相交流における各相の出力電力を生成する相変換器140,150,160を備えている。相変換器140,150,160は、それぞれU相出力電圧VUS,V相出力電圧VVS,W相出力電圧VWSを生成する。相変換器140,150,160の各々は、出力端子が直列に接続された複数のセルを有している。すなわち、相変換器140は直列接続された4台のセル141,112〜114を有し、各セルの出力端子は直列に接続される。これらセル141,112〜114の出力電圧をVU1,VU2,VU3,VU4とする。
同様に、相変換器150は、直列接続された4台のセル151,122,123,124を有し、これらの出力電圧をVV1,VV2,VV3,VV4とする。同様に、相変換器160は、直列接続された4台のセル161,132,133,134を有し、これらの出力電圧をVW1,VW2,VW3,VW4とする。U相出力電圧VUSは、出力電圧VU1,VU2,VU3,VU4を合成した電圧であり、V相出力電圧VVSは、出力電圧VV1,VV2,VV3,VV4を合成した電圧であり、W相出力電圧VWSは、出力電圧VW1,VW2,VW3,VW4を合成した電圧である。
蓄電池211は、相変換器140が備えるセル141、相変換器150が備えるセル151、および相変換器160が備えるセル161の各入力端子に対して並列に接続される。ここで、セル141,151,161は、蓄電池211に対する充電方向および放電方向の双方向に電力変換を行うことが可能になっている。また、太陽電池202はセル112,122,132の入力端子に対して並列に接続され、太陽電池203はセル113,123,133の入力端子に対して並列に接続され、太陽電池204はセル114,124,134の入力端子に対して並列に接続されている。
図10は、双方向に電力変換可能なセル141の回路図の一例である。
セル141は、双方向コンバータ14と、インバータ12とを有している。ここで、インバータ12の構成は、第1実施形態のセル111のもの(図3参照)と同様である。また、双方向コンバータ14は、コンバータ11(図3参照)に含まれている整流回路24を、ブリッジ回路26に置換したものである。ここで、ブリッジ回路26は、4個のスイッチング素子(図10の例ではMOSFET)を用いたHブリッジである。
蓄電池211(図9参照)を放電させる場合は、制御装置400は、ブリッジ回路26を整流回路として機能させる。これにより、双方向コンバータ14は第1実施形態のコンバータ11と同様に動作する。また、蓄電池211を充電する場合は、制御装置400は、インバータ20を整流回路として機能させ、ブリッジ回路26をインバータとして機能させる。
〈第5実施形態の動作〉
(蓄電池211の放電モード)
次に、本実施形態の動作を説明する。
本実施形態において、制御装置400は、セル141の動作モード(放電、小充電または大充電モード)を適宜設定することができ、動作モードに応じて、セル141,112〜114を制御する。
まず、蓄電池211を放電させる放電モードにおいては、制御装置400は、セル141,112〜114の出力電圧VU1〜VU4が、第2実施形態のもの(図4参照)と同様になるように制御する。これにより、蓄電池211には電力が充電されることはなく、蓄電池211から出力された電力が変換されつつ三相電力系統300に供給され続ける。
(蓄電池211の小充電モード)
蓄電池211を充電するようにセル141を動作させるモードには、充電量が比較的小さい小充電モードと、充電量が比較的大きい大充電モードとがある。
図11は、小充電モードにおけるセル141,112〜114の出力電圧VU1〜VU4の波形と、相変換器140のU相出力電圧VUSの波形とを示す図である。
図11では、電力変換装置100が出力する交流電圧の1周期分(TAC)の波形を示した。図11においては、U相出力電圧VUSの極性と、セル141の出力電圧VU1の極性とが同一になる期間と、異なる期間が存在する。両者の極性が異なる期間が充電期間になる。例えば、U相出力電圧VUSが正の極性を有し、出力電圧VU1が負の極性を有する期間は充電期間である。
力率がほぼ1の条件であれば、充電期間においてセル141は、電力を回生するように動作する。すなわち、図10に示す双方向コンバータ14が出力側(電力系統側)から入力側(蓄電池側)に電力を伝送することによって、蓄電池211を充電する。このような動作においても、第1実施形態(図4参照)に示したものと同様のU相出力電圧VUSの波形を得るため、図11においては、出力電圧VU2〜VU4のパルス幅T2〜T4は、図4のものより長くしている。このように、制御装置400は、太陽電池202〜204の発電量を利用して、相変換器110に交流電力を出力させつつ、蓄電池211を充電することができる。
(蓄電池211の大充電モード)
図12は、大充電モードにおけるセル141,112〜114の出力電圧VU1〜VU4の波形と、相変換器140のU相出力電圧VUSの波形とを示す図である。
図12の例においては、U相出力電圧VUSのステップ数は3段である。但し、図11の例よりも、直流リンク電圧Vdc2〜Vdc4を高くすると、ステップ数が3段であったとしても、図11の例と同等の振幅のU相出力電圧VUSが得られる。図12の例においては、相変換器140が出力する電圧の極性と、セル141が出力する出力電圧VU1の極性とが一致する期間が存在しない。すなわち、大充電モードにおいては、蓄電池211が放電する期間が存在しないため、小充電モードと比較して、蓄電池211への充電量を大きくすることができる。
〈第5実施形態の効果〉
以上のように、本実施形態の太陽光発電システムS5によれば、第1の電源(211)は蓄電池であり、第2の電源(202)は太陽電池であり、第1の電力変換セル(141,151,161)は、蓄電池に対する充電方向および放電方向の双方向に電力変換が可能である。
これにより、発電量が時々刻々と変動する太陽光発電システムS5においても、蓄電池211を適宜充放電させることにより、安定した発電を継続することができる。
[変形例]
本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、若しくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
(1)上記各実施形態においては、「電源」の一例として太陽電池または蓄電池を適用した例を説明したが、「電源」はこれらに限定されるものではなく、風力発電装置、潮力発電装置、一次電池等、種々のものを適用することができる。また、「電源」は直流電源に限られるものではなく、交流電源であってもよい。
(2)上記各実施形態においては、相変換器110,120,130(または140,150,160)の出力電圧を相電圧として、相変換器を三相電力系統300に接続したが、これら相変換器の出力電圧を線間電圧として、相変換器を三相電力系統300に接続してもよい。また、上記各実施形態においては電力変換装置の出力を三相電力系統に接続したが、それ以外に三相交流電力によって動作する負荷(三相モータなど)に接続してもよい。
(3)上記第2実施形態において、出力電圧VU1〜VU4のローテーションのさせ方は、図4に示したものに限られず、種々の変形が可能である。
例えば、「T1+T4」と、「T2+T3」とが等しい場合、出力電圧VU1,VU2のパルス幅はT1,T4を交互に選択し、出力電圧VU3,VU4のパルス幅はT2,T3を交互に選択してもよい。
また、図4の例では、U相出力電圧VUSの半周期毎にパルス幅T1〜T4を切り替えたが、1/4周期毎に、パルス幅(図4に示すのパルス幅T1〜T4の各1/2の幅)を切り替えてもよい。
(4)上記各実施形態における制御装置400のハードウエアは一般的なコンピュータによって制御装置400の機能を実現するプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。
(5)上記各実施形態では、制御装置400の機能はプログラムを用いたソフトウエア的な処理として実現する旨を説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(field-programmable gate array)等を用いたハードウエア的な処理に置き換えてもよい。
100〜105 電力変換装置
111,121,131 電力変換セル(第1の電力変換セル)
112,122,132 電力変換セル(第2の電力変換セル)
141,151,161 電力変換セル(第1の電力変換セル)
201,231 太陽電池(第1の電源)
202,232 太陽電池(第2の電源)
211 蓄電池(第1の電源)
S1〜S5 太陽光発電システム

Claims (7)

  1. 各々が入力された電力を第1,第2および第3の方形波パルスに変換して出力するとともに、第1の電源に対して入力端子が並列に接続された、3台の第1の電力変換セルと、
    各々が入力された電力を第4,第5および第6の方形波パルスに変換して出力するとともに、第2の電源に対して、入力端子が並列に接続された、3台の第2の電力変換セルと、
    前記第1ないし第6の方形波パルスのパルス幅をローテーションパターンに従って循環的に変更し、前記第1の電源の発電量が通常の発電量よりも低下すると、前記第1の電源の出力電力を減少させるように前記ローテーションパターンを変更し、前記第2の電源の発電量が通常の発電量よりも低下すると、前記第2の電源の出力電力を減少させるように前記ローテーションパターンを変更する制御装置と、
    を有し、
    前記第1の電力変換セルの一部が出力する電力と、前記第2の電力変換セルの一部が出力する電力とを合成して、第1相の電力を出力し、
    前記第1の電力変換セルの他の一部が出力する電力と、前記第2の電力変換セルの他の一部が出力する電力とを合成して、第2相の電力を出力し、
    残りの前記第1の電力変換セルが出力する電力と、残りの前記第2の電力変換セルが出力する電力とを合成して、第3相の電力を出力し、
    前記第1相、前記第2相および前記第3相の電力を、三相システムの相電力または線間電力として出力する
    ことを特徴とする電力変換装置。
  2. 前記第1の電力変換セルのうち前記第1相に係るものの数と、前記第2の電力変換セルのうち前記第1相に係るものの数とは等しく、
    前記第1の電力変換セルのうち前記第2相に係るものの数と、前記第2の電力変換セルのうち前記第2相に係るものの数とは等しく、
    前記第1の電力変換セルのうち前記第3相に係るものの数と、前記第2の電力変換セルのうち前記第3相に係るものの数とは等しい
    ことを特徴とする請求項1に記載の電力変換装置。
  3. 前記第1の電力変換セルのうち前記第1相に係るものの数は、前記第2の電力変換セルのうち前記第1相に係るものの数よりも少なく、
    前記第1の電力変換セルのうち前記第2相に係るものの数は、前記第2の電力変換セルのうち前記第2相に係るものの数よりも少なく、
    前記第1の電力変換セルのうち前記第3相に係るものの数は、前記第2の電力変換セルのうち前記第3相に係るものの数よりも少ない
    ことを特徴とする請求項1に記載の電力変換装置。
  4. 前記第1の電源および前記第2の電源は、太陽電池である
    ことを特徴とする請求項1に記載の電力変換装置。
  5. 前記第1の電源は蓄電池であり、前記第2の電源は太陽電池であり、
    前記第1の電力変換セルは、前記蓄電池に対する充電方向および放電方向の双方向に電力変換が可能である
    ことを特徴とする請求項1に記載の電力変換装置。
  6. 第1の電源と、
    第2の電源と、
    各々が入力された電力を第1,第2および第3の方形波パルスに変換して出力するとともに、前記第1の電源に対して入力端子が並列に接続された、3台の第1の電力変換セルと、
    各々が入力された電力を第4,第5および第6の方形波パルスに変換して出力するとともに、前記第2の電源に対して、入力端子が並列に接続された、3台の第2の電力変換セルと、
    前記第1ないし第6の方形波パルスのパルス幅をローテーションパターンに従って循環的に変更し、前記第1の電源の発電量が通常の発電量よりも低下すると、前記第1の電源の出力電力を減少させるように前記ローテーションパターンを変更し、前記第2の電源の発電量が通常の発電量よりも低下すると、前記第2の電源の出力電力を減少させるように前記ローテーションパターンを変更する制御装置と、
    を有し、
    前記第1の電力変換セルの一部が出力する電力と、前記第2の電力変換セルの一部が出力する電力とを合成して、第1相の電力を出力し、
    前記第1の電力変換セルの他の一部が出力する電力と、前記第2の電力変換セルの他の一部が出力する電力とを合成して、第2相の電力を出力し、
    残りの前記第1の電力変換セルが出力する電力と、残りの前記第2の電力変換セルが出力する電力とを合成して、第3相の電力を出力し、
    前記第1相、前記第2相および前記第3相の電力を、三相システムの相電力または線間電力として出力する
    ことを特徴とする電力変換装置。
  7. 各々が入力された電力を第1,第2および第3の方形波パルスに変換して出力するとともに、第1の電源に対して入力端子が並列に接続された、3台の第1の電力変換セルと、
    各々が入力された電力を第4,第5および第6の方形波パルスに変換して出力するとともに、第2の電源に対して、入力端子が並列に接続された、3台の第2の電力変換セルと、
    を有する電力変換装置の制御方法であって、
    前記第1ないし第6の方形波パルスのパルス幅をローテーションパターンに従って循環的に変更し、
    前記第1の電源の発電量が通常の発電量よりも低下すると、前記第1の電源の出力電力を減少させるように前記ローテーションパターンを変更し、
    前記第2の電源の発電量が通常の発電量よりも低下すると、前記第2の電源の出力電力を減少させるように前記ローテーションパターンを変更し、
    前記第1の電力変換セルの一部が出力する電力と、前記第2の電力変換セルの一部が出力する電力とを合成して、第1相の電力を出力し、
    前記第1の電力変換セルの他の一部が出力する電力と、前記第2の電力変換セルの他の一部が出力する電力とを合成して、第2相の電力を出力し、
    残りの前記第1の電力変換セルが出力する電力と、残りの前記第2の電力変換セルが出力する電力とを合成して、第3相の電力を出力し、
    前記第1相、前記第2相および前記第3相の電力を、三相システムの相電力または線間電力として出力する
    ことを特徴とする電力変換装置の制御方法。
JP2018543526A 2016-10-05 2016-10-05 電力変換装置および電力変換装置の制御方法 Expired - Fee Related JP6681476B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079601 WO2018066087A1 (ja) 2016-10-05 2016-10-05 電力変換装置および電力変換装置の制御方法

Publications (2)

Publication Number Publication Date
JPWO2018066087A1 JPWO2018066087A1 (ja) 2019-06-24
JP6681476B2 true JP6681476B2 (ja) 2020-04-15

Family

ID=61831766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018543526A Expired - Fee Related JP6681476B2 (ja) 2016-10-05 2016-10-05 電力変換装置および電力変換装置の制御方法

Country Status (3)

Country Link
US (1) US10862311B2 (ja)
JP (1) JP6681476B2 (ja)
WO (1) WO2018066087A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329573B2 (en) * 2017-08-04 2022-05-10 Panasonic Intellectual Property Management Co., Ltd. Power converter and power conversion system
EP3793078A4 (en) * 2018-05-10 2022-01-19 Kabushiki Kaisha Toshiba DC CONVERSION SYSTEM
KR102266322B1 (ko) * 2019-07-05 2021-06-16 숭실대학교산학협력단 멀티 레벨 컨버터
KR102403092B1 (ko) * 2020-06-12 2022-05-27 숭실대학교 산학협력단 3상 캐스케이드 멀티레벨 계통 연계형 에너지 저장 시스템 제어장치
WO2022059218A1 (ja) * 2020-09-18 2022-03-24 日本電産株式会社 モータ駆動回路およびモータモジュール
CN115133567A (zh) * 2021-03-27 2022-09-30 华为数字能源技术有限公司 光伏系统和光伏系统的漏电流控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896044B2 (ja) 2008-01-07 2012-03-14 三菱電機株式会社 電力変換装置
US20090283129A1 (en) * 2008-05-14 2009-11-19 National Semiconductor Corporation System and method for an array of intelligent inverters
JP2012186907A (ja) 2011-03-04 2012-09-27 Yanmar Co Ltd 電動作業機
EP2715922A2 (en) * 2011-06-01 2014-04-09 FH Joanneum GmbH Inverter
KR101906895B1 (ko) 2011-06-08 2018-10-11 엘에스산전 주식회사 태양광 전력 변환 장치
JP6206502B2 (ja) 2013-10-17 2017-10-04 日産自動車株式会社 電力変換装置及び電力変換方法
US9748767B2 (en) * 2014-04-25 2017-08-29 General Electric Company System and method for hybrid energy conversion

Also Published As

Publication number Publication date
US20190199100A1 (en) 2019-06-27
WO2018066087A1 (ja) 2018-04-12
JPWO2018066087A1 (ja) 2019-06-24
US10862311B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
JP6681476B2 (ja) 電力変換装置および電力変換装置の制御方法
US20210067057A1 (en) Voltage level multiplier module for multilevel power converters
US8508957B2 (en) Power conversion device for converting DC power to AC power
US9923484B2 (en) Method and system for operating a multilevel electric power inverter
JP5226873B2 (ja) 太陽光発電用パワーコンディショナ
US8994216B2 (en) Power conversion apparatus
EP2357721B1 (en) Power conversion device
US20140062198A1 (en) Solar photovoltaic three-phase micro-inverter and a solar photovoltaic generation system
JP5755930B2 (ja) 単位セルとこれを用いた交直変換装置
US9678519B1 (en) Voltage control modes for microgrid applications
JP5254922B2 (ja) 電力変換装置
Mandol et al. A novel single phase multilevel inverter topology with reduced number of switching elements and optimum THD performance
JP5645209B2 (ja) 電力変換装置
JP5753742B2 (ja) インバータ装置、および、このインバータ装置を備えた系統連系インバータシステム
Kumar et al. Asymmetrical Three-Phase Multilevel Inverter for Grid-Integrated PLL-Less System
Tirupathi et al. A three‐phase inverter circuit using half‐bridge cells and T‐NPC for medium‐voltage applications
JP5647449B2 (ja) インバータ装置、および、このインバータ装置を備えた系統連系インバータシステム
JP2002027779A (ja) 動力出力装置
JP6984421B2 (ja) パワーコンディショナおよびパワーコンディショナシステム
JP2011193704A (ja) 直流−交流電力変換装置
WO2019049713A1 (ja) 電力変換装置およびその制御方法
JP7206491B2 (ja) 直接形電力変換器用の制御装置
JP2008104253A (ja) 電力変換装置
KR101197793B1 (ko) 3상 전압 생성방법 및 상기 생성방법을 수행하는 캐스케이드 h-브릿지 방식의 고압 인버터
JP5328313B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees