JP6673478B2 - 線材、鋼線及び部品 - Google Patents

線材、鋼線及び部品 Download PDF

Info

Publication number
JP6673478B2
JP6673478B2 JP2018526423A JP2018526423A JP6673478B2 JP 6673478 B2 JP6673478 B2 JP 6673478B2 JP 2018526423 A JP2018526423 A JP 2018526423A JP 2018526423 A JP2018526423 A JP 2018526423A JP 6673478 B2 JP6673478 B2 JP 6673478B2
Authority
JP
Japan
Prior art keywords
bainite
less
steel wire
wire
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018526423A
Other languages
English (en)
Other versions
JPWO2018008698A1 (ja
Inventor
真 小此木
真 小此木
直樹 松井
直樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2018008698A1 publication Critical patent/JPWO2018008698A1/ja
Application granted granted Critical
Publication of JP6673478B2 publication Critical patent/JP6673478B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、線材、当該線材により製造される鋼線、及び当該鋼線により製造される引張強さが700MPa以上1200MPa以下の部品に関する。なお、本発明で対象となる部品には、機械部品や建築部品が含まれる。
自動車や各種産業機械は、軽量化や小型化を目的に、700MPa以上の引張強さを有する高強度機械部品が使用されている。従来、この種の高強度機械部品は、機械構造用炭素鋼にMn、Cr、Mo、及びBなどの合金元素を添加した合金鋼からなる鋼材に対して熱間圧延、球状化焼鈍を順次施して軟質化し、次いで冷間鍛造や転造を施して所定形状とし、その後焼入れ・焼戻し処理を施して強度を付与することにより製造されている。
しかしながら、このような鋼材は、合金元素の含有量が多いために鋼材価格が高くなり、また、部品形状とする前の球状化焼鈍や、成形後の焼入れ・焼戻し処理を必要とするために製造コストが嵩む。
このような事情から、球状化焼鈍や焼入れ・焼戻し処理を省略し、急速冷却や時効処理を行って強度を高めた線材に伸線加工を施し、所定の強度を付与する技術が知られている。この技術は機械部品等に利用され、この技術を用いて製造した機械部品等は非調質機械部品と呼ばれている。
特開平2−166229号公報には、C:0.03〜0.20%、Si:0.10%以下、Mn:0.7〜2.5%、V、Nb、Tiのうち1種もしくは2種以上の合計:0.05〜0.30%、B:0.0005〜0.0050%を含有する鋼を、線材圧延後に5℃/sec以上の冷却速度で冷却したベイナイト組織からなる非調質機械部品の製造方法が開示されている。
また、特開平8−41537号公報には、C:0.05〜0.20%、Si:0.01〜1.0%、Mn:1.0〜2.0%、S:0.015%以下、Al:0.01〜0.05%、V:0.05〜0.3%を含有する鋼を、900〜1150℃の温度に加熱後熱間圧延を行ない、仕上げ圧延の後800℃から500℃までの温度域を2℃/sec以上の平均冷却速度で冷却することにより、フェライト+ベイナイト組織としたのち、550〜700℃の温度範囲で焼きなましを行う高強度機械部品の製造方法が開示されている。
しかしながら、これらの製造方法では、冷却速度や冷却終了温度の厳格な制御が必要であり、製造方法が複雑で製造コストが嵩む。また、組織が不均一となり、冷間鍛造性が劣化する場合がある。
これに対し、特開2000−144306号公報には、Cが0.40〜1.0質量%で、且つ、成分組成が特定の条件式を満たし、組織がパーライトや疑似パーライトからなる冷間鍛造用鋼が開示されている。この鋼は、C量が多く、従来、機械部品に用いている機械構造用炭素鋼や機械構造用合金鋼と比較して、冷間鍛造性が劣る。
以上のように、従来技術による非調質線材では、安価な製造方法で良好な冷間鍛造性を有する機械部品や、当該部品を製造するための鋼線及び線材が得られていない。特に、球状化焼鈍や焼入れ・焼戻し処理等を省略した従来技術については、組織が不均一となって優れた冷間鍛造性を得ることができないことから、これらの処理を省略したとしても、優れた機械的特性を実現することが可能な部品の開発については、改良の余地があった。
本発明は、従来技術における上記課題に鑑み、
(a)安価に製造することが可能な、引張強さが700〜1200MPaの部品、
(b)当該部品の製造に用いる、球状化焼鈍や焼入れ・焼戻し処理、及び冷間鍛造後のブルーイング処理の省略が可能な鋼線、及びその鋼線を製造するための線材を提供すること、
を目的とする。
本発明者らは、上記目的を達成するため、球状化焼鈍を省略しても冷間鍛造が可能であり、かつ、焼入れ・焼戻しの調質処理を行わなくても、引張強さが700MPa以上の高強度部品を得るための鋼材の成分組成と組織の関係を調査した。本発明は、このような調査で得た冶金的知見に基づいてなされたもので、その要旨は以下のとおりである。
(1)質量%で、C:0.15〜0.30%、Si:0.05〜0.50%、Mn:0.50〜1.50%、P:0.030%以下、S:0.030%以下、Al:0.005〜0.060%、Ti:0.005〜0.030%、B:0.0003〜0.0050%、N:0.001〜0.010%を含有し、残部Fe及び不可避的不純物からなる線材であって、面積率で金属組織の90%以上がベイナイトであり、横断面で測定した表層のベイナイトの平均ブロック粒径が15μm以下であり、横断面で測定した表層のベイナイトの平均ブロック粒径と、中心部で測定したベイナイトの平均ブロック粒径の比である、(表層のベイナイトの平均ブロック粒径)/(中心部でのベイナイトの平均ブロック粒径)の値が1.0未満であり、かつ、ベイナイト中に分散したセメンタイトの平均粒径が0.1μm以下である、ことを特徴とする線材。
(2)上記線材が、さらに、質量%で、Cr:0〜0.40%、Nb:0〜0.03%、V:0〜0.10%、のうちの1種又は2種を含有する、上記(1)に記載の線材。
(3)質量%で、C:0.15〜0.30%、Si:0.05〜0.50%、Mn:0.50〜1.50%、P:0.030%以下、S:0.030%以下、Al:0.005〜0.060%、Ti:0.005〜0.030%、B:0.0003〜0.0050%、N:0.001〜0.010%を含有し、残部Fe及び不可避的不純物からなる伸線加工された鋼線であって、面積率で金属組織の90%以上がベイナイトであり、鋼線の表層において、縦断面で測定したベイナイトのブロック粒の平均アスペクト比Rが1.2〜2.0であり、横断面で測定した表層のベイナイトの平均ブロック粒径が(15/R)μm以下であり、横断面で測定した表層のベイナイトの平均ブロック粒径と、中心部で測定したベイナイトの平均ブロック粒径の比である、(表層のベイナイトの平均ブロック粒径)/(中心部でのベイナイトの平均ブロック粒径)の値が1.0未満であり、かつ、ベイナイト中に分散したセメンタイトの平均粒径が0.1μm以下である、ことを特徴とする鋼線。
(4)上記鋼線が、さらに、質量%で、Cr:0〜0.40%、Nb:0〜0.03%、V:0〜0.10%、のうちの1種又は2種を含有する、上記(3)に記載の鋼線。
(5)限界圧縮率が80%以上である、上記(3)又は(4)に記載の鋼線。
(6)質量%で、C:0.15〜0.30%、Si:0.05〜0.50%、Mn:0.50〜1.50%、P:0.030%以下、S:0.030%以下、Al:0.005〜0.060%、Ti:0.005〜0.030%、B:0.0003〜0.0050%、N:0.001〜0.010%を含有し、残部Fe及び不可避的不純物からなる部品であって、面積率で金属組織の90%以上がベイナイトであり、部品の表層において、縦断面で測定したベイナイトのブロック粒の平均アスペクト比Rが1.2〜2.0であり、横断面で測定した表層のベイナイトの平均ブロック粒径が(15/R)μm以下であり、横断面で測定した表層のベイナイトの平均ブロック粒径と、中心部で測定したベイナイトの平均ブロック粒径の比である、(表層のベイナイトの平均ブロック粒径)/(中心部でのベイナイトの平均ブロック粒径)の値が1.0未満であり、かつ、ベイナイト中に分散したセメンタイトの平均粒径が0.1μm以下である、ことを特徴とする部品。
(7)上記部品が、さらに、質量%で、Cr:0〜0.40%、Nb:0〜0.03%、V:0〜0.10%、のうちの1種又は2種を含有する、上記(6)に記載の部品。
本発明によれば、自動車及び各種産業機械等に用いる機械部品、並びに建設現場で用いられる建築部品の軽量化や小型化に寄与する、引張強さが700〜1200MPaの高強度部品を安価に提供することができる。
本実施形態に係る線材及び鋼線、並びに本実施形態に係る部品、の金属組織を示すSEM写真である。
本発明者らは、前述したように、球状化焼鈍を省略しても冷間鍛造が可能であり、かつ、焼入れ・焼戻しの調質処理を行わなくても、引張強さが700MPaを超える高強度部品を得るための鋼材の成分組成と組織の関係を詳細に調査した。そして、本発明者らは、高強度部品を安価に製造するため、調査で得た冶金的知見に基づいて、線材の熱間圧延時の保有熱を利用したインライン熱処理、及び、その後の鋼線、部品までの一連の製造方法について、総合的な検討を進め、以下の結論に達した。
(a)伸線加工と冷間鍛造により高強度化した鋼線は、加工性が劣り、変形抵抗が高く、かつ加工割れが発生し易い。
(b)高強度鋼線の加工性を向上させるためには、ベイナイトを主体とした組織にして、表層のブロック粒径を微細にすること、かつベイナイト中に分散したセメンタイトの平均粒径を0.1μm以下とすることが有効である。
(c)即ち、ベイナイトの面積率を90%以上として、縦断面で測定したベイナイトのブロック粒の平均アスペクト比をRとしたとき、横断面で測定した表層のベイナイトのブロック粒径の平均値を(15/R)μm以下とし、表層のベイナイトの平均ブロック粒径と線材内部のベイナイトの平均ブロックの粒径との比を1.0未満とすると、冷間加工性を著しく高めることができる。
(d)さらに、上記(b)及び(c)の組織とすることで、部品に成形した後に、ブルーイング処理を省略しても、耐力比を高くすることができる。
このように、鋼材の成分組成と組織を改良することにより、焼入れ・焼戻し処理を省略しても高強度化することができ、かつ、冷間鍛造性を向上させることが可能となった。
このような、球状化焼鈍を省略しても冷間鍛造が可能であり、かつ、焼入れ・焼戻しの調質処理を行わなくても高強度となる部品を得るための素材となる鋼線は、鋼線の段階で、既に、上記特徴のミクロ組織を有するものとし、これを加工前の熱処理を行わずに部品に加工することが有効である。
この場合、球状化焼鈍を行って軟質化する従来の製造方法に比べれば、冷間加工性は劣化するが、球状化焼鈍費用と加工後の焼入れ・焼戻し費用を削減できるので、コスト面において、本発明が有利である。
さらに、鋼線の素材となる線材の製造方法については、熱間圧延時の残熱を利用して、圧延後直ちに、溶融塩浴に浸漬することで、合金元素を多量添加しなくても、上述の組織の鋼材を得ることができる。
即ち、本発明の部品は、成分組成を調整した鋼材を、熱間圧延時の残熱を利用して溶融塩浴に浸漬して、所定の平均ブロック粒径とセメンタイト粒径からなるベイナイト主体の線材とし、これを室温で特定の条件にて伸線加工して、高強度のベイナイトの調整を行い、部品に成形する一連の製造方法によって製造される。
それ故、本発明は、引張強さ700〜1200MPaの部品を安価に製造できる。
(成分組成)
本実施形態に係る引張強さが700〜1200MPaである部品用の線材、及び鋼線(以下、それぞれ単に「線材」、「鋼線」と称する場合がある)、並びに本実施形態に係る部品(以下、単に「部品」と称する場合がある)の成分組成について説明する。本実施形態に係る鋼線は、本実施形態に係る線材を伸線加工することによって得られる。また、本実施形態に係る部品は、本実施形態に係る鋼線を冷間鍛造すること、又は冷間鍛造及び転造することによって得られる。伸線加工、冷間鍛造、及び転造は、鋼の成分組成に影響を及ぼさない。従って、以下に述べる成分組成に関する説明は、線材、鋼線、及び部品のいずれにも該当する。以下の説明において、「%」は「質量%」を意味する。なお、成分組成の残部は、Fe及び不可避的不純物である。
C:0.15〜0.30%
Cは、引張強さを確保するのに必要な元素である。C含有量が0.15%未満である場合、700MPa以上の引張強さを得ることが困難である。好ましくは、C含有量が0.20%以上である。一方、C含有量が0.30%超である場合、冷間鍛造性が劣化する。好ましくは0.25%以下である。
Si:0.05〜0.50%
Siは、脱酸元素であるとともに、固溶強化により引張強さを高める元素である。Si含有量が0.05%未満である場合、添加効果が十分に発現しない。好ましくは、Si含有量は0.15%以上である。一方、Si含有量が0.50%超である場合、添加効果が飽和するとともに、熱間圧延時の延性が劣化して、疵が発生し易くなる。好ましいSi含有量は0.30%以下である。
Mn:0.50〜1.50%
Mnは、鋼の引張強さを高める元素である。Mn含有量が0.50%未満である場合、添加効果が十分に発現しない。好ましくは、Mn含有量は0.70%以上である。一方、Mn含有量が1.50%超である場合、添加効果が飽和するとともに、線材の恒温変態処理の際の変態完了時間が長くなり、製造性が劣化する。好ましいMn含有量は1.30%以下である。
P:0.030%以下
Pは、結晶粒界に偏析して冷間加工性を劣化させる元素である。P含有量が0.030%超の場合、冷間加工性の劣化が顕著となる。好ましいP含有量は0.015%以下である。本実施形態に係る線材、鋼線、及び部品はPを含有する必要がないので、P含有量の下限値は0%である。
S:0.030%以下
Sは、Pと同様に、結晶粒界に偏析して冷間加工性を劣化させる元素である。S含有量が0.030%超の場合に、冷間加工性の劣化が顕著となる。好ましいS含有量は0.015%以下であり、より好ましくは0.010%以下である。本実施形態に係る線材、鋼線、及び備品はSを含有する必要がないので、S含有量の下限値は0%である。
Al:0.005〜0.060%
Alは、脱酸元素であり、また、ピン止め粒子として機能するAlNを形成する元素である。AlNは結晶粒を細粒化し、これにより冷間加工性を高める。また、Alは、固溶Nを低減して動的歪み時効を抑制する作用を有する元素である。Al含有量が0.005%未満である場合、上述の効果が得られない。好ましいAl含有量は0.020%以上である。Al含有量が0.060%超である場合、上述の効果が飽和するとともに、熱間圧延の際に疵が発生し易くなる。好ましいAl含有量は0.050%以下である。
Ti:0.005〜0.030%
Tiは、脱酸元素であり、また、TiNを形成し、固溶Nを低減して動的歪み時効を抑制する作用を有する元素である。Ti含有量が0.005%未満である場合、上述の効果が得られない。好ましいTi含有量は0.010%以上である。Ti含有量が0.030%超である場合、上述の効果が飽和するとともに、熱間圧延の際に疵が発生し易くなる。好ましいTi含有量は0.025%以下である。
B:0.0003〜0.0050%
Bは粒界フェライトを抑制し、冷間加工性を向上させる効果や、ベイナイト変態を促進し強度を向上させる効果がある。0.0003%未満では効果が不十分で、0.0050%を超えると効果が飽和する。
N:0.0010〜0.0100%
Nは、動的歪み時効により冷間加工性を劣化させることがある元素である。このような悪影響を回避するために、N含有量を0.0100%以下とする。またNは、AlNやTiNを形成して結晶粒径を微細化し、冷間加工性を高める効果がある。このため、下限を0.0010%とした。好ましいNの含有量は0.0020〜0.0040%である。
本発明では、Cr:0.01〜0.40%、Nb:0〜0.03%、V:0〜0.10%の1種又は2種を含有してもよい。Cr、Nb及びVの含有は任意であり0%でもよい。Crは鋼の引張強さを高める効果があり、Nb、及びVは、固溶Nを低減して動的歪み時効を抑制する効果や、ベイナイト変態を促進して強度を高める効果がある。
Cr:0.01〜0.40%
Crは、鋼の引張強さを高める元素である。Cr含有量が0.01%未満である場合、上述の効果が十分に得られない。一方、Cr含有量が0.40%超である場合、マルテンサイトが生じ易くなり、これにより伸線加工性や冷間鍛造性が劣化する。Crの好ましい含有量は0.03〜0.30%である。
Nb:0〜0.03%
Nbは、NbNを形成し、固溶Nを低減して動的歪み時効を抑制する作用を有する元素である。Nb含有量が0.03%超である場合、上述の効果が飽和するとともに、熱間圧延の際に疵が発生し易くなる。Nb含有量は好ましくは0.025%以下である。
V:0〜0.10%
Vは、VNを形成し、固溶Nを低減して動的歪み時効を抑制する作用を有する元素である。V含有量が0.10%超である場合、上述の効果が飽和するとともに、熱間圧延の際に疵が発生し易くなる。好ましいV含有量は0.05%以下である。
O:0〜0.0030%以下
Oは、線材、鋼線、及び部品(例えば機械部品)中に、Al及びTi等の酸化物として存在する。O含有量が0.0030%を超える場合、粗大な酸化物が鋼中に生成して、疲労破壊が生じ易い。好ましいO含有量は0.0020%以下である。O含有量の下限値は0%である。
以上、本実施形態に係る線材、鋼線及び部品の成分組成について説明したが、成分組成の残部は、Fe及び不可避的不純物である。ここで、不可避的不純物とは、原材料に含まれる、或いは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分をいう。また、不可避的不純物とは、具体的には、Sb、Sn、W、Co、As、Mg、Pb、Bi、及びHがあげられる。なお、Sb、Sn、W、Co、As、Mg、Pb、Bi、及びHは、それぞれ、本願の効果を実現する上で、それぞれ0.010%、0.10%、0.50%、0.50%、0.010%、0.010%、0.10%、0.10%、及び0.0010%まで含むことを許容できる。
次に、本実施形態に係る線材及び鋼線、並びに本実施形態に係る部品、の金属組織について説明する。本実施形態に係る鋼線は本実施形態に係る線材を伸線加工することによって得られ、本実施形態に係る部品は本実施形態に係る鋼線を冷間鍛造することによって、又は冷間鍛造及び転造することによって得られる。部品の金属組織に冷間鍛造及び転造が及ぼす影響は小さい。部品に対する、冷間鍛造及び転造が及ぼす加工の量は小さいからである。
(ベイナイトの面積率:90%以上)
金属組織のベイナイト面積率に及ぼす、伸線加工、冷間鍛造及び転造の影響は小さいため、以下の説明は、線材、鋼線及び部品のいずれにも該当する。本実施形態に係る線材、鋼線及び部品の金属組織は、面積率で90%以上のベイナイトを含む。本実施形態において、ベイナイトとは、図1に示すように、対象物(線材、鋼線又は部品)の横断面(鋼材(鋼線)の軸と直交する断面)をナイタールでエッチングした後、当該対象物の表層から所定の深さ(例えば表層から直径の0.25倍の深さ)の位置を、走査型電子顕微鏡(SEM)で撮影した場合に、針状又は粒状のセメンタイトが分散していると認識される組織である。
本実施形態において、線材、鋼線及び部品のベイナイト面積率は以下の手順により決定する。即ち、まず、対象物の横断面をナイタールでエッチングして組織を現出させる。次に、対象物の直径をDとした場合に、当該対象物の表層からの深さが50μmの深さ位置において対称物の長手方向軸を中心に90°おきに回転させて決定した4箇所と、当該対象物の表層からの深さが0.25Dの深さ位置において上記軸を中心に90°おきに回転させて決定した4箇所と、上記軸の中心部(表層からの深さが0.5Dの深さ位置)に決定した1箇所と、の計9箇所を特定する。そしてこれら9箇所についてSEMを用いて倍率1000倍の組織写真を撮影する。さらに、撮影された組織写真中の非ベイナイト(フェライト、パーライト及びマルテンサイトの各組織)を目視でマーキングし、各組織の領域を画像解析により求める。その結果、ベイナイトを含む領域は、観察視野全体から非ベイナイトの領域を減じることにより求められる。この領域の面積率をベイナイトの面積率とする。なお、この操作は少なくとも2個のサンプルについて測定、算出し、それらの平均値を求め、当該平均値を本実施形態におけるベイナイト面積率とする。
但し、ベイナイトはSEMによる組織写真からは判別しにくい場合がある。その場合は、電子線後方散乱回折装置(EBSD)を用いてKAM法(Kernel Average Misorientation)により判別する。KAM法は測定データのうちのある正六角形のピクセルの隣り合う6個である第一近似、その外側の12個である第二近似、又はさらにその外側の18個である第三近似、のピクセル間の方位差を平均し、その値をその中心のピクセルの値とする計算を、各ピクセルについて行う方法である。この計算を、粒界を越えないように実施することで、粒内の方位変化を表現するマップを作成することができる。ベイナイトは、高温で変態したポリゴナルな初析フェライトと比べて転位密度が大きく粒内の歪が大きいため、結晶方位の粒内差が大きい。従って、本実施形態における解析では、隣接するピクセル間の方位差を計算する条件は第三近似とし、この方位差が5°以下となるものを表示し、そのうち方位差が1°超の粒をベイナイトとする。
このようなベイナイトの判別方法を前提に、本実施形態においては、線材のベイナイトの面積率が90%未満である場合、この線材を伸線加工して得られる鋼線や、鋼線を冷間鍛造して得られる部品のベイナイトの面積率が90%未満となる。この場合、部品の耐力比(=0.2%耐力/引張強度)強度が低下し、例えば機械部品として使用する際の永久伸びが劣化する。ベイナイトの他に、パーライト、初析フェライト、及びマルテンサイト等が鋼線に含まれる場合があるが、鋼線のベイナイトの面積率が90%以上である限り、ベイナイト以外の金属組織の含有は許容される。なお、鋼線のベイナイトの面積率が90%を下回る場合、鋼線の強度(引張強さ及び硬度等)が不均一になるので、部品への冷間加工の際に割れが発生し易くなる。なお、鋼線にはベイナイト以外の金属組織が含まれないことが望ましいので、鋼線のベイナイトの面積率の上限値は100%である。
(線材のベイナイトの平均ブロック粒径が15μm以下)
本実施形態に係る線材においては、横断面で測定したベイナイトの平均ブロック粒径が15μm以下である。ここで、横断面とは、線材の軸方向に垂直な面を意味する。線材の横断面で測定したベイナイトの平均ブロック粒径が15μmを超える場合、伸線加工後の鋼線の延性が低くなり、これにより鋼線の冷間加工性が低下する。さらに、この鋼線を冷間加工して得られる部品のベイナイトの平均ブロック粒径が粗大化する。ベイナイトの平均ブロック粒径が粗大化した場合、耐力比が低下する。なお、線材のベイナイトの平均ブロック粒径は、小さい方が好ましいので、その下限値を規定する必要はない。
(鋼線及び部品の、ベイナイトのブロック粒の平均アスペクト比Rが1.2〜2.0)
本実施形態に係る鋼線及び部品では、鋼線の表層の位置において、鋼線の縦断面で測定したベイナイトのブロック粒の平均アスペクト比Rが1.2〜2.0である。ここで、縦断面とは、線材の軸方向に平行で、かつ中心軸を含む面を意味する。ベイナイトブロックの平均アスペクト比が1.2未満では、鋼線を冷間鍛造して製造した部品の耐水素脆化特性が劣化する。また、平均アスペクト比が2.0を超えると、耐力比が低下し、部品として使用する際に永久のびが劣化する。
本実施形態では、鋼線及び部品の、ベイナイトのブロック粒の平均アスペクト比Rは、次のように決定する。まず、鋼線の縦断面に対し、EBSDを用いてベイナイトブロック粒界を決定する。この時、縦断面の両側の各表面から鋼線中心軸の方向に100μm、鋼線中心軸の方向に500μmの2つの領域のそれぞれにおいて、測定ステップを0.3μmとして領域内の各測定点でのbcc−Feの結晶方位を測定し、方位差が15度以上の境界をベイナイトブロック境界と定義する。そして、この境界に囲まれた領域をベイナイトブロック粒とする。このようにひとつの縦断面においてその両側で計2つの領域においてベイナイトブロック粒のマップを得る。これを4つのサンプルにおいて行って、計8つの領域においてベイナイトブロック粒のマップを得る。得られたベイナイトブロック粒のマップから円相当径が最大のものから順に10個のベイナイトブロック粒を選定する。選定された10個のベイナイトブロック粒についてブロック粒のアスペクト比を測定し、最後にそれらの平均値を算出してベイナイトのブロック粒の平均アスペクト比Rとする。
(鋼線のベイナイトの平均ブロック粒径が(15/R)μm以下)
本実施形態に係る鋼線では、横断面で測定した表層のベイナイトの平均ブロック粒径が(15/R)μm以下である。ここで、横断面とは、鋼線の軸方向に垂直な面を意味する。鋼線の横断面で測定した表層のベイナイトの平均ブロック粒径が(15/R)μmを超える場合、鋼線の延性が低くなり、これにより鋼線の冷間加工性が低下する。さらに、この鋼線を冷間加工して得られる部品のベイナイトの平均ブロック粒径が粗大化し、耐力が低下する。なお、鋼線の表層部におけるベイナイトの平均ブロック粒径は、小さい方が好ましいので、その下限値を規定する必要はない。
本実施形態では、線材(鋼線及び部品についても同様)の表層におけるベイナイトの平均ブロック粒径は、次のように決定する。まず、線材の横断面において、表層から中心軸方向に500μmの幅を持って周方向に500μm延在する領域を決定し、この領域を中心軸まわりに90°おきに回転させた4つの領域を特定する。そして、これら4つの領域について、EBSD装置によって測定したブロック粒径を平均して、線材(鋼線及び部品についても同様)の表層におけるベイナイトの平均ブロック粒径とする。
(部品のベイナイトの平均ブロック粒径が(15/R)μm以下)
本実施形態に係る部品では、横断面で測定した表層のベイナイトの平均ブロック粒径が(15/R)μm以下である。ここで、横断面とは、部品の軸方向に垂直な面を意味する。部品の横断面で測定した表層のベイナイトの平均ブロック粒径が(15/R)μmを超える場合、耐力比が低下する。なお、鋼線の表層部におけるベイナイトの平均ブロック粒径は、小さい方が好ましいので、その下限値を規定する必要はない。また、部品のベイナイトの平均ブロック粒径の決定方法は、上述した線材のベイナイトの平均ブロック粒径の決定方法と同じである。
((線材、鋼線及び部品の、表層のベイナイトの平均ブロック粒径)/(中心部でのベイナイトの平均ブロック粒径)が1.0未満)
本実施形態に係る線材、鋼線、及び品では、横断面で測定した表層のベイナイトの平均ブロック粒径と、横断面で測定した中心部でのベイナイトの平均ブロック粒径の比が1.0未満である。当該比が1.0を超えると、鋼線の冷間鍛造性が劣化し、かつ、部品の耐力比が劣化する。
本実施形態では、線材(鋼線及び部品についても同様)の中心部におけるベイナイトの平均ブロック粒径は、次のように決定する。まず、線材の横断面において、中心軸を中心とする500μm×500μmの領域を決定し、この領域についてEBSD装置によってブロック粒径を測定する。次いで、異なる3つの横断面において同様の測定をした後、4つのサンプルについてブロック粒径を平均して、線材(鋼線及び部品についても同様)の中心部におけるベイナイトの平均ブロック粒径とする。
そして、本実施形態では、表層のブロック粒径と中心部のブロック粒径との比を、(表層のベイナイトの平均ブロック粒径)/(中心部でのベイナイトの平均ブロック粒径)により求める。
(ベイナイト中に分散したセメンタイトの平均粒径が0.1μm以下)
本実施形態に係る線材、鋼線及び部品では、ベイナイト中に分散したセメンタイトの平均粒径が0.1μm以下である。セメンタイトの平均粒径が0.1μmを超えると、鋼線の冷間鍛造性が劣化する。さらに、部品での耐力比が低下し、例えば機械部品として使用する際の永久伸びが劣化する。
本実施形態に係るベイナイト中のセメンタイトの平均粒径は以下の手順により決定する。まず、ピクラールを用いて対象物(線材、鋼線又は部品)の横断面をエッチングし、組織を現出させる。次に、対象物の直径をDとした場合に、当該対象物の表層からの深さが50μmの深さ位置において対称物の長手方向軸を中心に90°おきに回転させて決定した4箇所と、当該対象物の表層からの深さが0.25Dの深さ位置において上記軸を中心に90°おきに回転させて決定した4箇所と、上記軸の中心部(表層からの深さが0.5Dの深さ位置)に決定した1箇所と、の計9箇所を特定する。そしてこれら9箇所について電解放出走査型電子顕微鏡(FE−SEM)を用いて倍率20000倍の組織写真を撮影する。最後に、撮影された画像を2値化し、画像解析によりセメンタイトの円相当直径を求め、9つの試料の平均値を算出して、セメンタイトの平均粒径とする。
(鋼線の限界圧縮率が80%以上)
以上のようにして得られた鋼線は、良好な冷間加工性を示す。本実施形態においては、冷間加工性を示す指標として限界圧縮率を用いる。本実施形態において、限界圧縮率とは、伸線加工後の鋼線から、高さが直径の1.5倍である試料を機械加工により作成し、この試料の端面を、同心円状に溝が付いた金型を用いて軸方向に圧縮した際に、割れが発生しない最大の圧縮率を意味する。なお、圧縮率とは、伸線の圧縮前の高さ(軸方向寸法)をH、伸線の圧縮後の高さ(軸方向寸法)をH1とした場合に、((H−H1)/H)×100で示される値である。本実施形態に係る鋼線では、限界圧縮率を80%以上とすることができ、優れた冷間加工性を実現することができる。
次に、線材、鋼線、及び部品の製造方法についてその一例を説明する。まず、成分組成が、質量%で、C:0.15〜0.30%、Si:0.05〜0.50%、Mn:0.50〜1.50%、P:0.030%以下、S:0.030%以下、Al:0.005〜0.060%、Ti:0.005〜0.030%、B:0.0003〜0.0050%、N:0.001〜0.010%を含有し、必要に応じて、Cr:0〜0.40%、Nb:0〜0.03%、V:0〜0.10%のうちの1種又は2種を含有し、残部がFe及び不純物からなる鋼片を準備する。この鋼片を、1000〜1150℃に加熱した後、仕上げ圧延温度800〜950℃で熱間圧延することにより線材を得る。次いで、この800〜950℃の線材を、平均冷却速度40℃/s以上で600℃まで冷却し、次いで、平均冷却速度25℃/s以上で480℃まで冷却する。その後、この線材を400〜480℃の温度帯で15秒以上の恒温保持(第1恒温保持)を行い、さらに、530〜600℃の温度帯で25秒以上浸漬して恒温保持(第2恒温保持)を行う。そして最後に、水冷して線材を得る。
仕上げ圧延後の2段階冷却、および第1恒温保持は、線材を第1溶融塩槽内の400〜480℃の溶融塩に浸漬させることにより行う。また、第2恒温保持は、線材を第2溶融塩槽内にて530〜600℃の溶融塩に浸漬させることにより行う。
ここで、本実施形態に係る線材の製造方法では、特に、800〜950℃の線材の冷却を、600℃までの冷却と、600℃〜480℃までの冷却と、の2段階に分けて行う。特に、後段の冷却では冷却速度を25℃/s以上とすることで、ベイナイトの平均ブロック粒径を15μm以下に制御することができる。
また、本実施形態に係る線材の製造方法では、第1溶融塩槽内における溶融塩浴温度を400〜480℃とし、浸漬時間を15〜50sとする。溶融塩浴温度を400℃以上とすることで、マルテンサイトの混入を抑制し、優れた冷間鍛造性が得られる。一方、480℃以下とすることで、セメンタイトの平均粒径を小さくして、優れた冷間鍛造性が得られるとともにブルーイング処理を不要とすることができる。また、浸漬時間を15s以上とすることで、非ベイナイト組織の混入を抑制し、優れた冷間鍛造性が得られる。一方、50s以下とすることで、セメンタイトの平均粒径を小さくして、優れた冷間鍛造性が得られるとともにブルーイング処理を不要とすることができる。
同様に、本実施形態に係る線材の製造方法では、第2溶融塩槽内における溶融塩浴温度を530〜600℃とし、浸漬時間を25〜80sとすることができる。溶融塩浴温度を530℃以上とすることで、マルテンサイトの混入を抑制し、優れた冷間鍛造性が得られる。一方、600℃以下とすることで、セメンタイトの平均粒径を小さくして、優れた冷間鍛造性が得られるとともにブルーイング処理を不要とすることができる。また、浸漬時間を25s以上とすることで、マルテンサイトの混入を抑制し、優れた冷間鍛造性が得られる。一方、80s以下とすることで、セメンタイトの平均粒径を小さくして、優れた冷間鍛造性が得られるとともにブルーイング処理を不要とすることができる。
次に、本実施形態に係る鋼線は、一例として以下の方法で製造できる。即ち、上述した方法で製造した線材を、総減面率10〜55%で伸線加工する。伸線加工における総減面率10〜55%は、一回の伸線加工で達成してもよいし、複数回の伸線加工で達成してもよい。こうして本実施形態に係る鋼線が得られる。
さらに、本実施形態の部品(機械部品、建築部品等)は、一例として以下の方法で製造できる。即ち、上述の鋼線を、冷間鍛造によって、又は冷間鍛造及び転造によって各種部品の形状に加工し、引張強さが700〜1200MPaである部品が得られる。
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
表1に示す14種類の成分組成の鋼片を用いて、表2に示す28パターンの条件で、加熱、熱間圧延、恒温変態処理、冷却を順次施して、線材(水準1〜28)を製造した。次いで、各線材を用い、表2に示す減面率で伸線加工を行い、鋼線(水準1〜28)を製造した。さらに、各鋼線を用いて、高さが直径の1.5倍である試料を機械加工により作成し、部品(水準1〜28)を製造した。そして、各部品の端面を、同心円状に溝がついた金型を用いて軸方向に圧縮し、割れが発生しない最大の圧縮率を、その部品の限界圧縮率とした。そして、限界圧縮率が80%以上の鋼線を冷間加工性が良好と判断した。また、各部品の軸部から引張試験片を採取して、引張試験を行い、引張強さと0.2%耐力を測定した上で、耐力比(0.2%耐力/引張強さ)が0.90以上の部品を耐力比が良好と判断した。なお、鋼材、鋼線及び部品のいずれについても、水準1〜7及び水準14〜20は発明例であり、水準8〜13及び水準21〜28は比較例である。
なお、表2の空欄を含む各水準について説明すると、例えば、水準10は、熱間圧延後、恒温変態処理を行わずに、沸騰水槽に浸漬して製造した例である。水準11は、熱間圧延後、恒温変態処理を行わずに、風冷により冷却して製造した例である。水準13は、熱間圧延した線材をいったん室温まで冷却したのち、1000℃まで再加熱し、1槽の溶融塩槽に浸漬して製造した例である。
次に、表3に線材の組織に関する結果を、表4に鋼線の組織に関する結果を、そして表5に鋼線の冷間鍛造性と部品の特性についての結果を、それぞれ示す。
表2〜5から明らかなように、本願で規定する製造条件の全てが所定の範囲内である水準1〜7及び水準14〜20(発明例)については、いずれも、鋼線の冷間鍛造性及び部品の特性について良好な結果が得られている。即ち、水準1〜7及び水準14〜20については、いずれも、部品の引張強さが700〜1200MPaであり、部品成形後にいわゆるブルーイング処理を行わなくても、0.90以上の耐力比が得られていることが判る。
これに対し、本願で規定する製造条件のいずれかが所定の範囲外である水準8〜13及び水準21〜28(比較例)については、いずれも、鋼線の冷間鍛造性及び部品の特性の少なくともいずれかが良好な結果を示さないことが判る。
以上に示すように、本発明によれば、安価に製造することが可能な、引張強さが700〜1200MPaの部品が得られ、また、当該部品の製造に用いる、球状化焼鈍や焼入れ・焼戻し処理、及び冷間鍛造後のブルーイング処理の省略が可能な鋼線、及びその鋼線を製造するための線材を得ることができる。従って、本発明は、鋼部材製造産業において利用可能性が高いことから、有望である。

Claims (7)

  1. 質量%で、C:0.15〜0.30%、Si:0.05〜0.50%、Mn:0.50〜1.50%、P:0.030%以下、S:0.030%以下、Al:0.005〜0.060%、Ti:0.005〜0.030%、B:0.0003〜0.0050%、N:0.001〜0.010%を含有し、残部Fe及び不可避的不純物からなる線材であって、
    面積率で金属組織の90%以上がベイナイトであり、横断面で測定した表層のベイナイトの平均ブロック粒径が15μm以下であり、横断面で測定した表層のベイナイトの平均ブロック粒径と、中心部で測定したベイナイトの平均ブロック粒径との比である、(表層のベイナイトの平均ブロック粒径)/(中心部でのベイナイトの平均ブロック粒径)の値が1.0未満であり、かつ、ベイナイト中に分散したセメンタイトの平均粒径が0.1μm以下である
    ことを特徴とする線材。
  2. 前記線材が、さらに、質量%で、Cr:0〜0.40%、Nb:0〜0.03%、V:0〜0.10%、のうちの1種又は2種を含有する、請求項1に記載の線材。
  3. 質量%で、C:0.15〜0.30%、Si:0.05〜0.50%、Mn:0.50〜1.50%、P:0.030%以下、S:0.030%以下、Al:0.005〜0.060%、Ti:0.005〜0.030%、B:0.0003〜0.0050%、N:0.001〜0.010%を含有し、残部Fe及び不可避的不純物からなる伸線加工された鋼線であって、
    面積率で金属組織90%以上がベイナイトであり、鋼線の表層において、縦断面で測定したベイナイトのブロック粒の平均アスペクト比Rが1.2〜2.0であり、横断面で測定した表層のベイナイトの平均ブロック粒径が(15/R)μm以下であり、横断面で測定した表層のベイナイトの平均ブロック粒径と、中心部で測定したベイナイトの平均ブロック粒径の比である、(表層のベイナイトの平均ブロック粒径)/(中心部でのベイナイトの平均ブロック粒径)の値が1.0未満であり、かつ、ベイナイト中に分散したセメンタイトの平均粒径が0.1μm以下である
    ことを特徴とする鋼線。
  4. 前記鋼線が、さらに、質量%で、Cr:0〜0.40%、Nb:0〜0.03%、V:0〜0.10%、のうちの1種又は2種を含有する、請求項3に記載の鋼線。
  5. 限界圧縮率が80%以上である、請求項3又は4に記載の鋼線。
  6. 質量%で、C:0.15〜0.30%、Si:0.05〜0.50%、Mn:0.50〜1.50%、P:0.030%以下、S:0.030%以下、Al:0.005〜0.060%、Ti:0.005〜0.030%、B:0.0003〜0.0050%、N:0.001〜0.010%を含有し、残部Fe及び不可避的不純物からなる部品であって、
    面積率で金属組織の90%以上がベイナイトであり、部品の表層において、縦断面で測定したベイナイトのブロック粒の平均アスペクト比Rが1.2〜2.0であり、横断面で測定した表層のベイナイトの平均ブロック粒径が(15/R)μm以下であり、横断面で測定した表層のベイナイトの平均ブロック粒径と、中心部で測定したベイナイトの平均ブロック粒径の比である、(表層のベイナイトの平均ブロック粒径)/(中心部でのベイナイトの平均ブロック粒径)の値が1.0未満であり、かつ、ベイナイト中に分散したセメンタイトの平均粒径が0.1μm以下である
    ことを特徴とする部品。
  7. 前記部品が、さらに、質量%で、Cr:0〜0.40%、Nb:0〜0.03%、V:0〜0.10%、のうちの1種又は2種を含有する、請求項6に記載の部品。
JP2018526423A 2016-07-05 2017-07-05 線材、鋼線及び部品 Active JP6673478B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016133361 2016-07-05
JP2016133361 2016-07-05
PCT/JP2017/024705 WO2018008698A1 (ja) 2016-07-05 2017-07-05 線材、鋼線及び部品

Publications (2)

Publication Number Publication Date
JPWO2018008698A1 JPWO2018008698A1 (ja) 2019-04-18
JP6673478B2 true JP6673478B2 (ja) 2020-03-25

Family

ID=60912855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018526423A Active JP6673478B2 (ja) 2016-07-05 2017-07-05 線材、鋼線及び部品

Country Status (7)

Country Link
US (1) US20200123625A1 (ja)
JP (1) JP6673478B2 (ja)
KR (1) KR102154575B1 (ja)
CN (1) CN109312436B (ja)
MX (1) MX2018015999A (ja)
TW (1) TWI643959B (ja)
WO (1) WO2018008698A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690801B (zh) * 2020-05-25 2021-11-02 中天钢铁集团有限公司 一种获得全贝氏体组织的合金工具钢盘条生产工艺
CN113416884A (zh) * 2021-06-07 2021-09-21 宁夏建龙龙祥钢铁有限公司 一种高延耐蚀钢筋生产方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731797B2 (ja) * 1988-12-20 1998-03-25 トーア・スチール株式会社 非調質ボルト用鋼線材の製造方法
JP3737323B2 (ja) * 1999-09-17 2006-01-18 株式会社神戸製鋼所 球状化後の冷間鍛造性に優れた鋼線材・棒鋼およびその製造方法
JP4349732B2 (ja) * 2000-09-20 2009-10-21 Jfe条鋼株式会社 溶接性および加工性に優れたばね用線材および鋼線
JP5092554B2 (ja) * 2007-01-17 2012-12-05 Jfeスチール株式会社 高強度鉄筋用鋼材の製造方法
JP5152440B2 (ja) 2011-05-26 2013-02-27 新日鐵住金株式会社 機械構造用鋼部品およびその製造方法
CN103906853B (zh) * 2011-08-26 2016-01-20 新日铁住金株式会社 非调质机械部件用线材、非调质机械部件用钢线和非调质机械部件及它们的制造方法
JP6079894B2 (ja) * 2013-10-08 2017-02-15 新日鐵住金株式会社 線材、過共析ベイナイト鋼線、及びそれらの製造方法
EP3115478B1 (en) * 2014-03-06 2019-05-01 Nippon Steel & Sumitomo Metal Corporation High-carbon steel wire having superior wire drawing properties and method for producing same
CN104018076B (zh) * 2014-06-25 2016-06-15 武汉钢铁(集团)公司 一种耐高温钢筋及生产方法

Also Published As

Publication number Publication date
CN109312436B (zh) 2021-08-10
KR102154575B1 (ko) 2020-09-10
TW201812027A (zh) 2018-04-01
CN109312436A (zh) 2019-02-05
MX2018015999A (es) 2019-05-13
KR20190012226A (ko) 2019-02-08
WO2018008698A1 (ja) 2018-01-11
TWI643959B (zh) 2018-12-11
JPWO2018008698A1 (ja) 2019-04-18
US20200123625A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US11203797B2 (en) Steel wire and wire rod
JP5590246B2 (ja) 非調質機械部品用線材、非調質機械部品用鋼線、及び、非調質機械部品とそれらの製造方法
JP5486634B2 (ja) 冷間加工用機械構造用鋼及びその製造方法
US9890445B2 (en) Steel for mechanical structure for cold working, and method for manufacturing same
JP6528860B2 (ja) 非調質機械部品用鋼線及び非調質機械部品
JP6497450B2 (ja) 冷間鍛造調質品用圧延棒線
JP2017043835A (ja) 冷間加工用機械構造用鋼、およびその製造方法
WO2015194411A1 (ja) 冷間加工用機械構造用鋼及びその製造方法
JP2017141502A (ja) 冷間鍛造調質品用圧延棒線
CN108368583B (zh) 非调质机械部件用钢丝及非调质机械部件
JP2020125538A (ja) 冷間加工用機械構造用鋼およびその製造方法
JP6673478B2 (ja) 線材、鋼線及び部品
JP7151885B2 (ja) 鋼線
JP2013007088A (ja) 冷間加工用機械構造用鋼およびその製造方法
JP2018044235A (ja) 機械構造部品用鋼線
JP2021183710A (ja) 鋼線、非調質機械部品用線材、及び非調質機械部品

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R151 Written notification of patent or utility model registration

Ref document number: 6673478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151