JP6658680B2 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP6658680B2
JP6658680B2 JP2017121819A JP2017121819A JP6658680B2 JP 6658680 B2 JP6658680 B2 JP 6658680B2 JP 2017121819 A JP2017121819 A JP 2017121819A JP 2017121819 A JP2017121819 A JP 2017121819A JP 6658680 B2 JP6658680 B2 JP 6658680B2
Authority
JP
Japan
Prior art keywords
pixel
transistor
signal line
light
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017121819A
Other languages
English (en)
Other versions
JP2017203991A5 (ja
JP2017203991A (ja
Inventor
圭 木村
圭 木村
有亮 小野山
有亮 小野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2017121819A priority Critical patent/JP6658680B2/ja
Publication of JP2017203991A publication Critical patent/JP2017203991A/ja
Publication of JP2017203991A5 publication Critical patent/JP2017203991A5/ja
Application granted granted Critical
Publication of JP6658680B2 publication Critical patent/JP6658680B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、表示装置、電子機器、及び表示装置の駆動方法に関する。
近年、表示装置の分野では、発光部を含む画素が行列状(マトリクス状)に配置されて成る平面型(フラットパネル型)の表示装置が主流となっている。平面型の表示装置の一つとして、発光部に流れる電流値に応じて発光輝度が変化する、電流駆動型の電気光学素子、例えば、有機電界発光素子(有機エレクトロルミネッセンス素子、以下「有機EL素子」という)を用いた表示装置がある。
上述したような有機EL発光素子への電流の供給には、トランジスタを用いられることが少なくない。なお、有機EL発光素子への電流の供給に用いられるトランジスタを、以降では、「駆動トランジスタ」と呼ぶ場合がある。例えば、上述したような有機EL発光素子により黒階調を表示する場合には、駆動トランジスタをオフに切り替えることで、有機EL発光素子への電流供給を遮断し、結果として当該有機EL発光素子の発光が抑制されるため黒階調が表示される。なお、駆動トランジスタには、例えば、電界効果トランジスタが用いられる。
特開2008−287141号公報
一方で、駆動トランジスタをオフ状態に切り替えた場合に、当該駆動トランジスタのソース−ドレイン間において電流がリークし、黒階調表示時のコントラストを低下させる場合がある。
そこで、本開示では、黒階調表示時のコントラストを向上させることが可能な、新規かつ改良された、表示装置、電子機器、及び表示装置の駆動方法を提案する。
本開示によれば、発光素子と、制御端子と、第1の端子、及び第2の端子で構成し、前記第2の端子は前記発光素子と接続する駆動トランジスタと、前記発光素子と接続する切替えトランジスタと、前記駆動トランジスタの前記第1の端子と接続する発光制御トランジスタとを有し、前記発光制御トランジスタが、非導通状態から導通状態へ遷移後、前記駆動トランジスタを非導通状態へ遷移させる表示装置が提供される。
以上説明したように本開示によれば、黒階調表示時のコントラストを向上させることが可能な、表示装置、電子機器、及び表示装置の駆動方法が提供される。
なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
比較例1に係る表示装置の構成の概略を示したシステム構成図である。 本開示の実施形態に係る表示装置の構成の概略を示したシステム構成図である。 比較例2に係る画素(画素回路)の一例を示した回路図である。 比較例2に係る駆動方法について説明するためのタイミング波形図である。 同実施形態に係る表示装置における画素(画素回路)の一例を示した回路図である。 同実施形態に係る駆動方法について説明するためのタイミング波形図である。 同実施形態に係る表示装置における画素(画素回路)の他の一態様を示した回路図である。 同実施形態に係る表示装置における画素(画素回路)の他の一態様を示した回路図である。 実施例1に係る画素(画素回路)の構成を説明するための概略的な断面図である。 実施例2に係る画素(画素回路)の構成を説明するための概略的な断面図である。 実施例3に係る画素(画素回路)の構成を説明するための概略的な断面図である。 実施例4に係る表示装置の構成を説明するための概略的な平面図である。 同実施形態に係る表示装置のモジュールの概略構成を表す平面図である。 同実施形態に係る表示装置の適用例1(レンズ交換式一眼レフレックスタイプのデジタルカメラ)の外観を表す正面図及び背面図である。 同実施形態に係る表示装置の適用例2(ヘッドマウントディスプレイ)の外観を表す斜視図である。 同実施形態に係る表示装置の適用例3(スマートフォン)の外観を表す斜視図である。 同実施形態に係る表示装置の適用例4(テレビジョン装置)の外観を表す斜視図である。 同実施形態に係る表示装置の適用例5(デジタルスチルカメラ)の外観を表す斜視図である。 同実施形態に係る表示装置の適用例6(パーソナルコンピュータ)の外観を表す斜視図である。 同実施形態に係る表示装置の適用例7(ビデオカメラ)の外観を表す斜視図である。 同実施形態に係る表示装置の適用例8(携帯電話機)の構成を表す平面図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
なお、説明は以下の順序で行うものとする。
1.実施形態に係る表示装置
1.1.概要
1.2.システム構成
1.3.比較例に係る画素回路の回路構成
1.4.比較例に係る画素回路の駆動方法
1.5.比較例に係る画素回路の課題
1.6.本実施形態に係る画素回路
1.7.本実施形態に係る画素回路の駆動方法
1.8.まとめ
2.表示装置及び画素回路の実施例
2.1.実施例1
2.2.実施例2
2.3.実施例3
2.4.実施例4
3.電子機器
4.モジュール及び適用例
4.0.モジュール
4.1.適用例1:レンズ交換式一眼レフレックスタイプのデジタルカメラ
4.2.適用例2:ヘッドマウントディスプレイ
4.3.適用例3:スマートフォン
4.4.適用例4:テレビジョン装置
4.5.適用例5:デジタルスチルカメラ
4.6.適用例6:パーソナルコンピュータ
4.7.適用例7:ビデオカメラ
4.8.適用例8:携帯電話機
<1.実施形態に係る表示装置>
[1.1.概要]
本開示の実施形態に係る表示装置は、発光部を駆動する駆動トランジスタを有する画素回路が配置されてなる表示装置であり、有機EL素子を画素の発光素子(電気光学素子)として用いた、所謂、有機EL表示装置である。
画素の発光部として有機EL素子を用いた有機EL表示装置は、次のような特長を持っている。すなわち、有機EL表示装置は、有機EL素子が10V以下の印加電圧で駆動できるため低消費電力である。また、有機EL素子が自発光型の素子であるために、有機EL表示装置は、同じ平面型の表示装置である液晶表示装置に比べて、画像の視認性が高く、しかも、バックライト等の照明部材を必要としないために軽量化及び薄型化が容易である。更に、有機EL素子の応答速度が数マイクロ秒程度と非常に高速であるために、有機EL表示装置は、動画表示時の残像が発生しない。
有機EL素子は、自発光型の素子であるとともに、電流駆動型の電気光学素子である。電流駆動型の電気光学素子としては、有機EL素子の他に、無機EL素子、LED素子、半導体レーザー素子などを例示することができる。
有機EL表示装置等の平面型の表示装置は、表示部を備える各種の電子機器において、その表示部(表示装置)として用いることができる。各種の電子機器としては、テレビジョンシステムの他、ヘッドマウントディスプレイ、デジタルカメラ、ビデオカメラ、EVF(Electronic View Finder)、ゲーム機、ノート型パーソナルコンピュータ、電子書籍等の携帯情報機器、PDA(Personal Digital Assistant)や携帯電話機等の携帯通信機器などを例示することができる。
[1.2.システム構成]
次に、図1及び図2を参照して、本開示の実施形態に係る表示装置の概略的なシステム構成について、一般的な表示装置のシステム構成を比較例1として、当該比較例1との相違点に着目して説明する。まず、図1を参照して、比較例1に係る表示装置の概略的なシステム構成について説明する。図1は、比較例1に係る表示装置の構成の概略を示したシステム構成図である。
図1に示すように、比較例1に係る表示装置は、電気光学素子に流れる電流を、当該電気光学素子と同じ画素回路内に設けた能動素子、例えば、絶縁ゲート型電界効果トランジスタによって制御する表示装置である。絶縁ゲート型電界効果トランジスタとしては、例えば、TFT(Thin Film Transistor;薄膜トランジスタ)が挙げられる。また、例えば、MicroOLED(Micro Organic Light−Emitting Diode)のように、絶縁ゲート型電界効果トランジスタを、基盤(シリコンプロセス)上にオンチップで形成する構成としてもよい。
ここでは、一例として、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子である例えば有機EL素子を、画素回路の発光部(発光素子)として用いるアクティブマトリクス型有機EL表示装置の場合を例に挙げて説明するものとする。なお、以降では、「アクティブマトリクス型有機EL表示装置」を単に「表示装置」と記載する場合がる。また、「画素回路」を単に「画素」と記述する場合もある。
例えば、比較例1に係る表示装置10aは、有機EL素子を含む複数の画素20が行列状に2次元配置されて成る画素アレイ部30と、当該画素アレイ部30の周辺に配置される駆動回路部(駆動部)とを有する構成となっている。駆動回路部は、例えば、画素アレイ部30と同じ表示パネル80上に搭載された書き込み走査部40、駆動走査部50、及び、信号出力部70を含み、画素アレイ部30の各画素20を駆動する。
ここで、表示装置10aがカラー表示対応の場合は、カラー画像を形成する単位となる1つの画素(単位画素/ピクセル)は複数の副画素(サブピクセル)から構成される。このとき、副画素の各々が図1の画素20に相当することになる。より具体的には、カラー表示対応の表示装置では、1つの画素は、例えば、赤色(Red;R)光を発光する副画素、緑色(Green;G)光を発光する副画素、青色(Blue;B)光を発光する副画素の3つの副画素から構成される。
但し、1つの画素としては、RGBの3原色の副画素の組み合わせに限られるものではなく、3原色の副画素に更に1色あるいは複数色の副画素を加えて1つの画素を構成することも可能である。より具体的には、例えば、輝度向上のために白色(White;W)光を発光する副画素を加えて1つの画素を構成したり、色再現範囲を拡大するために補色光を発光する少なくとも1つの副画素を加えて1つの画素を構成したりすることも可能である。
画素アレイ部30には、m行n列の画素20の配列に対して、行方向(画素行の画素の配列方向/水平方向)に沿って走査線31(31〜31)、及び駆動線32(32〜32)が画素行毎に配線されている。更に、m行n列の画素20の配列に対して、列方向(画素列の画素の配列方向/垂直方向)に沿って信号線34(34〜34)が画素列毎に配線されている。
走査線31〜31は、書き込み走査部40の対応する行の出力端にそれぞれ接続されている。駆動線32〜32は、駆動走査部50の対応する行の出力端にそれぞれ接続されている。信号線34〜34は、信号出力部70の対応する列の出力端にそれぞれ接続されている。
書き込み走査部40は、シフトレジスタ回路等によって構成されている。この書き込み走査部40は、画素アレイ部30の各画素20への映像信号の信号電圧の書き込みに際して、走査線31(31〜31)に対して書き込み走査信号WS(WS〜WS)を順次供給することによって画素アレイ部30の各画素20を行単位で順番に走査する(即ち、線順次走査を行う)。
駆動走査部50は、書き込み走査部40と同様に、シフトレジスタ回路等によって構成されている。この駆動走査部50は、書き込み走査部40による線順次走査に同期して、駆動線32(32〜32)に対して発光制御信号DS(DS〜DS)を供給することによって画素20の発光/非発光(消光)の制御を行う。
信号出力部70は、信号供給源(図示せず)から供給される輝度情報に応じた映像信号の信号電圧(以下、単に「信号電圧」と記述する場合もある)Vsigと基準電圧Vofsとを選択的に出力する。ここで、基準電圧Vofsは、映像信号の信号電圧Vsigの基準となる電圧(例えば、映像信号の黒レベルに相当する電圧)に相当する電圧、あるいは、その近傍の電圧であり、後述する補正動作を行なう際に用いられる初期化電圧である。
信号出力部70から択一的に出力される信号電圧Vsig/基準電圧Vofsは、信号線34(34〜34)を介して画素アレイ部30の各画素20に対して、書き込み走査部40による線順次走査によって選択された画素行の単位で書き込まれる。すなわち、信号出力部70は、信号電圧Vsigを画素行(ライン)単位で書き込む線順次書き込みの駆動形態を採っている。
次に、図2を参照して、本開示の実施形態に係る表示装置10のシステム構成について、前述した比較例1に係る表示装置10aと異なる部分に着目して説明する。図2は、本実施形態に係る表示装置10の構成の概略を示したシステム構成図である。なお、図2に示す例では、画素20を、RGBWの副画素、即ち、R画素20r、G画素20g、B画素20b、またはW画素20wとして構成した場合の一例を示している。また、以降では、R画素20r、G画素20g、B画素20b、またはW画素20wを特に区別しない場合には、単に「画素20」と記載する場合がある。
図2に示すように、本実施形態に係る表示装置10は、主に、画素アレイ部30の周辺に配置された駆動回路部の構成が、前述した比較例1に係る表示装置10aと異なる。即ち、本実施形態に係る駆動回路部は、例えば、画素アレイ部30と同じ表示パネル80上に搭載された書き込み走査部40、第1駆動走査部50、第2駆動走査部60、及び信号出力部70を含み、画素アレイ部30の各画素20を駆動する。なお、本実施形態に係る表示装置10の駆動部において、第1駆動走査部50は、比較例1に係る表示装置10aの駆動部における駆動走査部50に相当する。なお、本実施形態に係る表示装置10の駆動部の説明においては、比較例1に係る表示装置10aの駆動部における駆動線32に相当する構成を、「第1駆動線32」と称する。
また、本実施形態に係る表示装置10の駆動部は、第2駆動走査部60を備え、行方向に沿って第2駆動線33(33〜33)が画素行毎に配線されている点で、比較例1に係る表示装置10aの駆動部と異なる。第2駆動線33〜33は、第2駆動走査部60の対応する行の出力端にそれぞれ接続されている。
第2駆動走査部60は、書き込み走査部40と同様に、シフトレジスタ回路等によって構成されている。この第2駆動走査部60は、書き込み走査部40による線順次走査に同期して、第2駆動線33(33〜33)に対して駆動信号AZ(AZ〜AZ)を供給することによって非発光期間において画素20を発光しないようにする制御を行う。
なお、図2に示す例は、書き込み走査部40、第1駆動走査部50、第2駆動走査部60、及び、信号出力部70を表示パネル80上に設けるシステム構成を示しているが、必ずしもこのような構成に限定するものではない。例えば、書き込み走査部40、第1駆動走査部50、第2駆動走査部60、及び、信号出力部70のいくつか、あるいは全部を表示パネル80外に設ける構成としてもよい。
[1.3.比較例に係る画素回路の回路構成]
次に、図2に示した本実施形態に係る表示装置10の画素(画素回路)について説明するにあたり、本実施形態に係る表示装置10の課題を整理するために、同様のシステム構成を有する表示装置に適用可能な画素回路の例を比較例2として説明する。
まず、図3を参照しながら、比較例2に係る画素回路の回路構成について説明する。図3は、比較例2に係る画素(画素回路)20aの一例を示した回路図である。
画素20の発光部は、有機EL素子21から成る。有機EL素子21は、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子の一例である。
図3に示すように、画素20aは、有機EL素子21と、有機EL素子21に電流を流すことによって当該有機EL素子21を駆動する駆動回路とによって構成されている。有機EL素子21は、電源電圧Vss(全ての画素20に対して共通の電位)にカソード電極が接続されている。
有機EL素子21を駆動する駆動回路は、駆動トランジスタTr2、サンプリングトランジスタTr1、発光制御トランジスタTr3、スイッチングトランジスタTr4、保持容量Cs、及び、補助容量Csubを有する構成となっている。なお、本説明では、画素(画素回路)20aは、ガラス基板のような絶縁体上ではなく、シリコンのような半導体上に形成されるものして説明する。また、駆動トランジスタTr2は、Pチャネル型のトランジスタから成るものとする。
また、駆動トランジスタTr2と同様に、サンプリングトランジスタTr1、発光制御トランジスタTr3、及び、スイッチングトランジスタTr4についても、Pチャネル型のトランジスタを用いる構成を採るものとして説明する。従って、駆動トランジスタTr2、サンプリングトランジスタTr1、発光制御トランジスタTr3、及び、スイッチングトランジスタTr4は、ソース/ゲート/ドレインの3端子ではなく、ソース/ゲート/ドレイン/バックゲートの4端子となっている。各トランジスタのバックゲートには電源電圧Vccが印加される。なお、ゲートノードが「制御端子」の一例に相当し、ドレインノード及びソースノードが「第1の端子」及び「第2の端子」の一例に相当する。
上記の構成の画素20aにおいて、サンプリングトランジスタTr1は、信号出力部70から信号線34を通して供給される信号電圧Vsigをサンプリングすることによって駆動トランジスタTr2のゲートノード(ゲート電極)に書き込む。なお、ここでの「書き込む」という表現は、ゲートノードに対して信号電圧印加し、当該ゲートノードの電位が、当該信号電圧に基づく電位に保持されることを示すものとする。
発光制御トランジスタTr3は、電源電圧Vccの電源ノードと駆動トランジスタTr2のソースノード(ソース電極)との間に接続され、発光制御信号DSによる駆動の下に、有機EL素子21の発光/非発光を制御する。
スイッチングトランジスタTr4は、駆動トランジスタTr2のドレインノード(ドレイン電極)と電流排出先ノードViniとの間に接続され、駆動信号AZによる駆動の下に、有機EL素子21の非発光期間に有機EL素子21が発光しないように制御する。即ち、スイッチングトランジスタTr4は、導通状態となることで、有機EL素子21に電流が供給されないように、当該有機EL素子21を迂回する経路を形成する(即ち、バイパスする)役目を果たす。
保持容量Csは、駆動トランジスタTr2のゲートノードとソースノードとの間に接続されており、サンプリングトランジスタTr1によるサンプリングによって書き込まれた信号電圧Vsigを保持する。駆動トランジスタTr2は、保持容量Csの保持電圧に応じた駆動電流を有機EL素子21に流すことによって有機EL素子21を駆動する。
補助容量Csubは、駆動トランジスタTr2のソースノードと、固定電位のノード(例えば、電源電圧Vccの電源ノード)との間に接続されている。この補助容量Csubは、信号電圧Vsigを書き込んだときに駆動トランジスタTr2のソース電圧が変動するのを抑制するとともに、駆動トランジスタTr2のゲート−ソース間電圧Vgsを駆動トランジスタTr2の閾値電圧Vthにする作用を為す。
[1.4.比較例に係る画素回路の駆動方法]
次に、前述した比較例2に係る画素(画素回路)20aの駆動方法の一例について説明する。比較例2に係る駆動方法では、次のような駆動を行うことを特徴とする。先ず、駆動トランジスタTr2のソースノードが非フローティング状態にあるときにゲートノードに初期化電圧である基準電圧Vofsを書き込む。しかる後、サンプリングトランジスタTr1による信号電圧Vsigの書込みが行われるまでの間、駆動トランジスタTr2のゲートノード及びソースノードをフローティング状態にする。
以下に、比較例2に係る駆動方法について、図4のタイミング波形図を用いてより具体的に説明する。図4は、比較例2に係る駆動方法について説明するためのタイミング波形図である。図4のタイミング波形図には、発光制御信号DS、書込み走査信号WS、駆動信号AZ、信号線34の電位Vofs/Vsig、及び、駆動トランジスタTr2のソース電圧Vs、ゲート電圧Vgのそれぞれの変化の様子を示している。
発光制御信号DSがアクティブ状態(低電圧の状態)にあり、書込み走査信号WSが非アクティブ状態(高電圧の状態)にある時刻t11で、駆動信号AZがアクティブ状態となる。すなわち、駆動信号AZは、サンプリングトランジスタTr1による初期化電圧(即ち、基準電圧Vofs)のサンプリングタイミング(時刻t12)よりも前にアクティブ状態となる。そして、駆動信号AZがアクティブ状態になることで、スイッチングトランジスタTr4が導通状態になる。これにより、以降、駆動トランジスタTr2に流れる電流は、スイッチングトランジスタTr4を通して電流排出先ノードViniに流れ込むことになる。
次に、時刻t12で、書込み走査信号WSがアクティブ状態となり、これに応答してサンプリングトランジスタTr1が導通状態になる。このとき、発光制御トランジスタTr3が導通状態にあることで、駆動トランジスタTr2のソースノードには電源電圧Vccが印加された状態にある。すなわち、駆動トランジスタTr2のソースノードは非フローティング状態にある。この状態において、サンプリングトランジスタTr1によるサンプリングによって、基準電圧Vofsが駆動トランジスタTr2のゲートノードに書き込まれる。先述したように、基準電圧Vofsは、信号電圧Vsigと異なるタイミングで信号出力部70から信号線34に供給される。
そして、時刻t13で、書込み走査信号WSが非アクティブ状態となることで、基準電圧Vofsの書込みが終了する。すなわち、発光制御信号DSが非アクティブ状態になるタイミング(時刻t14)よりも前に、サンプリングトランジスタTr1による基準電圧Vofsの書込み(サンプリング)が完了する。なお、基準電圧Vofsを書き込むことによって駆動トランジスタTr2に電流Isdが流れるが、上述したように、スイッチングトランジスタTr4が導通状態にあることで、駆動トランジスタTr2に流れる電流Isdは、スイッチングトランジスタTr4を通して電流排出先ノードViniに流れ込む。従って、スイッチングトランジスタTr4が導通状態である期間においては、有機EL素子21が発光することがないため、表示パネル80のコントラストが低下することもない。
また、時刻t13で、書込み走査信号WSが非アクティブ状態となり、サンプリングトランジスタTr1が非導通状態になることで、駆動トランジスタTr2のゲートノードがフローティング状態になる。次いで、時刻t14で、発光制御信号DSが非アクティブ状態になり、発光制御トランジスタTr3が非導通状態になることで、駆動トランジスタTr2のソースノードがフローティング状態になる。すなわち、駆動トランジスタTr2のゲートノードに基準電圧Vofsを書き込んだ後、駆動トランジスタTr2のゲートノード、次いでソースノードの順にフローティング状態になる。
そして、駆動トランジスタTr2のゲートノード及びソースノードが共にフローティング状態になることで自己放電動作が行われる。自己放電動作での各ノードの電位の放電は、駆動トランジスタTr2、スイッチングトランジスタTr4、電流排出先ノードViniの経路を通して行なわれる。そして、自己放電動作によって駆動トランジスタTr2のソース電圧Vs及びゲート電圧Vgが共に徐々に低下していく。自己放電動作では、基本的に、駆動トランジスタTr2のソース電圧Vs及びゲート電圧Vgは、ゲート−ソース間電圧Vgsを維持しつつ低下していく。
自己放電動作が終了すると(即ち、自己放電に伴う、ソース電圧Vs及びゲート電圧Vgの変化が収束すると)、時刻t15で駆動信号AZが非アクティブ状態となり、これに応答してスイッチングトランジスタTr4が非導通状態となる。そして、時刻t16で、書込み走査信号WSがアクティブ状態となり、これに応答してサンプリングトランジスタTr1が導通状態になる。これにより、駆動トランジスタTr2のソースノードをフローティング状態にしたまま、サンプリングトランジスタTr1によるサンプリングによって信号電圧Vsig=Vccpの書込みが行われる。なお、電位Vccpは、電源電圧Vccの電位を示している。
時刻t17で、信号電圧Vsigの書込み動作が完了する。これにより、駆動トランジスタTr2のソース電圧Vsは、電源電圧Vccに固定された状態(非フローティング状態)となる。このとき、駆動トランジスタTr2のゲート電圧Vgは、ブートストラップ動作によって上昇する。その後、時刻t18で、発光制御信号DSがアクティブ状態になり、これに応答して発光制御トランジスタTr3が導通状態になる。
[1.5.比較例に係る画素回路の課題]
一方で、上述した比較例2に係る画素回路及びその駆動方法においては、時刻t18において、発光制御信号DSをアクティブ状態とした場合に、駆動トランジスタTr2のゲート−ソース間に電位差が生じる(即ち、ゲート−ソース間電圧Vgsが増加する)場合がある。
具体的には、発光制御信号DSをアクティブ状態に変化させた場合に、発光制御トランジスタTr3及び駆動トランジスタTr2それぞれのゲートノード間の寄生容量による容量カップリングにより、駆動トランジスタTr2のゲート電圧Vgが低下する場合がある。このとき、ソース電圧Vsは、電源電圧Vccに接地されているため、駆動トランジスタTr2のゲート電圧Vgのみが低下し、駆動トランジスタTr2のゲート−ソース間に電位差が生じる(即ち、ゲート−ソース間電圧Vgsが増加する)。このような現象は、特に、駆動トランジスタTr2として、ゲートノードに印可(保持)される信号電圧に応じて導通状態と非導通状態とが切り替わるPチャネル型のトランジスタを使用した場合に、Nチャネル型のトランジスタを使用した場合に比べて顕著に表れる傾向にある。
このような状況下においては、駆動トランジスタTr2のゲート−ソース間電圧Vgsが、当該駆動トランジスタTr2の閾値電圧Vthを超えていない場合でも、ソース−ドレイン間のリーク電流Isdを完全にカットオフできない場合ある。そのため、黒階調を表示させる場合においても、ソース−ドレイン間のリーク電流Isdが有機EL素子21を発光させる(例えば、グレーに発光させる)こととなり、コントラストを低下させる場合があった。
[1.6.本実施形態に係る画素回路]
そこで、本実施形態に係る画素回路及びその駆動方法は、黒階調を表示させる場合においても、コントラストの低下を抑止する(即ち、コントラストを向上させる)ためになされたものである。具体的には、本実施形態に係る画素回路及びその駆動方法では、寄生容量(即ち、発光制御トランジスタTr3及び駆動トランジスタTr2それぞれのゲートノード間の寄生容量)による容量カップリングにより、ゲート電圧Vgが低下した場合に、当該ゲート電圧Vgをソース電圧Vsよりも高くなるように制御する。このような制御に伴い、本実施形態に係る画素回路及びその駆動方法では、ソース−ドレイン間のリーク電流Isdが抑制されるため、比較例2に係る画素回路及びその駆動方法を適用した場合に、リーク電流Isdによるコントラストの低下を抑制することが可能となる。そこで、以降では、本実施形態に係る画素回路の回路構成について説明し、次いで、当該画素回路の駆動方法について説明する。
まず、図5を参照しながら、本実施形態に係る画素(画素回路)20の構成について、前述した比較例2に係る画素20a(図3参照)と異なる部分に着目して説明する。図5は、本実施形態に係る表示装置10における画素20の一例を示した回路図である。
図5に示すように、本実施形態に係る画素20は、スイッチングトランジスタTr4に駆動信号AZを供給する信号線33と、駆動トランジスタTr2のゲートノードに接続された信号線35との間に容量C1が形成されている点で、比較例に係る画素20aと異なる。
容量C1は、信号線33と信号線35とが互いに隣り合うように並走させることで形成される寄生容量であってもよいし、信号線33と信号線35との間にキャパシタを設けることで形成してもよい。なお、スイッチングトランジスタTr4が、「切替え部」の一例に相当する。また、信号線33が「第1の信号線」の一例に相当し、信号線35が「第2の信号線」の一例に相当する。
図5に示すように、容量C1を設けることで、駆動信号AZが、アクティブ状態から非アクティブ状態に変化した場合に、容量C1による容量カップリングにより、駆動トランジスタTr2のゲート電圧Vgが制御される。即ち、本実施形態に係る画素20では、発光制御トランジスタTr3及び駆動トランジスタTr2それぞれのゲートノード間の寄生容量による容量カップリングにより低下したゲート電圧Vgを、容量C1による容量カップリングによりソース電圧Vsよりも高くなるように制御する。なお、ゲート電圧Vgの制御量は、容量C1の静電容量に基づき決定されることは言うまでもない。換言すると、容量C1の静電容量を調整することにより、ゲート電圧Vgの制御量を決定すればよいこととなる。
上述のような構成のため、本実施形態に係る回路では、駆動トランジスタTr2とスイッチングトランジスタTr4とに同じ型のトランジスタを適用することが、画素20の回路構成を簡略化する観点で、より望ましい。即ち、駆動トランジスタTr2としてPチャネル型のトランジスタを適用した場合には、スイッチングトランジスタTr4についてもPチャネル型のトランジスタを適用することがより望ましいこととなる。
[1.7.本実施形態に係る画素回路の駆動方法]
次に、本実施形態に係る画素20の駆動方法の一例について、図6に示すタイミング波形図を用いてより具体的に説明する。図6は、本実施形態に係る駆動方法について説明するためのタイミング波形図である。なお、図6のタイミング波形図は、図4と同様に、発光制御信号DS、書込み走査信号WS、駆動信号AZ、信号線34の電位Vofs/Vsig、及び、駆動トランジスタTr2のソース電圧Vs、ゲート電圧Vgのそれぞれの変化の様子を示している。また、時刻t11〜t14の動作については、図4に示した比較例2に係る駆動方法と同様のため詳細な説明は省略する。
図6に示すように、本実施形態に係る駆動方法では、駆動信号AZがアクティブ状態から非アクティブ状態に変化するタイミングが、比較例2に係る駆動方法(図4参照)と異なる。具体的には、本実施形態に係る駆動方法では、時刻t16〜t17における、サンプリングトランジスタTr1によるサンプリング(即ち、書込み走査信号WSによるサンプリングトランジスタTr1の切り替え)によって、信号電圧Vsigが駆動トランジスタTr2のゲートノードに書き込まれた後に、駆動信号AZが非アクティブ状態となる。
具体的には、自己放電動作が終了し、時刻t16で、書込み走査信号WSがアクティブ状態となり、これに応答してサンプリングトランジスタTr1が導通状態になる。これにより、駆動トランジスタTr2のソースノードをフローティング状態にしたまま、サンプリングトランジスタTr1によるサンプリングによって信号電圧Vsig=Vccpの書込みが行われる。
時刻t17で、信号電圧Vsigの書込み動作が完了する。これにより、駆動トランジスタTr2のソース電圧Vsは、電源電圧Vccに固定された状態(非フローティング状態)となる。このとき、駆動トランジスタTr2のゲート電圧Vgは、ブートストラップ動作によって上昇する。
そして、時刻t18で、発光制御信号DSがアクティブ状態になり、これに応答して発光制御トランジスタTr3が導通状態になる。このとき、前述したように、発光制御トランジスタTr3及び駆動トランジスタTr2それぞれのゲートノード間の寄生容量による容量カップリングにより、ゲート電圧Vgが低下し、駆動トランジスタTr2のゲート電圧Vgがソース電圧Vsより低くなる。
次いで、時刻t25で、駆動信号AZが非アクティブ状態となり、スイッチングトランジスタTr4が非導通状態になる。また、駆動信号AZがアクティブ状態から非アクティブ状態に変化することで、容量C1によるカップリングにより、駆動トランジスタTr2のゲート電圧Vgが上昇する。即ち、時刻t25で、駆動信号AZが非アクティブ状態となることで、有機EL素子21が非発光状態から発光状態に切り替わり、当該切り替えに同期して、駆動トランジスタTr2のゲート電圧Vgが、ソース電圧Vsよりも高くなるように制御される。そのため、有機EL素子21が発光状態に切り替わった場合においても、駆動トランジスタTr2のソース−ドレイン間におけるリーク電流Isdが抑制される。
なお、上記では、時刻t18で、発光制御信号DSがアクティブ状態にした後、時刻t25で、駆動信号AZが非アクティブ状態としたが、信号電圧Vsigの書込み後であれば、駆動信号AZを非アクティブ状態とするタイミングは特に限定されない。具体的な一例として、駆動信号AZが非アクティブ状態とした後、発光制御信号DSをアクティブ状態としてもよい(即ち、時刻t18とt25のタイミングを逆にしてもよい)。
また、上記では、サンプリングトランジスタTr1、駆動トランジスタTr2、発光制御トランジスタTr3、及びスイッチングトランジスタTr4として、Pチャネル型のトランジスタを適用する例について説明したが、必ずしもこの構成に限定するものではない。例えば、サンプリングトランジスタTr1、駆動トランジスタTr2、発光制御トランジスタTr3、及びスイッチングトランジスタTr4の一部もしくは全部に、Nチャネル型のトランジスタを適用してもよい。なお、Nチャネル型のトランジスタを適用する場合には、図6に示した各信号(即ち、発光制御信号DS、走査信号WS、信号電圧Vsig/基準電圧Vofs、及び駆動信号AZ)のうち当該トランジスタに対応する信号を反転させればよいことは言うまでもない。また、サンプリングトランジスタTr1、駆動トランジスタTr2、発光制御トランジスタTr3、及びスイッチングトランジスタTr4それぞれの機能を実現できれば、これらのトランジスタは、必ずしも絶縁ゲート型電界効果トランジスタには限定されない。
また、上記に示す実施形態では、駆動トランジスタTr2のゲートノード及びソースノードをフローティング状態として自己放電動作が行われる例について説明したが、各ノードの電位の放電が行われれば、その構成は必ずしも限定されない。具体的な一例として、サンプリングトランジスタTr1を導通状態として、駆動トランジスタTr2のゲートノードに基準電圧Vofsを保持した状態で、放電動作を行わせる構成としてもよい。
また、容量C1による容量カップリングにより、駆動トランジスタTr2のゲート電圧Vgの制御を実現できれば、画素20の回路は、図5に示す例には必ずしも限定されない。例えば、図7は、画素(画素回路)20の他の一態様(画素20xとする)を示した回路図である。図7に示すように、スイッチングトランジスタTr4を設けない構成としてもよい。この場合には、信号線33は、容量C1による容量カップリングに基づくゲート電圧Vgの制御にのみ使用されることとなる。また、画素(画素回路)20を、図8に示すような回路構成としてもよい。図8は、画素(画素回路)20の他の一態様(画素20yとする)を示した回路図であり、図7に示す画素20xの回路構成を更に簡素化した例(即ち、有機EL素子21の発光/非発光の切り替えに係る構成を簡素化した例)である。
[1.8.まとめ]
以上説明したように、本実施形態に係る画素回路及びその駆動方法に依れば、黒階調を表示した場合の制御において、駆動トランジスタTr2のソース−ドレイン間におけるリーク電流Isdを抑制することが可能である。そのため、本実施形態に係る表示装置では、黒階調を表示した場合に、当該リーク電流Isdによる有機EL素子21の発光が抑止され、ひいては、コントラストの低下を抑制する(即ち、コントラストを向上させる)ことが可能となる。
<2.表示装置及び画素回路の実施例>
次に、前述した実施形態に係る表示装置10において、特に、画素(画素回路)20(図5参照)の構成に着目して、容量C1の形成に係る具体例を実施例として以下に説明する。
[2.1.実施例1]
まず、前述した実施形態に係る画素20において、容量C1を、信号線33と信号線35との間の寄生容量として形成する例を、実施例1として、図9を参照しながら説明する。図9は、実施例1に係る画素(画素回路)20の構成を説明するための概略的な断面図である。
図9は、駆動トランジスタTr2、スイッチングトランジスタTr4、駆動信号AZを供給する信号線33、及び駆動トランジスタTr2のゲートノードに接続された信号線35の、概略的な接続関係を示している。
なお、図9においては、図面に垂直な方向をx方向、図面の横方向をy方向、図面の縦方向をz方向として規定している。即ち、図9に示す例では、xy平面を層としてz方向に多層構造をなし、駆動トランジスタTr2及びスイッチングトランジスタTr4と、信号線33と、信号線35とがそれぞれ異なる層に配置された例を示している。
特に、図9に示すように、本実施例に係る画素20では、信号線33と信号線35とが、互いに隣り合う層にそれぞれ設置され、かつ、信号線33と信号線35とが並走するように設けられている。
このような構成により、信号線33と信号線35とが並走する部分(即ち、信号線33と信号線35とがz方向に重畳する部分)に寄生容量が発生する。即ち、本実施例に係る画素20では、信号線33と信号線35との間の当該寄生容量を容量C1として利用して、当該容量C1による容量カップリングにより、駆動トランジスタTr2のゲート電圧Vgの制御を実現する。
なお、ゲート電圧Vgの制御量は、容量C1の静電容量に基づき決定される。そのため、信号線33と信号線35とが重畳する面積と、信号線33と信号線35との間の幅とを調整することで、ゲート電圧Vgの制御量を調整可能であることは言うまでもない。
なお、この場合には、信号線33(即ち、第1の信号線)は、信号線35(即ち、第2の信号線)と重畳する部分(即ち、容量C1を形成する部分)において、信号線の面積(図9におけるxy平面上の面積)が最も大きくなるように設けられていてもよい。
[2.2.実施例2]
次に、実施例2として、信号線33と信号線35との間にキャパシタを設けることで、容量C1を形成する例について、図10を参照しながら説明する。図10は、実施例2に係る画素(画素回路)20の構成を説明するための概略的な断面図である。なお、図10では、前述した図9と同一の座標系を採用している。
図10に示す例は、駆動トランジスタTr2、スイッチングトランジスタTr4、信号線33、及び信号線35の位置関係は、図9に示した実施例1に係る画素20の場合と同様である。一方で、図10に示す例は、信号線33と信号線35との間にキャパシタC1aを設けることで、容量C1を形成している点で、図9に示した実施例1に係る画素20の場合と異なる。
キャパシタC1aとしては、例えば、絶縁層を金属で挟み込んだ、所謂、MIM(metal−insulator−metal)構造によるキャパシタを適用することが可能である。もちろん、信号線33と信号線35との間に容量C1を形成可能であれば、キャパシタC1の態様は、MIM構造によるキャパシタに限られない点は言うまでもない。
以上のように、本実施例に係る画素20では、信号線33と信号線35との間にキャパシタC1aを設けることで容量C1を形成し、当該容量C1による容量カップリングにより、駆動トランジスタTr2のゲート電圧Vgの制御を実現する。
[2.3.実施例3]
次に、実施例3として、容量C1を、信号線33と信号線35との間の寄生容量として形成する他の一例について、図11を参照しながら説明する。図11は、実施例3に係る画素(画素回路)20の構成を説明するための概略的な断面図である。なお、図11では、前述した図9と同一の座標系を採用している。
図11に示す例では、信号線33と信号線35とが同一層上に配置されている点で、図9に示した実施例1に係る画素20と異なる。即ち、信号線33及び信号線35のz方向に沿った厚みが、容量C1を形成し得るだけの厚みを有する場合には、同一層上に形成された信号線33と信号線35との間の寄生容量により、容量C1を形成することも可能である。
具体的には、図11に示すように、本実施例に係る画素20では、信号線33と信号線35とが、同一層上において互いに隣り合い、かつ、並走するように設けられている。例えば、図11に示す例の場合には、信号線33と信号線35とを、y方向に互いに隣り合い、かつ、x方向に向けて並走するように設けられている。
なお、この場合には、信号線33(即ち、第1の信号線)は、信号線35(即ち、第2の信号線)に並走する部分(即ち、容量C1を形成する部分)において、当該信号線35との間の配線間距離が最も短くなるように設けられていてもよい。
このような構成により、信号線33と信号線35とが並走する部分に寄生容量が発生する。即ち、本実施例に係る画素20では、信号線33と信号線35との間の当該寄生容量を容量C1として利用して、当該容量C1による容量カップリングにより、駆動トランジスタTr2のゲート電圧Vgの制御を実現する。
[2.4.実施例4]
次に、実施例4に係る表示装置10について説明する。前述の通り、各画素20は、それぞれ異なる色の副画素として構成することが可能であり、例えば、赤色光、緑色光、及び青色光を発光する各副画素と、白色光を発光する副画素とを1つの画素として構成することが可能である。
一方で、赤色光、緑色光、及び青色光を発光する各副画素と、白色光を発光する副画素とでは、各有機EL素子21に供給される電流(即ち、電流Isd)の変化に伴うコントラストの影響が異なる場合が少なくない。
例えば、赤色光、緑色光、及び青色光を出力する場合には、有機EL素子21から出射した光を、カラーフィルタを透過させることで外部に出力することで、当該赤色光、緑色光、及び青色光の出力を実現する。これに対して、白色光を出力する場合には、カラーフィルタを介さずに有機EL素子21から出射した光を出力することで、当該白色光の出力を実現する。
赤色光、緑色光、及び青色光を出力する場合のように、カラーフィルタを適用する場合には、有機EL素子21から出射した光は、当該カラーフィルタを透過することで減衰する。そのため、有機EL素子21に供給される電流の量が変化したとしても、カラーフィルタを透過することで、当該電流の変化に伴う有機EL素子21から出射した光の変化量も減衰する。これに対して、白色光を出力する場合には、有機EL素子21から出射した光を、カラーフィルタを透過させずに出力するため、有機EL素子21に供給される電流の量が変化した場合の影響が、赤色光、緑色光、及び青色光を出力する場合に比べて大きい。
このような場合を鑑みて、実施例4に係る表示装置10では、各画素20に対応する光の種類(即ち、当該画素20から外部に出力される光の種類)に応じて、ゲート電圧Vgの制御量として、異なる値を設定する。具体的には、実施例4に係る表示装置10では、白色光を出力する画素20wにおけるゲート電圧Vgの制御量を、赤色光、緑色光、及び青色光を出力する画素20r、20g、及び20bに比べて大きくなるように設定する。即ち、当該表示装置10では、画素20wに設けられた容量C1の静電容量が、画素20r、20g、及び20bに形成された容量C1の静電容量よりも大きくなるように、各画素20に容量C1を形成する。
例えば、図12は、本実施例に係る表示装置10の構成を説明するための概略的な平面図であり、本実施例に係る表示装置10を実現するための構成の一例を示している。
なお、図12においては、図面の横方向をx方向、図面の縦方向をy方向、図面に垂直な方向をz方向として規定している。即ち、図12に示す例では、xy平面を層としてz方向に多層構造をなし、サンプリングトランジスタTr1、駆動トランジスタTr2、発光制御トランジスタTr3、及びスイッチングトランジスタTr4とが同一層に設置されている。
また、図12に示した本実施例に係る表示装置10では、各画素20において、前述した実施例1と同様の方法で、容量C1を形成している。即ち、図12に示す例では、各トランジスタTr1〜Tr4と、駆動信号AZを供給する信号線33と、駆動トランジスタTr2のゲートノードに接続された信号線35とは、それぞれ異なる層に配置されている。具体的には、信号線35が設置された層は、各トランジスタTr1〜Tr4が設置された層の上部に、互いに隣り合うように設けられている。また、信号線33が設置された層は、信号線35が設置された層に、互いに隣り合うように設けられている。また、各画素20における、信号線33と信号線35とは、それぞれの少なくとも一部が並走するように設置されており、当該信号線33と信号線35とが並走する(即ち、z方向に重畳する)部分に容量C1が形成される。
このとき、画素20wにおいて、信号線33と信号線35とが重畳する領域331は、例えば、画素20r、20g、及び20bにおいて、信号線33と信号線35とが重畳する領域332に比べて面積が大きくなるように形成されている。このような構成により、画素20wにおける容量C1の静電容量は、画素20r、20g、及び20bにおける容量C1の静電容量より大きくなる。即ち、図12に示す表示装置10では、白色光を出力する画素20wにおけるゲート電圧Vgの制御量が、赤色光、緑色光、及び青色光を出力する画素20r、20g、及び20bに比べて大きくなる。
なお、各画素に形成される容量C1の静電容量を調整する観点は、上記に示すような、有機EL素子21から出射された光がカラーフィルタを透過して出力されるか否かには限定されない。具体的な一例として、白色光は、発光量の変化に伴う視認性の変化が、赤色光、緑色光、及び青色光における視認性の変化に比べて目立つ場合が少なくない。そのため、カラーフィルタの有無に限らず、白色光を出力する画素20に形成された容量C1の静電容量を、赤色光、緑色光、及び青色光を出力する画素20に形成された容量C1の静電容量より大きくなるように、各画素20に容量C1を形成してもよい。また、他の一例として、有機EL素子21の発光量(例えば、輝度)に応じて、画素20に形成された容量C1の静電容量を形成してもよい。即ち、有機EL素子21の発光量が高い画素20ほど、当該画素20に形成される容量C1の静電容量が大きくなるように、当該容量C1を形成してもよい。
また、画素20wにおける容量C1の静電容量が、画素20r、20g、及び20bにおける容量C1の静電容量より大きくなるように構成できれば、図12に示すように、信号線33と信号線35と重畳する面積に応じて静電容量を調整する例には限定されない。例えば、信号線33と信号線35と間にキャパシタを設けることで容量C1を形成する場合には、当該キャパシタの電極間における誘電率を調整することで(即ち、電極間に介在させる誘電体または絶縁体を適宜選択することで)、各画素20における容量C1の静電容量を調整してもよいことは言うまでもない。
<3.電子機器>
以上説明した本開示の表示装置は、電子機器に入力された映像信号、若しくは、電子機器内で生成した映像信号を、画像若しくは映像として表示するあらゆる分野の電子機器において、その表示部(表示装置)として用いることが可能である。この場合には、例えば、当該電子機器の制御ユニット(例えば、CPU:Central Processing UnitやMPU:Micro−Processing Unit)が、表示装置内の書き込み走査部40、第1駆動走査部50、第2駆動走査部60、及び信号出力部70の動作を制御してもよい。また、他の一例として、表示装置内の書き込み走査部40、第1駆動走査部50、第2駆動走査部60、及び信号出力部70の機能の一部または全部を、当該電子機器の制御ユニットに設ける構成としてもよい。
上述した実施形態の説明から明らかなように、本開示の表示装置は、黒階調を表示した場合の制御において、駆動トランジスタTr2のソース−ドレイン間におけるリーク電流Isdを抑制することが可能である。そのため、本実施形態に係る表示装置では、黒階調を表示した場合に、当該リーク電流Isdによる有機EL素子21の発光が抑止され、ひいては、コントラストの低下を抑制する(即ち、コントラストを向上させる)ことが可能となる。
本開示の表示装置を表示部に用いる電子機器としては、テレビジョンシステムの他、例えば、ヘッドマウントディスプレイ、デジタルカメラ、ビデオカメラ、EVF、ゲーム機器、ノート型パーソナルコンピュータなどを例示することができる。また、本開示の表示装置は、電子書籍機器や電子腕時計等の携帯情報機器や、携帯電話機やPDA等の携帯通信機器などの電子機器において、その表示部として用いることもできる。
<4.モジュール及び適用例>
上記に示した実施形態に係る表示装置のモジュール及び適用例について、以下に具体的な例を挙げて説明する。
[4.0.モジュール]
上記実施の形態の表示装置は、例えば、図13に示したようなモジュールとして、後述する適用例1〜8などの電子機器に組み込まれる。このモジュールは、例えば、基板400の一辺に、封止用基板(表示パネル80)から露出した領域401を設け、この露出した領域401に、書き込み走査部40、第1駆動走査部50、第2駆動走査部60、及び、信号出力部70の配線を延長して外部接続端子(図示せず)を形成したものである。外部接続端子には、信号の入出力のためのフレキシブルプリント配線基板(FPC;Flexible Printed Circuit)402が設けられていてもよい。
[4.1.適用例1:レンズ交換式一眼レフレックスタイプのデジタルカメラ]
図14は、上記実施の形態の表示装置が適用される撮像装置(レンズ交換式一眼レフレックスタイプのデジタルカメラ)の外観を表したものである。この撮像装置は、例えば、カメラ本体部(カメラボディ)411の正面右側に交換式の撮影レンズユニット(交換レンズ)412を有し、正面左側に撮影者が把持するためのグリップ部413を有している。カメラ本体部411の背面略中央にはモニタ414が設けられている。モニタ414の上部には、ビューファインダ(接眼窓)415が設けられている。撮影者は、ビューファインダ415を覗くことによって、撮影レンズユニット412から導かれた被写体の光像を視認して構図決定を行うことが可能である。このビューファインダ415は、上記実施の形態に係る表示装置により構成されている。
[4.2.適用例2:ヘッドマウントディスプレイ]
図15は、上記実施の形態の表示装置が適用されるヘッドマウントディスプレイの外観を表したものである。このヘッドマウントディスプレイは、例えば、眼鏡形の表示部421の両側に、使用者の頭部に装着するための耳掛け部422を有しており、その表示部421は、上記実施の形態に係る表示装置により構成されている。
[4.3.適用例3:スマートフォン]
図16は、スマートフォンの外観を表している。このスマートフォンは、例えば、表示部431(表示装置10)および非表示部(筐体)432と、操作部433とを備えている。操作部433は、(A)に示したように非表示部432の前面に設けられていてもよいし、(B)に示したように上面に設けられていてもよい。
[4.4.適用例4:テレビジョン装置]
図17はテレビジョン装置の外観構成を表している。このテレビジョン装置は、例えば、フロントパネル441およびフィルターガラス442を含む映像表示画面部440(表示装置10)を備えている。
[4.5.適用例5:デジタルスチルカメラ]
図18は、デジタルスチルカメラの外観構成を表しており、(A)および(B)は、それぞれ前面および後面を示している。このデジタルスチルカメラは、例えば、フラッシュ用の発光部451と、表示部452(表示装置10)と、メニュースイッチ453と、シャッターボタン454とを備えている。
[4.6.適用例6:パーソナルコンピュータ]
図19は、ノート型のパーソナルコンピュータの外観構成を表している。このパーソナルコンピュータは、例えば、本体461と、文字等の入力操作用のキーボード462と、画像を表示する表示部463(表示装置10)とを備えている。
[4.7.適用例7:ビデオカメラ]
図20は、ビデオカメラの外観構成を表している。このビデオカメラは、例えば、本体部471と、その本体部471の前方側面に設けられた被写体撮影用のレンズ472と、撮影時のスタート/ストップスイッチ473と、表示部474(表示装置10)とを備えている。
[4.8.適用例8:携帯電話機]
図21は、携帯電話機の外観構成を表している。(A)および(B)は、それぞれ携帯電話機を開いた状態の正面および側面を示している。(C)〜(G)は、それぞれ携帯電話機を閉じた状態の正面、左側面、右側面、上面および下面を示している。この携帯電話機は、例えば、上側筐体481と下側筐体482とが連結部(ヒンジ部)483により連結されたものであり、ディスプレイ484(表示装置10)と、サブディスプレイ485と、ピクチャーライト486と、カメラ487とを備えている。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
制御端子と、第1の端子、及び第2の端子を備え、前記第1の端子に接続された、電流量に応じて発光する発光素子への電流の供給を、前記制御端子に印可された信号電圧に応じて制御する駆動トランジスタと、
導通状態と非導通状態とを切替え可能に構成され、前記導通状態となることで、前記発光素子に電流が供給されないように当該発光素子を迂回する経路を形成する切替え部と、
前記制御端子への前記信号電圧の書き込み後に、前記切替え部を前記導通状態から前記非導通状態となるように制御し、当該切替え部の制御に同期して、前記制御端子の電位を制御する制御部と、
を備えた、表示装置。
(2)
前記制御部は、第1の信号線を介して前記切替え部に制御信号を供給することで、前記導通状態と前記非導通状態との切替えを制御し、
前記第1の信号線と、前記制御端子に接続された第2の信号線との間に容量が形成され、
前記制御信号が、前記容量を介して前記制御端子に供給されることで、当該制御端子の電位が制御される、前記(1)に記載の表示装置。
(3)
前記容量は、前記第1の信号線と前記第2の信号線とが互いに隣り合って並走するように設けられることで形成される、前記(2)に記載の表示装置。
(4)
前記第1の信号線と、前記第2の信号線とは、多層構造の配線中において、互いに隣り合う異なる層にそれぞれ設けられ、
前記容量は、前記第1の信号線と前記第2の信号線とが重畳するように配置されることで形成される、前記(3)に記載の表示装置。
(5)
前記第1の信号線は、前記第2の信号線と重畳する部分において、信号線の面積が最も大きくなるように設けられている、前記(4)に記載の表示装置。
(6)
前記第1の信号線と、前記第2の信号線とは、同一層の配線として設けられ、
前記容量は、前記第1の信号線と前記第2の信号線とが、前記同一層上において、互いに隣り合って並走するように設けられることで形成される、前記(3)に記載の表示装置。
(7)
前記第1の信号線は、前記第2の信号線と並走する部分において、配線間距離が最も短くなるように設けられている、前記(6)に記載の表示装置。
(8)
前記発光素子と、前記駆動トランジスタと、前記切替え部とを含む画素を複数備え、
前記制御部は、複数の前記画素それぞれの前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差を、当該画素に対応する光に応じて制御する、前記(1)〜(7)のいずれか一項に記載の表示装置。
(9)
前記複数の画素のうち、第1の画素中の発光素子から照射された光は、カラーフィルタを透過して外部に出力され、前記第1の画素とは異なる第2の画素中の発光素子から照射された光は、前記カラーフィルタを介さずに外部に出力され、
前記制御部は、前記第2の画素中の前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差が、前記第1の画素中の前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差よりも大きくなるように、前記第1の画素及び前記第2の画素それぞれの前記駆動トランジスタの前記制御端子の電位を制御する、前記(8)に記載の表示装置。
(10)
前記複数の画素のうち、第1の画素中の発光素子は、赤色光、青色光、もしくは緑色光を出力し、
前記第1の画素とは異なる第2の画素中の発光素子は、白色光を出力し、
前記制御部は、前記第2の画素中の前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差が、前記第1の画素中の前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差よりも大きくなるように、前記第1の画素及び前記第2の画素それぞれの前記駆動トランジスタの前記制御端子の電位を制御する、前記(8)に記載の表示装置。
(11)
前記複数の画素それぞれについて、前記制御部が当該画素中の前記切替え部に制御信号を供給する信号線と、当該画素中の駆動トランジスタの前記制御端子に接続された信号線との間に、当該画素に対応する光に応じた容量が形成され、
前記制御信号が、前記複数の画素それぞれに対応する前記容量を介して、当該画素中の駆動トランジスタの前記制御端子に供給されることで、当該制御端子の電位が制御される、前記(8)〜(10)のいずれか一項に記載の表示装置。
(12)
制御端子と、第1の端子、及び第2の端子を備え、前記第1の端子に接続された、電流量に応じて発光する発光素子への電流の供給を、前記制御端子に印可された信号電圧に応じて制御する駆動トランジスタと、
導通状態と非導通状態とを切替え可能に構成され、前記導通状態となることで、前記発光素子に電流が供給されないように当該発光素子を迂回する経路を形成する切替え部と、
前記制御端子への前記信号電圧の書き込み後に、前記切替え部を前記導通状態から前記非導通状態となるように制御し、当該切替え部の制御に同期して、前記制御端子の電位を制御する制御部と、
を備えた、電子機器。
(13)
制御端子、第1の端子、及び第2の端子を備えた駆動トランジスタが、前記第1の端子に接続された、電流量に応じて発光する発光素子への電流の供給を、前記制御端子に印可された信号電圧に応じて制御することと、
導通状態と非導通状態とを切替え可能に構成された切替え部を、前記導通状態に制御することで、前記発光素子に電流が供給されないように当該発光素子を迂回する経路を形成することと、
プロセッサが、前記制御端子への前記信号電圧の書き込み後に、前記切替え部を前記導通状態から前記非導通状態となるように制御し、当該切替え部の制御に同期して、前記制御端子の電位を制御することと、
を含む表示装置の駆動方法。
10 表示装置
20 画素
21 有機EL素子
30 画素アレイ部
40 走査部
50 第1駆動走査部
60 第2駆動走査部
70 信号出力部
80 表示パネル
Cs 保持容量
Csub 補助容量
Tr1 サンプリングトランジスタ
Tr2 駆動トランジスタ
Tr3 発光制御トランジスタ
Tr4 スイッチングトランジスタ

Claims (14)

  1. 発光素子と、
    制御端子と、第1の端子、及び第2の端子で構成し、前記第2の端子は前記発光素子と接続する駆動トランジスタと、
    前記発光素子と接続するスイッチングトランジスタと、
    前記発光素子に電気的に接続される発光制御トランジスタと、
    前記駆動トランジスタ、前記スイッチングトランジスタ、及び前記発光制御トランジスタの動作を制御する制御部と、
    を有し、
    前記制御部は、前記発光素子により黒階調を表示する場合、前記駆動トランジスタを導通状態から非導通状態へ遷移させ、前記発光制御トランジスタを非導通状態から導通状態へ遷移させたのち、前記スイッチングトランジスタを、導通状態から非導通状態へ遷移させることにより、前記スイッチングトランジスタの駆動信号の信号線と前記駆動トランジスタのゲート間に容量によるカップリングにより前記駆動トランジスタのゲート電圧を変動させて、前記駆動トランジスタにおけるリーク電流を抑制する、
    表示装置。
  2. 前記駆動トランジスタは、電流量に応じて発光する前記発光素子への電流の供給を、前記制御端子に印可された信号電圧に応じて制御する、
    請求項1に記載の表示装置。
  3. 前記スイッチングトランジスタは、導通状態となることで、前記発光素子に電流が供給されないように当該発光素子を迂回する経路を形成する、
    請求項1に記載の表示装置。
  4. 前記制御部は、第1の信号線を介した前記スイッチングトランジスタへの制御信号の供給に応じて、前記導通状態と前記非導通状態との切り替えを制御することで、前記制御端子への前記信号電圧の書き込み後に、前記スイッチングトランジスタを前記導通状態から前記非導通状態となるように制御する、
    請求項2に記載の表示装置。
  5. 前記第1の信号線と、前記制御端子に接続された第2の信号線と、が互いに隣り合って並走するように設けられることで、当該第1の信号線と当該第2の信号線との間に容量が形成される、
    請求項4に記載の表示装置。
  6. 前記制御信号が、前記容量を介して前記制御端子に供給されることで、前記スイッチングトランジスタの制御に同期して当該制御端子の電位が制御される、
    請求項5に記載の表示装置。
  7. 前記第1の信号線と、前記第2の信号線とは、多層構造の配線中において、互いに隣り合う異なる層にそれぞれ設けられ、
    前記容量は、前記第1の信号線と前記第2の信号線とが重畳するように配置されることで形成される、
    請求項5に記載の表示装置。
  8. 前記第1の信号線は、前記第2の信号線と重畳する部分において、信号線の面積が最も大きくなるように設けられている、
    請求項5に記載の表示装置。
  9. 前記第1の信号線と、前記第2の信号線とは、同一層の配線として設けられ、
    前記容量は、前記第1の信号線と前記第2の信号線とが、前記同一層上において、互いに隣り合って並走するように設けられることで形成される、
    請求項5に記載の表示装置。
  10. 前記第1の信号線は、前記第2の信号線と並走する部分において、配線間距離が最も短くなるように設けられている、
    請求項5に記載の表示装置。
  11. 前記発光素子と、前記駆動トランジスタと、前記スイッチングトランジスタと、前記発光制御トランジスタとを含む画素を複数備え、
    前記制御部は、複数の前記画素それぞれの前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差を、当該画素に対応する光に応じて制御する、
    請求項4に記載の表示装置。
  12. 前記複数の画素のうち、第1の画素中の発光素子から照射された光は、カラーフィルタを透過して外部に出力され、前記第1の画素とは異なる第2の画素中の発光素子から照射された光は、前記カラーフィルタを介さずに外部に出力され、
    前記制御部は、前記第2の画素中の前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差が、前記第1の画素中の前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差よりも大きくなるように、前記第1の画素及び前記第2の画素それぞれの前記駆動トランジスタの前記制御端子の電位を制御する、
    請求項11に記載の表示装置。
  13. 前記複数の画素のうち、第1の画素中の発光素子は、赤色光、青色光、もしくは緑色光を出力し、
    前記第1の画素とは異なる第2の画素中の発光素子は、白色光を出力し、
    前記制御部は、前記第2の画素中の前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差が、前記第1の画素中の前記駆動トランジスタにおける前記制御端子と前記第2の端子との間の電位差よりも大きくなるように、前記第1の画素及び前記第2の画素それぞれの前記駆動トランジスタの前記制御端子の電位を制御する、
    請求項11に記載の表示装置。
  14. 前記複数の画素それぞれについて、前記制御部が当該画素中の前記スイッチングトランジスタに制御信号を供給する信号線と、当該画素中の駆動トランジスタの前記制御端子に接続された信号線との間に、当該画素に対応する光に応じた容量が形成され、
    前記制御信号が、前記複数の画素それぞれに対応する前記容量を介して、当該画素中の駆動トランジスタの前記制御端子に供給されることで、当該制御端子の電位が制御される、
    請求項11に記載の表示装置。
JP2017121819A 2017-06-22 2017-06-22 表示装置 Expired - Fee Related JP6658680B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017121819A JP6658680B2 (ja) 2017-06-22 2017-06-22 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121819A JP6658680B2 (ja) 2017-06-22 2017-06-22 表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013236795A Division JP6164059B2 (ja) 2013-11-15 2013-11-15 表示装置、電子機器、及び表示装置の駆動方法

Publications (3)

Publication Number Publication Date
JP2017203991A JP2017203991A (ja) 2017-11-16
JP2017203991A5 JP2017203991A5 (ja) 2018-03-01
JP6658680B2 true JP6658680B2 (ja) 2020-03-04

Family

ID=60322889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121819A Expired - Fee Related JP6658680B2 (ja) 2017-06-22 2017-06-22 表示装置

Country Status (1)

Country Link
JP (1) JP6658680B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048305B2 (ja) * 2017-12-25 2022-04-05 株式会社ジャパンディスプレイ 表示装置
JP2020085959A (ja) * 2018-11-16 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 画素回路、表示装置、画素回路の駆動方法および電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547605B2 (ja) * 2004-01-19 2010-09-22 ソニー株式会社 表示装置及びその駆動方法
US8760374B2 (en) * 2004-05-21 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Display device having a light emitting element
JP4883933B2 (ja) * 2005-04-27 2012-02-22 三洋電機株式会社 表示装置
JP2009294508A (ja) * 2008-06-06 2009-12-17 Sony Corp 表示装置、表示装置の駆動方法および電子機器
KR101152466B1 (ko) * 2010-06-30 2012-06-01 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
KR101869056B1 (ko) * 2012-02-07 2018-06-20 삼성디스플레이 주식회사 화소 및 이를 이용한 유기 발광 표시 장치

Also Published As

Publication number Publication date
JP2017203991A (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
US11551617B2 (en) Display device, electronic device, and driving method of display device
JP3772889B2 (ja) 電気光学装置およびその駆動装置
JP7216242B2 (ja) 表示装置
JP4775408B2 (ja) 表示装置、表示装置における配線のレイアウト方法および電子機器
JP2018151506A (ja) 画素回路、電気光学装置および電子機器
JP2006091923A (ja) 電気光学装置および電子機器
JP2017068033A (ja) 表示素子、表示素子の駆動方法、表示装置、及び、電子機器
JP2019082548A (ja) 画素回路、表示装置、画素回路の駆動方法および電子機器
JP6658680B2 (ja) 表示装置
CN109643509B (zh) 显示装置和电子装置
JP5793058B2 (ja) 表示パネル、表示装置および電子機器
JP2017083609A (ja) 表示装置、表示装置の駆動方法、表示素子、及び、電子機器
KR101992491B1 (ko) 화소 회로, 표시 패널, 표시 장치 및 전자 기기
JP2011221165A (ja) 表示装置、電子機器、表示装置の駆動方法
JP5239812B2 (ja) 表示装置、表示装置の駆動方法および電子機器
JP5737568B2 (ja) 表示パネル、表示装置および電子機器
JP2009047766A (ja) 表示装置および電子機器
JPWO2019203027A1 (ja) 表示装置及び電子機器
JP5737570B2 (ja) 表示装置および電子機器
JP5766491B2 (ja) 発光パネル、表示装置および電子機器
JP2008287194A (ja) 表示装置
JP5168116B2 (ja) 表示装置、表示装置の駆動方法および電子機器
JP5309946B2 (ja) 表示装置および電子機器
JP2010060805A (ja) 表示装置、表示装置の駆動方法および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6658680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees