JP6658482B2 - 充電装置 - Google Patents

充電装置 Download PDF

Info

Publication number
JP6658482B2
JP6658482B2 JP2016236931A JP2016236931A JP6658482B2 JP 6658482 B2 JP6658482 B2 JP 6658482B2 JP 2016236931 A JP2016236931 A JP 2016236931A JP 2016236931 A JP2016236931 A JP 2016236931A JP 6658482 B2 JP6658482 B2 JP 6658482B2
Authority
JP
Japan
Prior art keywords
transformer
charging
current
limit value
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016236931A
Other languages
English (en)
Other versions
JP2018093668A (ja
Inventor
卓矢 佐藤
卓矢 佐藤
紀佳 林
紀佳 林
亮輔 鯉江
亮輔 鯉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016236931A priority Critical patent/JP6658482B2/ja
Publication of JP2018093668A publication Critical patent/JP2018093668A/ja
Application granted granted Critical
Publication of JP6658482B2 publication Critical patent/JP6658482B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Ac-Ac Conversion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車載蓄電装置を充電するための充電装置に関するものである。
車載バッテリ等の蓄電装置を充電する充電装置において、充電電力に制限を加える技術が知られている(特許文献1等)。特許文献1に開示の車両の電源装置においては、充電器による充電開始から充電完了までの間、車両外部の充電スタンドまたは充電ケーブルユニットが耐熱温度を超えるおそれがあるか否かを示す温度情報を車両外部から受信する。そして、充電スタンドまたは充電ケーブルユニットが耐熱温度を超えるおそれがある場合には、電池に必要な残充電量に基づいて充電器の充電電力を制限している。
特開2015−233366号公報
ところで、充電電流を制限するための制限値を高く設定すると絶縁分離トランスが過熱するリスクが高くなる。これを回避するためにはサーミスタなどで温度を検出して充電電流を低下させるなどの手段が必要となり、コストアップ等を招くことになる。
本発明の目的は、容易にトランスの過熱を回避しつつ速やかに車載蓄電装置を充電することができる充電装置を提供することにある。
請求項1に記載の発明では、トランスによって入力と出力が電気的に絶縁され、入力電力を電力変換して出力に接続された車載蓄電装置を充電する充電装置であって、前記トランスの二次電流を制御可能なトランス二次電流制御手段を備え、前記トランスの二次電流の制限値を2段以上有し、充電中において第1段目の電流制限値は、第2段目の電流制限値よりも大きな値が設定され、第2段目以降は、前段よりも小さな電流制限値が設定されており、前記トランス二次電流制御手段は、前記トランスの二次電流を前記2段以上の電流制限値で制限することを要旨とする。
請求項1に記載の発明によれば、トランス二次電流制御手段は、トランスの二次電流を2段以上の電流制限値で制限する。充電中において第1段目の電流制限値は、第2段目の電流制限値よりも大きな値が設定され、第2段目以降は、前段よりも小さな電流制限値が設定されているので、充電電力量を多くできるとともにトランスの過熱を回避することができ、これにより、充電電力を多く確保したまま、コストアップを招くことなくトランスの過熱を回避することができる。その結果、容易にトランスの過熱を回避しつつ速やかに車載蓄電装置を充電することができる。
請求項2に記載のように、請求項1に記載の充電装置において、前記トランス二次電流制御手段は、前記第1段目の電流制限値とした前記トランスの二次電流の制御から前記第2段目の電流制限値とした前記トランスの二次電流の制御への切替えを、充電の開始からの充電の継続時間が規定値に達した時に行うとよい。
請求項3に記載のように、請求項2に記載の充電装置において、操作部材により前記規定値を設定可能とするとよい。
請求項4に記載のように、請求項2に記載の充電装置において、外気温度に基づいて前記規定値が補正されるとよい。
請求項5に記載のように、請求項1に記載の充電装置において、操作部材により前記第1段目の電流制限値を設定可能とするとよい。
請求項6に記載のように、請求項1に記載の充電装置において、前記トランス二次電流制御手段は、前記第1段目の電流制限値とした前記トランスの二次電流の制御から前記第2段目の電流制限値とした前記トランスの二次電流の制御への切替えを、充電の開始からの前記トランスの二次電流の積算量に基づいて行うとよい。
本発明によれば、容易にトランスの過熱を回避しつつ速やかに車載蓄電装置を充電することができる。
実施形態におけるバッテリフォークリフトの回路図。 充電時における電流経路の説明図。 充電時における電流経路の説明図。 (a)はトランスの二次電流を示すタイムチャート、(b)はトランスの温度を示すタイムチャート。 充電装置の構成図。 (a)はトランスの二次電流を示すタイムチャート、(b)は充電電流を示すタイムチャート。 (a)は充電電流及び充電電圧を示すタイムチャート、(b)はトランスの二次電流及び二次電圧を示すタイムチャート。 (a)はトランスの二次電流を示すタイムチャート、(b)は充電電流を示すタイムチャート。 (a)はトランスの二次電流を示すタイムチャート、(b)はトランスの温度を示すタイムチャート。 トランスの二次電流及びトランスの温度を示すタイムチャート。 トランスの二次電流及びトランスの温度を示すタイムチャート。
以下、本発明をバッテリフォークリフトに具体化した一実施形態を図面にしたがって説明する。
図1に示すように、バッテリフォークリフトは、車載装置10を備えている。車載装置10は、バッテリ30を電源とする走行用モータ11及び荷役用モータ17を備えている。走行用モータ11とバッテリ30との間には、走行用インバータ12が備えられているとともに、荷役用モータ17とバッテリ30との間には荷役用インバータ18が備えられている。
車載装置10は、三相交流電源40に接続されるスコットトランス13を備えている。スコットトランス13は、一次巻線13a,13bと二次巻線13c,13dを有する。スコットトランス13の一方の二次巻線13cには整流回路14を介して走行用インバータ12が接続され、走行用インバータ12には、走行用モータ11が接続されている。走行用モータ11としては、コイル23,24,25がデルタ結線されてなる三相交流モータが使用されている。スコットトランス13の他方の二次巻線13dには整流回路19を介して荷役用インバータ18が接続され、荷役用インバータ18には、荷役用モータ17が接続されている。荷役用モータ17としては、コイル26,27,28がデルタ結線されてなる三相交流モータが使用されている。
整流回路14は、2個のダイオードD1,D2の直列回路で構成され、両ダイオードD1,D2の中点にスコットトランス13の一方の二次巻線13cの端子15aが接続されている。また、整流回路14のプラス側はバッテリ30の正極に接続され、整流回路14のマイナス側はバッテリ30の負極に接続されている。
走行用インバータ12には、三相の上アーム用スイッチング素子としての第1のスイッチング素子Q1、第3のスイッチング素子Q3、第5のスイッチング素子Q5と、下アーム用スイッチング素子としての第2のスイッチング素子Q2、第4のスイッチング素子Q4、第6のスイッチング素子Q6とを備えた三相インバータが使用されている。各スイッチング素子Q1〜Q6には、MOSFETが使用されている。第1のスイッチング素子Q1及び第2のスイッチング素子Q2、第3のスイッチング素子Q3及び第4のスイッチング素子Q4、第5のスイッチング素子Q5及び第6のスイッチング素子Q6はそれぞれ直列に接続されている。スイッチング素子Q1,Q3,Q5のドレインはそれぞれバッテリ30の正極に接続されるとともに、スイッチング素子Q2,Q4,Q6のソースはそれぞれバッテリ30の負極に接続されている。各スイッチング素子Q1〜Q6は、それぞれ、ドレインとソース間に、逆並列に、即ちカソードがドレインにアノードがソースに対応する状態に接続された寄生ダイオードDを有している。
第1のスイッチング素子Q1と第2のスイッチング素子Q2の中点(第1のスイッチング素子Q1のソースと第2のスイッチング素子Q2のドレインとの接続点)は走行用モータ11のコイル23とコイル24との接続点に接続されている。第3のスイッチング素子Q3と第4のスイッチング素子Q4の中点(第3のスイッチング素子Q3のソースと第4のスイッチング素子Q4のドレインとの接続点)は、走行用モータ11のコイル24とコイル25との接続点に接続されている。第5のスイッチング素子Q5と第6のスイッチング素子Q6の中点(第5のスイッチング素子Q5のソースと第6のスイッチング素子Q6のドレインとの接続点)は、走行用モータ11のコイル23とコイル25との接続点に接続されている。また、第1のスイッチング素子Q1のソースと第2のスイッチング素子Q2のドレインとの接続点は、スコットトランス13の一方の二次巻線13cにおける整流回路14が接続された端子15aと反対側の端子15bに接続されている。
整流回路19は、2個のダイオードD3,D4の直列回路で構成され、両ダイオードD3,D4の中点にスコットトランス13の他方の二次巻線13dの端子16aが接続されている。また、整流回路19のプラス側はバッテリ30の正極に接続され、整流回路19のマイナス側はバッテリ30の負極に接続されている。
荷役用インバータ18には、三相の上アーム用スイッチング素子としての第1のスイッチング素子Q11、第3のスイッチング素子Q13、第5のスイッチング素子Q15と、下アーム用スイッチング素子としての第2のスイッチング素子Q12、第4のスイッチング素子Q14、第6のスイッチング素子Q16とを備えた三相インバータが使用されている。各スイッチング素子Q11〜Q16には、MOSFETが使用されている。第1のスイッチング素子Q11及び第2のスイッチング素子Q12、第3のスイッチング素子Q13及び第4のスイッチング素子Q14、第5のスイッチング素子Q15及び第6のスイッチング素子Q16はそれぞれ直列に接続されている。スイッチング素子Q1,Q3,Q5のドレインはそれぞれバッテリ30の正極に接続されるとともに、スイッチング素子Q2,Q4,Q6のソースはそれぞれバッテリ30の負極に接続されている。各スイッチング素子Q11〜Q16は、それぞれ、ドレインとソース間に、逆並列に、即ちカソードがドレインにアノードがソースに対応する状態に接続された寄生ダイオードDを有している。
第1のスイッチング素子Q11と第2のスイッチング素子Q12の中点(第1のスイッチング素子Q11のソースと第2のスイッチング素子Q12のドレインとの接続点)は荷役用モータ17のコイル26とコイル27との接続点に接続されている。第3のスイッチング素子Q13と第4のスイッチング素子Q14の中点(第3のスイッチング素子Q13のソースと第4のスイッチング素子Q14のドレインとの接続点)は、荷役用モータ17のコイル27とコイル28との接続点に接続されている。第5のスイッチング素子Q15と第6のスイッチング素子Q16の中点(第5のスイッチング素子Q15のソースと第6のスイッチング素子Q16のドレインとの接続点)は、荷役用モータ17のコイル26とコイル28との接続点に接続されている。また、第1のスイッチング素子Q11のソースと第2のスイッチング素子Q12のドレインとの接続点は、スコットトランス13の他方の二次巻線13dにおける整流回路19が接続された端子16aと反対側の端子16bに接続されている。
各スイッチング素子Q1〜Q6,Q11〜Q16のゲートは、制御装置22に接続されている。制御装置22は、図示しないCPU及びメモリを備え、メモリには走行用モータ11及び荷役用モータ17を駆動するのに必要な制御プログラムが記憶されている。また、メモリにはスコットトランス13を三相交流電源40に接続した状態でバッテリ30を充電する際に、各スイッチング素子Q1〜Q6,Q11〜Q16を制御するのに必要な制御プログラムが記憶されている。
次に、本実施形態の車載装置10の作用について説明する。
バッテリフォークリフトは、バッテリ30の充電時以外には、三相交流電源40から切り離された状態に保持される。そして、制御装置22の指令により走行用インバータ12の各スイッチング素子Q1〜Q6がオン・オフ制御されることによりバッテリ30の直流電力が交流電力に変換されて走行用モータ11に供給され、走行用モータ11が駆動される。また、制御装置22の指令により荷役用インバータ18の各スイッチング素子Q11〜Q16がオン・オフ制御されることによりバッテリ30の直流電力が交流電力に変換されて荷役用モータ17に供給され、荷役用モータ17が駆動される。
車載装置10を充電装置として用いる場合には、スコットトランス13によって入力と出力が電気的に絶縁され、入力電力である交流電力を直流電力に電力変換して出力に接続された車載蓄電装置としてのバッテリ30を充電する。この際、制御装置22がスコットトランス13の二次電流を制御可能なトランス二次電流制御手段として機能する。詳しくは以下のようになる。
バッテリ30を充電する際は、スコットトランス13に三相交流電源40から交流電力が供給される状態に保持される。具体的には、フォークリフトに設けられた電源コンセントに、三相交流電源40の充電ケーブルのプラグが接続される。そして、制御装置22は、走行用インバータ12及び荷役用インバータ18のスイッチング素子Q1,Q2,Q5,Q6,Q11,Q12,Q15,Q16をオフ状態に保持し、第3のスイッチング素子Q3,Q13及び第4のスイッチング素子Q4,Q14をオン・オフ制御する。即ち、制御装置22によるバッテリ30の充電時にPWM制御される充電用の上アーム用スイッチング素子と下アーム用スイッチング素子は第3のスイッチング素子Q3,Q13及び第4のスイッチング素子Q4,Q14となる。また、制御装置22によるバッテリ30の充電時にPWM制御されない上アーム用スイッチング素子と下アーム用スイッチング素子はスイッチング素子Q1,Q2,Q5,Q6,Q11,Q12,Q15,Q16となる。
そして、制御装置22は、走行用インバータ12及び荷役用インバータ18における第3のスイッチング素子Q3,Q13及び第4のスイッチング素子Q4,Q14をスイッチングすることで、走行用モータ11のコイル24及び荷役用モータ17のコイル27を充電用インダクタとして用いてバッテリ30を充電する。
バッテリ30の充電時に車載装置10を流れる電流の経路について、図2及び図3にしたがって説明する。なお、図2及び図3では、走行用インバータ12のスイッチング素子Q3,Q4を制御してバッテリ30を充電する際の電流経路について記載しているが、荷役用インバータ18のスイッチング素子Q13,Q14を制御してバッテリ30を充電する場合も、同様の経路となる。
図2に示すように、走行用インバータ12側でスコットトランス13の一方の二次巻線13cの端子15aから電力が出力される状態で、第3のスイッチング素子Q3がオン状態、第4のスイッチング素子Q4がオフ状態のときには、図2に破線で示すように電流が流れる。即ち、二次巻線13cの端子15a→ダイオードD1→第3のスイッチング素子Q3→走行用モータのコイル24→二次巻線13cの端子15bの経路で電流が流れ、コイル24に電磁エネルギーが蓄積される。そして、第4のスイッチング素子Q4がオフ状態のまま第3のスイッチング素子Q3がオフ状態になると、コイル24に蓄積された電磁エネルギーは、図2に一点鎖線で示す経路で流れる電流となる。即ち、走行用モータ11のコイル24→二次巻線13cの端子15b→単相出力の13cの端子15a→ダイオードD1→バッテリ30→第4のスイッチング素子Q4の寄生ダイオードD→走行用モータ11のコイル24の経路で流れる電流となり、バッテリ30が充電される。
図3に示すように、二次巻線13cの端子15bから電力が出力される状態で、第3のスイッチング素子Q3がオフ状態、第4のスイッチング素子Q4がオン状態のときには、図3に破線の矢印で示すように電流が流れる。即ち、二次巻線13cの端子15b→走行用モータ11のコイル24→第4のスイッチング素子Q4→ダイオードD2→一方の二次巻線13cの端子15aの経路で電流が流れ、コイル24に電磁エネルギーが蓄積される。そして、第3のスイッチング素子Q3がオフ状態のまま第4のスイッチング素子Q4がオフ状態になると、コイル24に蓄積された電磁エネルギーは、図3に一点鎖線の矢印で示す経路で流れる電流となる。即ち、走行用モータ11のコイル24→第3のスイッチング素子Q3の寄生ダイオードD→バッテリ30→ダイオードD2→二次巻線13cの端子15a→二次巻線13cの端子15b→走行用モータ11のコイル24の経路で流れる電流となり、バッテリ30が充電される。
また、荷役用インバータ18側においても走行用インバータ12と同様にして充電が行われる。具体的には、走行用インバータ12側における二次巻線13cを二次巻線13dに、端子15a,15bを端子16a、16bに、第3のスイッチング素子Q3を第3のスイッチング素子Q13に、第4のスイッチング素子Q4を第4のスイッチング素子Q14に、ダイオードD1,D2をダイオードD3,D4にそれぞれ置き換えればよい。
トランス二次電流制御手段としての制御装置22は、スコットトランス13の二次電流I2を制御可能である。スコットトランス13の二次電流I2の制限値を2段以上有する(図4(a)参照)。充電中において第1段目の電流制限値は、充電電力量を多くするために第2段目の電流制限値よりも大きな値が設定されている(図4(a)参照)。第2段目以降は、スコットトランス13の過熱を回避するために前段よりも小さな値が設定されている(図4(a),(b)参照)。制御装置22はスコットトランス13の二次電流I2を2段以上の電流制限値で制限する。
図4(a)は横軸に時間をとり、縦軸にスコットトランス13の二次電流I2をとっている。図4(b)は横軸に時間をとり、縦軸にスコットトランス13の温度Ttをとっている。図4(b)における縦軸のスコットトランス13の温度Ttについてオーバーヒートに至る閾値を併記している。
図4(a),(b)に示すように、電流制限値を2段に設定することで、スコットトランス13の温度Ttは、t1で充電を開始した後、オーバーヒート閾値に近づくように上昇していき、t2のタイミングでスコットトランス13の二次電流I2が第1段目の電流制限値に制限されることに伴いスコットトランス13の温度上昇が緩やかになる。スコットトランス13の温度Ttがオーバーヒート閾値に至ることなくオーバーヒート閾値に近づくように上昇していくことから充電電力量が確保されている。その後、スコットトランス13の温度Ttがオーバーヒート閾値に接近した状態においてt3のタイミングでスコットトランス13の二次電流I2が第2段目の電流制限値に制限されることによりスコットトランス13の温度Ttが上昇から降下に転じる。
また、制御装置22は、第1段目の電流制限値としたスコットトランス13の二次電流I2の制御から第2段目の電流制限値としたスコットトランス13の二次電流I2の制御への切替えを、充電の開始からの充電の継続時間が規定値T1に達した時に行う。放電はオペレータが充電開始スイッチを操作することにより開始される。規定値T1は、予め実験により充電開始後のスコットトランス13の温度を測定して充電開始からスコットトランス13の温度が所定値に達するまでの時間として求めておいたものである。
このようにして、工場において昼休みの30分〜1時間だけ補充電を行う時に充電電力量を確保しながらコストアップを招くことなくスコットトランス13の過熱を回避することができる。これにより、スコットトランス13の過熱を回避しつつ速やかにバッテリ30を充電することができるようになる。
以下、図5に示す充電装置の構成図を用いて説明する。
図5において、充電装置50は、商用電源(三相AC200V)55で車載バッテリ56を充電するために、トランス51、整流平滑部52、電圧チョッパ部53、コイル54が順に接続されている。トランス51における一次電圧をV1、一次電流をI1、二次電圧をV2、二次電流をI2とする。また、充電装置50の出力電圧、即ち充電電圧をV3、充電装置50の出力電流、即ち充電電流をI3とする。
図6(a)は横軸に時間をとり、縦軸にトランスの二次電流I2をとっている。図6(b)は横軸に時間をとり、縦軸に充電電流I3をとっている。充電開始スイッチのオン操作により充電が開始された後のt2のタイミングまでは図6(a)に示すようにトランスの二次電流I2が徐々に大きくなっていくとともに図6(b)に示すように充電電流I3は一定に保たれる。
制御装置22は、図6(a)に示すように、トランスの二次電流I2として、第1段目の電流制限値で制限するとともに第2段目の電流制限値で制限するように第3のスイッチング素子Q3及び第4のスイッチング素子Q4をPWM制御する。つまり、図6(a)においてt2のタイミングでトランスの二次電流I2が第1段目の電流制限値に達すると、それ以上電流が流れるのを規制して一定に保たれる。これに伴い図6(b)に示すように充電電流I3は一定の傾きで低下する。その後、充電開始から一定時間が経過したt3のタイミングで図6(a)に示すようにトランスの二次電流I2が、第1段目の電流制限値よりも小さい第2段目の電流制限値に制限され、その第2段目の規制値に保たれる。これに伴い図6(b)に示すように充電電流I3は、第2段目の電流制限値に対応する小さな値にされた後に一定の傾きで低下する。
このように、多段に電流制限を加える際において、第1段目の電流制限値は大きな値(例えばトランスの許容電流値)で設定し、第2段目の電流制限値は第1段目の電流制限値より小さい値で設定している。2段目以降の電流制限値は、予め実験により充電開始後のトランスの温度を測定して充電開始からのトランスの温度の推移を考慮して求めておいたものである。
以下、詳しく説明する。
電流制御型充電装置で例えば定電流充電を実施しようとすると、トランスの一次電圧V1、トランスの一次電流I1、トランスの二次電圧V2、トランスの二次電流I2、充電電圧V3、充電電流I3は、次の式(1)で表される。
V1×I1×η1=V2×I2×η2=V3×I3・・・(1)
ただし、η1はトランスの変換効率、η2はトランスの二次側回路である整流平滑部52、電圧チョッパ部53、コイル54での変換効率。
ここで、トランスの二次電圧V2とトランスの一次電圧V1とは比例関係にある(V2∝V1)。そのため、トランスの一次電圧V1が一定とすれば、トランスの二次電圧V2も一定となり、充電電流I3は定電流のため固定となる。
よって、図7(a)に示すように、充電電流I3を一定に制御すると、充電が進む毎に充電電圧V3が上昇するので、V3×I3が上昇する。
そして、V3×I3が上昇するので、V2×I2は上昇する。その結果、トランスの二次電圧V2が一定なので、図7(b)に示すように、トランスの二次電流I2が上昇する。
ここで、トランスの二次電流I2に電流制限値を設けた場合のトランスの二次電流I2と充電電流I3との関係を、図8(a)、図8(b)に示す。
図8(a)に示すように、t2のタイミングでトランスの二次電流I2が電流制限値に到達すると、図8(b)に示すように、バッテリの充電電流I3は低下する。
ここで、図11に示すように、オーバーヒートを回避すべく電流制限値を低く設けると、補充電での充電電力量の減少や充電時間の延長など性能低下を招く。一方、図10に示すように、電流制限値を高く設定した場合は、トランスのオーバーヒートのリスクが高くなる。即ち、電流制限値を高く設定するとトランスがオーバーヒートするので、これを回避するためにはサーミスタなどで温度を検出し電流を低下させるなどの手段が必要となり、センサ追加によってコストが上昇する。
特に、フォークリフトのバッテリを充電する時のように、長時間(例えば8時間〜10時間)に渡り電流を流す場合、例えばトランスのような部品は時間の経過とともに温度が上昇していく。トランスの容量(性能)を元に電流制限値を決めると(大きな値を電流制限値とすると)、トランスがオーバーヒートする懸念がある。これを回避するためには、サーミスタなどの温度センサを取付ける必要がありコストアップを招く。または、トランスを大型化する、冷却性能を上げる(放熱板や冷却ファンを設ける等)ことを行ってもこれを回避できるが、やはりコストアップを招く。オーバーヒートしない値を電流制限値として設けると(小さな値を電流制限値とすると)、充電時間が伸びる、補充電での充電電力量が少なくなるなどの性能低下を招く。特に、フォークリフトの使い方として、30分〜1時間の昼休みに補充電を実施して昼休み後にフォークリフトを使用するユーザの多い中で、補充電の性能低下は問題となる。
これに対し、図4(a)及び図4(b)に示すように、電流制限値を2段以上設け、第1段目は、大きな電流制限値(例えばトランスの許容電流値)で設定し、第2段目以降は、それより小さい電流制限値を設け、電流制限値の切替えについては、例えば充電開始からの充電時間で設定する。その結果、充電性能を維持したまま、特に、補充電での充電電力量を保持したままトランスのオーバーヒートを回避でき、補充電での充電電力量の確保とオーバーヒートの回避を両立することが可能となる。また、トランスが大型化することもない。
上記実施形態によれば、以下のような効果を得ることができる。
(1)電流制御型充電装置としての車載装置10の構成として、スコットトランス13によって入力と出力が電気的に絶縁され、入力電力を電力変換して出力に接続された車載蓄電装置としてのバッテリ30を充電する。スコットトランス13の二次電流I2を制御可能なトランス二次電流制御手段としての制御装置22を備える。スコットトランス13の二次電流I2の制限値を2段以上有し、充電中において第1段目の電流制限値は、第2段目の電流制限値よりも大きな値が設定され、第2段目以降は、前段よりも小さな電流制限値が設定されている。トランス二次電流制御手段としての制御装置22は、スコットトランス13の二次電流I2を2段以上の電流制限値で制限する。よって、充電電力量を多くできるとともにスコットトランス13の過熱を回避することができ、これにより、充電電力を多く確保したまま、トランス温度検出用のサーミスタなどのセンサを用いておらずコストアップを招くことなくスコットトランス13の過熱を回避することができる。その結果、容易にスコットトランス13の過熱を回避しつつ速やかに車載蓄電装置としてのバッテリ30を充電することができる。
(2)トランス二次電流制御手段としての制御装置22は、第1段目の電流制限値としたスコットトランス13の二次電流I2の制御から第2段目の電流制限値としたスコットトランス13の二次電流I2の制御への切替えを、充電の開始からの充電の継続時間が規定値T1に達した時に行うので、実用的である。
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 充電方式は定電流充電である必要はない。例えば、図5で示した充電装置を用いた場合におけるトランスの二次電流I2の定電流充電(トランスの一次電圧V1が一定であれば定電力充電となる)で充電した上で充電電流I3の定電流充電に切替えて充電するようにしてもよい。また、切替え前後で充電方式が変更されていてもよく、充電方式の切替えと電流制限値の切替えが同期してなくてもよい。このように、充電方式の制約は不要であり、ニーズに合わせて充電方式を自由に選択した上で本制御を導入できる。例えば、補充電での充電電力量を確保するためにI2の定電流(トランス最大出力)で充電をした上で、定電流充電に切替えて充電状態を検出するような充電方式を採用してもよい。
○ 図9(a)及び図9(b)に示すように、操作部材29(図1参照)により第1段目の電流制限値を設定可能としてもよい。また、第1段目の電流制限値としたスコットトランス13の二次電流I2の制御から第2段目の電流制限値としたスコットトランス13の二次電流I2の制御への切替えは、充電の開始からの充電の継続時間が規定値T1に達した時に行われるが、操作部材29(図1参照)により規定値T1を設定可能としてもよい。
詳しく説明すると、電流制限値または第1段目の切替え時間はユーザによって可変できることとし、電流制限値はトランス許容電流値を上限とし、また、電流制限値を変更した場合は第1段目の切替え時間または第2段目の電流制限値またはその両方が自動的に更新されるようにする。例えば、昼休みが短いユーザが充電装置に補充電での充電予定時間を設定できるようにし、充電装置は設定された補充電予定時間(=切替え時間)から第1段目の電流制限値と第2段目の電流制限値を算出する。具体的には例えば、予め実験を行って、充電予定時間から第1段目の電流制限値と第2段目の電流制限値を求めておき、このデータを用いて第1段目の電流制限値と第2段目の電流制限値を求める。
このように、電流制限値または第1段目の切替え時間が可変であり、電流制限値または第1段目の切替え時間をユーザが設定可能とすることで、よりニーズに応えることができる。例えば、昼休みが短いなど、予め補充電での充電時間が短いと分かっているユーザに対しては、第1段目の電流制限値を大きくすることで補充電での充電電力量をより多くすることが可能となる。反面、オーバーヒートのリスクは高くなるが、これは切替えまでの時間を短くする、あるいは第2段目の電流制限値を小さくする、あるいはその両方を実施することで回避可能となる(図9(a)及び図9(b)参照)。
○ 第1段目の電流制限値としたスコットトランス13の二次電流I2の制御から第2段目の電流制限値としたスコットトランス13の二次電流I2の制御への切替えは、充電の開始からの充電の継続時間が規定値T1に達した時に行われるが、外気温度に基づいて、規定値T1が補正されるようにしてもよい。
詳しくは、外気温の計測値が得られる場合または外気温の推定値が得られる場合において、制御装置22により、外気温が低い場合は、オーバーヒートまでに余裕があると考えられるので、切替えるまでの時間を伸ばす。即ち、外気温が低い時に切替えまでの時間を長く補正することで、補正がないときと比較して充電時間を短縮することができる。逆に、外気温が高い場合はオーバーヒートまでに余裕がないことが想定されるため時間を短縮してもよい。即ち、外気温が高い時に切替えまでの時間を短く補正することで、補正がないときと比較してより確実にオーバーヒートを回避することができる。
○ トランスの温度に対応する指標として充電開始からの充電継続時間を用い、その充電継続時間が規定値に達した時に充電制限値を切替えたが、電流制限値の切替えは時間でなくてもよい。例えば、「積算電流量」が多ければ多いほど、トランスの大きさである「トランス容量」が小さければ小さいほど温度は高くなるので、その2つのパラメータ(積算電流量、トランス容量)を指標化、例えば[積算電流量]×[トランス容量]とし、それが閾値を超えたら、それまでの第1段目の電流制限値から第2段目の電流制限値に切替えてもよい。即ち、[積算電流量]×[トランス容量]>閾値の時に切替えることでより適切なタイミングで電流制限値を切替えることができる。
このようにして、トランス二次電流制御手段としての制御装置22は、第1段目の電流制限値としたトランスの二次電流の制御から第2段目の電流制限値としたトランスの二次電流の制御への切替えを、充電の開始からのトランスの二次電流の積算量に基づいて行うようにしてもよい。
○ スコットトランス13の二次電流I2の制限値は2段以上であればよく、段数は問わない。
○ 走行用インバータ12または荷役用インバータ18のいずれか一方を用いてバッテリ30を充電してもよい。
○ スコットトランス13以外のトランスを用いてもよい。
○ 補充電を行う時について説明したが、補充電に限らず満充電等の充電を行う時全般にわたり適用できる。
○ バッテリフォークリフトのように三相モータ(走行用モータ11及び荷役用モータ17)を備えた車載装置を充電装置として用いたが、一般の電気自動車の充電装置(例えば図5に示した装置)に適用してもよい。
○ 充電装置は車載機器(車載装置10)であったが、地上側に配置される充電装置であってもよい。
○ フォークリフトに適用したが、その他の産業車両に適用してもよい。また、産業車両以外の車両、例えば乗用車やバス等に適用してもよい。
10…車載装置、13…スコットトランス、22…制御装置、30…バッテリ。

Claims (6)

  1. トランスによって入力と出力が電気的に絶縁され、入力電力を電力変換して出力に接続された車載蓄電装置を充電する充電装置であって、
    前記トランスの二次電流を制御可能なトランス二次電流制御手段を備え、
    前記トランスの二次電流の制限値を2段以上有し、充電中において第1段目の電流制限値は、第2段目の電流制限値よりも大きな値が設定され、第2段目以降は、前段よりも小さな電流制限値が設定されており、
    前記トランス二次電流制御手段は、前記トランスの二次電流を前記2段以上の電流制限値で制限することを特徴とする充電装置。
  2. 前記トランス二次電流制御手段は、前記第1段目の電流制限値とした前記トランスの二次電流の制御から前記第2段目の電流制限値とした前記トランスの二次電流の制御への切替えを、充電の開始からの充電の継続時間が規定値に達した時に行うことを特徴とする請求項1に記載の充電装置。
  3. 操作部材により前記規定値を設定可能としたことを特徴とする請求項2に記載の充電装置。
  4. 外気温度に基づいて前記規定値が補正されることを特徴とする請求項2に記載の充電装置。
  5. 操作部材により前記第1段目の電流制限値を設定可能としたことを特徴とする請求項1に記載の充電装置。
  6. 前記トランス二次電流制御手段は、前記第1段目の電流制限値とした前記トランスの二次電流の制御から前記第2段目の電流制限値とした前記トランスの二次電流の制御への切替えを、充電の開始からの前記トランスの二次電流の積算量に基づいて行うことを特徴とする請求項1に記載の充電装置。
JP2016236931A 2016-12-06 2016-12-06 充電装置 Active JP6658482B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016236931A JP6658482B2 (ja) 2016-12-06 2016-12-06 充電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236931A JP6658482B2 (ja) 2016-12-06 2016-12-06 充電装置

Publications (2)

Publication Number Publication Date
JP2018093668A JP2018093668A (ja) 2018-06-14
JP6658482B2 true JP6658482B2 (ja) 2020-03-04

Family

ID=62566534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236931A Active JP6658482B2 (ja) 2016-12-06 2016-12-06 充電装置

Country Status (1)

Country Link
JP (1) JP6658482B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088749B2 (ja) * 1988-07-29 1996-01-29 日立工機株式会社 電池組の充電方法
JP2003244862A (ja) * 2002-02-15 2003-08-29 Sumitomonacco Materials Handling Co Ltd 車両用バッテリ充電装置
JP2005312224A (ja) * 2004-04-23 2005-11-04 Toyota Industries Corp バッテリ充電装置

Also Published As

Publication number Publication date
JP2018093668A (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
US11919415B2 (en) Vehicle-mounted charging device and vehicle-mounted charging device control method
KR101284331B1 (ko) 친환경 차량의 충전장치 및 방법
JP5735782B2 (ja) ハイブリッド自動車の充電装置及び方法
US20190097277A1 (en) Power source device
US20130033232A1 (en) Storage battery device
JP6088840B2 (ja) 充放電システム
JP6710238B2 (ja) 車両の電源システム
EP3123604B1 (en) Dc/dc converter and electrical storage system
CN110949154B (zh) 充电装置
JP6884922B2 (ja) 電力変換装置
CN111347890A (zh) 一种车辆、充电装置及其电机控制电路
WO2011138827A1 (ja) 電源制御システム
CN107107238B (zh) 用于提供具有热保护的辅助和焊接类型电源的方法和设备
JP7490768B2 (ja) 電源システム及び電源システムの制御方法
JP4946747B2 (ja) 蓄電システム
JP5901383B2 (ja) 車載充電システム
JP6658482B2 (ja) 充電装置
JP2020202600A (ja) 電力変換装置及びその制御方法
JP2005312224A (ja) バッテリ充電装置
JP2015226445A (ja) 充電装置
JP2007066725A (ja) 電源装置
CN115136496A (zh) 主动放电装置和方法
JP3956917B2 (ja) バッテリ充電装置
JP6610268B2 (ja) 電源装置
KR101807126B1 (ko) Dc/dc 컨버터

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6658482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151