JP6634955B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP6634955B2
JP6634955B2 JP2016099788A JP2016099788A JP6634955B2 JP 6634955 B2 JP6634955 B2 JP 6634955B2 JP 2016099788 A JP2016099788 A JP 2016099788A JP 2016099788 A JP2016099788 A JP 2016099788A JP 6634955 B2 JP6634955 B2 JP 6634955B2
Authority
JP
Japan
Prior art keywords
fuel
fuel gas
electrode
reforming catalyst
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016099788A
Other languages
English (en)
Other versions
JP2017208232A (ja
Inventor
杉原 真一
真一 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016099788A priority Critical patent/JP6634955B2/ja
Publication of JP2017208232A publication Critical patent/JP2017208232A/ja
Application granted granted Critical
Publication of JP6634955B2 publication Critical patent/JP6634955B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料ガス及び酸化剤ガスの供給を受けて発電を行う燃料電池に関する。
燃料電池は、燃料ガス及び酸化剤ガスが有する化学エネルギーを直接電気エネルギーに変換する発電装置である。その発電効率は非常に高く、また排出されるガスも比較的クリーンであることから、次世代の発電装置として注目されている。
燃料電池では、発電により取り出される電流が大きくなるほど、セルスタックの温度が高くなる傾向がある。このため、燃料電池の発電性能を高めるには、セルスタックの冷却が重要となる。
特に固体酸化物形燃料電池においては、動作中におけるセルスタックの温度が約700と非常に高温となる。このような高温の状態においてセルスタックの温度分布にむらが生じると、一部のセルが破損してしまう可能性がある。このため、発電中においては単にセルスタックを冷却するだけでなく、セルスタック全体の温度を均一に保つ必要がある。
セルスタックに含まれる各セルの燃料極では、所謂「内部改質」と称される水蒸気改質反応が生じる。当該反応は吸熱反応であり、セルスタックの温度を低下させる。水蒸気改質反応による吸熱量は、燃料ガスに含まれる炭化水素の量に概ね比例する。このため、燃料極のうち燃料ガスの流れ方向において上流側となる部分では、他の部分よりも内部改質による温度低下が生じやすい傾向がある。
下記特許文献1に記載の燃料電池では、内部改質によるセルの温度むらを抑制するために、各セルに熱伝導層が形成された構成となっている。熱伝導層は、電解質層の表面の一部を覆うように設けられており、当該表面に沿った熱伝導を促進することによってセルスタックの温度むらを抑制するものである。
特開2004−22471号公報
上記特許文献1に記載されている構成においては、電解質層のうち熱伝導層に覆われた部分には、燃料極層を形成することができない。つまり、上記特許文献1に記載されている燃料電池は、その発電性能の一部を犠牲にしながら熱伝導層を形成し、これによりセルスタックの温度むらを抑制するような構成となっている。このような構成において、十分な発電性能を発揮させるには、それぞれのセルを大型化(大面積化)しなければならない。
尚、内部改質に起因した温度むらを抑制するための対策としては、セルスタックの外部に設けられた改質器において予め水蒸気改質反応を十分に行わせ、当該改質器を通過した燃料ガスをセルスタックに供給することも考えられる。しかしながら、その場合には内部改質がほとんど生じないこととなるので、セルスタックの冷却が不十分なものとなる。その結果、燃料電池から十分な電流を取り出すことができなくなってしまう。
本発明はこのような課題に鑑みてなされたものであり、その目的は、発電性能を犠牲にすることなく、発電中において高温となり過ぎてしまうこと、及び温度むらが発生してしまうこと、のいずれをも防止することのできる燃料電池を提供することにある。
上記課題を解決するために、本発明に係る燃料電池は、燃料ガス及び酸化剤ガスの供給を受けて発電を行う燃料電池(10)であって、平板状に形成された電解質(111)と、電解質の一方の面に形成されており、燃料ガスの供給を受ける部分である燃料極(112)と、電解質の他方の面に形成されており、酸化剤ガスの供給を受ける部分である酸素極(113)と、燃料極に燃料ガスを供給するための流路である燃料供給流路(210,125)と、を備える。燃料供給流路には、水蒸気改質反応を生じさせるための改質触媒部(PR1,PR2,PR3,PR4)が、燃料極から離間しており且つ燃料極に対向する面、である改質面(RS)に沿って設けられている。この燃料電池は、燃料ガスを通過させるための貫通穴(143)が複数形成された、平板状の分散板(140)が設けられており、複数の貫通穴から1つの燃料極に燃料ガスが供給されるように構成されている。改質触媒部は貫通穴の内面に形成されている。
このような燃料電池では、燃料ガスが燃料極に到達するよりも前に、予め改質触媒部で水蒸気改質反応が生じる。このため、燃料極で生じる内部改質が抑制されるので、燃料極の一部における局所的な温度低下が抑制される。その結果、燃料電池(具体的にはセルスタック)の温度むらが抑制される。
また、改質触媒部は、燃料極から離間しており且つ燃料極に対向する面に沿って設けられている。このため、改質触媒部で生じた水蒸気反応は、燃料極、電解質、及び酸素極からなるセルを冷却するために用いられる。つまり、本発明に係る燃料電池では、燃料極で生じる内部改質を抑制する構成としながらも、発電中において高温となり過ぎてしまうことを防止することができる。
本発明によれば、発電性能を犠牲にすることなく、発電中において高温となり過ぎてしまうこと、及び温度むらが発生してしまうこと、のいずれをも防止することのできる燃料電池が提供される。
本発明の第1実施形態に係る燃料電池の構成を示す分解組立図である。 燃料電池の内部構成を示す模式的な断面図である。 本発明の第2実施形態に係る燃料電池の内部構成を示す模式的な断面図である。 本発明の第3実施形態に係る燃料電池の内部構成を示す模式的な断面図である。 本発明の第4実施形態に係る燃料電池の内部構成を示す模式的な断面図である。 本発明の第5実施形態に係る燃料電池の分散板を示す図である。 本発明の第6実施形態に係る燃料電池の分散板を示す図である。 改質触媒部が設けられていない場合における温度分布を示す図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
図1及び図2を参照しながら、本発明の第1実施形態に係る燃料電池10の構成について説明する。燃料電池10は、燃料ガス及び酸化剤ガスの供給を受けて発電を行う装置であって、本実施形態では固体酸化物形の燃料電池(Solid Oxide Fuel Cell:SOFC)として構成されている。燃料電池10は、所謂「平板型」の単セル110を複数備えており、セパレータ220を介しそれぞれの単セル110を積層し直列接続した構成となっている。尚、図1においては、燃料電池10が備える複数の単セル110のうちの1つと、その上下両側に設けられたセパレータ220のみが描かれている。
図2に示されるように、単セル110は、電解質111と、燃料極112と、酸素極113と、を有している。電解質111は平板状に形成されており、酸素イオン電導性を有する固体電解質である。電解質111の材料としては、例えばジルコニアやペロブスカイト酸化物等、公知の材料を用いることができる。
燃料極112は、電解質111の一方の面上に形成された層であって、燃料ガスの供給を受ける部分である。燃料極112は、例えばYSZ等の電解質セラミックスと、Ni等の触媒金属と、を含むサーメットにより構成された多孔質層である。燃料極112に燃料ガスが供給されると、燃料ガスに含まれる水素と、電解質111を通過した酸化物イオンとが反応し、電子が放出される。当該電子が、発電により得られる電流として取り出される。
燃料極112では、燃料ガスに含まれる炭化水素と水との間における水蒸気改質反応、すなわち内部改質が生じる。内部改質によって生じた水素は、燃料ガスに当初から含まれていた水素と同様に発電に供される。また、水蒸気改質反応は、よく知られているように吸熱反応である。このため、発電で生じた熱が水蒸気改質反応のために用いられると共に、燃料極112及びその周辺の温度上昇が抑制される。
酸素極113は、電解質111のうち燃料極112とは反対側の面上に形成された層であって、酸化剤ガス(本実施形態では空気である)の供給を受ける部分である。酸素極113は、例えばペロブスカイト型酸化物のような導電性セラミックスにより構成された多孔質層である。酸素極113に空気が供給されると、空気に含まれる酸素が外部から供給される電子を受け取ることにより、酸化物イオンが生じる。酸化物イオンは、電解質111を通って燃料極112に到達した後、上記のように水素と反応する。
単セル110はセルフレーム120に保持されている。セルフレーム120は、単セル110よりも一回り大きな矩形の板であり、ステンレスにより形成されている。図2に示されるように、セルフレーム120の中央には、単セル110の外形に沿って矩形の貫通穴が形成されている。単セル110は、当該貫通穴の縁に形成された段部により保持されている。
図1に示されるように、セルフレーム120のうち単セル110の外側となる位置には、燃料ガス穴121と、燃料ガス穴122と、空気穴123と、空気穴124と、が形成されている。図1には、外部から供給され燃料電池10を通過する燃料ガスの流れが、矢印A1、A2、A3により示されている。また、外部から供給され燃料電池10を通過する空気の流れが、矢印A4、A5、A6により示されている。
燃料ガス穴121は、セルフレーム120のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。燃料ガスは、燃料ガス穴121を下方から上方に向かって流れながら(矢印A1)、その一部が燃料極112の下方側に流入し、燃料極112に沿って流れる(矢印A2)。これにより、燃料ガスが燃料極112に供給され、発電に供される。
燃料ガス穴122は、燃料ガス穴121と同様に、セルフレーム120のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。燃料ガス穴122が形成されている辺と、燃料ガス穴121が形成されている辺とは、互いに平行となっている。燃料ガスは、燃料ガス穴122を上方から下方に向かって流れている(矢印A3)。燃料極112に沿って流れた燃料ガス(矢印A2)は、燃料ガス穴122に到達し、その後は矢印A3で示される燃料ガスの流れに合流する。
空気穴123は、セルフレーム120のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。空気穴123が形成されている辺と、燃料ガス穴121が形成されている方の辺とは、互いに垂直となっている。空気は、空気穴123を下方から上方に向かって流れながら(矢印A4)、その一部が酸素極113の上方側に流入し、酸素極113に沿って流れる(矢印A5)。これにより、空気が酸素極113に供給され、発電に供される。
空気穴124は、空気穴123と同様に、セルフレーム120のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。空気穴124が形成されている辺と、空気穴123が形成されている辺とは、互いに平行となっている。空気は、空気穴124を上方から下方に向かって流れている(矢印A6)。酸素極113に沿って流れた空気(矢印A5)は、空気穴123に到達し、その後は矢印A6で示される空気の流れに合流する。
セパレータ220は、ステンレスにより形成された板状の部材である。上面視におけるセパレータ220の外形は、セルフレーム120の外形と概ね同一である。導電性の部材であるセパレータ220により、積層された全ての単セル110が電気的に直列接続されている。
セパレータ220のうち単セル110よりも外側となる位置には、燃料ガス穴221と、燃料ガス穴222と、空気穴223と、空気穴224と、が形成されている。
燃料ガス穴221は、セルフレーム120の燃料ガス穴121と同様に、セパレータ220のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。それぞれの燃料ガス穴221が形成されている位置は、上面視においてそれぞれの燃料ガス穴121と重なる位置である。このため、矢印A1で示される燃料ガスの流れは、燃料ガス穴121と燃料ガス穴221とを交互に通過する流れとなっている。
燃料ガス穴222は、セルフレーム120の燃料ガス穴122と同様に、セパレータ220のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。それぞれの燃料ガス穴222が形成されている位置は、上面視においてそれぞれの燃料ガス穴122と重なる位置である。このため、矢印A3で示される燃料ガスの流れは、燃料ガス穴122と燃料ガス穴222とを交互に通過する流れとなっている。
空気穴223は、セルフレーム120の空気穴123と同様に、セパレータ220のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。それぞれの空気穴223が形成されている位置は、上面視においてそれぞれの空気穴123と重なる位置である。このため、矢印A4で示される空気の流れは、空気穴123と空気穴223とを交互に通過する流れとなっている。
空気穴224は、セルフレーム120の空気穴124と同様に、セパレータ220のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。それぞれの空気穴224が形成されている位置は、上面視においてそれぞれの空気穴124と重なる位置である。このため、矢印A6で示される空気の流れは、空気穴124と空気穴224とを交互に通過する流れとなっている。
セパレータ220のうち燃料極112側の面211には凹部が形成されており、当該凹部が燃料ガスの流れる流路210となっている。流路210は、燃料極112に燃料ガスを供給するための流路であるから、本実施形態における「燃料供給流路」の一部に該当する。図1において矢印A2で示される燃料ガスの流れは、流路210における燃料ガスの流れである。
セパレータ220のうち酸素極113側の面(不図示)と、酸素極113との間には、空気の流れる流路250(図2を参照)が形成されている。矢印A5で示される空気の流れは、流路250における空気の流れである。
このように、本実施形態では、燃料極112を燃料ガスが流れる方向(矢印A2)と、酸素極113を空気が流れる方向(矢印A5)とが、互いに直行するようなクロスフロー方式が採用されている。このような態様に替えて、それぞれの流れが互いに同じ方向となるコフロー方式や、それぞれの流れが互いに反対方向となるカウンタフロー方式を採用してもよい。
その他の構成について説明する。セパレータ220の燃料極112側(図1では上面側)と、セルフレーム120との間には、スペーサ230が配置されている。スペーサ230は、セパレータ220とセルフレーム120との間の隙間を所定の大きさに保つよう、両者の間に挿入された板状の部材である。スペーサ230は、セパレータ220とセルフレーム120との間における燃料ガスの流れ、及び空気の流れを妨げることの無いように、上面視において燃料極112や燃料ガス穴121等を避ける位置に設けられている。本実施形態では、スペーサ230はステンレスにより形成されている。
セパレータ220の酸素極113側(図1では下面側)と、セルフレーム120との間には、スペーサ130が配置されている。スペーサ130は、スペーサ230と同様に、セパレータ220とセルフレーム120との間の隙間を所定の大きさに保つよう、両者の間に挿入された板状の部材である。スペーサ130は、セパレータ220とセルフレーム120との間における燃料ガスの流れ、及び空気の流れを妨げることの無いように、上面視において酸素極113や燃料ガス穴121等を避ける位置に設けられている。本実施形態では、スペーサ130はセラミックスにより形成されている。
図2に示されるように、セパレータ220の燃料極112側(上面側)と、セルフレーム120との間には、分散板140が配置されている。分散板140はステンレスによって形成された平板状の部材である。分散板140のうち燃料極112と対向する部分には、複数の貫通穴143が形成されている。
分散板140のうちセパレータ220側の面142と、セパレータ220の面211とは対向している。両者の間に形成された空間が、既に述べた流路210となっている。また、分散板140のうちセルフレーム120側の面141と、燃料極112とは対向している。両者の間には空間125が形成されている。図2において矢印で示されるように、燃料ガスは、流路210を左側から右側に向かって流れながら、それぞれの貫通穴143を通って空間125に流入する。その後、燃料極112に到達して発電に供される。このように、空間125は、(流路210と共に)燃料極112に燃料ガスを供給するための流路となっており、本実施形態における「燃料供給流路」の一部に該当する。
尚、流路210を燃料ガスが流れる方向における上流側(図2では左側)では、セルフレーム120の底面128が分散板140の面141に当接している。一方、燃料ガスの流れ方向における下流側(図2では右側)では、セルフレーム120の底面129と分散板140の面141との間に隙間127が形成されている。燃料極112で発電に供されなかった残余の燃料ガス、及び燃料極112で生じた水分等を含む気体は、隙間127を通って外部に排出される。
また、流路210を燃料ガスが流れる方向における下流側では、セパレータ220の一部(符号225が付された部分)が分散板140に向けて突出しており、当該部分において分散板140の面142に当接している。これにより、流路210の下流側端部が区画されている。
空間125には集電体126が配置されている。集電体126はメッシュ状に形成された金属であって、表面115と面141との両方に当接している。これにより、燃料極112、分散板140、及びセパレータ220の間における導通が確保されている。集電体126はメッシュ状であるから、燃料ガスは集電体126を通過して流れることができる。
また、図示は省略しているが、流路250にも、集電体126と同様の集電体が配置されている。当該集電体は、酸素極113の表面116とセパレータ220との両方に当接している。これにより、一つの単セル110の燃料極112と、(これと隣り合う)他の単セル110の酸素極113と、の間における導通が確保されている。また、集電体126と同様に上記集電体はメッシュ状であるから、空気は上記集電体を通過して流れることができる。
これまで説明したように、燃料ガスは面211に沿って流路210を流れた後、貫通穴143、空間125を順に通って燃料極112に供給され、最終的には隙間127を通って外部に排出される。燃料ガスに含まれる炭化水素の量は、流路210を燃料ガスが流れる方向のうち上流側(図2では左側)となる位置においては多く、下流側(図2では右側)に行くほど少なくなって行く。このため、燃料極112で生じる内部改質は上流側において特に生じやすい。上流側部分では、内部改質(水蒸気改質反応)による吸熱量が大きくなるので、他の部分よりも温度が低下してしまう傾向がある。
図8に示されるのは、後述の改質触媒部PR1が設けられていない場合における、単セル110の温度分布の一例である。図8の横軸には、燃料ガスの流れ方向に沿った位置が示されている。点P0は最も上流側となる位置であり、点P1は最も下流側となる位置である。図8の縦軸には、それぞれの位置における単セル110の温度が示されている。
図8に示されるように、最も上流側である点P0の近傍、具体的には点線DLで囲まれた範囲においては、内部改質に伴う温度低下が特に生じやすくなっている。このため、燃料ガスの流れ方向に沿った温度勾配、すなわち温度むらが他の部分に比べて大きくなっており、単セル110の破損が生じてしまう可能性がある。そこで、本実施形態に係る燃料電池10では、上記のような温度むらを抑制するために、以下に述べる改質触媒部PR1が設けられている。
図2を再び参照しながら、改質触媒部PR1について説明する。改質触媒部PR1は、燃料ガスに含まれる炭化水素及び水との間で水蒸気改質反応を生じせしめるための触媒層である。つまり、燃料極112と同様の改質反応を、燃料極112とは異なる位置において生じさせるための部分である。本実施形態では、改質触媒部PR1はニッケル鍍金層であり、それぞれの貫通穴143の内面全体を覆うように形成されている。尚、改質触媒部PR1の材料としては、例えば白金等、ニッケル以外の触媒金属を用いることもできる。また、改質触媒部PR1は、鍍金以外の方法で形成されていてもよい。
上記のように形成された改質触媒部PR1は、流路210及び空間125からなる燃料供給流路において、分散板140の面141を含む仮想的な平面に沿って並ぶように設けられている。当該平面のことを以下では「改質面RS」とも表記する。改質面RSは、燃料極112から離間しており、且つ、単セル110の積層方向に沿って燃料極112と対向する面となっている。
燃料電池10で発電が行われているときには、燃料ガスが燃料極112に到達するよりも前に、予め改質触媒部PR1で水蒸気改質反応が生じることとなる。燃料極112に到達した燃料ガスに含まれる炭化水素の量は、改質触媒部PR1が形成されていない場合に比べて少なくなる。燃料極112で生じる内部改質が抑制されるので、図8を参照しながら説明したような、燃料極112の一部(上流側部分)における局所的な温度低下が抑制される。その結果、セルスタック全体の温度むらが抑制される。
また、改質触媒部PR1は、燃料極112から離間しており且つ燃料極112に対向する改質面RSに沿って設けられている。このため、改質触媒部PR1で生じた水蒸気反応による吸熱は、内部改質による吸熱と同様に、積層された複数の単セル110を冷却するために用いられることとなる。つまり、本実施形態に係る燃料電池10では、燃料極112で生じる内部改質を抑制する構成としながらも、発電中において高温となり過ぎてしまうことを防止している。更に、本実施形態では、改質触媒部PR1を設けるにあたり、燃料極112や酸素極113の配置は一切制限されない。つまり、燃料電池10の発電性能を犠牲にすることなく、上記のような効果を得ることができる。
また、燃料ガスには、炭素(C)の数が比較的大きな炭化水素分子も含まれている。このような炭化水素分子が燃料極112に到達すると、燃料極112において炭素析出が生じ、多孔質である燃料極112の目詰まりが生じることがある。しかしながら、本実施形態では、大きな炭化水素分子の大部分は、改質触媒部PR1においてメタンや水素に変化する。このため、燃料極112の目詰まりが生じる可能性は極めて低くなっている。尚、改質触媒部PR1で炭素析出が生じる可能性はあるが、改質触媒部PR1の周囲は(多孔質ではなく)広い空間になっているので、目詰まりのような問題が生じることは無い。
本発明の第2実施形態について、図3を参照しながら説明する。本実施形態では、ニッケル鍍金層である改質触媒部PR2が、貫通穴143の内面ではなく分散板140の面141上に形成されている。つまり、改質触媒部PR2が、分散板140のうち燃料極112と対向する面に設けられている。その他の点については第1実施形態と同様である。第1実施形態と同様に本実施形態においても、改質触媒部PR2が沿っている改質面RSは、分散板140の面141を含む面となっている。このような態様においても、第1実施形態と同様の効果を奏する。
本発明の第3実施形態について、図4を参照しながら説明する。本実施形態では、ニッケル鍍金層である改質触媒部PR3が、貫通穴143の内面ではなく分散板140の面142上に形成されている。つまり、改質触媒部PR2が、分散板140のうち燃料極112と対向する面とは反対側の面に設けられている。その他の点については第1実施形態と同様である。本実施形態においては、改質触媒部PR3が沿っている改質面RSは、分散板140の面142を含む面となっている。このような態様においても、第1実施形態と同様の効果を奏する。
本発明の第4実施形態について、図5を参照しながら説明する。本実施形態では、ニッケル鍍金層である改質触媒部PR4が、分散板140の一部ではなく、セパレータ220のうち燃料極112側の面211上に形成されている。つまり、改質触媒部PR4が、燃料ガスの流れ方向に沿って分散板140よりも上流側となる位置に設けられている。その他の点については第1実施形態と同様である。本実施形態においては、改質触媒部PR4が沿っている改質面RSは、セパレータ220の面211を含む面となっている。このような態様においても、第1実施形態と同様の効果を奏する。
本発明の第5実施形態について、図6を参照しながら説明する。本実施形態では、分散板140に形成された貫通穴143の形状において第1実施形態と異なっている。その他の点については第1実施形態と同様である。図6には、分散板140のうち燃料極112と対向する部分が上面視で示されている。また、図6では、流路210を燃料ガスが流れる方向が矢印で示されている。
図6に示されるように、燃料ガスの流れ方向における上流側(図6では左側)では、貫通穴143の直径は比較的小さい。貫通穴143の直径は、燃料ガスの流れ方向における下流側に行くほど大きくなっている。
本実施形態でも、貫通穴143の内面には改質触媒部PR1が形成されている。ここで、改質面RSの単位面積あたりにおける改質触媒部PR1の表面積、を面積比と定義する。この面積比は、改質面RSをその法線方向に沿って見た場合において、改質面RSの特定領域に含まれる改質触媒部PR1の表面積を、当該特定領域の面積で除することにより得られる値である。ここでいう「改質触媒部PR1の表面積」とは、改質触媒部PR1によって覆われた面の面積ではなく、改質触媒部PR1の立体形状における表面積、すなわち、触媒として実質的に機能する部分の表面積のことである。従って、面積比の値は1よりも大きくなる場合がある。
本実施形態では、それぞれの貫通穴143の中心位置は等間隔で配置されている。この場合、上記のように定義される面積比は貫通穴143の直径に概ね比例する。このため、本実施形態においては、燃料ガスの流れ方向に沿った下流側における面積比が、上流側における面積比よりも大きくなっている。
下流側に行くほど、燃料ガスに含まれる炭化水素の量は少なくなる。このため、第1実施形態のように全ての貫通穴143の直径が互いに等しい場合には、改質触媒部PR1における水蒸気改質反応は、下流側に行くほど生じにくくなる。その結果、吸熱による燃料ガスや改質触媒部PR1の温度低下は、上流側で生じやすく下流側で生じにくい。
これに対し、本実施形態では、上記のように面積比が調整されているので、上流側における水蒸気改質反応が抑制される。これにより、上流側における吸熱量と、下流側における吸熱量とが、概ね等しくなっている。水蒸気改質反応を用いた単セル110の冷却がより均等に行われることとなるので、温度むらが更に抑制されており、燃料電池10の発電性能を十分に発揮させることが可能となっている。
また、本実施形態では、それぞれの貫通穴143の位置や直径を適宜変更することにより、燃料極112の各部に到達する燃料の流量を調整することもできる。これにより、燃料極112の各部で生じる内部改質(吸熱)のバランスが適切となるように貫通穴143の直径等を調整し、セルスタックの温度むらを更に抑制することができる。
本発明の第6実施形態について、図7を参照しながら説明する。図6と同様に、図7には、分散板140のうち燃料極112と対向する部分が上面視で示されている。また、図7では、流路210を燃料ガスが流れる方向が矢印で示されている。
本実施形態では、図3に示される第2実施形態と同様に、改質触媒部PR2が分散板140の面141に形成されている。しかしながら、改質触媒部PR2は面141の全体に一様に形成されているのではなく、複数領域に分かれるように形成されている。
本実施形態では、貫通穴143は7行×7列となるように配置されている。また、それぞれの貫通穴143の直径は全て同じであり、互いに隣り合う貫通穴143同士の間隔も全て同じである。
改質触媒部PR2は、面141のうち、それぞれの貫通穴143の近傍部部分に形成されている。図7に示されるように、燃料ガスの流れ方向における上流側となる部分(図7では左側の2列)では、それぞれの改質触媒部PR2が、単一の貫通穴143を囲むような小さな矩形領域に形成されている。この改質触媒部PR2は、図7では改質触媒部PR21として示されている。改質触媒部PR21の周囲では、面141が比較的大きく露出している。
燃料ガスの流れ方向において中央となる部分(図7では中央の3列)では、それぞれの改質触媒部PR2が、同一行に並ぶ3つの貫通穴143を囲むような矩形領域に形成されている。この改質触媒部PR2は、図7では改質触媒部PR22として示されている。改質触媒部PR22の周囲では、面141が僅かに露出している。
燃料ガスの流れ方向における下流側となる部分(図7では右側の2列)では、単一の改質触媒部PR2が、全ての貫通穴143を囲むような大きな矩形領域に形成されている。この改質触媒部PR2は、図7では改質触媒部PR23として示されている。当該領域では、面141の全体が改質触媒部PR23で覆われている。
改質触媒部PR2が以上のように設けられているので、本実施形態でも第5実施形態と同様に、燃料ガスの流れ方向に沿った下流側における面積比が、上流側における面積比よりも大きくなっている。これにより、第5実施形態で説明したものと同じ効果を奏する。尚、面積比を上記のように調整するための改質触媒部PR2の具体的な配置は、図7に示される例に限定されることなく、様々な配置を採用することができる。
以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
10:燃料電池
111:電解質
112:燃料極
113:酸素極
140:分散板
143:貫通穴
210:流路
PR1,PR2,PR3,PR4:改質触媒部
RS:改質面

Claims (5)

  1. 燃料ガス及び酸化剤ガスの供給を受けて発電を行う燃料電池(10)であって、
    平板状に形成された電解質(111)と、
    前記電解質の一方の面に形成されており、燃料ガスの供給を受ける部分である燃料極(112)と、
    前記電解質の他方の面に形成されており、酸化剤ガスの供給を受ける部分である酸素極(113)と、
    前記燃料極に燃料ガスを供給するための流路である燃料供給流路(210,125)と、を備え、
    前記燃料供給流路には、
    水蒸気改質反応を生じさせるための改質触媒部(PR1,PR2,PR3,PR4)が、前記燃料極から離間しており且つ前記燃料極に対向する面、である改質面(RS)に沿って設けられており、
    前記燃料供給流路には、
    燃料ガスを通過させるための貫通穴(143)が複数形成された、平板状の分散板(140)が設けられており、複数の前記貫通穴から1つの前記燃料極に燃料ガスが供給されるように構成されており、
    前記改質触媒部は前記貫通穴の内面に形成されている燃料電池。
  2. 前記改質触媒部は、前記分散板のうち前記燃料極と対向する面(141)に設けられている、請求項1に記載の燃料電池。
  3. 前記改質触媒部は、前記分散板のうち前記燃料極と対向する面とは反対側の面(142)に設けられている、請求項1又は2に記載の燃料電池。
  4. 前記改質触媒部は、燃料ガスの流れ方向に沿って前記分散板よりも上流側となる位置に設けられている、請求項1乃至のいずれか1項に記載の燃料電池。
  5. 燃料ガス及び酸化剤ガスの供給を受けて発電を行う燃料電池(10)であって、
    平板状に形成された電解質(111)と、
    前記電解質の一方の面に形成されており、燃料ガスの供給を受ける部分である燃料極(112)と、
    前記電解質の他方の面に形成されており、酸化剤ガスの供給を受ける部分である酸素極(113)と、
    前記燃料極に燃料ガスを供給するための流路である燃料供給流路(210,125)と、を備え、
    前記燃料供給流路には、
    水蒸気改質反応を生じさせるための改質触媒部(PR1,PR2,PR3,PR4)が、前記燃料極から離間しており且つ前記燃料極に対向する面、である改質面(RS)に沿って設けられており、
    前記燃料供給流路には、
    燃料ガスを通過させるための貫通穴(143)が複数形成された、平板状の分散板(140)が設けられており、複数の前記貫通穴から1つの前記燃料極に燃料ガスが供給されるように構成されており、
    前記改質面の単位面積あたりにおける前記改質触媒部の表面積、を面積比と定義したときに、
    燃料ガスの流れ方向に沿った下流側における前記面積比は、上流側における前記面積比よりも大きい燃料電池。
JP2016099788A 2016-05-18 2016-05-18 燃料電池 Active JP6634955B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099788A JP6634955B2 (ja) 2016-05-18 2016-05-18 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099788A JP6634955B2 (ja) 2016-05-18 2016-05-18 燃料電池

Publications (2)

Publication Number Publication Date
JP2017208232A JP2017208232A (ja) 2017-11-24
JP6634955B2 true JP6634955B2 (ja) 2020-01-22

Family

ID=60417360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099788A Active JP6634955B2 (ja) 2016-05-18 2016-05-18 燃料電池

Country Status (1)

Country Link
JP (1) JP6634955B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189844A1 (ja) 2018-03-30 2019-10-03 大阪瓦斯株式会社 燃料電池装置及び燃料電池装置の運転方法
EP3780198A4 (en) 2018-03-30 2021-12-29 Osaka Gas Co., Ltd. Metal-supported fuel cell, and fuel cell module
KR20200135287A (ko) 2018-03-30 2020-12-02 오사까 가스 가부시키가이샤 연료 전지 단일 셀 유닛, 연료 전지 모듈 및 연료 전지 장치
JP7317547B2 (ja) * 2019-03-29 2023-07-31 大阪瓦斯株式会社 燃料電池構造体、それを備えた燃料電池モジュール及び燃料電池装置
WO2022137335A1 (ja) * 2020-12-22 2022-06-30 日産自動車株式会社 固体酸化物型燃料電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2930326B2 (ja) * 1989-07-31 1999-08-03 三菱重工業株式会社 固体電解質型燃料電池
JP2979911B2 (ja) * 1993-07-30 1999-11-22 三井造船株式会社 燃料電池用燃料改質触媒
GB9623327D0 (en) * 1996-11-08 1997-01-08 British Gas Plc An electric power generation system
JP2000133286A (ja) * 1998-10-20 2000-05-12 Kansai Electric Power Co Inc:The 固体電解質型燃料電池セル及び発電モジュール
JP2007080646A (ja) * 2005-09-14 2007-03-29 National Institute Of Advanced Industrial & Technology 直列型燃料電池
JP2011210568A (ja) * 2010-03-30 2011-10-20 Mitsubishi Materials Corp 固体酸化物形燃料電池の燃料極集電体ユニット

Also Published As

Publication number Publication date
JP2017208232A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
US7820315B2 (en) Fuel cell stack having coolant passage whose lower area has larger flow resistance
JP6634955B2 (ja) 燃料電池
JP5500254B2 (ja) 燃料電池
US8003278B2 (en) Fuel cell
US8986905B2 (en) Fuel cell interconnect
JP2009009837A (ja) 燃料電池
JP2009129813A (ja) 燃料電池および燃料電池用ガスセパレータ
JP2007141551A (ja) 燃料電池スタック
JP5581207B2 (ja) 燃料電池用セパレータ及びそれを備える燃料電池
JP5180946B2 (ja) 燃料電池
JP2016042463A (ja) 反応物質の分布を改善した燃料電池
JP5638427B2 (ja) 燃料電池
JP5766916B2 (ja) 固体高分子型燃料電池
JP5204932B1 (ja) 高分子電解質形燃料電池及びそれを備える燃料電池システム
JP5434035B2 (ja) 燃料電池のスタック構造
JP5021219B2 (ja) 燃料電池スタック
TWI699037B (zh) 電極分隔板結構及其應用之燃料電池
JP2017016827A (ja) 燃料電池
JP6403099B2 (ja) 燃料電池モジュール
JP2014038750A (ja) 燃料電池
JP5886739B2 (ja) 燃料電池スタック
JP5810068B2 (ja) 燃料電池スタック
KR101162008B1 (ko) 분배판을 포함하는 연료 전지
JP2018133240A (ja) 燃料電池スタック
JP5730708B2 (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R151 Written notification of patent or utility model registration

Ref document number: 6634955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250