JP6630601B2 - 熱電対の配設方法 - Google Patents

熱電対の配設方法 Download PDF

Info

Publication number
JP6630601B2
JP6630601B2 JP2016049589A JP2016049589A JP6630601B2 JP 6630601 B2 JP6630601 B2 JP 6630601B2 JP 2016049589 A JP2016049589 A JP 2016049589A JP 2016049589 A JP2016049589 A JP 2016049589A JP 6630601 B2 JP6630601 B2 JP 6630601B2
Authority
JP
Japan
Prior art keywords
thermocouple
sheath
refractory
measurement hole
sheath thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016049589A
Other languages
English (en)
Other versions
JP2017166843A (ja
Inventor
中西 良太
良太 中西
織田 剛
剛 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016049589A priority Critical patent/JP6630601B2/ja
Publication of JP2017166843A publication Critical patent/JP2017166843A/ja
Application granted granted Critical
Publication of JP6630601B2 publication Critical patent/JP6630601B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、熱電対の配設方法に関する。
例えば製鋼用炉等は、炉体が耐火物で形成され、内部が極めて高温となる。このような炉の内側の例えば溶銑等の温度を温度センサで直接測定することは困難であるため、耐火物の内部温度を測定することによって、製品温度や炉体の状態を推測することが一般的である。
比較的高い温度を測定できる温度センサとしては、熱電対が広く利用されている。特に、測定温度が高い場合には、例えばJIS−C1602(1995)に規定されるような保護管(シース)の中に熱電対を配設したシース熱電対が用いられることが多い。
上述のような耐火物は、熱伝導率が小さく、熱勾配が大きくなる。このため、耐火物の内部温度をシース熱電対で測定する場合、シース熱電対を耐火物の厚さ方向に挿入すると、比較的熱伝導率が大きいシースを通して熱が逃げることによって測定誤差が大きくなるという不都合が生じる。また、耐火物の厚さ方向にシース熱電対を挿入する測定孔をドリルで形成する場合、測定孔の奧端面が円錐状になるため、シース熱電対を測定孔の奧端面に比較的強い力で圧接しなければ、シース熱電対耐火物に対する接触が不十分となり、耐火物の温度を正しく検出することができないおそれがある。
そこで、シース熱電対の先端部を略90°折り曲げて耐火物の内面と略平行に配設する方法が一般的に用いられている(例えば特開2010−281515号公報参照)。熱電対の先端部を折り曲げることによって、この折り曲げた先端部全体を略等しい温度となる位置に配置することができる。これにより、熱電対の先端の測温点からシースの折り曲げ部分に沿う方向の熱勾配が殆どなくなるため、測温点からの熱の逃げを抑制することができる。
熱電対は時折交換する必要があるが、既存の耐火物に上記のように先端部を略90°折り曲げて熱電対を配設する作業はかなり煩雑である。具体的には、既存の耐火物の内部にシース熱電対の先端部を略90°折り曲げて配設するためには、耐火物に比較的大きな穴を開け、この穴の中にシース熱電対を配置した後、穴にセメント等の充填材を充填して封止する必要がある。
また、上記のように既存の耐火物にシース熱電対の先端部を略90°折り曲げて配設する場合、正確な温度を測定するためには耐火物に設ける穴の奧端面にシース熱電対の先端部を当接させる必要があるので、耐火物に深さが正確でかつ奧端面が平坦な穴を形成する必要がある。つまり、耐火物に形成する穴の深さが不正確である場合や奧端面が平坦でない場合には、熱電対による測温位置がずれたり、シース熱電対の先端と耐火物との間に隙間ができたりすることによって測定誤差が大きくなるおそれがある。
特開2010−281515号公報
上記不都合に鑑みて、本発明は、熱電対の交換が比較的容易でかつ検出精度が比較的高い熱電対の配設方法を提供することを課題とする。
上記課題を解決するためになされた発明は、耐火物の内部温度を測定するための熱電対の配設方法であって、耐火物に厚さ方向に測定孔を形成する工程と、シース及びこのシースに収容される熱電対を有するシース熱電対の先端部を90°以上折り曲げる工程と、上記先端部を折り曲げたシース熱電対を上記測定孔に挿入する工程とを備え、上記挿入工程で、シースの弾性によりシース熱電対の先端を測定孔の内周面に圧接させることを特徴とする熱電対の配設方法である
当該熱電対の配設方法は、シース熱電対の先端部を90°以上折り曲げる工程と、上記先端部を折り曲げたシース熱電対を上記測定孔に挿入する工程とを備え、上記挿入工程で、シースの弾性によりシース熱電対の先端を測定孔の内周面に圧接させるので、耐火物から熱電対への熱伝導が比較的確実である。また、このように、当該熱電対の配設方法は、シース熱電対の先端部を折り曲げることにより、先端の測温点から耐火物の外表面側にシースを延在させないので、測温点からの熱が逃げにくく、比較的正確に耐火物温度を測定することができる。さらに、当該熱電対の配設方法は、シース熱電対の先端を測定孔の内周面に当接させて弾性変形させるので、既存設備への配設、つまり熱電対の交換が比較的容易である。
上記シース熱電対の先端から折り曲げ位置までの長さが上記測定孔の平均径よりも大きいとよい。このように、上記シース熱電対の先端から折り曲げ位置までの長さが上記測定孔の平均径よりも大きいことによって、シース熱電対の先端を測定孔の内周面に確実に当接させられる。
上記シース熱電対の先端から折り曲げ位置までの長さが上記測定孔の平均径の2倍以下であるとよい。このように、上記シース熱電対の先端から折り曲げ位置までの長さが上記測定孔の平均径の2倍以下であることによって、シース熱電対の先端部が過度に耐火物の外表面側に向かって折り返されることがなく、シースを通して耐火物の内表面側から先端に向かう熱伝導を抑制してシース熱電対の先端位置における耐火物温度をより正確に測定することができる。
ここで、シース熱電対の先端部の折り曲げの角度は、シース熱電対の先端の軸方向と後端側直線部分の軸方向と角度を意味するものとする。また、「折り曲げ位置」とは、シースの中心線上で、先端における中心線方向の先端からの離間距離が最も大きい位置を意味し、「折り曲げ位置までの長さ」とは、先端から上記折り曲げ位置までの中心線に沿う長さを意味するものとする。
本発明の熱電対の配設方法は、熱電対の交換が比較的容易でかつ検出精度が比較的高い
本発明の一実施形態の熱電対の配設方法によってシース熱電対を配設した炉壁を示す模式的部分断面図である。 本発明の一実施形態の熱電対の配設方法におけるシース熱電対の位置決め方法を例示する模式的断面図である。 本発明の実施例における耐火物の温度勾配と測定値とを示すグラフである。
以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。
[熱電対の配設構造]
図1に、本発明の一実施形態に係る熱電対の配設方法によってシース熱電対1が配設され、シース熱電対1により内部温度が測定される耐火物2を示す。つまり、図1は、本発明の一実施形態に係る熱電対の配設方法によって得られる熱電対の配設構造を示す。
(シース熱電対)
シース熱電対1は、シース(保護管)とこのシースの中に配設される熱電対とを有する公知の測温センサである。
シース熱電対1の熱電対は、2種類の金属導体の端部を接続してなり、2種類の金属導体の一端を接続した測温接点と開放されている他端との間に温度差を与えることにより電流が発生する現象(ゼーベック効果)を利用して温度を測定するものである。
シース熱電対1のシースは、一般に金属から形成される。このため、シース熱電対1のシースの熱伝導率は、数十W/mKである。
シース熱電対1のシースは、先端が閉塞していることが好ましく、閉塞したシースの先端に測温接点が接触するよう熱電対が配設されていることがより好ましい。また、シース熱電対1は、シースの中に、例えば酸化マグネシウム、酸化ケイ素等の絶縁物が充填されることが好ましい。以上のようなシース熱電対1としては、例えばJIS−C1602(1995)に準拠したものを用いることができる。
シース熱電対1のシースの外径(直胴部分の平均外径)d[mm]は、例えば測定温度等の条件に応じて選択すればよく、JIS−C1602(1995)には、0.5mmから8mmまでが規定されている。例として、測定温度が1000度の場合、シース熱電対1のシースの外径dは、通常1.6mm以上とされる。
(耐火物)
耐火物2は、例えば製鋼溶炉の炉体等を構成する耐火煉瓦等である。この耐火物2には、低温側(炉体の外表面側)に開口し、耐火物2の厚さ方向に延在する測定孔3が形成されている。測定孔3は、例えば図示するように、奧端面が略円錐状のドリル孔であってもよい。
上記シース熱電対1は、先端部が90°以上折り曲げられ、先端がシース熱電対1の弾性によって測定孔3の内周面に圧接されるよう配設される。
耐火物2の熱伝導率としては、典型的には1W/mK以上2W/mK以下とされる。
[熱電対の配設方法]
続いて、上記図1の熱電対の配設構造が得られる当該熱電対の配設方法について説明する。
当該熱電対の配設方法は、耐火物2に厚さ方向に測定孔3を形成する工程<測定孔形成工程>と、シース熱電対1の先端部を90°以上折り曲げる工程<折曲工程>と、上記先端部を折り曲げたシース熱電対を上記測定孔に挿入する工程<挿入工程>とを備える。
<測定孔形成工程>
上記測定孔形成工程では、耐火物2に厚さ方向に延在する測定孔3を形成する。この測定孔3の形成は、例えばドリル等を用いて行うことができる。
測定孔3の平均径D[mm]の下限としては、シース熱電対1のシース外径dの5倍が好ましく、6倍がより好ましい。一方、測定孔3の平均径Dの上限としては、シース熱電対1のシース外径dの10倍が好ましく、7倍がより好ましい。測定孔3の平均径Dが上記下限に満たない場合、シース熱電対1を測定孔3に挿入可能な寸法で折り曲げることができないおそれがある。逆に、測定孔3の平均径Dが上記上限を超える場合、耐火物2の強度や断熱性能が不必要に低下するおそれがある。なお、一般に、シース熱電対1は、測温接点の損傷を防止するために、先端から例えば10mm程度の一定の範囲内では折り曲げることができない。従って、測定孔3の平均径Dは、このシース熱電対1の先端部の折り曲げできない長さより大きくすることが必要であるが、通常、上記下限値以上であればこの条件も満たすことができる。
測定孔3の平均深さ(耐火物2の厚さ方向の平均長さ)は、耐火物2の外側表面から温度を測定する位置までの距離よりも大きい。測定孔3の平均深さと耐火物2の外側表面から温度を測定する位置までの距離との差の下限としては、後述するシース熱電対1の先端から折り曲げ位置までの長さLの1倍が好ましく、1.2倍がより好ましい。一方、測定孔3の平均深さと耐火物2の外側表面から温度を測定する位置までの距離との差の上限としては、シース熱電対1の先端から折り曲げ位置までの長さLの3倍が好ましく、2倍がより好ましい。測定孔3の平均深さと耐火物2の外側表面から温度を測定する位置までの距離との差が上記下限に満たない場合、温度を測定する位置までシース熱電対1の先端を挿入できないおそれがある。逆に、測定孔3の平均深さと耐火物2の表面から温度を測定する位置までの距離との差が上記上限を超える場合、耐火物2の強度や断熱性能が不必要に低下するおそれや、測定孔の内周面の測定位置の温度と耐火物2の内部の同じ厚さ方向位置での温度との差が大きくなることで測定精度が不十分となるおそれがある。
<折曲工程>
上記折り曲げ工程では、シース熱電対1を先端から所定の長さL[mm]の位置で90°以上折り曲げるよう塑性変形させる。なお、上記シース熱電対1の折り曲げに際しては、機能が保証される曲げ半径の最小値が存在する。市販のシース熱電対の曲げ半径の最小値の具体例としては、シースの外径の2倍から3倍程とされている。このため、上記長さLは、図示するように、シース熱電対1の中心線を基準として、シース熱電対1の先端における中心線方向に先端から最も遠い位置までの先端からの中心線に沿う長さを意味するものと定義される。
シース熱電対1は、上記先端から折り曲げ位置までの長さLが測定孔3の平均径Dよりも大きくなるよう折り曲げられる。このように、L>Dの関係を満たすことによって、シース熱電対1の弾性力でシース熱電対1の先端が測定孔3の内周面に圧接されるので、耐火物2の温度を比較的正確に測定することができる。
上記先端から折り曲げ位置までの長さLの下限としては、測定孔3の平均径Dの1.1倍が好ましく、1.2倍がより好ましい。一方、先端から折り曲げ位置までの長さLの上限としては、測定孔3の平均径Dの2倍が好ましく、1.8倍がより好ましい。先端から折り曲げ位置までの長さLが上記下限に満たない場合、測定孔3の内径のばらつき等によって、シース熱電対1の先端の測定孔3の内周面への圧接が不確実となるおそれがある。逆に、先端から折り曲げ位置までの長さLが上記上限を超える場合、シース熱電対1の折り曲げ部分がより高温となる位置に配置され、折り曲げ部分の側からシースを通して先端に熱が伝導することで測定誤差が大きくなるおそれがある。
この折り曲げ工程におけるシース熱電対1の折り曲げ角度(塑性変形角度)の下限としては、90°であり、95°が好ましく、100°がより好ましい。一方、シース熱電対1の折り曲げ角度の上限としては、160°が好ましく、150°がより好ましく、120°がさらに好ましい。シース熱電対1の折り曲げ角度が上記下限に満たない場合、シース熱電対1を測定孔3に挿入することが困難となるおそれがある。逆に、シース熱電対1の折り曲げ角度が上記上限を超える場合、シース熱電対1の先端を測定孔3の内周面に圧接することが困難となるおそれがある。
シース熱電対1の曲げ半径の下限としては、使用するシース熱電対1の仕様に応じて定められるが、シースの外径dの1.5倍が好ましく、2倍がより好ましい。一方、シース熱電対1の曲げ半径の上限としては、測定孔3の平均径Dの1/2が好ましく、1/3がより好ましい。シース熱電対1の曲げ半径が上記下限に満たない場合、シース熱電対1が破損するおそれがある。逆に、シース熱電対1の曲げ半径が上記上限を超える場合、シース熱電対1を測定孔3に挿入することが困難となるおそれがある。
<挿入工程>
上記挿入工程では、上記折り曲げ工程で先端部を折り曲げたシース熱電対1を測定孔3に挿入する。このとき、シース熱電対1の先端部は、測定孔3の内周面に当接してさらに折れ曲がるよう弾性変形する。つまり、上記折り曲げ工程でシース熱電対1の先端部を90°以上折り曲げたことによって、測定孔3の内径に合わせてシース熱電対1の後端側直線部と先端との距離を弾性変形により変化させ、シースの弾性によりシース熱電対1の先端部を測定孔3の内周面に当接させつつシース熱電対1を測定孔3に挿入する。
また、この挿入工程では、図2に示すように、測定孔3の中にシース熱電対1と共に深さを測定するゲージ又は治具Gを挿入することによって、シース熱電対1の先端の位置を正確に定めることができる。
<利点>
当該熱電対の配設方法は、上記折り曲げ工程においてシース熱電対1の先端部を90°以上折り曲げることによって、シース熱電対1を測定孔2に挿入する際に先端部がさらに折れ曲がるよう弾性変形し、このシース熱電対1のシースの弾性力でシース熱電対1の先端を測定孔3の内周面に当接させられるので、耐火物2から確実に熱が伝導して耐火物2の温度を比較的正確に測定することができる。
特に、当該熱電対の配設方法によって得られる熱電対の配設構造では、シース熱電対1及び耐火物2の熱膨張率の違い起因するシース熱電対1の先端と耐火物2との間の隙間が生じ難いので、測定誤差が生じにくい。
また、当該熱電対の配設方法によればシース熱電対1の先端を測定孔3の内周面に当接させるため、測定孔3の奧端面にシース熱電対1の先端を当接させる場合とは異なり、測定孔3の奧端面が平坦である必要がなく、測定孔3の深さに精度が要求されない。このため、当該熱電対の配設方法は、測定孔3の形成が比較的容易でありながら、耐火物2の厚さ方向の測温位置を正確に定めることができる。
また、当該熱電対の配設方法は、シース熱電対1を先端部が耐火物2の厚さ方向と垂直になるよう埋設する場合に比して、耐火物2に形成する測定孔3の径を小さくすることができる。このため、当該熱電対の配設方法は、耐火物2の断熱性能や強度を比較的低下させにくい。
また、当該熱電対の配設方法によって配設されたシース熱電対1は、強く引っ張ることで測定孔3から引き抜くことができる。このため、当該熱電対の配設方法を適用することによって、シース熱電対1を比較的容易に交換できる。
また、当該熱電対の配設方法は、シース熱電対1の弾性力によってシース熱電対1の先端を測定孔3の内周面に当接させるので、測定孔3への充填材によって熱伝導を担保する必要がない。このため、当該熱電対の配設方法では、充填材の熱伝導率をより小さくして、充填材を介しての放熱による測定誤差を抑制することができる。なお、測定孔3を熱伝導率が小さい充填材等で封止することが好ましいが、例えばグラスウールを詰め込む等の簡易なものであってもよく、省略することもできる。
[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
当該熱電対の配設方法において、シース熱電対の折り曲げは、図示するように一定の曲率で折り曲げる以外に、曲率が変化するよう折り曲げたり、2段に折り曲げたりしてもよい。
以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。
炉壁が3層の耐火物及び鉄皮から形成され、炉内温度が約1000℃となる炉を用いて、耐火物の内部温度を測定する実験を行った。
具体的な炉壁の構成としては、内面側から順番に、厚さ160mm、熱伝導率2W/mKの第1の耐火物、厚さ50mm、熱伝導率1.4W/mKの第2の耐火物、厚さ40mm、熱伝導率0.5W/mKの第3の耐火物、及び厚さ40mmの鉄皮を備える構成とした。
耐火物の各層の界面に熱電対を配設(挟み込み)して耐火物の温度を正確に測定した。炉内温度を1000℃に設定して定常状態としたとき、図3に示すような温度分布となり、第1の耐火物の内側表面の温度は980℃であり、第2の耐火物と第3の耐火物との境界の温度は600°であった。
<実施例>
実施例として、上記鉄皮から第1の耐火物の外側表面まで平均径10mmの測定孔を形成し、この測定孔に先端部を折り曲げた外径1.6mmのシース熱電対を挿入して、シース熱電対の先端を第2の耐火物と第3の耐火物との境界に配置することにより、第2の耐火物と第3の耐火物との境界における耐火物の温度を測定した。
シース熱電対は、先端から折り曲げ位置までの長さが15mm、曲げ半径が3mmとなるよう、150°折り曲げた。
この実施例による耐火物温度の測定値は602℃であった。
<比較例>
比較例として、上記鉄皮から第2の耐火物の外側表面まで平均径4mmの測定孔を形成し、この測定孔に外径3.2mmのシース熱電対を挿入し、シース熱電対の先端を第2の耐火物の外側表面に当接させて耐火物温度を測定した。
この比較例による耐火物温度の測定値は550℃であった。
実施例では、シース熱電対の先端を測定孔に圧接するため、比較的精度よく耐火物の温度を測定できたものと考えられる。なお、測定値が実際の温度よりもわずかに高いが、これは折り曲げ部分側からシースを通して熱が伝導したことによる誤差と考えられる。この誤差は十分に許容できるものであり、熱電対の配設の容易さが勝るということができる。
一方、比較例では、測定値が実際の温度よりもかなり低い値となった。これは、シースを通して熱が外側に放出された結果であると考えられ、このような配設方法は実際の使用に耐えるものではないといえる。
当該熱電対の配設方法は、耐火物の内部温度を測定するために広く適用できるが、例えば製鋼用の炉や取鍋等の耐火物温度を測定するために特に好適に用いられる。
1 シース熱電対
2 耐火物
3 測定孔
G ゲージ又は治具

Claims (3)

  1. 耐火物の内部温度を測定するための熱電対の配設方法であって、
    耐火物に厚さ方向に測定孔を形成する工程と、
    シース及びこのシースに収容される熱電対を有するシース熱電対の先端部を90°以上折り曲げる工程と、
    上記先端部を折り曲げたシース熱電対を上記測定孔に挿入する工程と
    を備え、
    上記挿入工程で、シースの弾性によりシース熱電対の先端を測定孔の内周面に圧接させることを特徴とする熱電対の配設方法。
  2. 上記シース熱電対の先端から折り曲げ位置までの長さが上記測定孔の平均径よりも大きい請求項1に記載の熱電対の配設方法。
  3. 上記シース熱電対の先端から折り曲げ位置までの長さが上記測定孔の平均径の2倍以下である請求項1又は請求項2に記載の熱電対の配設方法。
JP2016049589A 2016-03-14 2016-03-14 熱電対の配設方法 Expired - Fee Related JP6630601B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016049589A JP6630601B2 (ja) 2016-03-14 2016-03-14 熱電対の配設方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049589A JP6630601B2 (ja) 2016-03-14 2016-03-14 熱電対の配設方法

Publications (2)

Publication Number Publication Date
JP2017166843A JP2017166843A (ja) 2017-09-21
JP6630601B2 true JP6630601B2 (ja) 2020-01-15

Family

ID=59908950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049589A Expired - Fee Related JP6630601B2 (ja) 2016-03-14 2016-03-14 熱電対の配設方法

Country Status (1)

Country Link
JP (1) JP6630601B2 (ja)

Also Published As

Publication number Publication date
JP2017166843A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
CN110168326B (zh) 温度计
CN101968385B (zh) 一种炉内钢坯温度跟踪测试的方法
US10345156B2 (en) Temperature sensor and method for the production of a temperature sensor
US8671754B2 (en) Sensor device
US10428716B2 (en) High-temperature exhaust sensor
US9909936B2 (en) Heat flux sensor and method for manufacturing same
JP6630601B2 (ja) 熱電対の配設方法
JP5366772B2 (ja) 温度検出装置
US20190003894A1 (en) Multipoint sensor for determining an existing temperature profile of a medium, and method for producing same
EP1677087A1 (en) Thermocouple assembly and method of use
JP4391195B2 (ja) 温度測定装置
JP4848311B2 (ja) 温度測定装置
KR20100053438A (ko) 온도 측정 센서 및 온도 측정 센서의 제조 방법
JP4755578B2 (ja) 素子と絶縁樹脂の同径型白金測温抵抗体及びその製造方法
JP3177887U (ja) シース型測温装置
JP6813906B1 (ja) 温度・変位測定装置
KR101831682B1 (ko) 기체 온도 측정 장치 및 방법
JP3841295B2 (ja) 温度計の設置方法
JP2014235093A (ja) 温度測定装置
JP4194895B2 (ja) 炉の内張耐火物の温度を測定する温度計
JP2008170234A (ja) 渦電流センサのプローブ
JP2016027313A (ja) 温度センサ及び温度センサの製造方法
JP2006078236A (ja) カプセル型ひずみゲージ、カプセル型ひずみゲージの製造方法およびカプセル型ひずみゲージの取付方法
JP2015152336A (ja) 温度測定装置
JP2017113996A (ja) タイヤ加硫用金型

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6630601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees