JP6626057B2 - 検査装置及び検査システム - Google Patents
検査装置及び検査システム Download PDFInfo
- Publication number
- JP6626057B2 JP6626057B2 JP2017186914A JP2017186914A JP6626057B2 JP 6626057 B2 JP6626057 B2 JP 6626057B2 JP 2017186914 A JP2017186914 A JP 2017186914A JP 2017186914 A JP2017186914 A JP 2017186914A JP 6626057 B2 JP6626057 B2 JP 6626057B2
- Authority
- JP
- Japan
- Prior art keywords
- inspection
- imaging device
- acquisition unit
- information
- visual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
- A61N5/1081—Rotating beam systems with a specific mechanical construction, e.g. gantries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/021—Optical sensing devices
- B25J19/023—Optical sensing devices including video camera means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8883—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Manipulator (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Processing (AREA)
Description
検査用視覚センサ4は、検査対象物2を撮像し、撮像した検査対象物2の画像を検査装置10に提供する。検査用視覚センサ4は、内蔵する光学レンズの種類を交換可能になっている。照明装置6は、検査対象物2を照らす。
検査支援ロボット50は、アーム52におけるハンドで検査対象物2を把持する。ロボット制御装置60は、検査支援ロボットの動作プログラムを実行し、検査支援ロボット50を制御して、検査対象物2の位置、姿勢を制御する。
このように、検査システム1Aでは、検査用視覚センサ4の位置、姿勢、及び照明装置6の位置を固定とし、検査対象物2の位置、姿勢を制御することにより、検査対象物2、検査用視覚センサ4、及び照明装置6の相対位置を制御する。
検査装置10は、検査プログラムを実行し、検査用視覚センサ4で撮像された検査対象物2の画像に基づいて、検査対象物2の欠陥の有無を検査し、その検査結果を外部に出力する。
本実施形態では、検査支援ロボットの動作プログラムと検査装置の検査プログラムによって、検査実施プログラムを構成する。
検査支援ロボット50は、アーム52の先端に検査用視覚センサ4及び照明装置6を保持する。ロボット制御装置60は、検査支援ロボットの動作プログラムを実行し、検査支援ロボット50を制御して、検査用視覚センサ4の位置、姿勢、及び照明装置6の位置を制御する。
このように、検査システム1Bでは、検査対象物2の位置、姿勢を固定とし、検査用視覚センサ4の位置、姿勢、及び照明装置6の位置を制御することにより、検査対象物2、検査用視覚センサ4、及び照明装置6の相対位置を制御する。
以下、検査装置10について詳細に説明する。
なお、本実施形態では、検査用視覚センサ4が対象物用視覚センサ4Aを兼用する形態を例示するが、対象物用視覚センサ4Aは検査用視覚センサ4と別の視覚センサであってもよい。
なお、本実施形態では、検査者3の目付近と検査対象物2とを2つの視覚センサでそれぞれ撮像したが、検査者3の目付近と検査対象物2とを1つの視覚センサで撮像してもよい。
また、視線情報取得部11における画像取得部(通信インタフェース)12は、図4に示すように、目視検査の際の検査対象物2の注視範囲であって、検査者により予め入力される注視範囲(固定値)を受信する。なお、視線情報取得部11は、視線の起点と検査対象物2との距離に応じて注視範囲の大きさを変更してもよい。
これにより、視線情報取得部11は、検査者3が検査対象物2の欠陥の目視検査を行う際の、検査者3の視線の起点、視線方向、及び注視範囲(固定値)を含む視線情報を取得する。
これにより、対象物情報取得部16は、検査者が検査対象物2の目視検査を行う際の、検査対象物2の位置、姿勢、及び形状を含む対象物情報を取得する。
視線情報取得部11、対象物情報取得部16、及び後述する環境情報取得部22で取得される位置姿勢は同じ座標系上で表現されるものとする。そのためには、視線用視覚センサ11、対象物視覚センサ16の相対位置関係は既知である必要がある。
また、構築用機械学習部26は、検査システム構築時、学習した学習モデルに従って、目視検査の際の、視線情報取得部11で取得された視線情報、対象物情報取得部16で取得された対象物情報、及び環境情報取得部22で取得された環境情報に基づいて、検査システムの設計値を出力する。
構築用機械学習部26は、例えば多層ニューラルネットワークを含むニューラルネットワークにより構築された学習モデルに従って機械学習が行われる。入力層、出力層、そして中間層を含むニューラルネットワークにより構築された学習モデルは適宜の方式を用いることができる。例えば、CNN(Convolutional Newral Network)を適用することもできる。
また、構築用機械学習部26は、機械学習時、検査装置の検査プログラムをラベルとして加え学習することができる。そのようにした場合、プログラム生成部28は、構築用機械学習部26で新たに取得した視線情報および対象物情報(または注視箇所)と、環境情報とを入力データとして学習した学習モデルで推論を行い、検査装置の検査プログラムを出力できる。出力された検査装置の検査プログラムは、出力された検査システムの設計値に基づき構築される検査システムで使用することできる。
また、検査用機械学習部34は、検査時、学習した学習モデルに従って、画像取得部17で取得された画像に基づいて、検査対象物2の検査箇所の欠陥の有無の検査結果を出力する。
このとき、検査者は、目視検査の際の環境情報として、照明装置6の種類、配置位置及び姿勢を、検査装置10Aに入力する。
また、検査者は、目視検査を検査用視覚センサ4を用いて自動化するための検査システムの設計値として、検査用視覚センサ4の種類、配置位置及び姿勢、検査用視覚センサ4内の光学レンズの種類、照明装置6の種類、配置位置及び姿勢、検査支援ロボットの動作プログラム、及び検査装置の検査プログラムを、検査装置10Aに入力する。
なお、検査者は、図4に示すように、目視検査の際の検査対象物2の注視範囲(固定値)を予め入力する。
このとき、対象物情報取得部16は、対象物用視覚センサ4Aで撮像された検査対象物2の画像を受信し、受信した画像を画像処理して、検査対象物2の位置、姿勢、及び形状を含む対象物情報を求める。これにより、対象物情報取得部16は、目視検査の際の、検査対象物2の位置、姿勢、及び形状を含む対象物情報を取得する(S2)。
視線情報取得部11及び対象物情報取得部16は、視線用視覚センサ5及び対象物用視覚センサ4Aで同一のタイミングに撮像された画像から視線情報及び対象物情報を取得する。
また、構築用ラベル取得部24は、検査者により入力された検査用視覚センサ4の種類、配置位置及び姿勢、検査用視覚センサ4内の光学レンズの種類、照明装置6の種類、配置位置及び姿勢、検査支援ロボットの動作プログラム、及び検査装置の検査プログラム(検査システムの設計値)をラベルとして取得する(S4)。
同一タイミングで取得された視線情報と、対象物情報と、環境情報と、ラベルとの複数の組のデータは、学習データとして記憶部40に一旦記憶される。
目視検査の際の検査対象物2の検査箇所が複数ある場合、検査箇所ごとに上述した動作が行われる。
このとき、検査者は、目視検査の際の環境情報として、照明装置6の種類、配置位置及び姿勢を、検査装置10Aに入力する。
なお、検査者は、図4に示すように、目視検査の際の検査対象物2の注視範囲(固定値)を予め入力する。
このとき、対象物情報取得部16は、対象物用視覚センサ4Aで撮像された検査対象物2の画像を受信し、受信した画像を画像処理して、検査対象物2の位置、姿勢、及び形状を含む対象物情報を求める。これにより、対象物情報取得部16は、目視検査の際の、検査対象物2の位置、姿勢、及び形状を含む対象物情報を取得する(S12)。
また、環境情報取得部22は、検査者により入力された照明装置の種類、配置位置及び姿勢(環境情報)を取得する(S13)。
検査対象物2の検査箇所が複数ある場合、プログラム生成部28は、全ての検査箇所を順に検査するように、検査支援ロボットの動作プログラム、及び検査プログラムを生成する。検査の順序は、検査者が目視検査した順序であってもよいし、或いは何らかの指標が良くなる(例えば、検査支援ロボットの移動距離が最小になる)順序であってもよい。
ロボット制御装置60は、プログラム生成部28で生成された検査支援ロボットの動作プログラムを実行することにより検査支援ロボット50を駆動制御し、検査対象物2、検査用視覚センサ4、及び照明装置6の相対位置を制御する。
検査用視覚センサ4は、検査対象物2の検査箇所を撮像する。
また、検査者は、目視検査の際に検査対象物2の検査箇所の欠陥の有無の検査結果(例えば、OK(欠陥無)又はNG(欠陥有))を検査装置10Aに入力する。
また、検査用ラベル取得部32は、画像取得部17で取得された検査対象物2の検査箇所の画像に付与するラベルであって、検査者により入力された目視検査の際の検査対象物の検査箇所の欠陥の有無の検査結果(OK、NG)を示すラベルを取得する(S22)。
検査用ラベル取得部32が検査対象物2の検査箇所のラベルを取得するタイミングで、画像取得部17が検査対象物2のその検査箇所の画像を取得してもよい。或いは、検査用ラベル取得部32が検査対象物2の全ての検査箇所のラベルを取得し終えた後に、構築された検査システムにて自動で、検査対象物2の全ての検査箇所の画像を取得してもよい。
取得された検査対象物2の検査箇所の画像と、ラベルとの組の集合であるデータは、学習データとして記憶部40に一旦記憶される。
検査用視覚センサ4は、検査対象物2の検査箇所を撮像する。
次に、検査用機械学習部34は、学習した学習モデルに従って、画像取得部17で取得された検査対象物2の検査箇所の画像に基づいて、検査対象物2の検査箇所の欠陥の有無の検査結果を出力する(S32)。
これにより、検査者は、検査用視覚センサ4、検査用視覚センサ4内の光学レンズ、及び、照明装置6を準備することができる。
第1実施形態では、検査システムを構築するために機械学習を行った。第2実施形態では、機械学習を行わずに検査システムを構築する。
プログラム生成部28は、特定した検査対象物2の検査箇所を検査用視覚センサ4を用いて撮像するように、検査対象物2、検査用視覚センサ4及び照明装置6の相対位置を制御する検査支援ロボットの動作プログラムを生成する。検査用視覚センサ4の種類や光学レンズの種類が予め取得できていれば、検査用視覚センサ4と検査対象物2の距離をどの程度にすれば、検査範囲全体が撮像画像に映るか、または、ピントが合うかどうかということを判定することできる。
また、プログラム生成部28は、撮像した検査対象物2の検査箇所の画像に基づいて検査対象物2の検査を行うための検査プログラムを生成する。検査プログラムは予め定められたルールに従って生成してもよし、教師あり学習または教師無し学習により判別を行う検査プログラムを生成してもよい。例えば、検査箇所に丸穴が存在すれば、穴の径をはかる検査プログラムを生成するようにすることができる。
このとき、検査者は、目視検査の際の環境情報として、検査用視覚センサ4の種類、配置位置及び姿勢、検査用視覚センサ4内の光学レンズの種類、及び照明装置6の種類、配置位置及び姿勢を、検査装置10Bに入力する。
なお、検査者は、図4に示すように、目視検査の際の検査対象物2の注視範囲(固定値)を予め入力する。
また、環境情報取得部22は、検査者により入力された検査用視覚センサ4の種類、配置位置及び姿勢、検査用視覚センサ4内の光学レンズの種類、及び照明装置6の種類、配置位置及び姿勢(環境情報)を取得する(S43)。
検査対象物2の検査箇所が複数ある場合、プログラム生成部28は、全ての検査箇所を順に検査するように、検査支援ロボットの動作プログラム、及び検査プログラムを生成する。
ここで、目視検査の際、検査者は、検査対象物2の検査箇所の表面に存在する欠陥(キズ又はムラなど)が認識しやすくなるように、検査対象物2を、照明装置6からの入射光に対して適切な角度傾けることがある。このような環境情報に基づいて、プログラム生成部28は、検査用視覚センサ4と、検査対象物2と、照明装置6との位置関係を、目視検査の際のそれらの位置関係と同じになるようにプログラムを生成する。この点について、以下に詳説する。
検査用視覚センサ4で検査対象物2を撮像する際にも、検査用視覚センサ4と、検査対象物2と、照明装置6との位置関係を、目視検査の際の検査者3と、検査対象物2と、照明装置6との位置関係と同じようにすることによって、上述同様の効果が得られると考えられる。すなわち、検査しやすい画像を撮像することができると考えられる。
更に、目視検査の際の検査者3と、検査対象物2と、照明装置6との位置関係を容易に実現するために、検査装置10Bは図2において上述したように環境情報出力部30を備え、照明装置6の種類を環境情報出力部30が出力することもできる。例えば、図9Bに示す目視検査の際の検査者3と、検査対象物2と、照明装置6との位置関係を、図1A又は図1Bに示す検査システム1A,1Bで実現する場合、照明装置6として、目視検査の際に使用した照明装置とは異なるローアングル照明装置を環境情報出力部30が出力する。環境情報出力部30で出力された照明装置を検査者が準備することにより、検査用視覚センサ4で検査対象物2を撮像する際にも、目視検査の際の検査者3と、検査対象物2と、照明装置6との位置関係を容易に実現することができ、更には検査の効率を向上させることができる。
また、本発明の特徴は、検査対象物2の欠陥の有無の検査(OK(欠陥無)又はNG(欠陥有))を行う検査装置に限定されず、検査対象物2に欠陥が存在する確率を求める検査装置、検査対象物2の欠陥位置を出力する検査装置等の種々の検査装置に適用可能である(機械学習部の教師データを変更することにより、出力する検査結果を変更することができる)。
ヘッドマウントディスプレイ5は、検査者3の眼球の位置、及び視線方向を特定する機能を有する。また、ヘッドマウントディスプレイ5は、ディスプレイ上に注視範囲を表示する機能を有し、この注視範囲の大きさや形状を検査者3の操作により変更する機能を有する。ヘッドマウントディスプレイ5は、特定した検査者3の眼球の位置及び視線方向、並びに検査者が設定したディスプレイ上の注視範囲を出力する。
これにより、視線情報取得部11は、検査者3が検査対象物2の欠陥の目視検査を行う際の、検査者3の視線の起点、視線方向、及び注視範囲を含む視線情報を取得する。
視線情報を取得するタイミングは、検査者が何らかの操作を行ったタイミングであってもよいし、検査者が所定時間以上注視したタイミングであってもよい。
ヘッドマウントディスプレイ5を用いる場合、検出された検査対象物2の欠陥の位置又は種類をヘッドマウントディスプレイ5上にサジェストしてもよい。
更にヘッドマウントディスプレイ5には対象物用視覚センサ4Aが搭載されていてもよい。検査対象物の検査箇所は、検査者の顔が向いた方向にあるはずである。そのため、ヘッドマウントディスプレイ5上の対象物視覚センサ4Aは検査箇所の撮像を行いやすいというメリットがある。
この場合、視線情報取得部の画像取得部は、視線用視覚センサ5における画像処理部で求められた視線情報を取得すればよく、対象物情報取得部の画像取得部は、対象物用視覚センサ4における画像処理部で求められた対象物情報を取得すればよい。
2 検査対象物
3 検査者
4 検査用視覚センサ
4A 対象物用視覚センサ(対象物用撮像装置)
5 視線用視覚センサ(視線用撮像装置)
6 照明装置
10,10A,10B 検査装置
11 視線情報取得部
12 画像取得部
13 画像処理部
16 対象物情報取得部
17 画像取得部
18 画像処理部
22 環境情報取得部
24 構築用ラベル取得部
26 構築用機械学習部
28 プログラム生成部
30 環境情報出力部
32 検査用ラベル取得部
34 検査用機械学習部
40 記憶部
50 検査支援ロボット
52 アーム
60 ロボット制御装置
Claims (10)
- 検査用撮像装置で撮像された検査対象物の画像に基づいて前記検査対象物の検査を行う検査装置であって、
検査者が前記検査対象物の目視検査を行う際の、前記検査者の視線の起点、視線方向、及び注視範囲を含む視線情報を取得する視線情報取得部と、
前記目視検査の際の、前記検査対象物の位置、姿勢、及び形状を含む対象物情報を取得する対象物情報取得部と、
前記視線情報と前記対象物情報との組のデータに基づいて、前記目視検査の際に前記検査者が注視した前記検査対象物の注視箇所を検査箇所として特定し、特定した前記検査対象物の検査箇所を前記検査用撮像装置を用いて撮像し、撮像した前記検査対象物の検査箇所の画像に基づいて前記検査対象物の検査を行うための検査実施プログラムを生成するプログラム生成部と、を備え、
前記検査実施プログラムは、前記検査対象物又は前記検査用撮像装置をアームに保持する検査支援ロボットを用いるものであって、前記検査対象物の検査箇所を前記検査用撮像装置を用いて撮像するように、前記検査対象物と前記検査用撮像装置との相対位置を制御する前記検査支援ロボットの動作プログラムを含み、
前記検査装置は、前記検査用撮像装置の種類、配置位置及び姿勢、並びに前記検査用撮像装置のレンズの種類を環境情報として取得する環境情報取得部を更に備え、
前記プログラム生成部は、前記環境情報に基づいて前記検査対象物と前記検査用撮像装置との相対位置を制御する前記検査支援ロボットの動作プログラムを生成する、
検査装置。 - 検査用撮像装置で撮像された検査対象物の画像に基づいて前記検査対象物の検査を行う検査装置であって、
検査者が前記検査対象物の目視検査を行う際の、前記検査者の視線の起点、視線方向、及び注視範囲を含む視線情報を取得する視線情報取得部と、
前記目視検査の際の、前記検査対象物の位置、姿勢、及び形状を含む対象物情報を取得する対象物情報取得部と、
前記視線情報と前記対象物情報との組のデータに基づいて、前記目視検査の際に前記検査者が注視した前記検査対象物の注視箇所を検査箇所として特定し、特定した前記検査対象物の検査箇所を前記検査用撮像装置を用いて撮像し、撮像した前記検査対象物の検査箇所の画像に基づいて前記検査対象物の検査を行うための検査実施プログラムを生成するプログラム生成部と、を備え、
前記検査実施プログラムは、前記検査対象物又は前記検査用撮像装置をアームに保持する検査支援ロボットを用いるものであって、前記検査対象物の検査箇所を前記検査用撮像装置を用いて撮像するように、前記検査対象物と前記検査用撮像装置との相対位置を制御する前記検査支援ロボットの動作プログラムを含み、
前記検査装置は、前記検査対象物を照らす照明装置の種類、配置位置及び姿勢を環境情報として取得する環境情報取得部を更に備え、
前記プログラム生成部は、前記環境情報に基づいて前記検査対象物、前記検査用撮像装置及び前記照明装置の相対位置を制御する前記検査支援ロボットの動作プログラムを生成する、
検査装置。 - 検査用撮像装置で撮像された検査対象物の画像に基づいて前記検査対象物の検査を行う検査装置であって、
検査者が前記検査対象物の目視検査を行う際の、前記検査者の視線の起点、視線方向、及び注視範囲を含む視線情報を取得する視線情報取得部と、
前記目視検査の際の、前記検査対象物の位置、姿勢、及び形状を含む対象物情報を取得する対象物情報取得部と、
前記視線情報と前記対象物情報との組のデータに基づいて、前記目視検査の際に前記検査者が注視した前記検査対象物の注視箇所を検査箇所として特定し、特定した前記検査対象物の検査箇所を前記検査用撮像装置を用いて撮像し、撮像した前記検査対象物の検査箇所の画像に基づいて前記検査対象物の検査を行うための検査実施プログラムを生成するプログラム生成部と、
前記目視検査の際の環境に関する環境情報を取得する環境情報取得部と、
前記目視検査を前記検査用撮像装置を用いて自動化するための検査システムの設計値をラベルとして取得する構築用ラベル取得部と、
前記視線情報取得部で取得された視線情報と、前記対象物情報取得部で取得された対象物情報と、前記環境情報取得部で取得された環境情報とを入力データとし、前記構築用ラベル取得部で取得されたラベルを教師データとして、学習モデルを学習する構築用機械学習部と、を備え、
前記構築用機械学習部は、学習した学習モデルに従って、前記目視検査の際の、前記視線情報取得部で取得された視線情報、前記対象物情報取得部で取得された対象物情報、及び前記環境情報取得部で取得された環境情報に基づいて検査システムの設計値を出力する、検査装置。 - 前記検査実施プログラムは、前記検査対象物又は前記検査用撮像装置をアームに保持する検査支援ロボットを用いるものであって、前記検査対象物の検査箇所を前記検査用撮像装置を用いて撮像するように、前記検査対象物と前記検査用撮像装置との相対位置を制御する前記検査支援ロボットの動作プログラムを含み、
前記プログラム生成部は、
前記構築用機械学習部を含み、前記視線情報と前記対象物情報との組のデータに基づいて、前記目視検査の際に前記検査者が注視した前記検査対象物の注視箇所を検査箇所として特定すると共に、
前記構築用機械学習部で学習した学習モデルに基づいて、特定した前記検査対象物の検査箇所を前記検査用撮像装置を用いて撮像するように、前記検査対象物と前記検査用撮像装置との相対位置を制御する前記検査支援ロボットの動作プログラムを生成する、請求項3に記載の検査装置。 - 前記環境情報は、前記検査対象物を照らす照明装置の種類、配置位置及び姿勢のうちの少なくとも1つを含み、
前記プログラム生成部は、前記検査対象物、前記検査用撮像装置及び前記照明装置の相対位置を制御する前記検査支援ロボットの動作プログラムを生成する、請求項4に記載の検査装置。 - 前記検査システムの設計値は、前記検査用撮像装置の種類、配置位置及び姿勢、前記検査用撮像装置の光学レンズの種類、前記検査対象物を照らす照明装置の種類、配置位置及び姿勢、前記検査支援ロボットの動作プログラム、及び検査プログラムのうちの少なくとも1つを含み、
前記プログラム生成部は、前記検査対象物、前記検査用撮像装置及び前記照明装置の相対位置を制御する前記検査支援ロボットの動作プログラムを生成する、請求項4又は5に記載の検査装置。 - 前記検査システムの設計値に含まれる動作プログラムは、前記プログラム生成部で生成された動作プログラムが修正された修正動作プログラムである、請求項6に記載の検査装置。
- 前記構築用機械学習部から出力された検査システムの設計値における環境に関する環境情報を出力する環境情報出力部を更に備え、
前記環境情報は、前記検査用撮像装置の種類、配置位置及び姿勢、並びに前記検査用撮像装置のレンズの種類のうちの少なくとも1つを含む、請求項4〜7の何れか1項に記載の検査装置。 - 前記構築用機械学習部から出力された検査システムの設計値における環境に関する環境情報を出力する環境情報出力部を更に備え、
前記環境情報は、前記検査対象物を照らす照明装置の種類、配置位置及び姿勢のうちの少なくとも1つを含む、請求項4〜8の何れか1項に記載の検査装置。 - 請求項1〜9の何れか1項に記載の検査装置と、
検査対象物を撮像する検査用撮像装置と、
検査者が前記検査対象物の目視検査を行う際に、前記検査者の視線情報のために前記検査者を撮像する視線用撮像装置と、
前記目視検査の際に、前記検査対象物の対象物情報のために前記検査対象物を撮像する対象物用撮像装置と、
前記検査対象物又は前記検査用撮像装置を保持し、前記検査対象物と前記検査用撮像装置との相対位置を制御する検査支援ロボットと、
前記検査装置で生成される検査実施プログラムにおける前記検査支援ロボットの動作プログラムに従って前記検査支援ロボットを制御するロボット制御装置と、
前記検査対象物を照らす照明装置と、を備える検査システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017186914A JP6626057B2 (ja) | 2017-09-27 | 2017-09-27 | 検査装置及び検査システム |
US16/103,131 US10614565B2 (en) | 2017-09-27 | 2018-08-14 | Inspection device and inspection system |
DE102018214339.0A DE102018214339A1 (de) | 2017-09-27 | 2018-08-24 | Inspektionsvorrichtung und inspektionssystem |
CN201811109374.1A CN109557099B (zh) | 2017-09-27 | 2018-09-21 | 检查装置以及检查系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017186914A JP6626057B2 (ja) | 2017-09-27 | 2017-09-27 | 検査装置及び検査システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019060780A JP2019060780A (ja) | 2019-04-18 |
JP6626057B2 true JP6626057B2 (ja) | 2019-12-25 |
Family
ID=65638752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017186914A Active JP6626057B2 (ja) | 2017-09-27 | 2017-09-27 | 検査装置及び検査システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10614565B2 (ja) |
JP (1) | JP6626057B2 (ja) |
CN (1) | CN109557099B (ja) |
DE (1) | DE102018214339A1 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6333871B2 (ja) * | 2016-02-25 | 2018-05-30 | ファナック株式会社 | 入力画像から検出した対象物を表示する画像処理装置 |
JP6549644B2 (ja) * | 2017-06-27 | 2019-07-24 | ファナック株式会社 | 機械学習装置、ロボット制御システム及び機械学習方法 |
CN112585672A (zh) * | 2018-01-15 | 2021-03-30 | 基托夫系统有限公司 | 自动检查和零件登记 |
JP6863946B2 (ja) * | 2018-10-31 | 2021-04-21 | ファナック株式会社 | 画像処理装置 |
JP2020106936A (ja) * | 2018-12-26 | 2020-07-09 | オムロン株式会社 | 画像検査システム設計装置、画像検査システム設計方法及び画像検査システム設計プログラム |
JP7233521B2 (ja) * | 2019-03-29 | 2023-03-06 | Musashi AI株式会社 | 検査システム及び検査方法 |
CA3136674C (en) | 2019-04-09 | 2024-02-13 | Purdue Research Foundation | Methods and systems for crack detection using a fully convolutional network |
DE102019206444A1 (de) * | 2019-05-06 | 2020-11-12 | Kuka Deutschland Gmbh | Maschinelles Lernen einer Objekterkennung mithilfe einer robotergeführten Kamera |
CN110338748B (zh) * | 2019-06-13 | 2022-03-08 | 宁波明星科技发展有限公司 | 快速定位视力值的方法、存储介质、终端及视力检测仪 |
JP7274208B2 (ja) * | 2019-07-18 | 2023-05-16 | レボックス株式会社 | 光学系設計情報管理システム |
EP4017688A1 (en) * | 2019-09-30 | 2022-06-29 | Siemens Aktiengesellschaft | Machine learning enabled visual servoing with dedicated hardware acceleration |
DE102019126808A1 (de) * | 2019-10-07 | 2021-04-08 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Vorrichtung zur Ermittlung von Defektinformation in Bezug auf einen Lackierdefekt |
JP7310554B2 (ja) * | 2019-11-11 | 2023-07-19 | コニカミノルタ株式会社 | 部品検査支援装置、部品検査支援方法及びプログラム |
DE102019135444A1 (de) * | 2019-12-20 | 2021-06-24 | Liebherr-Werk Ehingen Gmbh | Verfahren und System zur Rüstzustandserkennung eines Krans |
JP7457281B2 (ja) * | 2020-02-27 | 2024-03-28 | オムロン株式会社 | 情報処理装置、情報処理方法及びプログラム |
US20230311308A1 (en) * | 2020-03-05 | 2023-10-05 | Fanuc Corporation | Machine-learning device |
WO2021199264A1 (ja) * | 2020-03-31 | 2021-10-07 | 日本電気株式会社 | 検出装置、ラベル付与方法、及び非一時的なコンピュータ可読媒体 |
JP7424201B2 (ja) * | 2020-05-18 | 2024-01-30 | 富士フイルムビジネスイノベーション株式会社 | 目視点検確認装置及びプログラム |
JP7364534B2 (ja) * | 2020-06-19 | 2023-10-18 | 株式会社東芝 | ハンドリングシステムおよび制御方法 |
CN112434595B (zh) | 2020-11-20 | 2024-07-19 | 小米科技(武汉)有限公司 | 行为识别方法及装置、电子设备、存储介质 |
CN112541400B (zh) * | 2020-11-20 | 2024-06-21 | 小米科技(武汉)有限公司 | 基于视线估计的行为识别方法及装置、电子设备、存储介质 |
WO2022254747A1 (ja) * | 2021-06-03 | 2022-12-08 | 三菱電機株式会社 | 外観検査装置、外観検査方法、学習装置および推論装置 |
WO2023132131A1 (ja) * | 2022-01-05 | 2023-07-13 | ソニーグループ株式会社 | 検査装置、検査方法およびプログラム |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4922338A (en) * | 1989-03-02 | 1990-05-01 | Arpino Ronald G | Line-of-sight inspection system |
JP2001515236A (ja) * | 1997-09-04 | 2001-09-18 | ダイナログ インコーポレイテッド | ロボット検査システムを較正するための方法 |
US7277599B2 (en) * | 2002-09-23 | 2007-10-02 | Regents Of The University Of Minnesota | System and method for three-dimensional video imaging using a single camera |
JP4227863B2 (ja) | 2003-08-04 | 2009-02-18 | 株式会社デンソー | 視覚検査装置の教示装置及び教示方法 |
JP3946716B2 (ja) * | 2004-07-28 | 2007-07-18 | ファナック株式会社 | ロボットシステムにおける3次元視覚センサの再校正方法及び装置 |
JP4266946B2 (ja) | 2005-03-17 | 2009-05-27 | ファナック株式会社 | オフライン教示装置 |
JP4839827B2 (ja) * | 2005-12-26 | 2011-12-21 | コニカミノルタセンシング株式会社 | 3次元測定装置 |
CN101460832B (zh) * | 2006-06-08 | 2012-03-21 | 奥林巴斯株式会社 | 外观检查装置 |
JP2010139329A (ja) * | 2008-12-10 | 2010-06-24 | Fanuc Ltd | キャリブレーション用の校正治具および校正治具を備えた画像計測システム |
JP2010223932A (ja) * | 2009-02-27 | 2010-10-07 | Toyota Motor Corp | 欠陥検出方法 |
KR101809973B1 (ko) * | 2011-01-24 | 2017-12-19 | 삼성전자주식회사 | 로봇 제어 시스템 및 로봇 제어 방법 |
US8898091B2 (en) * | 2011-05-11 | 2014-11-25 | Ari M. Frank | Computing situation-dependent affective response baseline levels utilizing a database storing affective responses |
JP2014178229A (ja) * | 2013-03-15 | 2014-09-25 | Dainippon Screen Mfg Co Ltd | 教師データ作成方法、画像分類方法および画像分類装置 |
CN105980578B (zh) * | 2013-12-16 | 2020-02-14 | 深圳华大智造科技有限公司 | 用于使用机器学习进行dna测序的碱基判定器 |
JP2016004486A (ja) * | 2014-06-18 | 2016-01-12 | 株式会社リコー | 情報処理装置、情報処理プログラム、および情報処理システム |
DE102016015936B8 (de) * | 2015-07-31 | 2024-10-24 | Fanuc Corporation | Vorrichtung für maschinelles Lernen, Robotersystem und maschinelles Lernsystem zum Lernen eines Werkstückaufnahmevorgangs |
JP6624963B2 (ja) * | 2016-02-12 | 2019-12-25 | キヤノン株式会社 | 情報処理装置、情報処理方法及びプログラム |
EP3366433B1 (en) * | 2017-02-09 | 2022-03-09 | Canon Kabushiki Kaisha | Method of controlling robot, method of teaching robot, and robot system |
-
2017
- 2017-09-27 JP JP2017186914A patent/JP6626057B2/ja active Active
-
2018
- 2018-08-14 US US16/103,131 patent/US10614565B2/en active Active
- 2018-08-24 DE DE102018214339.0A patent/DE102018214339A1/de active Pending
- 2018-09-21 CN CN201811109374.1A patent/CN109557099B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019060780A (ja) | 2019-04-18 |
US10614565B2 (en) | 2020-04-07 |
US20190096055A1 (en) | 2019-03-28 |
DE102018214339A1 (de) | 2019-03-28 |
CN109557099B (zh) | 2020-09-18 |
CN109557099A (zh) | 2019-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6626057B2 (ja) | 検査装置及び検査システム | |
JP6963820B2 (ja) | 視線検出装置 | |
JP6549644B2 (ja) | 機械学習装置、ロボット制御システム及び機械学習方法 | |
JP4896621B2 (ja) | 視野計 | |
CN108701428B (zh) | 同步焊接数据以供呈现的焊接培训系统 | |
JP6392922B1 (ja) | 検査システムの検査対象外となる領域を算出する装置、および検査対象外となる領域を算出する方法 | |
JP6288249B2 (ja) | 目視検査支援装置、目視検査支援方法及び目視検査支援プログラム | |
US11937928B2 (en) | Evaluation apparatus, evaluation method, and evaluation program | |
US20170316240A1 (en) | Controlling the output of contextual information using a computing device | |
US20230098675A1 (en) | Eye-gaze detecting device, eye-gaze detecting method, and computer-readable storage medium | |
JP2023548454A (ja) | 適応型ボアスコープ検査 | |
WO2021024301A1 (ja) | コンピュータプログラム、内視鏡用プロセッサ、及び情報処理方法 | |
JP5307407B2 (ja) | 内視鏡装置およびプログラム | |
WO2018074982A1 (en) | Method of interactive quantification of digitized 3d objects using an eye tracking camera | |
US20220087583A1 (en) | Evaluation device, evaluation method, and evaluation program | |
US10823964B2 (en) | Work assistance apparatus, work assistance method, and computer-readable, non-transitory recording medium recording work assistance program executed by computer | |
EP4021335A1 (en) | Image based motion control correction | |
Redžepagić et al. | A sense of quality for augmented reality assisted process guidance | |
JP2019215225A (ja) | 画像検査システム及びその制御方法 | |
JP2023545980A (ja) | 自動検査計画に基づく検出 | |
JP7344728B2 (ja) | 製品検査システム、製品検査方法 | |
JP2020030695A (ja) | 教師データ生成装置及び機械学習システム | |
Redzepagic et al. | A sense of quality for augmented reality assisted process guidance | |
JP2021069813A (ja) | バイタルデータ出力方法、バイタルデータ出力装置およびバイタルセンシングシステム | |
US20210298689A1 (en) | Evaluation device, evaluation method, and non-transitory storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181221 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190315 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6626057 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |