JP6625916B2 - Semipermeable membrane support - Google Patents

Semipermeable membrane support Download PDF

Info

Publication number
JP6625916B2
JP6625916B2 JP2016056748A JP2016056748A JP6625916B2 JP 6625916 B2 JP6625916 B2 JP 6625916B2 JP 2016056748 A JP2016056748 A JP 2016056748A JP 2016056748 A JP2016056748 A JP 2016056748A JP 6625916 B2 JP6625916 B2 JP 6625916B2
Authority
JP
Japan
Prior art keywords
fiber
semipermeable membrane
membrane support
fibers
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016056748A
Other languages
Japanese (ja)
Other versions
JP2017170293A (en
Inventor
祐介 志水
祐介 志水
均 藤木
均 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2016056748A priority Critical patent/JP6625916B2/en
Publication of JP2017170293A publication Critical patent/JP2017170293A/en
Application granted granted Critical
Publication of JP6625916B2 publication Critical patent/JP6625916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、半透膜支持体に関する。   The present invention relates to a semipermeable membrane support.

海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で、半透膜が広く用いられている。半透膜は、セルロース系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等の合成樹脂で構成されている。しかしながら、半透膜単体では機械的強度に劣るため、不織布や織布等の繊維基材からなる半透膜支持体の片面に半透膜が設けられた形態である濾過膜として使用されている。以下、半透膜支持体の半透膜が設けられる面を「塗布面」と記載する場合がある。また、塗布面の反対面を「非塗布面」と記載する場合がある。   BACKGROUND ART Semipermeable membranes are widely used in fields such as desalination of seawater, water purifiers, food concentration, wastewater treatment, production of ultrapure water for medical use represented by blood filtration, and semiconductor cleaning, and the like. The semipermeable membrane is made of a synthetic resin such as a cellulose resin, a polysulfone resin, a polyacrylonitrile resin, a fluorine resin, a polyester resin, a polyamide resin, and a polyimide resin. However, since the semipermeable membrane alone has poor mechanical strength, it is used as a filtration membrane in which a semipermeable membrane is provided on one surface of a semipermeable membrane support made of a fiber base material such as a nonwoven fabric or a woven fabric. . Hereinafter, the surface of the semipermeable membrane support on which the semipermeable membrane is provided may be referred to as “coated surface”. Further, the surface opposite to the coated surface may be described as “non-coated surface”.

濾過膜の製造方法としては、上述したポリスルホン系樹脂等の合成樹脂を有機溶媒に溶解し、半透膜液を調製した後、この半透膜液を半透膜支持体上に塗布する方法が広く用いられている。そして、効率的に濾過を行うために、スパイラル型の半透膜エレメントが形成され、さらに、半透膜モジュールが組み立てられる(例えば、特許文献1参照)。   As a method for producing a filtration membrane, there is a method in which a synthetic resin such as the above-mentioned polysulfone-based resin is dissolved in an organic solvent to prepare a semipermeable membrane solution, and then the semipermeable membrane solution is coated on a semipermeable membrane support. Widely used. Then, for efficient filtration, a spiral type semipermeable membrane element is formed, and a semipermeable membrane module is further assembled (for example, see Patent Document 1).

高い濾過流束と濾過性能を得るためには、半透膜表面に凹凸が少なく、半透膜形成時の横方向湾曲やシワの発生がなく、半透膜支持体上に半透膜が均一な厚みで設けられる必要がある。半透膜が均一な厚みで設けられるには、半透膜支持体の塗布面に優れた平滑性が必要とされる。そして、良好な濾過性能を得るためには、半透膜と半透膜支持体との接着性にも優れている必要がある。また、半透膜モジュールを組み立てる際に、接着剤を使って、非塗布面同士を貼り合わせる工程があるため、この非塗布面同士の接着性に優れていることも要求されている。さらに、半透膜液が非塗布面にまで裏抜けしないことが要求されている。裏抜けが発生すると、半透膜の厚みが不均一になる、非塗布面同士の接着性が低下するという問題が発生するからである。   In order to obtain high filtration flux and filtration performance, there are few irregularities on the semipermeable membrane surface, there is no lateral curvature or wrinkles when forming the semipermeable membrane, and the semipermeable membrane is uniform on the semipermeable membrane support It must be provided with an appropriate thickness. In order for the semipermeable membrane to be provided with a uniform thickness, the coated surface of the semipermeable membrane support must have excellent smoothness. And in order to obtain good filtration performance, it is necessary to have excellent adhesiveness between the semipermeable membrane and the semipermeable membrane support. In addition, when assembling the semipermeable membrane module, there is a step of bonding the non-coated surfaces to each other using an adhesive, so that it is also required that the non-coated surfaces have excellent adhesion. Further, it is required that the semipermeable membrane liquid does not strike through to the non-coated surface. This is because, when strike-through occurs, problems occur in that the thickness of the semipermeable membrane becomes uneven and the adhesiveness between the non-applied surfaces decreases.

半透膜支持体として、合成繊維からなる主体繊維とバインダー繊維とを含み、湿式抄造法で製造され、熱圧加工処理された不織布が提案されている。例えば、太い繊維を使用した表面粗度の大きな表面層(太い繊維層)と細い繊維を使用した緻密な構造の裏面層(細い繊維層)との二重構造を基本とした多層構造の不織布よりなる半透膜支持体が提案されている(例えば、特許文献2参照)。具体的には、太い繊維層を塗布面とし、細い繊維層を非塗布面とした半透膜支持体、及び細い繊維層を太い繊維層で挟み込み、塗布面と非塗布面の両方を太い繊維層とした半透膜支持体が記載されている。しかしながら、塗布面において、太い繊維を使用しているため、半透膜と半透膜支持体との接着性は向上するものの、塗布面に太くて剛直な毛羽が多くなり、半透膜塗布時に毛羽立ちが半透膜を突き破って半透膜が均一な厚みにならないという問題があった。また、毛羽立ちの発生を抑制するために熱圧加工時の圧力を上げた場合には、半透膜支持体の表面密度が上昇しすぎ、半透膜と半透膜支持体の接着性が低下する場合があった。そして、半透膜支持体形成後の断裁工程中や半透膜液塗工工程中において、塗布面と各工程に配置されている、エキスパンダーロールや金属ロール等の搬送用ロールとの摩擦により発生する毛羽立ちに関しては、何ら考慮されていない。なお、毛羽立ちには、毛羽立ち繊維の片方が支持体に融着している状態の「ルーズファイバー」と、毛羽立ち繊維の両端部が融着によって固定され中間部が浮き上がった状態の「ループファイバー」という2種類がある。このルーズファイバー及びループファイバーは、半透膜液を塗工する際、欠陥の原因になりやすく、膜性能低下を引き起こす問題があった。特に、ループファイバーは、毛羽立ち繊維両端が融着されていることから、半透膜支持体から脱落しにくく、欠陥になりやすかった。   As a semipermeable membrane support, there has been proposed a nonwoven fabric which includes a main fiber made of synthetic fiber and a binder fiber, is produced by a wet papermaking method, and is subjected to a hot-press processing. For example, a non-woven fabric having a multilayer structure based on a double structure of a surface layer having a large surface roughness (thick fiber layer) using thick fibers and a back layer having a dense structure using fine fibers (thin fiber layer). (See, for example, Patent Document 2). Specifically, a semi-permeable membrane support having a thick fiber layer as a coating surface and a thin fiber layer as a non-coating surface, and a thin fiber layer sandwiched between thick fiber layers, and having both a coating surface and a non-coating surface as a thick fiber A semipermeable membrane support as a layer is described. However, since the thick fibers are used on the application surface, the adhesiveness between the semipermeable membrane and the semipermeable membrane support is improved. There is a problem that the fluff breaks through the semipermeable membrane and the semipermeable membrane does not have a uniform thickness. In addition, when the pressure during hot pressing is increased to suppress the generation of fuzz, the surface density of the semipermeable membrane support increases too much, and the adhesiveness between the semipermeable membrane and the semipermeable membrane support decreases. There was a case. Then, during the cutting process after the formation of the semipermeable membrane support or during the semipermeable membrane liquid coating process, the friction is caused by friction between the application surface and a transport roll such as an expander roll or a metal roll arranged in each process. No consideration is given to fluffing. In addition, the fluff is referred to as a `` loose fiber '' in which one of the fluff fibers is fused to the support, and a `` loop fiber '' in which both ends of the fluff fibers are fixed by fusion and the middle part is raised. There are two types. The loose fiber and the loop fiber tend to cause defects when the semipermeable membrane liquid is applied, and there is a problem that the membrane performance is reduced. In particular, since the fluffed fibers were fused at both ends, the loop fibers were less likely to fall off from the semipermeable membrane support and were more likely to be defective.

特開2008−238147号公報JP 2008-238147 A 特公平4−21526号公報Japanese Patent Publication No. Hei 4-21526

本発明の課題は、半透膜が設けられる面の毛羽立ちが少なく、半透膜液を塗工する際、主体繊維の毛羽立ちによる欠陥が少ない半透膜支持体を提供することにある。   An object of the present invention is to provide a semipermeable membrane support having less fuzz on a surface on which a semipermeable membrane is provided and having few defects due to fluff of main fibers when applying a semipermeable membrane liquid.

上記課題は、下記手段によって解決された。   The problem has been solved by the following means.

(1)合成繊維からなる主体繊維とバインダー繊維とを含む半透膜支持体において、半透膜が設けられる面の繊維配向度が10〜30°であり、かつ、該主体繊維の平均単繊維強度が5.0cN/dtex以下であることを特徴とする半透膜支持体。 (1) In a semipermeable membrane support containing a main fiber composed of synthetic fibers and a binder fiber, a degree of fiber orientation of a surface on which a semipermeable membrane is provided is 10 to 30 °, and an average single fiber of the main fiber A semipermeable membrane support having a strength of 5.0 cN / dtex or less.

本発明の半透膜支持体は、半透膜が設けられる面の繊維配向度が10〜30°であり、かつ主体繊維の平均単繊維強度が5.0cN/dtex以下であることにより、半透膜支持体形成後の断裁工程や半透膜液塗工工程中の搬送用ロールと半透膜支持体の半透膜が設けられる面とが接触する際、毛羽立ちの発生を抑制することが可能となった。   The semipermeable membrane support of the present invention has a fiber orientation degree of 10 to 30 ° on the surface on which the semipermeable membrane is provided, and an average single fiber strength of the main fiber of 5.0 cN / dtex or less. When the transfer roll and the surface of the semipermeable membrane support on which the semipermeable membrane is provided come into contact during the cutting step or the semipermeable membrane liquid coating step after the formation of the permeable membrane support, it is possible to suppress the generation of fluff. It has become possible.

本発明の半透膜支持体は、合成繊維からなる主体繊維とバインダー繊維とを含む半透膜支持体であり、半透膜が設けられる面の繊維配向度が10〜30°であり、かつ、主体繊維の平均単繊維強度が5.0cN/dtex以下であることを特徴とする。   The semipermeable membrane support of the present invention is a semipermeable membrane support containing a main fiber composed of synthetic fibers and a binder fiber, the degree of fiber orientation of the surface on which the semipermeable membrane is provided is 10 to 30 °, and The average single fiber strength of the main fiber is 5.0 cN / dtex or less.

本発明において、半透膜支持体の塗布面の繊維配向は縦配向となっている。繊維配向が横配向となっている場合よりも、毛羽立ちの発生が少なくなり、毛羽立ち由来の塗工欠陥を抑制することができる。理由は定かではないが、塗布面の繊維配向が縦配向の場合、断裁工程中や半透膜液塗工工程中において、塗布面と各工程に配置されている、エキスパンダーロールや金属ロール等の搬送用ロールと半透膜支持体との抵抗が少なくなり、毛羽立ちが抑制されると推測している。また、主体繊維の平均単繊維強度が5.0cN/dtex以下と、低いことにより、繊維同士の絡み付きが大きくなり、搬送用ロール等から抵抗を受けた際にも毛羽立ちが抑制されると推測している。   In the present invention, the fiber orientation on the application surface of the semipermeable membrane support is longitudinal orientation. The occurrence of fluffing is reduced as compared with the case where the fiber orientation is horizontal orientation, and coating defects derived from fluffing can be suppressed. Although the reason is not clear, when the fiber orientation of the application surface is longitudinal orientation, during the cutting process or semi-permeable membrane liquid coating process, the coating surface and each step, such as an expander roll or a metal roll, etc. It is presumed that the resistance between the transport roll and the semipermeable membrane support decreases, and that fluffing is suppressed. Further, it is presumed that since the average single fiber strength of the main fibers is as low as 5.0 cN / dtex or less, the entanglement between the fibers is increased, and the fuzz is suppressed even when resistance is received from a transport roll or the like. ing.

次に、半透膜支持体における繊維の繊維配向度を調整する方法について述べる。本発明の半透膜支持体としては、スパンボンド不織布、メルトブロー不織布、乾式短繊維不織布及び湿式抄造不織布等の不織布、これらの不織布から選ばれる複数の不織布を積層した複合不織布を用いることができる。また、不織布は熱ロールによって熱圧加工処理される。不織布の製造条件、不織布を熱ロールによって熱圧加工処理する際の加工条件を制御することにより、繊維配向度を調整することができる。後述するように、本発明の半透膜支持体は湿式抄造不織布であることが好ましいが、不織布の製造を湿式抄造法で行う場合、使用する抄紙機の選択と操業条件の調整、例えば、抄紙機のウエットパートにおける原料のジェット/ワイヤー比(原料の噴出速度/抄紙機のワイヤー速度)の調整、ワイヤーパートでの脱水工程の最適化、ドライヤーパートにおける張力バランスの調整により、繊維配向度を調整することができる。また、熱圧加工処理する際の加工条件としては、使用するロールの種類、ロールの配置、熱ロール温度、張力バランスの調整により、繊維配向度を調整することができる。   Next, a method for adjusting the degree of fiber orientation of the fibers in the semipermeable membrane support will be described. As the semipermeable membrane support of the present invention, a nonwoven fabric such as a spunbonded nonwoven fabric, a meltblown nonwoven fabric, a dry short-fiber nonwoven fabric, and a wet-laid nonwoven fabric, or a composite nonwoven fabric obtained by laminating a plurality of nonwoven fabrics selected from these nonwoven fabrics can be used. Further, the nonwoven fabric is subjected to hot-press processing by a hot roll. The fiber orientation degree can be adjusted by controlling the manufacturing conditions of the nonwoven fabric and the processing conditions when the nonwoven fabric is subjected to hot-press processing by a hot roll. As described below, the semipermeable membrane support of the present invention is preferably a wet-laid nonwoven fabric. Adjust the fiber orientation by adjusting the jet / wire ratio of the raw material (raw material ejection speed / paper machine wire speed) in the wet part of the machine, optimizing the dewatering process in the wire part, and adjusting the tension balance in the dryer part can do. As the processing conditions for the hot-press processing, the degree of fiber orientation can be adjusted by adjusting the type of roll used, the arrangement of the rolls, the temperature of the hot roll, and the balance of tension.

本発明において、半透膜支持体の塗布面の繊維配向度は、10〜30°であり、より好ましくは10〜25°であり、さらに好ましくは10〜20°である。繊維配向度が30°を超える場合、断裁工程中や半透膜液塗工工程中において、塗布面の主体繊維と搬送用ロールとの抵抗力が大きくなり、バインダー繊維を介した主体繊維同士の接着が切断されやすくなり、結果として、塗布面上にルーズファイバーやループファイバーといった毛羽の発生を引き起こしてしまう。また、繊維配向度が10°未満の場合、主体繊維同士の繊維交絡が少なくなり、繊維同士の接着性が低下し、毛羽の発生を引き起こしてしまう。   In the present invention, the degree of fiber orientation on the application surface of the semipermeable membrane support is 10 to 30 °, more preferably 10 to 25 °, and further preferably 10 to 20 °. When the fiber orientation degree exceeds 30 °, during the cutting step or the semipermeable membrane liquid coating step, the resistance between the main fiber on the application surface and the transport roll increases, and the main fiber between the binder fibers via the binder fiber The bond is easily broken, and as a result, fluff such as loose fiber and loop fiber is generated on the application surface. When the fiber orientation degree is less than 10 °, the fiber entanglement between the main fibers is reduced, the adhesiveness between the fibers is reduced, and the generation of fluff is caused.

本発明において、半透膜支持体に含まれる主体繊維の平均単繊維強度は5.0cN/dtex以下であり、好ましくは4.7cN/dtex以下であり、さらに好ましくは4.5cN/dtex以下である。平均単繊維強度が5.0cN/dtexを超える場合、繊維の剛性が高いため、断裁工程中や半透膜液塗工工程中において、塗布面の主体繊維が搬送用ロールから抵抗力を受けた際、繊維同士の接着が切断されやすくなり、結果として、ルーズファイバーやループファイバーといった毛羽の発生を引き起こしてしまう。平均単繊維強度の下限値は、好ましくは4.2cN/dtexである。   In the present invention, the average single fiber strength of the main fibers contained in the semipermeable membrane support is 5.0 cN / dtex or less, preferably 4.7 cN / dtex or less, more preferably 4.5 cN / dtex or less. is there. When the average single fiber strength exceeds 5.0 cN / dtex, the rigidity of the fiber is high, so that the main fiber on the application surface receives resistance from the transport roll during the cutting process or the semipermeable membrane liquid coating process. At this time, the adhesion between the fibers is easily cut, and as a result, fluffs such as loose fibers and loop fibers are generated. The lower limit of the average single fiber strength is preferably 4.2 cN / dtex.

本発明において、主体繊維とバインダー繊維は合成繊維からなる。主体繊維は半透膜支持体の骨格を形成する繊維であり、バインダー繊維が軟化又は溶融する温度でも、主体繊維は軟化又は溶融しにくく、断面形状が変化することはあるものの、繊維としての形状が損なわれない繊維である。主体繊維としては、例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系等の繊維が挙げられるが、耐熱性の高いポリエステル系の繊維がより好ましく使用される。   In the present invention, the main fibers and the binder fibers are made of synthetic fibers. The main fibers are fibers that form the skeleton of the semipermeable membrane support, and even at the temperature at which the binder fibers soften or melt, the main fibers are hardly softened or melted, and although the cross-sectional shape may change, the shape of the fibers is changed. Is a fiber that is not impaired. Examples of the main fiber include, for example, polyolefin-based, polyamide-based, polyacryl-based, vinylon-based, vinylidene-based, polyvinyl chloride-based, polyester-based, benzoate-based, polyclar-based, and phenol-based fibers. High polyester fibers are more preferably used.

本発明の半透膜支持体において、主体繊維として、繊維径の異なる2種以上の繊維を含有することが好ましい。繊維径の異なる2種以上の主体繊維が絡み合って形成された繊維ネットワークによって、塗布面に複雑で微細な凹凸が生じるため、半透膜と半透膜支持体との接着性を向上させることができる。また、この繊維ネットワークによって、塗布面の平滑性も向上させることができ、均一な半透膜を得ることができる。主体繊維として、繊維径が1種の繊維を含有させ、バインダー繊維として、繊維径の異なる2種以上の繊維を含有させた場合、バインダー繊維は乾燥工程や熱圧加工処理によって軟化又は溶融するため、半透膜支持体の平滑性が高くなりすぎることがあり、半透膜と半透膜支持体との接着性を向上させるための繊維ネットワークに寄与することができなくなる場合がある。   In the semipermeable membrane support of the present invention, it is preferable that two or more kinds of fibers having different fiber diameters are contained as main fibers. Due to a fiber network formed by entanglement of two or more types of main fibers having different fiber diameters, complicated and fine irregularities are generated on the application surface, so that the adhesiveness between the semipermeable membrane and the semipermeable membrane support can be improved. it can. Further, the smoothness of the application surface can be improved by the fiber network, and a uniform semipermeable membrane can be obtained. When the main fiber contains one kind of fiber diameter and the binder fiber contains two or more kinds of fibers having different fiber diameters, the binder fiber is softened or melted by a drying process or a hot pressing process. In some cases, the smoothness of the semipermeable membrane support may be too high, and may not be able to contribute to the fiber network for improving the adhesiveness between the semipermeable membrane and the semipermeable membrane support.

主体繊維の平均繊維径は、7.0〜20.0μmであることが好ましく、8.0〜16.0μmであることがより好ましい。また、少なくとも1種の主体繊維の繊維径が13.0μm以下の場合、塗布面の平滑性をより高めることができ、膜の厚みが均一な半透膜が得られやすくなる。主体繊維の平均繊維径が7.0μm未満の場合、塗布面と半透膜との剥離強度が低下する場合や、非塗布面同士の接着性が悪化する場合がある。主体繊維の平均繊維径が20.0μmを超える場合、半透膜支持体の表面の平滑性が失われて、均一な厚みの半透膜が得難くなるだけでなく、フラジール(FG)通気度が高くなりすぎて、半透膜液塗工時に裏抜けが発生する場合がある。   The average fiber diameter of the main fibers is preferably from 7.0 to 20.0 µm, more preferably from 8.0 to 16.0 µm. When the fiber diameter of at least one type of main fiber is 13.0 μm or less, the smoothness of the coated surface can be further improved, and a semipermeable membrane having a uniform thickness can be easily obtained. When the average fiber diameter of the main fiber is less than 7.0 μm, the peel strength between the coated surface and the semipermeable membrane may be reduced, or the adhesiveness between the non-coated surfaces may be deteriorated. When the average fiber diameter of the main fibers exceeds 20.0 μm, not only the smoothness of the surface of the semipermeable membrane support is lost and it becomes difficult to obtain a semipermeable membrane having a uniform thickness, but also the air permeability of Frazier (FG) May be too high, and strikethrough may occur at the time of applying the semipermeable membrane liquid.

本発明において、主体繊維の平均繊維径は以下の式で求められる。Nは、正の整数である。   In the present invention, the average fiber diameter of the main fiber is determined by the following equation. N is a positive integer.

平均繊維径=(主体繊維1の繊維径(μm)×主体繊維1の質量%+主体繊維2の繊維径(μm)×主体繊維2の質量%+主体繊維3の繊維径(μm)×主体繊維3の質量%+・・・+主体繊維Nの繊維径(μm)×主体繊維Nの質量%)/(主体繊維1の質量%+主体繊維2の質量%+主体繊維3の質量%+・・・+主体繊維Nの質量%) Average fiber diameter = (fiber diameter of main fiber 1 (μm) × mass% of main fiber 1 + fiber diameter of main fiber 2 (μm) × mass% of main fiber 2 + fiber diameter of main fiber 3 (μm) × main +% By mass of main fiber N + mass% of main fiber 3 + mass% of main fiber 3 + mass% of main fiber 3 + ... fiber diameter (μm) of main fiber N × mass% of main fiber N ... + mass% of main fiber N)

単繊維強度はJIS L1015の引張強さに準拠し、測定された値である。   The single fiber strength is a value measured based on the tensile strength of JIS L1015.

本発明において、主体繊維の平均単繊維強度は以下の式で求められる。Nは、正の整数である。   In the present invention, the average single fiber strength of the main fiber is obtained by the following equation. N is a positive integer.

平均単繊維強度=(主体繊維1の単繊維強度(cN/dtex)×主体繊維1の質量%+主体繊維2の単繊維強度(cN/dtex)×主体繊維2の質量%+主体繊維3の単繊維強度(cN/dtex)×主体繊維3の質量%+・・・+主体繊維Nの単繊維強度(cN/dtex)×主体繊維Nの質量%)/(主体繊維1の質量%+主体繊維2の質量%+主体繊維3の質量%+・・・+主体繊維Nの質量%) Average single fiber strength = (Single fiber strength of main fiber 1 (cN / dtex) × mass% of main fiber 1 + single fiber strength of main fiber 2 (cN / dtex) × mass% of main fiber 2 + mass% of main fiber 3 Single fiber strength (cN / dtex) × mass% of main fiber 3+... + Single fiber strength of main fiber N (cN / dtex) × mass% of main fiber N) / (mass% of main fiber 1 + main body) (Mass% of fiber 2 + mass% of main fiber 3+... + Mass% of main fiber N)

主体繊維の繊維長は、特に限定しないが、好ましくは1〜12mmであり、より好ましくは3〜10mmであり、さらに好ましくは4〜6mmである。繊維長が1mm未満の場合、抄紙工程にて繊維の三次元ネットワークが形成されにくく、抄紙ワイヤーからの剥離性が悪化するおそれがある。一方、繊維長が12mmを超える場合、繊維同士の絡まりや縺れの発生により、半透膜支持体の均一性や半透膜の平滑性に悪影響を及ぼすおそれがある。主体繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、塗布面平滑性のために、他の特性を阻害しない範囲内で含有できる。   The fiber length of the main fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, and further preferably 4 to 6 mm. When the fiber length is less than 1 mm, a three-dimensional network of fibers is not easily formed in the papermaking process, and the releasability from the papermaking wire may be deteriorated. On the other hand, if the fiber length exceeds 12 mm, the uniformity of the semipermeable membrane support and the smoothness of the semipermeable membrane may be adversely affected by the occurrence of entanglement or entanglement between the fibers. The cross-sectional shape of the main fiber is preferably circular, but fibers having irregular cross-sections such as T-type, Y-type, and triangular can also be contained within a range that does not hinder other properties for preventing strike-through and smoothness of the coated surface. .

本発明の半透膜支持体は、バインダー繊維を含有しているが、バインダー繊維が軟化又は溶融する温度付近まで温度を上げる工程を、半透膜支持体の製造工程に組み入れることで、バインダー繊維が半透膜支持体の機械的強度を向上させる。例えば、半透膜支持体を湿式抄造法で製造し、その後の乾燥工程でバインダー繊維を軟化又は溶融させることができる。   Although the semipermeable membrane support of the present invention contains binder fibers, the step of raising the temperature to around the temperature at which the binder fibers are softened or melted is incorporated into the production process of the semipermeable membrane support, whereby the binder fibers are produced. Improves the mechanical strength of the semipermeable membrane support. For example, a semipermeable membrane support can be produced by a wet papermaking method, and the binder fibers can be softened or melted in a subsequent drying step.

バインダー繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維等の複合繊維、未延伸繊維等が挙げられる。複合繊維は、皮膜を形成しにくいので、半透膜支持体の空間を保持したまま、機械的強度を向上させることができる。より具体的には、ポリプロピレン(芯)とポリエチレン(鞘)の組合せ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組合せ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組合せ、ポリエステル等の未延伸繊維が挙げられる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、半透膜支持体の乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲で使用することができる。本発明においては、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組合せ、ポリエステルの未延伸繊維を好ましく用いることができる。   Examples of the binder fibers include core-sheath fibers (core-shell type), parallel fibers (side-by-side type), composite fibers such as radial split fibers, and undrawn fibers. Since the conjugate fiber does not easily form a film, the mechanical strength can be improved while maintaining the space of the semipermeable membrane support. More specifically, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high-melting polyester (core) and low-melting polyester (sheath), polyester, etc. Undrawn fiber. In addition, a single fiber (all-fused type) composed only of a low melting point resin such as polyethylene or polypropylene, or a hot water-soluble binder such as a polyvinyl alcohol-based resin can easily form a film in a drying process of a semipermeable membrane support. However, it can be used as long as the properties are not impaired. In the present invention, a combination of a high-melting polyester (core) and a low-melting polyester (sheath) and undrawn polyester fibers can be preferably used.

バインダー繊維の繊維径は、主体繊維と異なっていることが好ましいが、特に限定されない。主体繊維と繊維径が異なることで、バインダー繊維は半透膜支持体の機械的強度を向上させる役割の他に、主体繊維と細径繊維と共に均一な三次元ネットワークを形成する役割も果たし、さらに、ヤンキードライヤー、熱風乾燥において、バインダー繊維が軟化又は溶融する温度付近まで温度を上げる工程においては、塗布面の平滑性をも向上させることができる。   The fiber diameter of the binder fiber is preferably different from that of the main fiber, but is not particularly limited. Since the main fiber and the fiber diameter are different, the binder fiber has a role of improving the mechanical strength of the semipermeable membrane support, and also has a role of forming a uniform three-dimensional network together with the main fiber and the small diameter fiber. In a Yankee dryer or hot air drying, in the step of raising the temperature to a temperature near the temperature at which the binder fibers soften or melt, the smoothness of the coated surface can also be improved.

バインダー繊維の繊維長は、特に限定されないが、繊維長が20mmを超えた場合、地合が悪化する傾向がある。バインダー繊維の断面形状は円形及びT型、Y型、三角等の異形断面を有する繊維も含有することが可能である。   The fiber length of the binder fiber is not particularly limited, but if the fiber length exceeds 20 mm, the formation tends to be deteriorated. The cross-sectional shape of the binder fiber can include a fiber having a circular or irregular cross-section such as T-shape, Y-shape, and triangle.

主体繊維とバインダー繊維の含有比率は、質量基準で、60:40〜80:20であることが好ましく、60:40〜75:25であることがより好ましく、65:35〜75:25であることがさらに好ましく、65:35〜70:30であることが特に好ましい。主体合成繊維とバインダー合成繊維の総量に対して、主体繊維の含有比率が60質量%を下回る場合、透過流束が低下する場合がある。主体繊維の含有比率が80質量%を超えると、半透膜支持体の機械的強度が低下して、破れやすくなる場合がある。   The content ratio of the main fiber and the binder fiber is preferably 60:40 to 80:20, more preferably 60:40 to 75:25, and more preferably 65:35 to 75:25 on a mass basis. More preferably, the ratio is particularly preferably 65:35 to 70:30. When the content ratio of the main fiber is less than 60% by mass with respect to the total amount of the main synthetic fiber and the binder synthetic fiber, the permeation flux may decrease. When the content ratio of the main fiber exceeds 80% by mass, the mechanical strength of the semipermeable membrane support is reduced, and the semipermeable membrane support may be easily broken.

本発明の半透膜支持体は、半合成繊維のアセテート、トリアセテート、プロミックスや、再生繊維のレーヨン、キュプラ、リヨセル繊維等を、性能を阻害しない範囲で、含むことができる。   The semipermeable membrane support of the present invention can contain acetate, triacetate, and promix of semi-synthetic fibers and rayon, cupra, and lyocell fibers of regenerated fibers as long as the performance is not impaired.

本発明の半透膜支持体としては、湿式抄造法で製造された不織布(湿式抄造不織布)が熱ロールによって熱圧加工処理されることによって製造される半透膜支持体であることが好ましい。   The semipermeable membrane support of the present invention is preferably a semipermeable membrane support produced by subjecting a nonwoven fabric produced by a wet papermaking method (wet papermaking nonwoven fabric) to hot pressing with a hot roll.

湿式抄造法では、まず、主体繊維、バインダー繊維を均一に水中に分散させ、その後、スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.01〜0.50質量%に調製されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。   In the wet papermaking method, first, a main fiber and a binder fiber are uniformly dispersed in water, and then, through a process such as a screen (removal of foreign matters, lumps, etc.), the final fiber concentration is reduced to 0.01 to 0.50% by mass. Is prepared by a paper machine to obtain wet paper. During the process, a chemical such as a dispersant, an antifoaming agent, a hydrophilic agent, an antistatic agent, a polymer tackifier, a release agent, an antibacterial agent, and a bactericide may be added.

抄紙方式としては、例えば、長網、円網、傾斜ワイヤー式等を用いることができる。これらの抄紙方式から選ばれる1種の抄紙方式を有する抄紙機を使用しても良いし、同種又は異種の2種以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用しても良い。また、半透膜支持体が2層以上の多層構造の場合には、各々の抄紙方式で抄き上げた湿紙を積層する抄き合わせ法、一方の層を形成した後に、該層の上に繊維を分散したスラリーを流延する流延法等で製造することができる。流延法において、先に形成した一層は湿紙状態であっても良いし、乾燥状態であっても良い。また、2枚以上の乾燥状態の層を熱融着させて、多層構造とすることもできる。   As the paper making method, for example, a long net, a circular net, an inclined wire method, or the like can be used. A paper machine having one kind of paper making method selected from these paper making methods may be used, or a combination paper machine in which two or more kinds of paper making methods of the same kind or different kinds are installed online may be used. . Further, when the semipermeable membrane support has a multilayer structure of two or more layers, a laminating method of laminating wet papers made by each papermaking method, forming one layer, and then forming Can be manufactured by a casting method or the like in which a slurry in which fibers are dispersed is cast. In the casting method, the previously formed layer may be in a wet paper state or in a dry state. Further, two or more layers in a dry state can be thermally fused to form a multilayer structure.

抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することにより、湿式不織布を得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることをいう。熱ロールの表面温度は、100〜180℃が好ましく、100〜160℃がより好ましく、110〜160℃がさらに好ましい。熱ロールの表面温度が100℃を下回る場合、抄紙機で製造された湿紙の水分が十分に蒸発せず、半透膜支持体の厚み均一性が悪くなる場合があり、熱ロールの表面温度が180℃を超える場合、抄紙機で製造された湿紙が熱ロールに貼り付いて、半透膜支持体の地合が悪くなる場合がある。圧力は、好ましくは5〜100kN/mであり、より好ましくは10〜80kN/mである。圧力が5kN/mを下回る場合、抄紙機で製造された湿紙の水分が十分に抜けず、半透膜支持体の厚み均一性が悪くなる場合があり、100kN/mを超える場合、抄紙機で製造された湿紙が熱ロールに貼り付いて、半透膜支持体の地合が悪くなる場合がある。   The wet paper produced by the paper machine is dried by a Yankee dryer, an air dryer, a cylinder dryer, a suction drum dryer, an infrared dryer, or the like to obtain a wet nonwoven fabric. When the wet paper is dried, the wet paper is brought into close contact with a hot roll such as a Yankee dryer and dried under hot pressure, thereby improving the smoothness of the contact surface. Hot-press drying refers to pressing wet paper against a hot roll with a touch roll or the like to dry. The surface temperature of the heat roll is preferably from 100 to 180C, more preferably from 100 to 160C, and still more preferably from 110 to 160C. When the surface temperature of the hot roll is lower than 100 ° C., the moisture of the wet paper web produced by the paper machine does not sufficiently evaporate, and the thickness uniformity of the semipermeable membrane support may be deteriorated. If it exceeds 180 ° C., the wet paper web produced by the paper machine may adhere to the heat roll, and the formation of the semipermeable membrane support may be poor. The pressure is preferably 5 to 100 kN / m, more preferably 10 to 80 kN / m. When the pressure is lower than 5 kN / m, the moisture of the wet paper manufactured by the paper machine may not be sufficiently released, and the thickness uniformity of the semipermeable membrane support may be deteriorated. In some cases, the wet paper produced in step (1) sticks to the heat roll, and the formation of the semipermeable membrane support deteriorates.

熱圧加工処理では、熱圧加工処理装置の熱ロール間をニップしながら、湿式不織布を熱ロール間に通過させる。熱ロールの組合せとしては、2本の金属ロール、金属ロールと樹脂ロール、金属ロールとコットンロール等が挙げられ、一方あるいは両方の熱ロールを加熱する。さらに、必要に応じて、不織布の表裏を逆にして、ニップへの通過回数を2回以上にしても良い。   In the hot-press processing, the wet nonwoven fabric is passed between the hot rolls while nipping between the hot rolls of the hot-press processing apparatus. Examples of the combination of the heat rolls include two metal rolls, a metal roll and a resin roll, and a metal roll and a cotton roll. One or both heat rolls are heated. Further, if necessary, the number of times of passing through the nip may be two or more by reversing the front and back of the nonwoven fabric.

熱圧加工処理に用いる熱ロールの表面温度は、示差熱分析によって測定した主体繊維の融点より低く、バインダー繊維の融点に対して−70〜−20℃であることが好ましく、−60〜−30℃であることがより好ましい。熱ロール温度の表面温度を、バインダー繊維の融点より70℃を超えて低くすると、毛羽立ちが発生しやすくなる場合があり、均一な厚みの半透膜が得難くなる。一方、熱ロールの表面温度を、融点より20℃低い温度を超えて高くすると、熱ロールに繊維の溶融分が付着して、半透膜支持体が不均一になる場合があり、均一な厚みの半透膜が得難くなる。なお、繊維の融点は、DSC(示差走査熱量計)によって、温度範囲25〜300℃、昇温速度10℃/minの条件で測定して求めた。   The surface temperature of the hot roll used for the hot-press processing is preferably lower than the melting point of the main fiber measured by differential thermal analysis, and is preferably −70 to −20 ° C. with respect to the melting point of the binder fiber, and −60 to −30. C. is more preferable. If the surface temperature of the hot roll is lower than the melting point of the binder fiber by more than 70 ° C., fluffing may easily occur, and it becomes difficult to obtain a semipermeable membrane having a uniform thickness. On the other hand, if the surface temperature of the heat roll is increased beyond a temperature lower by 20 ° C. than the melting point, a melted portion of the fibers may adhere to the heat roll, and the semipermeable membrane support may become non-uniform. Is difficult to obtain. The melting point of the fiber was determined by DSC (differential scanning calorimetry) under the conditions of a temperature range of 25 to 300 ° C. and a heating rate of 10 ° C./min.

熱圧加工処理に用いる熱ロールのニップ圧力は、好ましくは50〜250kN/mであり、より好ましくは70〜180kN/mである。加工速度は、好ましくは5〜100m/minであり、より好ましくは10〜50m/minである。   The nip pressure of the hot roll used for the hot pressing is preferably 50 to 250 kN / m, and more preferably 70 to 180 kN / m. The processing speed is preferably 5 to 100 m / min, and more preferably 10 to 50 m / min.

本発明の半透膜支持体は、各層の繊維配合が同一である多層構造であっても良く、繊維配合の異なる層が積層されてなる多層構造であっても良い。この場合、各層の坪量が下がることにより、スラリーの繊維濃度を下げることができるため、半透膜支持体の地合が良くなり、その結果、塗布面の平滑性や均一性が向上する。また、各層の地合が不均一であった場合でも、積層することで補填できる。さらに、抄紙速度を上げることができ、操業性が向上する。   The semipermeable membrane support of the present invention may have a multilayer structure in which the fiber composition of each layer is the same, or may have a multilayer structure in which layers having different fiber compositions are laminated. In this case, as the basis weight of each layer is reduced, the fiber concentration of the slurry can be reduced, so that the formation of the semipermeable membrane support is improved, and as a result, the smoothness and uniformity of the coated surface are improved. Even if the formation of each layer is not uniform, it can be compensated by laminating. Further, the paper making speed can be increased, and the operability is improved.

半透膜支持体の坪量は、特に限定しないが、20〜150g/mが好ましく、より好ましくは50〜100g/mである。20g/m未満の場合は、十分な引張強度が得られない場合がある。また、150g/mを超えた場合、通液抵抗が高くなる場合や厚みが増してユニットやモジュール内に規定量の半透膜を収納できない場合がある。 The basis weight of the semipermeable membrane support is not particularly limited, but is preferably 20 to 150 g / m 2 , and more preferably 50 to 100 g / m 2 . If it is less than 20 g / m 2 , sufficient tensile strength may not be obtained. Further, when it exceeds 150 g / m 2 , the liquid permeation resistance may be increased, or the thickness may be increased, so that a predetermined amount of the semipermeable membrane cannot be stored in the unit or module.

また、半透膜支持体の密度は、0.5〜1.2g/cmであることが好ましく、より好ましくは0.6〜1.0g/cmである。半透膜支持体の密度が0.5g/cm未満の場合は、厚みが厚くなるため、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜のライフが短くなってしまうことがある。一方、1.2g/cmを超える場合は、通液性が低くなることがあり、半透膜のライフが短くなる場合がある。 Further, the density of the semipermeable membrane support is preferably 0.5 to 1.2 g / cm 3 , and more preferably 0.6 to 1.0 g / cm 3 . When the density of the semipermeable membrane support is less than 0.5 g / cm 3 , the thickness is large, so that the area of the semipermeable membrane that can be incorporated in the unit becomes small, and as a result, the life of the semipermeable membrane becomes short. Sometimes. On the other hand, if it exceeds 1.2 g / cm 3 , the liquid permeability may be low, and the life of the semipermeable membrane may be short.

半透膜支持体の厚みは、60〜150μmであることが好ましく、70〜130μmであることがより好ましく、80〜120μmであることがさらに好ましい。半透膜支持体の厚みが150μmを超えると、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜のライフが短くなってしまうことがある。一方、60μm未満の場合、十分な引張強度が得られない場合や通液性が低くなって、半透膜のライフが短くなる場合がある。   The thickness of the semipermeable membrane support is preferably from 60 to 150 μm, more preferably from 70 to 130 μm, even more preferably from 80 to 120 μm. When the thickness of the semipermeable membrane support exceeds 150 μm, the area of the semipermeable membrane that can be incorporated into the unit becomes small, and as a result, the life of the semipermeable membrane may be shortened. On the other hand, when it is less than 60 μm, sufficient tensile strength may not be obtained, or liquid permeability may be reduced, and the life of the semipermeable membrane may be shortened.

半透膜支持体の通気度は0.5〜5.0cm/cm・secであることが好ましく、1.0〜4.5cm/cm・secであることがより好ましく、1.5〜4.0cm/cm・secであることがさらに好ましい。0.5cm/cm・secより小さいと、半透膜と半透膜支持体との接着性に劣る場合がある。5.0cm/cm・secより大きいと、半透膜溶液を塗布した際に裏抜けが発生しやすくなる場合がある。また、塗布面の平滑性が低下する場合がある。 Air permeability of the semipermeable membrane support is preferably from 0.5~5.0cm 3 / cm 2 · sec, more preferably from 1.0~4.5cm 3 / cm 2 · sec, 1. More preferably, it is 5 to 4.0 cm 3 / cm 2 · sec. If it is smaller than 0.5 cm 3 / cm 2 · sec, the adhesiveness between the semipermeable membrane and the semipermeable membrane support may be poor. If it is larger than 5.0 cm 3 / cm 2 · sec, strike-through may easily occur when the semipermeable membrane solution is applied. In addition, the smoothness of the coated surface may decrease.

本発明を実施例によりさらに詳細に説明する。以下、特にことわりのないかぎり、実施例に記載される部及び比率は質量を基準とする。   The present invention will be described in more detail by way of examples. Hereinafter, unless otherwise specified, parts and ratios described in Examples are based on mass.

(実施例1)
主体繊維として、繊維径7.9μm、単繊維強度4.6cN/dtex、繊維長5mmの延伸ポリエステル系繊維(主体繊維A)を60質量%、バインダー繊維として、繊維径10.5μm、繊維長5mm、融点260℃の未延伸ポリエステル系バインダー繊維40質量%とした。これらの繊維を水に混合分散し、撹拌装置を有する2つのストックタンクに分けて貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用い、塗布面側を傾斜ワイヤー抄紙機で、非塗布面側を円網抄紙機で、各層40g/mの抄き合わせ湿紙を形成した後、表面温度130℃のヤンキードライヤーにて、塗布面側がヤンキードライヤーに接するように熱圧乾燥し、坪量80g/mの湿式不織布を得た。このとき、原料の噴出速度と抄紙機のワイヤー速度の比率(ジェット/ワイヤー比)の調整を行い、塗布面の繊維配向度を調整した。
(Example 1)
As a main fiber, a drawn polyester fiber (main fiber A) having a fiber diameter of 7.9 μm, a single fiber strength of 4.6 cN / dtex, and a fiber length of 5 mm is 60 mass%, and a fiber diameter of 10.5 μm and a fiber length of 5 mm is used as a binder fiber. The unstretched polyester binder fiber having a melting point of 260 ° C. was 40% by mass. These fibers were mixed and dispersed in water and stored separately in two stock tanks having a stirrer. Using a combination machine of an inclined wire paper machine and a mesh paper machine, forming a wet paper web of 40 g / m 2 in each layer by using an inclined wire paper machine on the coated side and a mesh paper machine on the non-coated side. After that, drying was performed with a Yankee dryer having a surface temperature of 130 ° C. so that the coated surface side was in contact with the Yankee dryer to obtain a wet nonwoven fabric having a basis weight of 80 g / m 2 . At this time, the ratio (jet / wire ratio) between the ejection speed of the raw material and the wire speed of the paper machine was adjusted to adjust the degree of fiber orientation on the coated surface.

得られた湿式不織布を、金属ロール(加熱)と樹脂ロール(非加熱)からなる第一及び第二ロールニップが連続して設置されている熱圧加工処理装置を用いて、第一ロールニップ時の金属ロールの表面温度を220℃及び第二ロールニップ時の金属ロールの表面温度を225℃とし、ニップ圧力100kN/m、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、第一ロールニップにおいて、金属ロールに触れる面を塗布面とした。   The obtained wet nonwoven fabric is subjected to a first roll nip by using a hot-press processing apparatus in which first and second roll nips comprising a metal roll (heating) and a resin roll (non-heating) are continuously installed. The surface temperature of the roll was 220 ° C., the surface temperature of the metal roll at the time of the second roll nip was 225 ° C., processing was performed under the conditions of a nip pressure of 100 kN / m and a processing speed of 20 m / min, to obtain a semipermeable membrane support. In the first roll nip, the surface in contact with the metal roll was defined as a coating surface.

(実施例2〜4)
ジェット/ワイヤー比の調整を行い、塗布面の繊維配向度を変更した以外は、実施例1と同様にして、半透膜支持体を得た。
(Examples 2 to 4)
A semipermeable membrane support was obtained in the same manner as in Example 1, except that the jet / wire ratio was adjusted and the degree of fiber orientation on the coated surface was changed.

(実施例5)
主体繊維として、繊維径9.4μm、単繊維強度5.1cN/dtex、繊維長6mmの延伸ポリエステル系繊維(主体繊維B)を50質量%、主体繊維Aを10質量%、バインダー繊維として、繊維径10.5μm、繊維長5mm、融点260℃の未延伸ポリエステル系バインダー繊維40質量%とした。これらの繊維を水に混合分散し、撹拌装置を有する2つのストックタンクに分けて貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用い、塗布面側を傾斜ワイヤー抄紙機で、非塗布面側を円網抄紙機で、各層40g/mの抄き合わせ湿紙を形成した後、表面温度130℃のヤンキードライヤーにて、塗布面側がヤンキードライヤーに接するように熱圧乾燥し、坪量80g/mの湿式不織布を得た。このとき、ジェット/ワイヤー比の調整を行い、塗布面の繊維配向度を調整した。
(Example 5)
As the main fiber, a fiber diameter of 9.4 μm, a single fiber strength of 5.1 cN / dtex, a fiber length of 6 mm, 50% by mass of a drawn polyester fiber (main fiber B), a main fiber A of 10% by mass, and a binder fiber as fiber The unstretched polyester binder fiber having a diameter of 10.5 μm, a fiber length of 5 mm, and a melting point of 260 ° C. was 40% by mass. These fibers were mixed and dispersed in water and stored separately in two stock tanks having a stirrer. Using a combination machine of an inclined wire paper machine and a mesh paper machine, forming a wet paper web of 40 g / m 2 in each layer by using an inclined wire paper machine on the coated side and a mesh paper machine on the non-coated side. After that, drying was performed with a Yankee dryer having a surface temperature of 130 ° C. so that the application surface side was in contact with the Yankee dryer to obtain a wet nonwoven fabric having a basis weight of 80 g / m 2 . At this time, the jet / wire ratio was adjusted to adjust the degree of fiber orientation on the application surface.

得られた湿式不織布を、金属ロール(加熱)と樹脂ロール(非加熱)からなる第一及び第二ロールニップが連続して設置されている熱圧加工処理装置を用いて、第一ロールニップ時の金属ロールの表面温度を220℃及び第二ロールニップ時の金属ロールの表面温度を225℃とし、ニップ圧力100kN/m、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、第一ロールニップにおいて、金属ロールに触れる面を塗布面とした。   The obtained wet nonwoven fabric is subjected to a first roll nip by using a hot-press processing apparatus in which first and second roll nips comprising a metal roll (heating) and a resin roll (non-heating) are continuously installed. The surface temperature of the roll was 220 ° C., the surface temperature of the metal roll at the time of the second roll nip was 225 ° C., processing was performed under the conditions of a nip pressure of 100 kN / m and a processing speed of 20 m / min, to obtain a semipermeable membrane support. In the first roll nip, the surface in contact with the metal roll was defined as a coating surface.

(実施例6)
主体繊維として、主体繊維Aを30質量%、繊維径12.5μm、単繊維強度4.4cN/dtex、繊維長5mmの延伸ポリエステル系繊維(主体繊維C)を20質量%、繊維径17.5μm、単繊維強度4.1cN/dtex、繊維長5mmの延伸ポリエステル系繊維(主体繊維E)を10質量%、バインダー繊維として、繊維径10.5μm、繊維長5mm、融点260℃の未延伸ポリエステル系バインダー繊維40質量%とした。傾斜ワイヤー抄紙機を用いて単層湿紙を形成した後、表面温度130℃のヤンキードライヤーにて、塗布面側がヤンキードライヤーに接するように熱圧乾燥し、坪量80g/mの湿式不織布を得た。このとき、ジェット/ワイヤー比の調整を行い、塗布面の繊維配向度を調整した。
(Example 6)
As the main fiber, 30% by mass of the main fiber A, a fiber diameter of 12.5 μm, a monofilament strength of 4.4 cN / dtex, 20% by mass of a drawn polyester fiber (main fiber C) having a fiber length of 5 mm, and a fiber diameter of 17.5 μm 10% by mass of a drawn polyester fiber (main fiber E) having a single fiber strength of 4.1 cN / dtex and a fiber length of 5 mm, and an undrawn polyester fiber having a fiber diameter of 10.5 μm, a fiber length of 5 mm and a melting point of 260 ° C. as a binder fiber. The binder fiber was 40% by mass. After forming a single layer wet paper using an inclined wire paper machine, it is hot-press dried with a Yankee dryer having a surface temperature of 130 ° C. so that the application side is in contact with the Yankee dryer, and a wet nonwoven fabric having a basis weight of 80 g / m 2 is obtained. Obtained. At this time, the jet / wire ratio was adjusted to adjust the degree of fiber orientation on the application surface.

得られた湿式不織布を、金属ロール(加熱)と樹脂ロール(非加熱)からなる第一及び第二ロールニップが連続して設置されている熱圧加工処理装置を用いて、第一ロールニップ時の金属ロールの表面温度を220℃及び第二ロールニップ時の金属ロールの表面温度を225℃とし、ニップ圧力100kN/m、加工速度20m/minの条件で加工し、実施例6の半透膜支持体を得た。なお、第一ロールニップにおいて、金属ロールに触れる面を塗布面とした。   The obtained wet nonwoven fabric is subjected to a first roll nip by using a hot-press processing apparatus in which first and second roll nips comprising a metal roll (heating) and a resin roll (non-heating) are continuously installed. The surface temperature of the roll was 220 ° C., the surface temperature of the metal roll at the time of the second roll nip was 225 ° C., the nip pressure was 100 kN / m, and the processing speed was 20 m / min. Obtained. In the first roll nip, the surface in contact with the metal roll was defined as a coating surface.

(比較例1)
主体繊維として、主体繊維Bを25質量%、繊維径13.0μm、単繊維強度5.9cN/dtex、繊維長6mmの延伸ポリエステル系繊維(主体繊維D)を45質量%、バインダー繊維として、繊維径10.5μm、繊維長5mm、融点260℃の未延伸ポリエステル系バインダー繊維30質量%とした。これらの繊維を水に混合分散し、撹拌装置を有する2つのストックタンクに分けて貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用い、塗布面側を傾斜ワイヤー抄紙機で、非塗布面側を円網抄紙機で、各層40g/mの抄き合わせ湿紙を形成した後、表面温度130℃のヤンキードライヤーにて、塗布面側がヤンキードライヤーに接するように熱圧乾燥し、坪量80g/mの湿式不織布を得た。このとき、ジェット/ワイヤー比の調整を行い、塗布面の繊維配向度を調整した。
(Comparative Example 1)
As a main fiber, 25% by mass of a main fiber B, a fiber diameter of 13.0 μm, a monofilament strength of 5.9 cN / dtex, a fiber length of 6 mm, 45% by mass of a drawn polyester fiber (main fiber D), and a binder fiber as a fiber The unstretched polyester binder fiber having a diameter of 10.5 μm, a fiber length of 5 mm, and a melting point of 260 ° C. was 30% by mass. These fibers were mixed and dispersed in water and stored separately in two stock tanks having a stirrer. Using a combination machine of an inclined wire paper machine and a mesh paper machine, forming a wet paper web of 40 g / m 2 in each layer by using an inclined wire paper machine on the coated side and a mesh paper machine on the non-coated side. After that, drying was performed with a Yankee dryer having a surface temperature of 130 ° C. so that the application surface side was in contact with the Yankee dryer to obtain a wet nonwoven fabric having a basis weight of 80 g / m 2 . At this time, the jet / wire ratio was adjusted to adjust the degree of fiber orientation on the application surface.

得られた湿式不織布を、金属ロール(加熱)と樹脂ロール(非加熱)からなる第一及び第二ロールニップが連続して設置されている熱圧加工処理装置を用いて、第一ロールニップ時の金属ロールの表面温度を220℃及び第二ロールニップ時の金属ロールの表面温度を225℃とし、ニップ圧力100kN/m、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、第一ロールニップにおいて、金属ロールに触れる面を塗布面とした。   The obtained wet nonwoven fabric is subjected to a first roll nip by using a hot-press processing apparatus in which first and second roll nips comprising a metal roll (heating) and a resin roll (non-heating) are continuously installed. The surface temperature of the roll was 220 ° C., the surface temperature of the metal roll at the time of the second roll nip was 225 ° C., processing was performed under the conditions of a nip pressure of 100 kN / m and a processing speed of 20 m / min, to obtain a semipermeable membrane support. In the first roll nip, the surface in contact with the metal roll was defined as a coating surface.

(比較例2〜3)
ジェット/ワイヤー比の調整を行い、塗布面の繊維配向度を変更した以外は、実施例1と同様にして、半透膜支持体を得た。
(Comparative Examples 2-3)
A semipermeable membrane support was obtained in the same manner as in Example 1, except that the jet / wire ratio was adjusted and the degree of fiber orientation on the coated surface was changed.

(比較例4)
ジェット/ワイヤー比の調整を行い、塗布面の繊維配向度を変更した以外は、比較例1と同様にして、半透膜支持体を得た。
(Comparative Example 4)
A semipermeable membrane support was obtained in the same manner as in Comparative Example 1, except that the jet / wire ratio was adjusted and the degree of fiber orientation on the coated surface was changed.

(比較例5)
ジェット/ワイヤー比の調整を行い、塗布面の繊維配向度を変更した以外は、実施例6と同様にして、半透膜支持体を得た。
(Comparative Example 5)
A semipermeable membrane support was obtained in the same manner as in Example 6, except that the jet / wire ratio was adjusted and the degree of fiber orientation on the coated surface was changed.

得られた湿式不織布を金属ロール(加熱)と樹脂ロール(非加熱)からなる第一及び第二ロールニップが連続して設置されている熱圧加工処理装置を用いて、第一ロールニップ時の金属ロールの表面温度を220℃及び第二ロールニップ時の金属ロールの表面温度を225℃とし、ニップ圧力100kN/m、加工速度20m/minの条件で加工し、比較例5の半透膜支持体を得た。なお、第一の金属ロールに触れる面を塗布面とした。   The obtained wet nonwoven fabric is subjected to a first roll nip by using a hot-press processing apparatus in which first and second roll nips each including a metal roll (heating) and a resin roll (non-heating) are continuously installed. Was processed at a surface temperature of 220 ° C., a surface temperature of the metal roll at the time of the second roll nip at 225 ° C., a nip pressure of 100 kN / m, and a processing speed of 20 m / min to obtain a semipermeable membrane support of Comparative Example 5. Was. The surface in contact with the first metal roll was defined as a coating surface.

測定1(繊維配向度)
実施例及び比較例で得られた半透膜支持体から、ランダムに小片サンプル10個を採取し、走査型電子顕微鏡で100〜1000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維について、半透膜支持体の長手方向(縦方向)を0°とし、不織布の幅方向(横方向)を90°としたときの角度を測定し、それらの平均値を算出し、小数点以下第一位を四捨五入して、繊維配向度を求めた。
Measurement 1 (Fiber orientation)
From the semipermeable membrane supports obtained in Examples and Comparative Examples, 10 small sample pieces were randomly sampled, photographed at a magnification of 100 to 1000 with a scanning electron microscope, and 10 photographs were taken from each sample. For the fibers of the present invention, the angle was determined when the longitudinal direction (longitudinal direction) of the semipermeable membrane support was 0 ° and the width direction (horizontal direction) of the nonwoven fabric was 90 °, and the average value thereof was calculated. The degree of fiber orientation was determined by rounding off the first decimal place.

測定2(坪量)
JIS P8124に準拠して、坪量を測定した。
Measurement 2 (basis weight)
The grammage was measured according to JIS P8124.

測定3(厚さ)
JIS P8118に準拠して、厚さを測定した。
Measurement 3 (thickness)
The thickness was measured according to JIS P8118.

測定4(通気度)
JIS L1096に準拠して、通気度を測定した。
Measurement 4 (air permeability)
The air permeability was measured according to JIS L1096.

評価(毛羽立ち評価)
実施例及び比較例で得られた半透膜支持体から、幅方向40mm×長手方向60mmのサンプルを採取し、幅100mm×長手方向700mmのサポート紙の中央に貼付させ、そのサポート紙の片端を固定し、鏡面仕上げしたφ140mm金属ロールへ貼付したサンプルがロールへ接触するようにし、サポート紙がたるまないようにもう一端を固定し、65mm/secで1分間、金属ロールを回転させる。その後、サンプルを取り外し、実体顕微鏡にて40〜100倍にて表面を観察し、ルーズファイバー及びループファイバーの個数をカウントする。測定はn=4で行い、その平均値を示す。下記の度合いにて評価した。
Evaluation (Fuzziness evaluation)
From the semipermeable membrane supports obtained in Examples and Comparative Examples, a sample of 40 mm in width direction × 60 mm in longitudinal direction was sampled, attached to the center of a support paper of 100 mm in width × 700 mm in longitudinal direction, and one end of the support paper was attached. The sample adhered to the fixed and mirror-finished φ140 mm metal roll was brought into contact with the roll, the other end was fixed so that the support paper did not sag, and the metal roll was rotated at 65 mm / sec for 1 minute. Thereafter, the sample is removed, the surface is observed with a stereoscopic microscope at a magnification of 40 to 100, and the number of loose fibers and loop fibers is counted. The measurement was performed at n = 4, and the average value is shown. The following evaluation was performed.

「○」ルーズファイバー及びループファイバーの数が5本未満。実用上問題ないレベル。
「△」ルーズファイバー及びループファイバーの数が5本以上10本未満。実用上、使用可能レベル。
「×」ルーズファイバー及びループファイバーの数が10本以上。実用上、実用不可レベル。
"○" The number of loose fibers and loop fibers is less than 5. Practically no problem level.
"△" The number of loose fibers and loop fibers is 5 or more and less than 10. Practically usable level.
“×” The number of loose fibers and loop fibers is 10 or more. Practically impossible level.

Figure 0006625916
Figure 0006625916

実施例1〜6の半透膜支持体は、塗布面の繊維配向度が10〜30°であり、かつ、主体繊維の平均単繊維強度が5.0cN/dtex以下であるため、毛羽立ち評価において、塗布面表面に毛羽が少ない半透膜支持体を提供することが可能となった。   In the semipermeable membrane supports of Examples 1 to 6, the degree of fiber orientation on the application surface is 10 to 30 °, and the average single fiber strength of the main fibers is 5.0 cN / dtex or less. Thus, it has become possible to provide a semipermeable membrane support having less fluff on the surface of the application surface.

比較例1の半透膜支持体は、繊維配向度は10〜30°であるが、平均単繊維強度が5.0cN/dtexを超えているため、毛羽立ちが実用上不可レベルとなった。比較例2〜3の半透膜支持体は平均単繊維強度が5.0cN/dtex以下であるが、繊維配向度は10〜30°の範囲から外れており、毛羽立ちが実用上不可レベルとなった。比較例4の半透膜支持体は、繊維配向度が30°を超えており、かつ平均単繊維強度も5.0cN/dtexを超えていることから、毛羽立ちが実用上不可レベルとなった。比較例5の半透膜支持体は、平均単繊維強度は5.0cN/dtex以下であるが、繊維配向度が10°を下回っているため、毛羽立ちが実用上不可レベルとなった。   The semipermeable membrane support of Comparative Example 1 had a fiber orientation degree of 10 to 30 °, but had an average single fiber strength of more than 5.0 cN / dtex, so that fluffing was at a practically unacceptable level. The semipermeable membrane supports of Comparative Examples 2 and 3 have an average single fiber strength of 5.0 cN / dtex or less, but the fiber orientation degree is out of the range of 10 to 30 °, and fuzzing is at a practically unacceptable level. Was. The semipermeable membrane support of Comparative Example 4 had a fiber orientation degree of more than 30 ° and an average single fiber strength of more than 5.0 cN / dtex. The semi-permeable membrane support of Comparative Example 5 had an average single fiber strength of 5.0 cN / dtex or less, but had a fiber orientation degree of less than 10 °, so that fuzzing was at a practically unacceptable level.

本発明の半透膜支持体は、海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で利用することができる。   The semipermeable membrane support of the present invention can be used in the fields of seawater desalination, water purifier, food concentration, wastewater treatment, medical treatment represented by blood filtration, production of ultrapure water for semiconductor cleaning, and the like. it can.

Claims (1)

合成繊維からなる主体繊維とバインダー繊維とを含む半透膜支持体において、該半透膜支持体の半透膜が設けられる面の繊維配向度が10〜30°であり、かつ、該主体繊維の平均単繊維強度が5.0cN/dtex以下であることを特徴とする半透膜支持体。   In a semipermeable membrane support comprising a main fiber composed of synthetic fibers and a binder fiber, a degree of fiber orientation of a surface of the semipermeable membrane support on which a semipermeable membrane is provided is 10 to 30 °, and the main fiber is Characterized by having an average single fiber strength of 5.0 cN / dtex or less.
JP2016056748A 2016-03-22 2016-03-22 Semipermeable membrane support Active JP6625916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056748A JP6625916B2 (en) 2016-03-22 2016-03-22 Semipermeable membrane support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056748A JP6625916B2 (en) 2016-03-22 2016-03-22 Semipermeable membrane support

Publications (2)

Publication Number Publication Date
JP2017170293A JP2017170293A (en) 2017-09-28
JP6625916B2 true JP6625916B2 (en) 2019-12-25

Family

ID=59969983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056748A Active JP6625916B2 (en) 2016-03-22 2016-03-22 Semipermeable membrane support

Country Status (1)

Country Link
JP (1) JP6625916B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127715A (en) 2017-03-24 2019-11-13 미쓰비시 세이시 가부시키가이샤 Semipermeable membrane support
CN112619449B (en) * 2020-12-16 2023-05-02 杭州科百特科技有限公司 Nylon membrane and preparation method and application thereof
JP7102572B1 (en) 2021-03-31 2022-07-19 三菱製紙株式会社 Method for manufacturing semipermeable membrane support and semipermeable membrane support
JP7102571B1 (en) 2021-03-31 2022-07-19 三菱製紙株式会社 Method for manufacturing semipermeable membrane support and semipermeable membrane support
WO2022210316A1 (en) * 2021-03-31 2022-10-06 三菱製紙株式会社 Semipermeable membrane support and method for manufacturing semipermeable membrane support

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155697A (en) * 2001-11-16 2003-05-30 Miki Tokushu Paper Mfg Co Ltd Polyester-based synthetic paper
JP5216229B2 (en) * 2007-03-29 2013-06-19 北越紀州製紙株式会社 Semipermeable membrane support
JP5135955B2 (en) * 2007-08-31 2013-02-06 東レ株式会社 Pressure-resistant sheet and fluid separation element using the same
JP5902886B2 (en) * 2010-02-16 2016-04-13 三菱製紙株式会社 Method for producing semipermeable membrane support
JP2013122094A (en) * 2011-12-09 2013-06-20 Toray Ind Inc Polyester fiber for papermaking and method for producing the same
JP5809583B2 (en) * 2012-02-22 2015-11-11 三菱製紙株式会社 Semipermeable membrane support

Also Published As

Publication number Publication date
JP2017170293A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6625916B2 (en) Semipermeable membrane support
JP5789193B2 (en) Semipermeable membrane support, spiral type semipermeable membrane element, and method for producing semipermeable membrane support
JP2013220382A (en) Semipermeable membrane support
JP2017104840A (en) Semipermeable membrane support body and method for manufacturing the same
JP5902886B2 (en) Method for producing semipermeable membrane support
JP2022107809A (en) Translucent membrane support
JP2016140785A (en) Semipermeable membrane support
JP2012106177A (en) Semipermeable membrane support
JP7296759B2 (en) Semipermeable membrane support and filtration membrane for membrane separation activated sludge treatment
JP2014100625A (en) Semipermeable membrane support and method of producing the same
JP5809583B2 (en) Semipermeable membrane support
JP2015058411A (en) Semipermeable membrane support
JP2014180638A (en) Method for manufacturing semipermeable membrane
JP2017047333A (en) Semipermeable membrane support
JP2012250223A (en) Semipermeable membrane support
JP2013139030A (en) Semipermeable membrane support and method of manufacturing the same
JP5374407B2 (en) Semipermeable membrane support
JP2015058409A (en) Semipermeable membrane support
JP2019055356A (en) Semipermeable membrane support
WO2020145240A1 (en) Semi-permeable membrane support and method for producing semi-permeable membrane support
JP7190855B2 (en) Semipermeable membrane support
JP2020146606A (en) Semipermeable membrane support body
JP5893971B2 (en) Method for producing semipermeable membrane support
JP5809588B2 (en) Semipermeable membrane support
JP2020157213A (en) Production method for semipermeable membrane support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191128

R150 Certificate of patent or registration of utility model

Ref document number: 6625916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250