JP2012106177A - Semipermeable membrane support - Google Patents

Semipermeable membrane support Download PDF

Info

Publication number
JP2012106177A
JP2012106177A JP2010256881A JP2010256881A JP2012106177A JP 2012106177 A JP2012106177 A JP 2012106177A JP 2010256881 A JP2010256881 A JP 2010256881A JP 2010256881 A JP2010256881 A JP 2010256881A JP 2012106177 A JP2012106177 A JP 2012106177A
Authority
JP
Japan
Prior art keywords
semipermeable membrane
core
sheath
membrane support
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010256881A
Other languages
Japanese (ja)
Inventor
Katsuaki Arai
克明 新井
Nobuaki Hirota
展章 廣田
Mitsuo Yoshida
光男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2010256881A priority Critical patent/JP2012106177A/en
Publication of JP2012106177A publication Critical patent/JP2012106177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semipermeable membrane support having sufficient resistance to alkali solution, with high strength, excellent in manufacturing stability and semipermeable membrane coatability, without strike-through to the surface where semipermeable membrane solution is not coated, and excellent in adhesion properties between a semipermeable membrane and the semipermeable membrane support.SOLUTION: In the semipermeable membrane support provided with the semipermeable membrane at least on one surface of a support, the support contains 30 mass% or more of sheath-core type conjugated fiber with a core component of polypropylene and a sheath component of high density polyethylene, a ratio (A/B) of a melting peak area (A) derived from high density polyethylene on the low melting point side of a DSC curve obtained by differential scanning calorimetry of the sheath-core type conjugated fiber and a melting peak area (B) derived from polypropylene on the high melting point side is 1.00 or more and 2.50 or less, the content of all polyolefin fiber including the sheath-core type conjugated fiber is 90 mass% or more, and air permeability is 1.0-30.0 cc/cm/sec.

Description

本発明は、半透膜支持体に関する。   The present invention relates to a semipermeable membrane support.

海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で、半透膜が広く用いられている。半透膜は、セルロース系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリ塩化ビニル系樹脂等の合成樹脂で構成されている。しかしながら、半透膜単体では機械的強度に劣るため、不織布や織布等の繊維基材からなる半透膜支持体の片面(以下、「半透膜塗布面」という)に半透膜が設けられた形態で使用されている。   Semipermeable membranes are widely used in the fields of desalination of seawater, water purifiers, food concentration, wastewater treatment, ultrapure water production for medical use and semiconductor cleaning, such as blood filtration. The semipermeable membrane is made of a synthetic resin such as a cellulose resin, a polysulfone resin, a polyacrylonitrile resin, a fluorine resin, a polyester resin, or a polyvinyl chloride resin. However, since the semipermeable membrane itself is inferior in mechanical strength, a semipermeable membrane is provided on one side (hereinafter referred to as “semipermeable membrane application surface”) of a semipermeable membrane support made of a fibrous base material such as a nonwoven fabric or a woven fabric. It is used in the form.

半透膜支持体に要求される性能としては、半透膜塗布面の平滑性に優れ、製膜後の半透膜における凹凸が少ないこと、半透膜溶液が非塗布面に裏抜けしないこと、半透膜と半透膜支持体との接着性が良好であること、半透膜の塗布前後でカールやシートの収縮が少ないこと等が挙げられる。例えば、ポリエステル不織布を用いたポリスルホン限外ろ過膜が開示されている(例えば、特許文献1参照)。   The performance required for the semipermeable membrane support is excellent in smoothness of the semipermeable membrane application surface, there are few irregularities in the semipermeable membrane after film formation, and the semipermeable membrane solution does not penetrate the non-coated surface. Examples thereof include good adhesion between the semipermeable membrane and the semipermeable membrane support, and less curling and shrinkage of the sheet before and after application of the semipermeable membrane. For example, a polysulfone ultrafiltration membrane using a polyester nonwoven fabric is disclosed (for example, see Patent Document 1).

一方で、半透膜をアルカリ廃液の処理に使用したり、処理する水は酸性から中性域であるものの、半透膜の洗浄時にアルカリ性の洗浄液を使用したりといった用途がある。しかしながら、ポリエステル不織布を用いた半透膜支持体は、アルカリ溶液に容易に加水分解されて損傷を受け、こうした用途では使用できない。   On the other hand, there are uses such as using a semipermeable membrane for the treatment of an alkaline waste liquid, or using an alkaline cleaning solution when washing the semipermeable membrane, although the water to be treated is in the acidic to neutral range. However, a semipermeable membrane support using a polyester nonwoven fabric is easily hydrolyzed and damaged by an alkaline solution and cannot be used in such applications.

アルカリ溶液への耐性付与を目的に、ポリプロピレンを芯材、ポリエチレンを鞘材とした複合繊維を熱処理した半透膜支持体、ポリプロピレン単繊維から形成された不織布層を表面に有し、その表面に透過膜を設ける半透膜支持体(例えば、特許文献2、3参照)等が提案されている。こうしたポリオレフィン系繊維は、耐アルカリ性や耐酸化性に優れるが、ポリオレフィン系繊維の含有率が高い不織布の製造は比較的難しく、地合が不均一になる、製造安定性に劣るといった問題があった。また、ポリオレフィン系繊維は耐熱性に劣るせいか、半透膜支持体の一方の面に半透膜を設ける製造工程にて、皺やカールが発生するといった問題が生じていた。   For the purpose of imparting resistance to alkaline solutions, it has a semipermeable membrane support obtained by heat-treating a composite fiber using polypropylene as a core material and polyethylene as a sheath material, and a nonwoven fabric layer formed from a single polypropylene fiber on the surface. A semipermeable membrane support (for example, see Patent Documents 2 and 3) provided with a permeable membrane has been proposed. Such polyolefin fibers are excellent in alkali resistance and oxidation resistance, but it is relatively difficult to produce a nonwoven fabric with a high content of polyolefin fibers, resulting in uneven formation and poor production stability. . In addition, the polyolefin fiber is inferior in heat resistance, and there has been a problem that wrinkles and curls are generated in the manufacturing process in which the semipermeable membrane is provided on one surface of the semipermeable membrane support.

特開昭54−14376号公報Japanese Patent Laid-Open No. 54-14376 特開2001−17842号公報JP 2001-17842 A 特開昭56−152705号公報JP-A-56-152705

本発明の課題は、アルカリ溶液に対する十分な耐性を有し、強度が強く、製造安定性、半透膜塗布適性に優れ、半透膜溶液の非塗布面への裏抜けがなく、半透膜と半透膜支持体との接着性に優れる半透膜支持体を提供することにある。   The object of the present invention is to have a sufficient resistance to an alkaline solution, strong, excellent in production stability and semi-permeable membrane application suitability, and without semi-permeable to the non-coated surface of the semi-permeable membrane solution. An object of the present invention is to provide a semipermeable membrane support having excellent adhesion between the permeable membrane and the semipermeable membrane support.

本発明者らは、上記課題を解決するために鋭意検討した結果、
(1)少なくとも一方の面に半透膜を設けて用いる半透膜支持体において、該半透膜支持体がポリプロピレンを芯成分、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を30質量%以上含有し、該芯鞘型複合繊維の示差走査熱量分析により得られるDSC曲線で低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下であり、該芯鞘型複合繊維を含めたすべてのポリオレフィン系繊維の含有率が90質量%以上であり、通気度が1.0〜30.0cc/cm/secであることを特徴とする半透膜支持体。
(2)前記芯鞘型複合繊維の130℃加熱処理後における熱収縮率が8.0%以下である半透膜支持体、
を見いだした。
As a result of intensive studies to solve the above problems, the present inventors have
(1) In a semipermeable membrane support used by providing a semipermeable membrane on at least one surface, the semipermeable membrane support is 30 masses of core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component. % Melting point area (A) derived from low melting point high density polyethylene and melting peak area derived from high melting point polypropylene in the DSC curve obtained by differential scanning calorimetry of the core-sheath composite fiber The ratio (A / B) of (B) is 1.00 or more and 2.50 or less, the content of all polyolefin fibers including the core-sheath composite fiber is 90% by mass or more, and the air permeability is A semipermeable membrane supporting material having a thickness of 1.0 to 30.0 cc / cm 2 / sec.
(2) A semipermeable membrane support having a heat shrinkage rate of 8.0% or less after 130 ° C. heat treatment of the core-sheath composite fiber,
I found.

本発明の半透膜支持体は、ポリプロピレンを芯成分、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を30質量%以上含有し、該芯鞘型複合繊維の示差走査熱量分析により得られるDSC曲線で低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下であり、該芯鞘型複合繊維を含めたすべてのポリオレフィン系繊維の含有率が90質量%以上であり、通気度が1.0〜30.0cc/cm/secであることを特徴とする。該構成とすることで、アルカリ溶液に対する十分な耐性を有し、強度が強く、製造安定性、半透膜塗布適性に優れ、半透膜溶液の非塗布面への裏抜けがなく、半透膜と半透膜支持体との接着性に優れる半透膜支持体を生み出すことが可能となった。また、前記芯鞘型複合繊維の130℃加熱処理後における熱収縮率を8.0%以下とすることにより、皺やカールをいっそう抑制することができ、半透膜と半透膜支持体との接着性を向上させることができる。 The semipermeable membrane support of the present invention contains 30% by mass or more of a core-sheath composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component, and is obtained by differential scanning calorimetry of the core-sheath composite fiber. The ratio (A / B) of the melting peak area (A) derived from the high-density polyethylene on the low melting point side to the melting peak area (B) derived from the polypropylene on the high melting point side in the DSC curve is from 1.00 to 2.50. The content of all polyolefin fibers including the core-sheath type composite fiber is 90% by mass or more, and the air permeability is 1.0 to 30.0 cc / cm 2 / sec. . With this configuration, it has sufficient resistance to an alkaline solution, has high strength, is excellent in production stability and semi-permeable membrane application suitability, does not show through to the non-coated surface of the semi-permeable membrane solution, and is semi-permeable. It has become possible to produce a semipermeable membrane support having excellent adhesion between the membrane and the semipermeable membrane support. Moreover, wrinkles and curling can be further suppressed by setting the heat shrinkage rate after the heat treatment at 130 ° C. of the core-sheath composite fiber to 8.0% or less, and the semipermeable membrane, the semipermeable membrane support, It is possible to improve the adhesion.

本発明における半透膜支持体は、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を30質量%以上含有し、該芯鞘型複合繊維の示差走査熱量分析(DSC)により得られるDSC曲線で低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下である。本発明者らは、半透膜支持体の一方の面に半透膜を設ける製造工程で皺・カールが発生する問題に着目し、これら現象が製造工程で半透膜支持体にかかる熱により、半透膜支持体が幅方向に収縮することが原因であることを見いだした。半透膜支持体の幅方向の収縮抑制について鋭意検討した結果、該芯鞘型複合繊維を用い、その融解ピーク面積の比(A/B)を制御することで、半透膜支持体の熱による幅方向の収縮抑制、さらには製造工程での皺・カールの抑制が可能となることを見いだしたのである。   The semipermeable membrane support in the present invention contains 30% by mass or more of a core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component, and differential scanning calorimetry (DSC) of the core-sheath type composite fiber. The ratio (A / B) of the melting peak area (A) derived from high-density polyethylene on the low melting point side to the melting peak area (B) derived from polypropylene on the high melting point side is 1.00 or more in the DSC curve obtained by 2.50 or less. The present inventors paid attention to the problem of wrinkles and curling in the manufacturing process in which a semipermeable membrane is provided on one side of the semipermeable membrane support, and these phenomena are caused by the heat applied to the semipermeable membrane support in the manufacturing process. The semi-permeable membrane support was found to be caused by contraction in the width direction. As a result of intensive studies on the suppression of shrinkage in the width direction of the semipermeable membrane support, by using the core-sheath type composite fiber and controlling the ratio (A / B) of the melting peak area, the heat of the semipermeable membrane support They found that it was possible to suppress shrinkage in the width direction due to, and to suppress wrinkling and curling in the manufacturing process.

ポリプロピレンを芯成分、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維の示差走査熱量分析は、JIS K 7121に準じて実施し、JIS K 7122に準じて融解ピークの面積を求める。示差走査熱量分析において、芯成分及び鞘成分それぞれに由来する融解ピークは単一であっても、複数のピークが重なった一連のものであっても構わない。複数のピークが重なった一連のものである場合、これを1つの融解ピークとしてピーク面積を求め、ピーク高さの大きい方を、芯成分及び鞘成分の融点とする。   Differential scanning calorimetric analysis of the core-sheath composite fiber using polypropylene as the core component and high-density polyethylene as the sheath component is performed according to JIS K 7121, and the area of the melting peak is determined according to JIS K 7122. In the differential scanning calorimetry, the melting peak derived from each of the core component and the sheath component may be single or may be a series of a plurality of overlapping peaks. In the case of a series of a plurality of overlapping peaks, the peak area is obtained as one melting peak, and the larger peak height is defined as the melting point of the core component and the sheath component.

本発明において、示差走査熱量分析により得られるDSC曲線における低融点側の高密度ポリエチレンに由来する融解ピークとは、125℃以上140℃以下の範囲に最もピーク高さの大きいピークを有する吸熱ピークであり、高融点側のポリプロピレンに由来する融解ピークとは、155℃以上180℃以下の範囲に最もピーク高さの大きいピークを有する吸熱ピークである。   In the present invention, the melting peak derived from high-density polyethylene on the low melting point side in the DSC curve obtained by differential scanning calorimetry is an endothermic peak having the largest peak height in the range of 125 ° C. or higher and 140 ° C. or lower. The melting peak derived from polypropylene on the high melting point side is an endothermic peak having a peak with the largest peak height in the range of 155 ° C. or higher and 180 ° C. or lower.

本発明において、前記芯鞘型複合繊維の示差走査熱量分析により得られるDSC曲線から求められる低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)は1.00以上2.50以下の範囲であり、1.20以上2.00以下の範囲がより好ましく、特に好ましくは1.30以上1.80以下である。A/Bが1.00未満であると、熱融着成分である高密度ポリエチレンによる繊維同士の接着強度が十分でなく、半透膜支持体の強度が低下する。一方、A/Bが2.50を超えると、繊維の収縮率が大きくなり、不織布製造時に割れや皺等が発生しやすくなり、地合の均一性や製造安定性が低下する。また、半透膜支持体の一方の面に半透膜を設ける製造工程で、皺・カールが発生し、半透膜支持体と半透膜との接着性も低下する。   In the present invention, the melting peak area (A) derived from the high melting point polyethylene on the low melting point side and the melting peak derived from the polypropylene on the high melting point side obtained from the DSC curve obtained by differential scanning calorimetry of the core-sheath type conjugate fiber. The area (B) ratio (A / B) is in the range of 1.00 to 2.50, more preferably 1.20 to 2.00, and particularly preferably 1.30 to 1.80. It is. When A / B is less than 1.00, the adhesive strength between the fibers due to the high-density polyethylene which is the heat-sealing component is not sufficient, and the strength of the semipermeable membrane support is lowered. On the other hand, when A / B exceeds 2.50, the shrinkage ratio of the fibers increases, and cracks, wrinkles and the like are likely to occur during the production of the nonwoven fabric, and the uniformity of the formation and the production stability are lowered. In addition, wrinkles and curls are generated in the manufacturing process in which the semipermeable membrane is provided on one surface of the semipermeable membrane support, and the adhesion between the semipermeable membrane support and the semipermeable membrane is also reduced.

本発明において、前記芯鞘型複合繊維の芯成分であるポリプロピレン及び鞘成分である高密度ポリエチレンの分子量や密度、芯成分と鞘成分の構成比率、芯鞘型複合繊維の延伸倍率を適宜変化させることにより、示差走査熱量分析における熱的挙動を制御することができる。   In the present invention, the molecular weight and density of polypropylene as the core component of the core-sheath composite fiber and the high-density polyethylene as the sheath component, the composition ratio between the core component and the sheath component, and the draw ratio of the core-sheath composite fiber are appropriately changed. Thus, the thermal behavior in the differential scanning calorimetry can be controlled.

本発明に使用されるポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維は、溶融紡糸機を用い、芯鞘型複合紡糸用口金を用いて溶融紡糸される。紡糸温度は、鞘成分である高密度ポリエチレンが変質しない温度で実施され、紡糸温度200℃以上300℃以下で重合体を押し出し、所定の繊度の紡糸フィラメントを作製する。紡糸フィラメントには、必要に応じて延伸処理を実施する。延伸処理は、鞘成分である高密度ポリエチレンが融着しない温度で実施され、例えば、延伸温度50℃以上100℃以下の範囲で、延伸倍率2倍以上で処理すると、繊維強度が向上して好ましい。得られたフィラメントには、必要に応じて繊維処理剤を付与し、親水性や分散性を制御した後、所定の長さに切断して、不織布製造用の芯鞘型複合繊維として使用される。   The core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component used in the present invention is melt-spun using a melt-spinning machine and using a core-sheath type composite spinning die. The spinning temperature is a temperature at which the high density polyethylene as the sheath component does not change, and the polymer is extruded at a spinning temperature of 200 ° C. or higher and 300 ° C. or lower to produce a spinning filament having a predetermined fineness. The spinning filament is subjected to a stretching treatment as necessary. The stretching treatment is performed at a temperature at which the high-density polyethylene as the sheath component is not fused. For example, when the stretching temperature is 50 ° C. or more and 100 ° C. or less and the treatment is performed at a draw ratio of 2 times or more, the fiber strength is preferably improved. . The obtained filament is provided with a fiber treatment agent as necessary, and after controlling hydrophilicity and dispersibility, it is cut into a predetermined length and used as a core-sheath type composite fiber for manufacturing a nonwoven fabric. .

前記芯鞘型複合繊維を構成する芯成分としては、ポリプロピレンを使用するが、繊維物性を調整するため、必要に応じて高密度ポリエチレンやポリメチルペンテン等のポリオレフィンを混合することができる。前記ポリオレフィンの混合比率としては、芯成分の10質量%以下であることが好ましい。また、必要に応じて、通常のポリオレフィンに用いられる樹脂添加剤を添加することができる。樹脂添加剤としては、各種酸化防止剤、中和剤、光安定剤、紫外線吸収剤、造核剤、滑剤、帯電防止剤等が挙げられ、添加する場合の添加量としては、樹脂に対して0.01質量%以上1.0質量%以下の範囲で用いられる。   Polypropylene is used as the core component constituting the core-sheath composite fiber, but polyolefin such as high-density polyethylene and polymethylpentene can be mixed as necessary in order to adjust fiber properties. The mixing ratio of the polyolefin is preferably 10% by mass or less of the core component. Moreover, the resin additive used for normal polyolefin can be added as needed. Examples of the resin additive include various antioxidants, neutralizers, light stabilizers, ultraviolet absorbers, nucleating agents, lubricants, antistatic agents, and the like. It is used in the range of 0.01% by mass or more and 1.0% by mass or less.

次に、前記芯鞘型複合繊維を構成する鞘成分としては、高密度ポリエチレンを使用するが、繊維物性を調節するため、必要に応じてポリプロピレンやエチレン−プロピレン共重合体等のポリオレフィンを混合することができる。前記ポリオレフィンの混合比率としては、鞘成分の10質量%以下であることが好ましい。また、必要に応じて、通常のポリオレフィンに用いられる樹脂添加剤を添加することができる。樹脂添加剤としては、各種酸化防止剤、中和剤、光安定剤、紫外線吸収剤、造核剤、滑剤、帯電防止剤等が挙げられ、添加する場合の添加量としては、樹脂に対して0.01質量%以上1.0質量%以下の範囲で用いられる。   Next, as the sheath component constituting the core-sheath type composite fiber, high-density polyethylene is used, but in order to adjust the fiber physical properties, polyolefin such as polypropylene or ethylene-propylene copolymer is mixed as necessary. be able to. The mixing ratio of the polyolefin is preferably 10% by mass or less of the sheath component. Moreover, the resin additive used for normal polyolefin can be added as needed. Examples of the resin additive include various antioxidants, neutralizers, light stabilizers, ultraviolet absorbers, nucleating agents, lubricants, antistatic agents, and the like. It is used in the range of 0.01% by mass or more and 1.0% by mass or less.

本発明において、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維の130℃、30分間の加熱処理後の熱収縮率は8.0%以下が好ましく、より好ましくは6.0%以下、特に好ましくは5.0%以下である。熱収縮率が8.0%を超えると、半透膜支持体の熱による幅方向の収縮が大きくなり、半透膜支持体の一方の面に半透膜を設ける製造工程で、皺・カールが発生しやすく、半透膜支持体と半透膜との接着性も低下しやすい。ここで熱収縮率とは、以下の方法で算出したものである。即ち、温度23℃、50%RHで24時間状態調節した前記芯鞘型複合繊維を、ガラス製キャピラリーチューブに入れ、デジタルマイクロスコープで撮影し、加熱前の繊維長(L)を測定する。次に、130℃で30分間加熱し、温度23℃、50%RHで1時間放冷した後、加熱後の繊維長(L)を加熱前と同様にして測定する。加熱前の繊維長(L)に対する加熱前後の繊維長の差(L−L)の比を百分率で表したものを熱収縮率(%)とする。 In the present invention, the heat shrinkage ratio after heat treatment at 130 ° C. for 30 minutes of the core-sheath composite fiber having polypropylene as the core component and high-density polyethylene as the sheath component is preferably 8.0% or less, more preferably 6 0.0% or less, particularly preferably 5.0% or less. When the thermal shrinkage rate exceeds 8.0%, the shrinkage in the width direction due to heat of the semipermeable membrane support increases, and in the manufacturing process of providing a semipermeable membrane on one side of the semipermeable membrane support, And the adhesion between the semipermeable membrane support and the semipermeable membrane tends to be lowered. Here, the heat shrinkage rate is calculated by the following method. That is, the core-sheath composite fiber conditioned at a temperature of 23 ° C. and 50% RH for 24 hours is put in a glass capillary tube, photographed with a digital microscope, and the fiber length (L 1 ) before heating is measured. Next, after heating at 130 ° C. for 30 minutes and allowing to cool at 23 ° C. and 50% RH for 1 hour, the fiber length (L 2 ) after heating is measured in the same manner as before heating. The ratio of the difference in fiber length before and after heating (L 1 -L 2 ) to the fiber length before heating (L 1 ), expressed as a percentage, is defined as the thermal shrinkage rate (%).

本発明の半透膜支持体は、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を30質量%以上含有する。好ましくは50質量%以上、より好ましくは70質量%以上、特に好ましくは90質量%以上である。30質量%未満では、不織布製造時に割れや皺等が発生しやすくなり、地合の均一性や製造安定性が低下する。また、半透膜支持体の一方の面に半透膜を設ける製造工程で、皺・カールが発生し、半透膜支持体と半透膜との接着性も低下する。   The semipermeable membrane support of the present invention contains 30% by mass or more of core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component. Preferably it is 50 mass% or more, More preferably, it is 70 mass% or more, Most preferably, it is 90 mass% or more. If it is less than 30% by mass, cracks, wrinkles and the like are likely to occur during the production of the nonwoven fabric, and the uniformity of the formation and the production stability are reduced. In addition, wrinkles and curls are generated in the manufacturing process in which the semipermeable membrane is provided on one surface of the semipermeable membrane support, and the adhesion between the semipermeable membrane support and the semipermeable membrane is also reduced.

本発明の半透膜支持体は、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を30質量%以上含有するが、この芯鞘型複合繊維を含めたすべてのポリオレフィン系繊維の含有率は90質量%以上である。好ましくは95質量%以上、特に好ましくは98質量%以上である。ポリオレフィン系繊維の含有率が90質量%未満だと、アルカリ溶液に対する耐性が低下する。   The semipermeable membrane support of the present invention contains 30% by mass or more of a core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component, and all polyolefins including the core-sheath type composite fiber. The content rate of a system fiber is 90 mass% or more. Preferably it is 95 mass% or more, Most preferably, it is 98 mass% or more. When the content of the polyolefin fiber is less than 90% by mass, resistance to an alkaline solution is lowered.

本発明においてポリオレフィン系繊維とは、1つ以上の二重結合を分子内に有し、炭素と水素を構成元素とする一種類以上の単量体を重合した単一樹脂又は共重合樹脂を溶融紡糸して繊維化したものであり、ビニロン繊維やエチレン−ビニルアルコール共重合体繊維等のように、炭素と水素以外の構成元素を含有する単量体を重合した単一樹脂又は共重合樹脂を溶融紡糸した繊維は含まない。前記芯鞘型複合繊維と併用して使用することのできるポリオレフィン系繊維としては、ポリエチレン繊維、ポリプロピレン繊維等の単一成分からなる繊維、2種類以上の異なるポリオレフィンの混合物からなる混合ポリオレフィン繊維、2種類以上の異なるオレフィンの共重合体からなる共重合ポリオレフィン繊維、ポリエチレン、ポリプロピレン、共重合ポリオレフィン等の樹脂を適宜組み合わせた、芯鞘型、サイドバイサイド型、偏芯型あるいは分割性複合繊維等が挙げられる。   In the present invention, a polyolefin-based fiber is a single resin or copolymer resin obtained by polymerizing one or more monomers having one or more double bonds in the molecule and carbon and hydrogen as constituent elements. A single resin or copolymer resin obtained by polymerizing monomers containing constituent elements other than carbon and hydrogen, such as vinylon fiber and ethylene-vinyl alcohol copolymer fiber. Does not include melt-spun fibers. Examples of polyolefin fibers that can be used in combination with the core-sheath type composite fibers include fibers composed of a single component such as polyethylene fibers and polypropylene fibers, mixed polyolefin fibers composed of a mixture of two or more different polyolefins, 2 Examples thereof include a core-sheath type, a side-by-side type, an eccentric type, and a splittable composite fiber, which are appropriately combined with a copolymer polyolefin fiber composed of copolymers of different types of olefins, polyethylene, polypropylene, copolymer polyolefin, and the like. .

本発明の半透膜支持体において、ポリオレフィン系繊維以外の繊維を10質量%以下、含有させても良い。ポリオレフィン系繊維以外の繊維としては、例えば、ポリアクリル系、ビニロン系、ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ナイロン等のポリアミド系、ベンゾエート系、ポリクラール系、フェノール系等の合成繊維、アセテート、トリアセテート、プロミックスや、再生繊維のレーヨン、キュプラ、リヨセル繊維等の半合成繊維、さらには、これらの繊維とポリオレフィン系繊維との複合繊維等が挙げられる。   In the semipermeable membrane support of the present invention, fibers other than polyolefin fibers may be contained in an amount of 10% by mass or less. Examples of fibers other than polyolefin-based fibers include, for example, polyacrylic, vinylon-based, vinylidene-based, polyvinyl chloride-based, polyester-based, polyamide-based nylon, benzoate-based, polyclar-based, phenol-based synthetic fibers, acetate, Examples include triacetate, promix, semi-synthetic fibers such as regenerated fiber rayon, cupra, and lyocell fiber, and composite fibers of these fibers and polyolefin fibers.

本発明の半透膜支持体で使用される繊維の繊維径、繊維長は特に限定されないが、不織布強度と製造性等から、繊維径は1μm以上30μm以下が好ましく、より好ましくは3μm以上25μm以下、特に好ましくは5μm以上20μm以下である。繊維長は1mm以上20mm以下が好ましく、より好ましくは1mm以上12mm以下、特に好ましくは3mm以上10mm以下である。繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、表面平滑性のために、繊維分散性等の他の特性を阻害しない範囲内で含有できる。また、分割性複合繊維を水流交絡やリファイナーにより細分化して使用することもできる。   The fiber diameter and fiber length of the fiber used in the semipermeable membrane support of the present invention are not particularly limited, but the fiber diameter is preferably 1 μm or more and 30 μm or less, more preferably 3 μm or more and 25 μm or less from the nonwoven fabric strength and manufacturability. Particularly preferably, it is 5 μm or more and 20 μm or less. The fiber length is preferably 1 mm or more and 20 mm or less, more preferably 1 mm or more and 12 mm or less, and particularly preferably 3 mm or more and 10 mm or less. The cross-sectional shape of the fiber is preferably a circular shape, but fibers having irregular cross-sections such as T-type, Y-type, and triangle are also within a range that does not hinder other properties such as fiber dispersibility for preventing back-through and surface smoothness. Can be contained. Further, the splittable composite fiber can be used after being subdivided by hydroentanglement or refiner.

本発明の半透膜支持体の通気度は1.0〜30.0cc/cm/secである。好ましくは2.0〜25.0cc/cm/sec、より好ましくは3.0〜20.0cc/cm/sec、特に好ましくは4.0〜16.0cc/cm/secである。1.0cc/cm/secより小さいと、半透膜と半透膜支持体との接着性に劣る。30.0cc/cm/secより大きいと、半透膜溶液を塗布した際に裏抜けが発生し、また半透膜塗布面の平滑性にも劣る。 The air permeability of the semipermeable membrane support of the present invention is 1.0 to 30.0 cc / cm 2 / sec. Preferably it is 2.0-25.0 cc / cm < 2 > / sec, More preferably, it is 3.0-20.0 cc / cm < 2 > / sec, Most preferably, it is 4.0-16.0 cc / cm < 2 > / sec. If it is less than 1.0 cc / cm 2 / sec, the adhesion between the semipermeable membrane and the semipermeable membrane support is poor. If it is greater than 30.0 cc / cm 2 / sec, a strike-through occurs when the semipermeable membrane solution is applied, and the smoothness of the semipermeable membrane application surface is also poor.

本発明の半透膜支持体の製造方法について説明する。本発明の半透膜支持体の製造方法としては、一般的な不織布の製造方法がいずれも使用でき、繊維ウェブを形成し、繊維ウェブ内の繊維を接着・融着・絡合させることにより製造することができる。繊維ウェブの製造方法としては、例えば、湿式抄造法や、カード法、エアレイド法等の乾式法等が挙げられる。しかしながら、カード法、エアレイド法等の乾式法は、繊維長の長い繊維を用いることができるが、均一な繊維ウェブの形成が困難で、湿式抄造法に比べ、一般的に地合が劣るという問題がある。   The method for producing the semipermeable membrane support of the present invention will be described. As the method for producing the semipermeable membrane support of the present invention, any general method for producing a nonwoven fabric can be used, and it is produced by forming a fiber web and bonding, fusing, and intertwining the fibers in the fiber web. can do. Examples of the method for producing the fiber web include a wet papermaking method, a dry method such as a card method and an airlaid method. However, dry methods such as the card method and the airlaid method can use fibers having a long fiber length, but it is difficult to form a uniform fiber web, and the formation is generally inferior to the wet papermaking method. There is.

一方、湿式抄造法は、生産速度が乾式法に比べて速く、同一装置で繊維径の異なる繊維や複数の種類の繊維を任意の割合で均一に混合できる利点がある。即ち、繊維の形態もステープル状、パルプ状等と選択の幅は広く、使用可能な繊維径も極細繊維から太い繊維まで使用可能で、他の方法に比べ、良好な地合の繊維ウェブが得られる。これらのことから、本発明の半透膜支持体としては、湿式抄造法によって得られた湿式不織布が好ましい。   On the other hand, the wet papermaking method has an advantage that the production rate is higher than that of the dry method, and fibers having different fiber diameters or a plurality of types of fibers can be uniformly mixed at an arbitrary ratio in the same apparatus. In other words, there are a wide selection of fiber forms such as staple and pulp, and the usable fiber diameter can be used from ultrafine fibers to thick fibers. It is done. For these reasons, the semipermeable membrane support of the present invention is preferably a wet nonwoven fabric obtained by a wet papermaking method.

湿式抄造法では、繊維を均一に水中に分散させ、その後、スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.001〜0.50質量%に調製されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。繊維の分散性を均一にするために、工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。   In the wet papermaking method, a slurry in which fibers are uniformly dispersed in water and then passed through a process such as screen (removal of foreign matters, lumps, etc.) and the final fiber concentration is adjusted to 0.001 to 0.50 mass%. Paper is made by a paper machine to obtain wet paper. In order to make the dispersibility of the fibers uniform, chemicals such as dispersants, antifoaming agents, hydrophilic agents, antistatic agents, polymer thickeners, mold release agents, antibacterial agents, bactericides, etc. may be added during the process. is there.

抄紙機としては、例えば、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機を用いることができる。これらの抄紙機は、単独でも使用できるし、同種又は異種の2機以上の抄紙機がオンラインで設置されているコンビネーション抄紙機を使用しても良い。2層以上を抄き合わせる場合、各層の配合は同一であっても、異なっていても良い。また、2層以上の構成の場合、各々の抄紙機で抄き上げた湿紙を積層する抄き合わせ法や、一方のシートを形成した後に、該シートの上に繊維を分散したスラリーを流延する方法のいずれでも良い。   As the paper machine, for example, a long net paper machine, a circular net paper machine, or an inclined wire type paper machine can be used. These paper machines can be used alone, or a combination paper machine in which two or more same or different types of paper machines are installed online may be used. When two or more layers are made, the composition of each layer may be the same or different. In the case of two or more layers, a paper making method in which wet papers made by each paper machine are laminated, or after forming one sheet, a slurry in which fibers are dispersed is flown on the sheet. Any of the extending methods may be used.

抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することにより、シートを得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることをいう。熱ロールの表面温度は、90〜150℃が好ましく、100〜140℃がより好ましく、110〜140℃がさらに好ましい。圧力は、好ましくは50〜1000N/cm、より好ましくは100〜800N/cm、特に好ましくは150〜700N/cmである。   Sheets are obtained by drying wet paper produced by a paper machine with a Yankee dryer, air dryer, cylinder dryer, suction drum dryer, infrared dryer, or the like. When the wet paper is dried, it is brought into close contact with a hot roll such as a Yankee dryer and dried by heat and pressure to improve the smoothness of the contacted surface. Hot-pressure drying means that the wet paper is pressed against the heat roll with a touch roll or the like and dried. The surface temperature of the hot roll is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, and still more preferably 110 to 140 ° C. The pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm, and particularly preferably 150 to 700 N / cm.

本発明の半透膜支持体において、シート化後に、さらに熱ロールによって熱圧工程を経ることが好ましい。シート熱圧加工装置のロール間をニップしながら、湿式抄紙法で製造されたシートを通過させて熱圧加工を行う。ロールの組み合わせとしては、2本の金属ロール、金属ロールと樹脂ロール、金属ロールとコットンロール等が挙げられる。2本のロールは、一方あるいは両方を加熱する。その際に、熱ロールの表面温度、ロール間のニップ圧力、シートの加工速度を制御することによって、通気度、厚み等を制御し、所望の半透膜支持体を得る。熱ロールの表面温度は、好ましくは50〜140℃であり、より好ましくは70〜135℃、特に好ましくは90〜130℃である。ロールのニップ圧力は、好ましくは190〜1800N/cmであり、より好ましくは290〜1600N/cm、特に好ましくは390〜1500N/cmである。加工速度は、好ましくは4〜100m/minであり、より好ましくは10〜80m/min、特に好ましくは15〜70m/minである。熱ロールによる熱圧加工は2回以上行うことも可能であり、その場合、直列に配置された2組以上の上記のロール組み合わせを使用しても良いし、1組のロール組み合わせを用いて、2回加工しても良い。必要に応じて、シートの表裏を逆にしても良い。   In the semipermeable membrane supporting material of the present invention, it is preferable that after forming into a sheet, it is further subjected to a hot pressing step with a hot roll. The sheet manufactured by the wet papermaking method is passed through the hot pressing process while niping between the rolls of the sheet hot pressing apparatus. Examples of the combination of rolls include two metal rolls, a metal roll and a resin roll, and a metal roll and a cotton roll. Two rolls heat one or both. At that time, by controlling the surface temperature of the hot roll, the nip pressure between the rolls, and the processing speed of the sheet, the air permeability, thickness and the like are controlled to obtain a desired semipermeable membrane support. The surface temperature of the hot roll is preferably 50 to 140 ° C, more preferably 70 to 135 ° C, and particularly preferably 90 to 130 ° C. The roll nip pressure is preferably 190 to 1800 N / cm, more preferably 290 to 1600 N / cm, and particularly preferably 390 to 1500 N / cm. The processing speed is preferably 4 to 100 m / min, more preferably 10 to 80 m / min, and particularly preferably 15 to 70 m / min. It is also possible to perform the hot pressing with a hot roll two or more times. In that case, two or more sets of rolls arranged in series may be used, or one set of rolls may be used. You may process twice. If necessary, the front and back of the sheet may be reversed.

半透膜支持体の坪量は、特に限定しないが、20〜150g/mが好ましく、より好ましくは30〜120g/m、特に好ましくは40〜100g/mである。20g/m未満の場合は、十分な引張強度が得られない場合がある。また、150g/mを超えると、通液抵抗が高くなる場合や、厚みが増してユニットやモジュール内に規定量の半透膜を収納できない場合がある。 The basis weight of the semipermeable membrane support is not particularly limited, but is preferably 20 to 150 g / m 2 , more preferably 30 to 120 g / m 2 , and particularly preferably 40 to 100 g / m 2 . If it is less than 20 g / m 2 , sufficient tensile strength may not be obtained. Moreover, when it exceeds 150 g / m < 2 >, liquid flow resistance may become high, or thickness may increase and a predetermined amount of semipermeable membranes may not be accommodated in a unit or a module.

また、半透膜支持体の密度は、0.25〜0.9g/cmであることが好ましく、より好ましくは0.3〜0.7g/cm、特に好ましくは0.4〜0.65g/cmである。半透膜支持体の密度が0.25g/cm未満の場合は、厚みが厚くなるため、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、0.9g/cmを超える場合は、通液性が低くなることがあり、半透膜の寿命が短くなる場合がある。 The density of the semi-permeable membrane support is preferably 0.25~0.9g / cm 3, more preferably 0.3 to 0.7 g / cm 3, particularly preferably 0.4 to 0. 65 g / cm 3 . When the density of the semipermeable membrane support is less than 0.25 g / cm 3 , the thickness is increased, so that the area of the semipermeable membrane that can be incorporated into the unit is reduced, and as a result, the life of the semipermeable membrane is shortened. May end up. On the other hand, when it exceeds 0.9 g / cm 3 , the liquid permeability may be lowered, and the life of the semipermeable membrane may be shortened.

半透膜支持体の厚みは、50〜200μmであることが好ましく、60〜150μmであることがより好ましく、70〜130μmであることがさらに好ましい。半透膜支持体の厚みが200μmを超えると、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、50μm未満の場合、十分な引張強度が得られない場合や通液性が低くなって、半透膜の寿命が短くなる場合がある。   The thickness of the semipermeable membrane support is preferably 50 to 200 μm, more preferably 60 to 150 μm, and still more preferably 70 to 130 μm. When the thickness of the semipermeable membrane support exceeds 200 μm, the area of the semipermeable membrane that can be incorporated into the unit is reduced, and as a result, the life of the semipermeable membrane may be shortened. On the other hand, when the thickness is less than 50 μm, sufficient tensile strength may not be obtained or liquid permeability may be reduced, and the life of the semipermeable membrane may be shortened.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example.

[ピーク面積比(A/B)の評価]
ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維をエタノールで洗浄し、80℃で30分間乾燥した後、温度23℃、50%RHで24時間状態調節した試料10mgをAl製試料容器に封入し、JIS K 7121に規定される示差走査熱量分析を行い、DSC曲線を求め、JIS K 7122に規定される方法により、高密度ポリエチレンに由来する低融点側の融解ピーク面積(A)とポリプロピレンに由来する高融点側の融解ピーク面積(B)を算出し、次の式(1)からピーク面積比(A/B)を得た。
[Evaluation of peak area ratio (A / B)]
A core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component was washed with ethanol, dried at 80 ° C. for 30 minutes, and then subjected to conditioning at a temperature of 23 ° C. and 50% RH for 24 hours. The sample is sealed in an Al sample container, subjected to differential scanning calorimetry specified in JIS K 7121, a DSC curve is obtained, and the melting peak area on the low melting point side derived from high-density polyethylene is obtained by the method specified in JIS K 7122. The melting peak area (B) on the high melting point side derived from (A) and polypropylene was calculated, and the peak area ratio (A / B) was obtained from the following formula (1).

ピーク面積比(A/B)=融解ピーク面積(A)/融解ピーク面積(B) (1) Peak area ratio (A / B) = melting peak area (A) / melting peak area (B) (1)

[熱収縮率の評価]
ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を、温度23℃、50%RHで24時間状態調節した試料をガラス製キャピラリーチューブに入れ、加熱前の繊維の長さ(L)をデジタルマイクロスコープ(製品名:VHX−900、(株)キーエンス製)で撮影し、距離計測モードで測定した。次に、130℃で30分間加熱し、温度23℃、50%RHで1時間放冷した後、加熱後の繊維の長さ(L)を加熱前と同様にして測定した。熱収縮率は、次の式(2)で求めた。
[Evaluation of heat shrinkage]
A sample obtained by conditioning a core-sheath type composite fiber containing polypropylene as a core component and high-density polyethylene as a sheath component at a temperature of 23 ° C. and 50% RH for 24 hours is placed in a glass capillary tube, and the length of the fiber before heating. (L 1 ) was photographed with a digital microscope (product name: VHX-900, manufactured by Keyence Corporation) and measured in a distance measurement mode. Next, after heating at 130 ° C. for 30 minutes and allowing to cool at 23 ° C. and 50% RH for 1 hour, the length (L 2 ) of the heated fiber was measured in the same manner as before heating. The thermal contraction rate was calculated | required by following Formula (2).

熱収縮率(%)=(L−L)/L×100 (2) Thermal contraction rate (%) = (L 1 −L 2 ) / L 1 × 100 (2)

(実施例1)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.04であり、熱収縮率が5.4%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)100質量部を、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定されたヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mm、坪量50g/mの不織布を得た。
Example 1
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.04, and the thermal contraction rate is 5. 4%, 100 parts by mass of a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) whose core component is polypropylene and whose sheath component is high-density polyethylene is disaggregated and dispersed in water of a pulper. By stirring gently, a uniform papermaking slurry was prepared. This slurry for paper making is made by a wet paper making method using a circular paper machine and dried by a hot air hood attached to a Yankee dryer set at 135 ° C, and the sheath part of the core-sheath type composite fiber is melted by heat. By bonding, a nonwoven fabric having a width of 500 mm and a basis weight of 50 g / m 2 was obtained.

得られた不織布を、2つの加熱金属ロールからなるカレンダー装置を用いて、各加熱金属ロール温度115℃、圧力785N/cm、加工速度20m/minの条件で加工し、実施例1の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い、通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、9.2cc/cm/secであった。 The obtained nonwoven fabric was processed under the conditions of each heated metal roll temperature of 115 ° C., pressure of 785 N / cm, and processing speed of 20 m / min using a calender device comprising two heated metal rolls, and the semipermeable membrane of Example 1 A support was obtained. When the air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, it was 9.2 cc / cm 2 / sec. It was.

(実施例2)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.25であり、熱収縮率が5.2%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、実施例2の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い、通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、8.8cc/cm/secであった。
(Example 2)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.25, and the thermal contraction rate is 5. Example 2 was carried out in the same manner as in Example 1 except that a core-sheath composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high-density polyethylene was used. 2 semipermeable membrane supports were obtained. The air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, and was 8.8 cc / cm 2 / sec. It was.

(実施例3)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.52であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、実施例3の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、8.6cc/cm/secであった。
(Example 3)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.52, and the thermal contraction rate is 5. Except that a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) in which the core component is polypropylene and the sheath component is high-density polyethylene is used in the same manner as in Example 1, 3 semipermeable membrane support was obtained. The air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, and found to be 8.6 cc / cm 2 / sec. .

(実施例4)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.96であり、熱収縮率が7.5%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、実施例4の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、8.7cc/cm/secであった。
Example 4
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.96, and the thermal contraction rate is 7. Example 5 is the same as Example 1 except that a core-sheath composite fiber (fineness 0.8 dtex, fiber length 5 mm) in which the core component is polypropylene and the sheath component is high-density polyethylene is 5%. 4 semipermeable membrane support was obtained. The air permeability of the semipermeable membrane support thus obtained was 8.7 cc / cm 2 / sec when measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) in accordance with JIS L 1079. .

(実施例5)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.45であり、熱収縮率が7.9%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、実施例5の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、8.5cc/cm/secであった。
(Example 5)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 2.45, and the thermal contraction rate is 7. Example 1 was carried out in the same manner as in Example 1 except that a core-sheath composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high-density polyethylene was used. 5 semipermeable membrane support was obtained. The air permeability of the semipermeable membrane support thus obtained was 8.5 cc / cm 2 / sec when measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(実施例6)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.40であり、熱収縮率が8.2%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、実施例6の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、8.6cc/cm/secであった。
(Example 6)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 2.40, and the thermal contraction rate is 8. Example 2 was carried out in the same manner as in Example 1 except that a core-sheath composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high-density polyethylene was used. 6 semipermeable membrane support was obtained. The air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, and found to be 8.6 cc / cm 2 / sec. .

(実施例7)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)90質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)10質量部とを混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定されたヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mm、坪量50g/mの不織布を得た。得られた不織布を実施例1と同様に熱カレンダー加工を行い、実施例7の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、9.3cc/cm/secであった。
(Example 7)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, and the thermal contraction rate is 5. 90% by mass of a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high-density polyethylene, a single fiber (fineness 0.8 dtex, Fiber length 5 mm) and 10 parts by mass were mixed, disaggregated and dispersed in water of a pulper, and gently stirred with an agitator to prepare a uniform papermaking slurry. This slurry for paper making is made by a wet paper making method using a circular paper machine and dried by a hot air hood attached to a Yankee dryer set at 135 ° C, and the sheath part of the core-sheath type composite fiber is melted by heat. By bonding, a nonwoven fabric having a width of 500 mm and a basis weight of 50 g / m 2 was obtained. The obtained nonwoven fabric was subjected to thermal calendering in the same manner as in Example 1 to obtain a semipermeable membrane support of Example 7. The air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, and found to be 9.3 cc / cm 2 / sec. .

(実施例8)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)70質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)30質量部とを混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定されたヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mm、坪量50g/mの不織布を得た。得られた不織布を実施例1と同様に熱カレンダー加工を行い、実施例8の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、10.7cc/cm/secであった。
(Example 8)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, and the thermal contraction rate is 5. 70% by mass of a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high-density polyethylene, a single fiber (fineness 0.8 dtex, Fiber length 5 mm) and 30 parts by mass were mixed, disaggregated and dispersed in water of a pulper, and gently stirred with an agitator to prepare a uniform papermaking slurry. This slurry for paper making is made by a wet paper making method using a circular paper machine and dried by a hot air hood attached to a Yankee dryer set at 135 ° C, and the sheath part of the core-sheath type composite fiber is melted by heat. By bonding, a nonwoven fabric having a width of 500 mm and a basis weight of 50 g / m 2 was obtained. The obtained nonwoven fabric was subjected to thermal calendering in the same manner as in Example 1 to obtain a semipermeable membrane support of Example 8. The air permeability of the semipermeable membrane support thus obtained was 10.7 cc / cm 2 / sec as measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(実施例9)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)70質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)22質量部、ポリエステルからなる単一繊維(繊度1.7dtex、繊維長5mm)8質量部とを混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定されたヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mm、坪量50g/mの不織布を得た。得られた不織布を実施例1と同様に熱カレンダー加工を行い、実施例9の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、11.5cc/cm/secであった。
Example 9
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, and the thermal contraction rate is 5. 70% by mass of a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high-density polyethylene, a single fiber (fineness 0.8 dtex, (Fiber length 5 mm) 22 parts by mass and polyester single fiber (fineness 1.7 dtex, fiber length 5 mm) 8 parts by mass are mixed, disaggregated and dispersed in water in a pulper, and gently stirred with an agitator to make uniform A papermaking slurry was prepared. This slurry for paper making is made by a wet paper making method using a circular paper machine, dried by a hot air hood attached to a Yankee dryer set at 135 ° C, and the sheath portion of the core-sheath composite fiber is melted by heat. By bonding, a nonwoven fabric having a width of 500 mm and a basis weight of 50 g / m 2 was obtained. The obtained nonwoven fabric was subjected to thermal calendering in the same manner as in Example 1 to obtain a semipermeable membrane support of Example 9. The air permeability of the semipermeable membrane support thus obtained was 11.5 cc / cm 2 / sec as measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(実施例10)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)50質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)48質量部、ビニロンからなるバインダー繊維(繊度1.1dtex、繊維長3mm)2質量部とを混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定されたヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mm、坪量50g/mの不織布を得た。得られた不織布を実施例1と同様に熱カレンダー加工を行い、実施例10の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、13.8cc/cm/secであった。
(Example 10)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, and the thermal contraction rate is 5. 50% by mass of a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high-density polyethylene, and a single fiber (fineness 0.8 dtex, (Fiber length 5 mm) 48 parts by mass and vinylon binder fiber (fineness 1.1 dtex, fiber length 3 mm) 2 parts are mixed, disaggregated and dispersed in water in a pulper, and stirred gently with an agitator to make uniform paper. A slurry was prepared. This slurry for paper making is made by a wet paper making method using a circular paper machine and dried by a hot air hood attached to a Yankee dryer set at 135 ° C, and the sheath part of the core-sheath type composite fiber is melted by heat. By bonding, a nonwoven fabric having a width of 500 mm and a basis weight of 50 g / m 2 was obtained. The obtained nonwoven fabric was subjected to thermal calendering in the same manner as in Example 1 to obtain a semipermeable membrane support of Example 10. The air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, and found to be 13.8 cc / cm 2 / sec. .

(実施例11)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)50質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)45質量部、ビニロンからなるバインダー繊維(繊度1.1dtex、繊維長3mm)5質量部とを混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定されたヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mm、坪量50g/mの不織布を得た。得られた不織布を実施例1と同様に熱カレンダー加工を行い、実施例11の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、13.9cc/cm/secであった。
(Example 11)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, and the thermal contraction rate is 5. 50% by mass of a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high-density polyethylene, and a single fiber (fineness 0.8 dtex, Fiber length 5 mm) 45 parts by weight and vinylon binder fiber (fineness 1.1 dtex, fiber length 3 mm) 5 parts by weight are mixed, disaggregated and dispersed in water in a pulper, and stirred gently with an agitator to make uniform paper. A slurry was prepared. This slurry for paper making is made by a wet paper making method using a circular paper machine and dried by a hot air hood attached to a Yankee dryer set at 135 ° C, and the sheath part of the core-sheath type composite fiber is melted by heat. By bonding, a nonwoven fabric having a width of 500 mm and a basis weight of 50 g / m 2 was obtained. The obtained nonwoven fabric was subjected to thermal calendering in the same manner as in Example 1 to obtain a semipermeable membrane support of Example 11. The air permeability of the semipermeable membrane support thus obtained was 13.9 cc / cm 2 / sec as measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(実施例12)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)50質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)40質量部、ビニロンからなるバインダー繊維(繊度1.1dtex、繊維長3mm)10質量部とを混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定されたヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mm、坪量50g/mの不織布を得た。得られた不織布を実施例1と同様に熱カレンダー加工を行い、実施例12の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、14.2cc/cm/secであった。
(Example 12)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, and the thermal contraction rate is 5. 50% by mass of a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high-density polyethylene, and a single fiber (fineness 0.8 dtex, Fiber length 5 mm) 40 parts by mass and vinylon binder fiber (fineness 1.1 dtex, fiber length 3 mm) 10 parts by weight are mixed, disaggregated and dispersed in water in a pulper, and stirred gently with an agitator to make uniform paper. A slurry was prepared. This slurry for paper making is made by a wet paper making method using a circular paper machine and dried by a hot air hood attached to a Yankee dryer set at 135 ° C, and the sheath part of the core-sheath type composite fiber is melted by heat. By bonding, a nonwoven fabric having a width of 500 mm and a basis weight of 50 g / m 2 was obtained. The obtained nonwoven fabric was subjected to thermal calendering in the same manner as in Example 1 to obtain a semipermeable membrane support of Example 12. The air permeability of the semipermeable membrane support thus obtained was 14.2 cc / cm 2 / sec when measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(実施例13)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)32質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)60質量部、ビニロンからなるバインダー繊維(繊度1.1dtex、繊維長3mm)8質量部とを混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定されたヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mm、坪量50g/mの不織布を得た。得られた不織布を実施例1と同様に熱カレンダー加工を行い、実施例13の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、17.6cc/cm/secであった。
(Example 13)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, and the thermal contraction rate is 5. 8%, 32 parts by mass of core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) whose core component is polypropylene and sheath component is high-density polyethylene, single fiber (fineness 0.8 dtex, Fiber length 5 mm) 60 parts by mass and vinylon binder fiber (fineness 1.1 dtex, fiber length 3 mm) 8 parts by mass are mixed, disaggregated and dispersed in water in a pulper, and stirred gently with an agitator to make uniform paper. A slurry was prepared. This slurry for paper making is made by a wet paper making method using a circular paper machine and dried by a hot air hood attached to a Yankee dryer set at 135 ° C, and the sheath part of the core-sheath type composite fiber is melted by heat. By bonding, a nonwoven fabric having a width of 500 mm and a basis weight of 50 g / m 2 was obtained. The obtained nonwoven fabric was subjected to thermal calendering in the same manner as in Example 1 to obtain a semipermeable membrane support of Example 13. The air permeability of the semipermeable membrane support thus obtained was 17.6 cc / cm 2 / sec when measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(実施例14)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)30質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)60質量部、ビニロンからなるバインダー繊維(繊度1.1dtex、繊維長3mm)10質量部とを混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定されたヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mm、坪量50g/mの不織布を得た。得られた不織布を実施例1と同様に熱カレンダー加工を行い、実施例14の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、18.2cc/cm/secであった。
(Example 14)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, and the thermal contraction rate is 5. 30% by mass of a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) whose core component is polypropylene and whose sheath component is high-density polyethylene, single fiber (fineness 0.8 dtex, Fiber length 5 mm) 60 parts by weight and vinylon binder fiber (fineness 1.1 dtex, fiber length 3 mm) 10 parts by weight are mixed, disaggregated and dispersed in water in a pulper, and stirred gently with an agitator to make uniform paper. A slurry was prepared. This slurry for paper making is made by a wet paper making method using a circular paper machine and dried by a hot air hood attached to a Yankee dryer set at 135 ° C, and the sheath part of the core-sheath type composite fiber is melted by heat. By bonding, a nonwoven fabric having a width of 500 mm and a basis weight of 50 g / m 2 was obtained. The obtained nonwoven fabric was subjected to thermal calendering in the same manner as in Example 1 to obtain a semipermeable membrane support of Example 14. The air permeability of the semipermeable membrane support thus obtained was measured by an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, and found to be 18.2 cc / cm 2 / sec. .

(実施例15)
実施例3において、カレンダー処理条件を圧力1200N/cm、加工速度10m/minに変更して、実施例15の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、1.2cc/cm/secであった。
(Example 15)
In Example 3, the semi-permeable membrane support of Example 15 was obtained by changing the calendar processing conditions to a pressure of 1200 N / cm and a processing speed of 10 m / min. The air permeability of the semipermeable membrane support thus obtained was 1.2 cc / cm 2 / sec when measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(実施例16)
実施例3において、カレンダー処理条件を加工速度10m/minに変更して、実施例16の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、3.7cc/cm/secであった。
(Example 16)
In Example 3, the calendering condition was changed to a processing speed of 10 m / min, and the semipermeable membrane supporting material of Example 16 was obtained. When the air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, it was 3.7 cc / cm 2 / sec. .

(実施例17)
実施例3において、カレンダー処理条件を各加熱金属ロール温度110℃、加工速度30m/minに変更して、実施例17の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、19.5cc/cm/secであった。
(Example 17)
In Example 3, the calendering conditions were changed to each heated metal roll temperature of 110 ° C. and a processing speed of 30 m / min to obtain a semipermeable membrane support of Example 17. When the air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, it was 19.5 cc / cm 2 / sec. .

(実施例18)
実施例3において、カレンダー処理条件を各加熱金属ロール温度100℃、加工速度30m/minに変更して、実施例18の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、29.6cc/cm/secであった。
(Example 18)
In Example 3, the calendering conditions were changed to each heated metal roll temperature of 100 ° C. and a processing speed of 30 m / min, to obtain a semipermeable membrane support of Example 18. The air permeability of the semipermeable membrane support thus obtained was 29.6 cc / cm 2 / sec as measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(比較例1)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が0.94であり、熱収縮率が5.5%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、比較例1の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、9.4cc/cm/secであった。
(Comparative Example 1)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 0.94, and the thermal contraction rate is 5. Comparative Example as in Example 1 except that a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) in which the core component is polypropylene and the sheath component is high-density polyethylene is 5%. 1 semipermeable membrane support was obtained. When the air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, it was 9.4 cc / cm 2 / sec. .

(比較例2)
示差走査熱量分析のDSC曲線において、低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.55であり、熱収縮率が8.5%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、比較例2の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、8.5cc/cm/secであった。
(Comparative Example 2)
In the DSC curve of differential scanning calorimetry, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 2.55, and the thermal contraction rate is 8. Comparative Example as in Example 1 except that a core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) in which the core component is polypropylene and the sheath component is high-density polyethylene is 5%. 2 semipermeable membrane supports were obtained. The air permeability of the semipermeable membrane support thus obtained was 8.5 cc / cm 2 / sec when measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(比較例3)
ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)17質量部、ポリエステルからなる単一繊維(繊度1.7dtex、繊維長5mm)13質量部とした以外は、実施例9と同様にして、比較例3の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、13.0cc/cm/secであった。
(Comparative Example 3)
Except for 17 parts by mass of a single fiber made of polypropylene (fineness 0.8 dtex, fiber length 5 mm) and 13 parts by mass of a single fiber made of polyester (fineness 1.7 dtex, fiber length 5 mm), the same as in Example 9. Thus, a semipermeable membrane support of Comparative Example 3 was obtained. The air permeability of the semipermeable membrane support thus obtained was 13.0 cc / cm 2 / sec as measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(比較例4)
低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)27質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)60質量部、ビニロンからなるバインダー繊維(繊度1.1dtex、繊維長3mm)13質量部とした以外は、実施例13と同様にして、比較例4の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、19.2cc/cm/secであった。
(Comparative Example 4)
The ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, the heat shrinkage rate is 5.8%, and the core component is polypropylene. And 27 mass parts of core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) whose sheath component is high density polyethylene, 60 mass parts of single fiber (fineness 0.8 dtex, fiber length 5 mm) made of polypropylene, vinylon A semipermeable membrane support of Comparative Example 4 was obtained in the same manner as in Example 13, except that the binder fiber (fineness 1.1 dtex, fiber length 3 mm) was 13 parts by mass. When the air permeability of the semipermeable membrane support thus obtained was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079, it was 19.2 cc / cm 2 / sec. .

(比較例5)
低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)27質量部、ポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)65質量部、ビニロンからなるバインダー繊維(繊度1.1dtex、繊維長3mm)8質量部とした以外は、実施例13と同様にして、比較例5の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、18.8cc/cm/secであった。
(Comparative Example 5)
The ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side is 1.65, the heat shrinkage rate is 5.8%, and the core component is polypropylene. And 27 mass parts of core-sheath type composite fiber (fineness 0.8 dtex, fiber length 5 mm) whose sheath component is high-density polyethylene, 65 mass parts of single fiber (fineness 0.8 dtex, fiber length 5 mm) made of polypropylene, vinylon A semipermeable membrane support of Comparative Example 5 was obtained in the same manner as in Example 13 except that the binder fiber (fineness 1.1 dtex, fiber length 3 mm) was 8 parts by mass. The air permeability of the semipermeable membrane support thus obtained was 18.8 cc / cm 2 / sec as measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(比較例6)
実施例3において、カレンダー処理条件を圧力1200N/cm、加工速度6m/minに変更して、比較例6の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、0.7cc/cm/secであった。
(Comparative Example 6)
In Example 3, the calendering condition was changed to a pressure of 1200 N / cm and a processing speed of 6 m / min to obtain a semipermeable membrane support of Comparative Example 6. The air permeability of the semipermeable membrane support thus obtained was 0.7 cc / cm 2 / sec when measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

(比較例7)
実施例3において、カレンダー処理条件を各加熱金属ロール温度100℃、加工速度35m/minに変更して、比較例7の半透膜支持体を得た。こうして得た半透膜支持体の通気度を、JIS L 1079に従い通気度計(KES−F8−AP1:カトーテック(株)製)で測定したところ、30.8cc/cm/secであった。
(Comparative Example 7)
In Example 3, the calendering condition was changed to each heated metal roll temperature of 100 ° C. and the processing speed of 35 m / min to obtain a semipermeable membrane support of Comparative Example 7. The air permeability of the semipermeable membrane support thus obtained was 30.8 cc / cm 2 / sec when measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) according to JIS L 1079. .

<評価>
実施例及び比較例で得られた半透膜支持体について、下記の評価を行い、結果を表1に示す。
<Evaluation>
The semipermeable membrane supports obtained in Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 1.

[不織布製造安定性]
実施例、比較例の半透膜支持体を5000m製造し、製造安定性を以下の基準で評価した。
◎:シート切れ、割れ地合、シボ、濃淡ムラ、巻き皺等の不具合が全くない。非常に良好なレベル。
○:濃淡ムラ、巻き皺等の軽微な不具合が少し生じる。良好なレベル。
△:濃淡ムラ、巻き皺等の軽微な不具合が頻繁に生じる。実用上、使用可能レベル。
×:シート切れ、割れ地合等の大きな不具合が頻繁に生じる。実用上、使用不可レベル。
[Nonwoven fabric production stability]
The semipermeable membrane supporting materials of Examples and Comparative Examples were produced by 5000 m, and the production stability was evaluated according to the following criteria.
(Double-circle): There is no malfunctions, such as a sheet piece, crack formation, a grain, uneven shading, and a curl. Very good level.
○: Minor inconveniences such as shading unevenness and curly wrinkles occur. Good level.
Δ: Minor inconveniences such as shading unevenness and curly wrinkles frequently occur. Practically usable level.
X: Major defects such as sheet breakage and cracking frequently occur. Unusable level for practical use.

[厚み]
JIS P 8118に準じ、厚みを測定した。
[Thickness]
The thickness was measured according to JIS P 8118.

[引張強度]
実施例及び比較例で得られた半透膜支持体から、巻き取りの流れ方向250mm、幅方向50mmの試料を10枚切り取り、JIS P 8113に準じて、卓上型材料試験機(装置名:STA−1150、(株)オリエンテック製)を用いて、引張強度を測定し、10枚の平均値を引張強度とした。
[Tensile strength]
Ten samples having a winding direction of 250 mm and a width direction of 50 mm were cut out from the semipermeable membrane supports obtained in Examples and Comparative Examples, and a tabletop material testing machine (apparatus name: STA) according to JIS P8113. -1150, manufactured by Orientec Co., Ltd.), the tensile strength was measured, and the average value of 10 sheets was taken as the tensile strength.

[耐アルカリ性]
実施例及び比較例で得られた半透膜支持体を、10質量%の水酸化ナトリウム溶液中に、温度60℃にて1週間浸漬した。水洗・乾燥後、前記の引張強度の測定を実施し、初期値に対する引張強度の残存率を耐アルカリ性の指標とした。残存率が90%以上あれば、実用上問題ないレベルである。
[Alkali resistance]
The semipermeable membrane supports obtained in Examples and Comparative Examples were immersed in a 10% by mass sodium hydroxide solution at a temperature of 60 ° C. for 1 week. After washing with water and drying, the tensile strength was measured, and the residual ratio of the tensile strength relative to the initial value was used as an indicator of alkali resistance. If the residual ratio is 90% or more, it is at a level where there is no practical problem.

[半透膜塗布適性]
実施例及び比較例で得られた半透膜支持体について、半透膜の塗布を行った。半透膜支持体の一方の面にポリスルホン樹脂のジメチルホルムアミド溶液(濃度:16質量%)を、塗布幅450mm、塗布厚み200μmで塗布した。このとき、ポリスルホン溶液を塗布しない半透膜支持体の裏側にはドラムを配置し、半透膜支持体が搬送されるようにした。ポリスルホン溶液が塗布された半透膜支持体を、20℃の純水に浸し、ポリスルホンを凝固させ、微多孔性ポリスルホン膜と半透膜支持体との複合膜を得た。この複合膜を80℃の湯浴にて水洗し、膜中に残留した溶媒を除去した後、80℃の熱風で乾燥を行った。こうして得た複合膜の皺、波打ちの発生状況を評価した。
◎:皺、波打ちが全くない。非常に良好なレベル。
○:皺は全くないが、やや弱い波打ちが見られる。良好なレベル。
△:皺は見られないが、やや大きめの波打ちが見られる。実用上、使用可能レベル。
×:波打ちだけでなく皺の発生も見られる。実用上、使用不可レベル。
[Semipermeable membrane applicability]
A semipermeable membrane was applied to the semipermeable membrane supports obtained in Examples and Comparative Examples. A dimethylformamide solution of polysulfone resin (concentration: 16% by mass) was applied to one surface of the semipermeable membrane support with a coating width of 450 mm and a coating thickness of 200 μm. At this time, a drum was disposed on the back side of the semipermeable membrane support to which the polysulfone solution was not applied so that the semipermeable membrane support was conveyed. The semipermeable membrane support to which the polysulfone solution was applied was immersed in pure water at 20 ° C. to solidify the polysulfone, thereby obtaining a composite membrane of a microporous polysulfone membrane and a semipermeable membrane support. The composite membrane was washed with a hot bath at 80 ° C. to remove the solvent remaining in the membrane, and then dried with hot air at 80 ° C. The occurrence of wrinkles and undulations of the composite film thus obtained was evaluated.
A: No wrinkles or undulations. Very good level.
○: There is no wrinkle at all, but a slightly weak wave is seen. Good level.
Δ: No wrinkles are observed, but slightly larger undulations are observed. Practically usable level.
X: Not only wavy but also wrinkles are observed. Unusable level for practical use.

[カール]
[半透膜塗布適性]で得られたポリスルホン膜と半透膜支持体との複合膜を10cm四方の大きさに裁断し、23℃、50%RH環境下で24時間放置した。24時間後、シートを平らな机の上に置き、4角の浮き上がり高さのうち最大値をカール値とした。カール値は2mm以下なら良好、4mm以下であれば実用上問題ないレベル、5mm以上では取り扱いが煩雑になり不可である。
[curl]
The composite membrane of the polysulfone membrane obtained in [Semipermeable membrane applicability] and the semipermeable membrane support was cut into a size of 10 cm square and left for 24 hours in an environment of 23 ° C. and 50% RH. After 24 hours, the sheet was placed on a flat desk, and the maximum value of the four floating heights was taken as the curl value. If the curl value is 2 mm or less, the curl value is satisfactory if it is 4 mm or less. If it is 5 mm or more, the handling becomes complicated and impossible.

[半透膜滲み込み]
[半透膜塗布適性]で得られたポリスルホン膜と半透膜支持体との複合膜について、断面SEM写真を撮影して、ポリスルホン樹脂の半透膜支持体への滲み込み度合いを評価した。
◎:ポリスルホン樹脂が半透膜支持体の中心付近までしか滲み込んでいない。非常に良好なレベル。
○:ポリスルホン樹脂が半透膜支持体の非塗布面に滲み出ていない。良好なレベル。
△:ポリスルホン樹脂が半透膜支持体の非塗布面に一部滲み出ている。実用上、使用可能レベル。
×:ポリスルホン樹脂が半透膜支持体の非塗布面に滲み出ている。実用上、使用不可レベル。
[Semipermeable membrane permeation]
A cross-sectional SEM photograph of the composite membrane of the polysulfone membrane and the semipermeable membrane support obtained in [Semipermeable membrane coating suitability] was taken to evaluate the degree of penetration of the polysulfone resin into the semipermeable membrane support.
(Double-circle): The polysulfone resin has soaked only to the vicinity of the center of the semipermeable membrane support. Very good level.
○: The polysulfone resin does not ooze out on the non-coated surface of the semipermeable membrane support. Good level.
Δ: The polysulfone resin oozes partly on the non-coated surface of the semipermeable membrane support. Practically usable level.
X: The polysulfone resin oozes out on the non-application surface of the semipermeable membrane support. Unusable level for practical use.

[半透膜接着性]
[半透膜塗布適性]で得られたポリスルホン膜と半透膜支持体との複合膜について、作製1日後、半透膜と半透膜支持体とをその界面で剥がれるようにゆっくりと引き剥がし、剥離するときの抵抗度合いで判断した。
◎:半透膜と半透膜支持体の接着性が非常に高く、剥離できない。非常に良好なレベル。
○:部分的に剥離しやすい所が存在する。良好なレベル。
△:半透膜と半透膜支持体とが接着はしているが、全体的に剥離しやすい。実用上、下限レベル。
×:半透膜塗布後の水洗又は乾燥工程で剥離が発生する。使用不可レベル。
[Semipermeable membrane adhesion]
About the composite membrane of the polysulfone membrane obtained in [Semipermeable membrane coating suitability] and the semipermeable membrane support, after one day of production, slowly peel off the semipermeable membrane and the semipermeable membrane support so that they are peeled off at the interface. Judgment was made based on the degree of resistance when peeling.
(Double-circle): The adhesiveness of a semipermeable membrane and a semipermeable membrane support body is very high, and cannot peel. Very good level.
○: There is a place where it is easy to partially peel off. Good level.
Δ: The semipermeable membrane and the semipermeable membrane support are adhered, but are easy to peel off as a whole. Practically lower limit level.
X: Peeling occurs in the water washing or drying step after the semipermeable membrane application. Unusable level.

Figure 2012106177
Figure 2012106177

実施例1〜18で示した半透膜支持体は、示差走査熱量分析により得られるDSC曲線において、低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下であり、ポリプロピレンを芯成分、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を30質量%以上含有し、該芯鞘型複合繊維を含めたすべてのポリオレフィン系繊維の含有率が90質量%以上であり、通気度が1.0〜30.0cc/cm/secである。これらの半透膜支持体は、アルカリ溶液に対する十分な耐性を有し、強度が強く、製造安定性、半透膜塗布適性に優れ、半透膜溶液の非塗布面への裏抜けがなく、半透膜と半透膜支持体との接着性に優れている。実施例1〜5を比較すると、融解ピーク面積の比(A/B)が1.20以上2.00以下の範囲である実施例2〜4は、引張強度が強く、半透膜の塗布適性に優れ、半透膜塗布時のカールも小さい。中でも、実施例2、3は、芯鞘型複合繊維の熱収縮率が6.0%以下であり、シートのカールも小さく特に優れている。実施例5、6の比較より、芯鞘型複合繊維の熱収縮率が8.0%以下である実施例5は、熱収縮率が8.0%を超える実施例6に比べ、不織布の製造安定性、半透膜塗布適性、半透膜接着性に優れ、好ましい。 The semipermeable membrane supports shown in Examples 1 to 18 are derived from the melting peak area (A) derived from the high melting point polyethylene on the low melting point side and the polypropylene on the high melting point side in the DSC curve obtained by differential scanning calorimetry. The melting peak area (B) ratio (A / B) is 1.00 or more and 2.50 or less, and contains 30% by mass or more of core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component And the content rate of all the polyolefin-type fibers including this core-sheath-type composite fiber is 90 mass% or more, and an air permeability is 1.0-30.0 cc / cm < 2 > / sec. These semipermeable membrane supports have sufficient resistance to alkaline solutions, high strength, excellent production stability, semipermeable membrane application suitability, and no see-through to the non-coated surface of the semipermeable membrane solution, Excellent adhesion between semipermeable membrane and semipermeable membrane support. When Examples 1 to 5 are compared, Examples 2 to 4 in which the ratio (A / B) of the melting peak area is in the range of 1.20 or more and 2.00 or less have high tensile strength and suitability for application of a semipermeable membrane. Excellent curling when semi-permeable membrane is applied. Among them, Examples 2 and 3 are particularly excellent in that the core-sheath composite fiber has a heat shrinkage of 6.0% or less, and the sheet curl is small. From the comparison between Examples 5 and 6, Example 5 in which the heat-shrinkage rate of the core-sheath-type composite fiber is 8.0% or less is greater than that in Example 6 in which the heat-shrinkage rate is greater than 8.0%. It is excellent in stability, semipermeable membrane application suitability, and semipermeable membrane adhesion.

実施例3、7、10、13、14では、低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下であり、ポリプロピレンを芯成分、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維の含有率を変化させているが、含有率が30質量%を超えて増えるに従い、不織布製造安定性、半透膜塗布適性、半透膜接着性が向上し、半透膜塗布後のカールも小さくなり、好ましい。実施例8〜14の比較より、芯鞘型複合繊維を含めたすべてのポリオレフィン系繊維の含有率が90質量%を超えて増えるに従い、耐アルカリ性は向上していき、好ましい。実施例3、15〜18の比較より、半透膜支持体の通気度が3.0〜20.0cc/cm/secである実施例3、16、17は、半透膜塗布後のカールが小さく、半透膜滲み込みが少なく、半透膜接着性が良好であり、特に好ましい。 In Examples 3, 7, 10, 13, and 14, the ratio (A / B) of the melting peak area (A) derived from the high melting point polyethylene on the low melting point side and the melting peak area (B) derived from the polypropylene on the high melting point side. ) Is not less than 1.00 and not more than 2.50, and the content of the core-sheath composite fiber having polypropylene as the core component and high-density polyethylene as the sheath component is changed, but the content exceeds 30% by mass. As it increases, the non-woven fabric production stability, suitability for semipermeable membrane application, and semipermeable membrane adhesion are improved, and curling after semipermeable membrane application is also reduced. From the comparison of Examples 8 to 14, the alkali resistance is preferably improved as the content of all polyolefin fibers including the core-sheath composite fiber exceeds 90% by mass. From the comparison of Examples 3 and 15 to 18, Examples 3, 16, and 17 in which the permeability of the semipermeable membrane support is 3.0 to 20.0 cc / cm 2 / sec are the curls after the semipermeable membrane application. Is small, the penetration of the semipermeable membrane is small, and the semipermeable membrane adhesion is good, which is particularly preferable.

一方、融解ピーク面積の比(A/B)が1.00より小さい比較例1は、引張強度が低下する。融解ピーク面積の比(A/B)が2.50より大きい比較例2は、不織布の製造安定性に劣り、半透膜塗布時にも皴が発生し塗布適性に劣る。該芯鞘型複合繊維を含めたすべてのポリオレフィン系繊維の含有率が90質量%を下回る比較例3、4は、耐アルカリ性に劣る。また、該芯鞘型複合繊維の含有量が30質量%を下回る比較例4、5は、半透膜塗布適性に劣る。半透膜支持体の通気度が1.0cc/cm/secを下回る比較例6は、半透膜の接着性に劣る。半透膜支持体の通気度が30.0cc/cm/secを上回る比較例7は、半透膜塗布時の滲み込みが大きく、実用上使用不可レベルであった。 On the other hand, the comparative example 1 whose melting peak area ratio (A / B) is smaller than 1.00 has a reduced tensile strength. Comparative Example 2 in which the ratio (A / B) of the melting peak area is greater than 2.50 is inferior in the production stability of the nonwoven fabric, and wrinkles are generated even when the semipermeable membrane is applied. Comparative Examples 3 and 4 in which the content of all polyolefin fibers including the core-sheath composite fiber is less than 90% by mass are inferior in alkali resistance. Moreover, Comparative Examples 4 and 5 in which the content of the core-sheath type composite fiber is less than 30% by mass are inferior in semipermeable membrane coating suitability. Comparative Example 6 in which the air permeability of the semipermeable membrane support is less than 1.0 cc / cm 2 / sec is inferior in the adhesion of the semipermeable membrane. In Comparative Example 7 in which the air permeability of the semipermeable membrane support exceeded 30.0 cc / cm 2 / sec, the penetration at the time of semipermeable membrane application was large, and it was a practically unusable level.

本発明の半透膜支持体は、海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造、膜分離活性汚泥処理等の分野において、精密ろ過膜、限外ろ過膜、MBR用の膜の支持体として好適に利用することができる。   The semipermeable membrane support of the present invention is used for desalination of seawater, water purifiers, food concentration, wastewater treatment, medical use represented by blood filtration, production of ultrapure water for semiconductor cleaning, membrane separation activated sludge treatment, etc. In the field, it can be suitably used as a support for microfiltration membranes, ultrafiltration membranes, and MBR membranes.

Claims (2)

少なくとも一方の面に半透膜を設けて用いる半透膜支持体において、該半透膜支持体がポリプロピレンを芯成分、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を30質量%以上含有し、該芯鞘型複合繊維の示差走査熱量分析により得られるDSC曲線で低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下であり、該芯鞘型複合繊維を含めたすべてのポリオレフィン系繊維の含有率が90質量%以上であり、通気度が1.0〜30.0cc/cm/secであることを特徴とする半透膜支持体。 In a semipermeable membrane support used by providing a semipermeable membrane on at least one surface, the semipermeable membrane support contains 30% by mass or more of core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component In the DSC curve obtained by differential scanning calorimetry of the core-sheath composite fiber, the melting peak area derived from the high melting point polyethylene on the low melting side (A) and the melting peak area derived from the high melting point polypropylene (B) Ratio (A / B) is 1.00 or more and 2.50 or less, the content of all polyolefin fibers including the core-sheath composite fiber is 90% by mass or more, and the air permeability is 1.0. A semipermeable membrane support characterized in that it is ˜30.0 cc / cm 2 / sec. 前記芯鞘型複合繊維の130℃加熱処理後における熱収縮率が8.0%以下である請求項1記載の半透膜支持体。   The semipermeable membrane supporting material according to claim 1, wherein the heat-shrinkage rate of the core-sheath composite fiber after heat treatment at 130 ° C is 8.0% or less.
JP2010256881A 2010-11-17 2010-11-17 Semipermeable membrane support Pending JP2012106177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010256881A JP2012106177A (en) 2010-11-17 2010-11-17 Semipermeable membrane support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010256881A JP2012106177A (en) 2010-11-17 2010-11-17 Semipermeable membrane support

Publications (1)

Publication Number Publication Date
JP2012106177A true JP2012106177A (en) 2012-06-07

Family

ID=46492413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010256881A Pending JP2012106177A (en) 2010-11-17 2010-11-17 Semipermeable membrane support

Country Status (1)

Country Link
JP (1) JP2012106177A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538625A (en) * 2010-09-21 2013-10-17 ザ プロクター アンド ギャンブル カンパニー Wiping cloth containing fiber structure with reduced density
JP2014128769A (en) * 2012-12-28 2014-07-10 Daio Paper Corp Semipermeable membrane support, method for producing semipermeable membrane support and semipermeable membrane
WO2016098552A1 (en) * 2014-12-16 2016-06-23 日東電工株式会社 Porous support body, composite semipermeable membrane, and spiral separation membrane element
WO2018174224A1 (en) 2017-03-24 2018-09-27 三菱製紙株式会社 Semipermeable membrane support body
CN109642377A (en) * 2016-09-02 2019-04-16 东丽株式会社 Spun-bonded non-woven fabrics and its manufacturing method
JP2019063727A (en) * 2017-09-29 2019-04-25 三菱製紙株式会社 Semipermeable membrane support
JP7469902B2 (en) 2020-02-19 2024-04-17 大王製紙株式会社 Nonwoven fabric sheet for water treatment and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175113A (en) * 1987-01-12 1988-07-19 Unitika Ltd Blend structure of polyethylene with polypropylene
JPH11128635A (en) * 1997-10-28 1999-05-18 Chisso Corp Pleated filter
JPH11254587A (en) * 1998-01-09 1999-09-21 Toray Ind Inc Metallized biaxially orientated polypropylene film and laminate using the film
JP2001017842A (en) * 1999-07-09 2001-01-23 Nitto Denko Corp Separation membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175113A (en) * 1987-01-12 1988-07-19 Unitika Ltd Blend structure of polyethylene with polypropylene
JPH11128635A (en) * 1997-10-28 1999-05-18 Chisso Corp Pleated filter
JPH11254587A (en) * 1998-01-09 1999-09-21 Toray Ind Inc Metallized biaxially orientated polypropylene film and laminate using the film
JP2001017842A (en) * 1999-07-09 2001-01-23 Nitto Denko Corp Separation membrane

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538625A (en) * 2010-09-21 2013-10-17 ザ プロクター アンド ギャンブル カンパニー Wiping cloth containing fiber structure with reduced density
JP2014128769A (en) * 2012-12-28 2014-07-10 Daio Paper Corp Semipermeable membrane support, method for producing semipermeable membrane support and semipermeable membrane
WO2016098552A1 (en) * 2014-12-16 2016-06-23 日東電工株式会社 Porous support body, composite semipermeable membrane, and spiral separation membrane element
JP2016112792A (en) * 2014-12-16 2016-06-23 日東電工株式会社 Porous supporting body, composite semipermeable membrane, and spiral type separation membrane element
KR20170095835A (en) * 2014-12-16 2017-08-23 닛토덴코 가부시키가이샤 Porous support body, composite semipermeable membrane, and spiral separation membrane element
KR102366889B1 (en) 2014-12-16 2022-02-23 닛토덴코 가부시키가이샤 Porous support body, composite semipermeable membrane, and spiral separation membrane element
CN109642377B (en) * 2016-09-02 2021-09-21 东丽株式会社 Spun-bonded nonwoven fabric and method for producing same
CN109642377A (en) * 2016-09-02 2019-04-16 东丽株式会社 Spun-bonded non-woven fabrics and its manufacturing method
CN110430936A (en) * 2017-03-24 2019-11-08 三菱制纸株式会社 Semi-transparent film support
KR20190127715A (en) 2017-03-24 2019-11-13 미쓰비시 세이시 가부시키가이샤 Semipermeable membrane support
JPWO2018174224A1 (en) * 2017-03-24 2020-01-23 三菱製紙株式会社 Semipermeable membrane support
JP2021119006A (en) * 2017-03-24 2021-08-12 三菱製紙株式会社 Translucent membrane support
WO2018174224A1 (en) 2017-03-24 2018-09-27 三菱製紙株式会社 Semipermeable membrane support body
JP2022107809A (en) * 2017-03-24 2022-07-22 三菱製紙株式会社 Translucent membrane support
JP7371056B2 (en) 2017-03-24 2023-10-30 三菱製紙株式会社 semipermeable membrane support
JP7464655B2 (en) 2017-03-24 2024-04-09 三菱製紙株式会社 Semipermeable membrane support
US11998879B2 (en) 2017-03-24 2024-06-04 Mitsubishi Paper Mills Limited Semipermeable membrane support
JP2019063727A (en) * 2017-09-29 2019-04-25 三菱製紙株式会社 Semipermeable membrane support
JP7469902B2 (en) 2020-02-19 2024-04-17 大王製紙株式会社 Nonwoven fabric sheet for water treatment and method for producing same

Similar Documents

Publication Publication Date Title
JP5789193B2 (en) Semipermeable membrane support, spiral type semipermeable membrane element, and method for producing semipermeable membrane support
JP2013220382A (en) Semipermeable membrane support
JP2012101213A (en) Semi-permeable membrane support
JP2012106177A (en) Semipermeable membrane support
JP2017104840A (en) Semipermeable membrane support body and method for manufacturing the same
JP7371056B2 (en) semipermeable membrane support
WO2016148038A1 (en) Semipermeable membrane support for processing membrane separation activated sludge, filtration membrane, and module
WO2020004462A1 (en) Semipermeable membrane support for membrane bioreactor treatment
JP2008238147A (en) Semipermeable membrane support
JP2016140785A (en) Semipermeable membrane support
JP6625916B2 (en) Semipermeable membrane support
JP6612624B2 (en) Semipermeable membrane support and filtration membrane for membrane separation activated sludge treatment
JP2016159197A (en) Semipermeable membrane substrate for membrane separation activated sludge treatment
JP2020049482A (en) Semipermeable membrane substrate for membrane separation activated sludge treatment
JP2020163321A (en) Support medium of semipermeable membrane for membrane separation activated sludge treatment and filtration film
JP2015058411A (en) Semipermeable membrane support
JP2014180638A (en) Method for manufacturing semipermeable membrane
JP5809583B2 (en) Semipermeable membrane support
JP2014100625A (en) Semipermeable membrane support and method of producing the same
JP6038370B1 (en) Support for semipermeable membrane for membrane separation activated sludge treatment, filtration membrane and module
JP2012250223A (en) Semipermeable membrane support
JP2013139030A (en) Semipermeable membrane support and method of manufacturing the same
JP2015058409A (en) Semipermeable membrane support
JP2011167608A (en) Semipermeable membrane support
JP2020146606A (en) Semipermeable membrane support body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028