JP2008238147A - Semipermeable membrane support - Google Patents

Semipermeable membrane support Download PDF

Info

Publication number
JP2008238147A
JP2008238147A JP2007086935A JP2007086935A JP2008238147A JP 2008238147 A JP2008238147 A JP 2008238147A JP 2007086935 A JP2007086935 A JP 2007086935A JP 2007086935 A JP2007086935 A JP 2007086935A JP 2008238147 A JP2008238147 A JP 2008238147A
Authority
JP
Japan
Prior art keywords
fiber
semipermeable membrane
mass
slurry
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007086935A
Other languages
Japanese (ja)
Other versions
JP5216229B2 (en
Inventor
Hiroshi Kuwano
浩 桑野
Nobuyuki Sakazume
信之 坂爪
Tomohiko Soyama
智彦 楚山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Paper Mills Ltd
Original Assignee
Hokuetsu Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Paper Mills Ltd filed Critical Hokuetsu Paper Mills Ltd
Priority to JP2007086935A priority Critical patent/JP5216229B2/en
Publication of JP2008238147A publication Critical patent/JP2008238147A/en
Application granted granted Critical
Publication of JP5216229B2 publication Critical patent/JP5216229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent semipermeable membrane support capable of generating no coating liquid strike-through and capable of obtaining a non-defect semipermeable membrane with a necessary minimum thickness when the semipermeable membrane is formed on the support which is comprised of a synthetic fiber non-woven fabric having an excellent uniformity. <P>SOLUTION: A semipermeable membrane is a non-woven fabric constituted of synthetic fibers and a mass distribution coefficient Sn expressed by a formula (A) of the non-woven fabric is less than 0.1 as under: formula (A) Sn=D/M, Sn: mass distribution coefficient [-], D: mass standard deviation per unit area [g/m<SP>2</SP>], M: mass per unit area [g/m<SP>2</SP>]. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シートのXY方向での質量の不均一さが極少で、その結果、支持体上に半透膜を形成させる際に塗工液の裏抜けが生じず、また必要最小限の厚みで欠陥の無い半透膜を得ることができる、優れた半透膜支持体に関する。   In the present invention, the non-uniformity of the mass in the XY direction of the sheet is extremely small. As a result, when the semipermeable membrane is formed on the support, there is no penetration of the coating liquid, and the minimum necessary thickness It is related with the outstanding semipermeable membrane support body which can obtain a semipermeable membrane without defect by.

近年、飲料/工業用水中の不純物の除去、海水の淡水化、食品中の雑菌の除去、排水処理、あるいは生化学分野など、半透膜を応用する用途は増加を続けており、またこの分野の研究は国内外において日進月歩である。   In recent years, the use of semi-permeable membranes continues to increase, such as the removal of impurities in beverages / industrial water, desalination of seawater, removal of germs in foods, wastewater treatment, and biochemistry. The research of is advancing steadily in Japan and abroad.

半透膜の材質としては、再生セルロース、セルロース誘導体、ポリビニルアルコール、ポリスルフォン、ポリアミドなど様々な高分子が用途に合わせて選択されるが、その膜自体は強度が弱く、単独では限外濾過や逆浸透などに使用される際の1〜10MPa以上という高圧には耐えられないため、強度が強く通液性の高い不織布等の支持体上に膜を生成する必要がある。   As the material of the semipermeable membrane, various polymers such as regenerated cellulose, cellulose derivatives, polyvinyl alcohol, polysulfone, and polyamide are selected according to the use. However, the membrane itself is weak in strength, and by itself, ultrafiltration or Since it cannot withstand the high pressure of 1 to 10 MPa or more when used for reverse osmosis, it is necessary to form a film on a support such as a nonwoven fabric having high strength and high liquid permeability.

その支持体には、必要とされる通液性、引張強度、湿潤強度、耐久性を得るために、ポリエステルやポリオレフィン等の合成繊維を湿式あるいは乾式でシート状に成形し、加熱加圧処理して繊維同士を溶融接着させた合成繊維不織布が一般的に用いられるが、その際に問題となるのは、これら不織布のXY方向での不均一性が、その上に設ける半透膜の不均一性を招き、結果として十分な性能が得られない、あるいは十分な性能を得る為に必要な膜厚が厚くなり、濾過効率の低下を招くことである。従って、支持体に用いられる不織布は、可能な限り均一で、ピンホール欠点などがないことが要求される。   In order to obtain the required liquid permeability, tensile strength, wet strength, and durability on the support, synthetic fibers such as polyester and polyolefin are formed into a sheet form by wet or dry method, and heated and pressurized. Synthetic fiber nonwoven fabrics in which fibers are melt-bonded together are generally used, but the problem here is that the non-uniformity in the XY direction of these nonwoven fabrics is not uniform in the semipermeable membrane provided thereon As a result, sufficient performance cannot be obtained, or the film thickness necessary for obtaining sufficient performance increases, resulting in a decrease in filtration efficiency. Therefore, the nonwoven fabric used for the support is required to be as uniform as possible and free from pinhole defects.

半透膜の支持体としての不織布については、従来その製法が公知となっている。例えば太さの異なるポリエステル繊維を用いてZ方向に粗密のある構造を作らしめ、低い通液抵抗を保ちつつ半透膜塗工液の裏抜け防止を図る方法が提案されている。(特許文献1)   The manufacturing method is conventionally known about the nonwoven fabric as a support body of a semipermeable membrane. For example, a method has been proposed in which polyester fibers having different thicknesses are used to create a structure having a density in the Z direction, and the semipermeable membrane coating solution is prevented from being pulled through while maintaining a low resistance to liquid passage. (Patent Document 1)

また、特定の熱収縮応力と複屈折を持つポリエステル繊維を用いることにより、引張応力が掛かった際の寸法安定性を向上させ、表面が平滑で、裏抜けがなく、膜の付着性に優れた不織布を提供する方法が提案されている。(特許文献2)   In addition, by using polyester fiber with specific heat shrinkage stress and birefringence, the dimensional stability when tensile stress is applied is improved, the surface is smooth, there is no show-through, and the film adhesion is excellent Methods have been proposed for providing nonwoven fabrics. (Patent Document 2)

また、半透膜塗工時に支持体が幅方向に湾曲することが、半透膜層の不均一性の原因になるとして、繊維の配向性をコントロールすることにより均一な半透膜層を形成するという提案もなされている。(特許文献3)   In addition, a uniform semipermeable membrane layer is formed by controlling the orientation of the fibers, as the support is curved in the width direction during semipermeable membrane coating, causing nonuniformity of the semipermeable membrane layer. Proposals have been made. (Patent Document 3)

また、特殊紙の湿式抄紙法において、粘剤を用いて地合を整える方法は従来公知である。例えば、半透膜支持体ではないが、ガラス繊維シートを製造する際において分散剤としてのベタイン型両性界面活性剤によりガラス繊維を分散させ、アニオン性界面活性剤、ポリアクリルアミド系粘剤を順次添加することによりガラス繊維が良好に分散したスラリーを得て、地合の良いシートを得る方法が提案されている。(特許文献4、5)   In addition, in the wet papermaking method for special paper, a method for adjusting the formation using a sticky agent is conventionally known. For example, although it is not a semipermeable membrane support, glass fiber is dispersed with a betaine-type amphoteric surfactant as a dispersant when a glass fiber sheet is produced, and an anionic surfactant and a polyacrylamide-based adhesive are sequentially added. Thus, a method has been proposed in which a slurry in which glass fibers are well dispersed is obtained to obtain a sheet having good formation. (Patent Documents 4 and 5)

しかしながら、特許文献1の方法では、半透膜塗工液の裏抜けを防止するために支持体の多層構造が必須で、工程が複雑化され、生産速度と原料歩留まりの低下を招きコストアップが避けられない。   However, in the method of Patent Document 1, a multi-layer structure of the support is indispensable in order to prevent the semipermeable membrane coating liquid from falling through, which complicates the process, lowers the production speed and the raw material yield, and increases the cost. Inevitable.

特許文献2の方法によれば、確かに引張応力や熱による繊維の部分的な伸縮不均一による不織布シートの不均一性を減ずるには効果がある可能性があるが、しかし、シートの不均一性の大部分は繊維からシートが形成される際の繊維分布の粗密から来る不均一性であって、問題の根本的解決とはなり得ない。   According to the method of Patent Document 2, it may be effective to reduce the non-uniformity of the non-woven fabric sheet due to the partial stretch non-uniformity of the fiber due to tensile stress or heat, but the non-uniformity of the sheet Most of the nature is non-uniformity resulting from the density of the fiber distribution as the sheet is formed from the fiber and cannot be the fundamental solution to the problem.

また、特許文献3に記載のように、仮に支持体の湾曲を極限まで減らしたとしても、支持体自体の不均一性に由来する半透膜層の不均一性を解決することはない。   Further, as described in Patent Document 3, even if the curvature of the support is reduced to the utmost limit, the non-uniformity of the semipermeable membrane layer derived from the non-uniformity of the support itself is not solved.

また特許文献4、5に記載の場合については、高分子粘剤(高分子増粘剤とも言う)の役割を、分散した繊維の表面に付着することによる繊維の再凝集防止効果と考えており、従って高分子粘剤の添加量はガラス繊維を基準として0.2〜1.5%と比較的少なく、得られたシートの地合評価も目視による結束繊維の有無を主眼にしたもので、シートの質量分布の均一性を問題としていない。従って、以下に述べる本発明の半透膜支持体とは全く異なった技術である。   In addition, in the cases described in Patent Documents 4 and 5, the role of a polymer thickener (also referred to as a polymer thickener) is considered to be an effect of preventing fiber re-aggregation by adhering to the surface of dispersed fibers. Therefore, the addition amount of the polymer viscosity agent is relatively small as 0.2 to 1.5% based on the glass fiber, and the formation evaluation of the obtained sheet is mainly based on the presence or absence of the binding fiber by visual observation. The uniformity of the mass distribution of the sheet is not a problem. Therefore, this technique is completely different from the semipermeable membrane support of the present invention described below.

特開昭60−238103号公報JP 60-238103 A 特許第3153487号公報Japanese Patent No. 3153487 特開2002−95937号公報JP 2002-95937 A 特開平5−123513号公報JP-A-5-123513 特開平8−209585号公報JP-A-8-209585

上述の如く、半透膜の支持体として優れた均一性をもつ合成繊維不織布およびその製法は未だ発展途上にあり、支持体上に半透膜を形成させる際に塗工液の裏抜けが生じず、また必要最小限の厚みで欠陥の無い半透膜を得ることができる、優れた半透膜支持体の提供が本発明の課題である。   As described above, synthetic fiber nonwoven fabric having excellent uniformity as a support for a semipermeable membrane and a method for producing the same are still in the process of development, and when the semipermeable membrane is formed on the support, the coating liquid is breached. In addition, it is an object of the present invention to provide an excellent semipermeable membrane support capable of obtaining a semipermeable membrane free from defects with a minimum necessary thickness.

本発明者らは、鋭意検討の結果、半透膜支持体を構成する合成繊維のXY方向の質量分布の均一性こそが、支持体上に設けられた半透膜の性能を決定する最大の要因であると予測し、また、かかる予測に基づく技術的課題が、抄紙時の繊維分散体スラリーの繊維分濃度及び非常に高分子量の粘剤により繊維分低シェアにおける粘度をコントロールすることで解決でき、かつ、予測通りの効果が達成できることを発見して本発明に至った。   As a result of intensive studies, the present inventors have determined that the uniformity of the mass distribution in the X and Y directions of the synthetic fibers constituting the semipermeable membrane support is the maximum that determines the performance of the semipermeable membrane provided on the support. It is predicted that this is a factor, and the technical problem based on such prediction is solved by controlling the viscosity of the fiber dispersion slurry at the time of papermaking and the viscosity at a low fiber share by using a very high molecular weight adhesive. The present invention has been found by discovering that it is possible to achieve the expected effect.

具体的には、本発明に係る半透膜支持体は、合成繊維からなる主体繊維とバインダー繊維から構成される不織布であり、質量分布係数が0.1以下であることを特徴とする。この要件を満たすことにより、後段の半透膜付与工程において、塗工液の裏抜けが生じず、さらに従来よりも薄い膜を均一に形成することができ、半透膜の性能が向上する。本発明でいう質量分布係数は、下式(A)で求められる:
Sn = D/M (A)
Sn:質量分布係数 [−]
D :単位面積当たり質量の標準偏差 [g/m
M :単位面積当たり質量 [g/m]。
式(A)中のDは、β線地合計(Beta Formation Tester BFT−1:AMBERTEC社製)を用いて測定した数値のことである。式(A)は、質量の標準偏差から、坪量の影響を除くことを目的としている。該β線地合計による質量分布係数Snが半透膜支持体の性能と相関する理由として、該β線地合計によるシート質量分布の測定は1mmφ×任意回数で行われるが、この分解能が、課題の半透膜支持体への半透膜層塗工時の裏抜けに影響を与える質量分布のスケールとほぼ一致するためであると本発明者は推測する。
Specifically, the semipermeable membrane support according to the present invention is a non-woven fabric composed of main fibers made of synthetic fibers and binder fibers, and has a mass distribution coefficient of 0.1 or less. By satisfying this requirement, the back-through of the coating liquid does not occur in the subsequent semipermeable membrane application step, and a thinner film than that of the conventional film can be formed uniformly, thereby improving the performance of the semipermeable membrane. The mass distribution coefficient referred to in the present invention is determined by the following formula (A):
Sn = D / M (A)
Sn: Mass distribution coefficient [-]
D: Standard deviation of mass per unit area [g / m 2 ]
M: mass per unit area [g / m 2 ].
D in a formula (A) is a numerical value measured using beta ray total (Beta Formation Tester BFT-1: AMBERTEC company make). Formula (A) is intended to remove the influence of basis weight from the standard deviation of mass. As the reason why the mass distribution coefficient Sn by the β-ray ground total correlates with the performance of the semipermeable membrane support, the measurement of the sheet mass distribution by the β-ray ground total is performed at 1 mmφ × any number of times. The inventor presumes that this is because the mass distribution scale substantially coincides with the scale of mass distribution that affects the penetration of the semipermeable membrane layer on the semipermeable membrane support.

上記の質量分布係数をもつ半透膜支持体は、前記合成繊維を水に分散した繊維スラリーを湿式抄紙して不織布とする工程において、抄紙時の該繊維スラリーの繊維分濃度を0.01〜0.1質量%とし、且つ該繊維スラリーが高分子粘剤を含有し、該高分子粘剤が分子量500万以上の水溶性高分子であり、該高分子粘剤の含有量を、該繊維スラリー中の繊維分質量を基準として3〜15質量%として抄紙することにより得られる。   The semipermeable membrane support having the above mass distribution coefficient is a step of wet-making a fiber slurry in which the synthetic fiber is dispersed in water to form a nonwoven fabric, and the fiber content concentration of the fiber slurry at the time of papermaking is 0.01 to 0.1 mass%, the fiber slurry contains a polymer adhesive, the polymer adhesive is a water-soluble polymer having a molecular weight of 5 million or more, and the content of the polymer adhesive is set to the fiber It is obtained by making paper as 3 to 15% by mass on the basis of the mass of fiber in the slurry.

本発明に係る合成繊維は、太さ0.3〜5.0デシテックス、長さ1〜8mmのポリエステル繊維の主体繊維とバインダー繊維からなり、その乾燥質量比率が該ポリエステル主体繊維:ポリエステルバインダー繊維=90:10〜50:50であることが望ましい。   The synthetic fiber according to the present invention comprises a polyester fiber main fiber and a binder fiber having a thickness of 0.3 to 5.0 dtex and a length of 1 to 8 mm, and the dry mass ratio thereof is the polyester main fiber: polyester binder fiber = It is desirable that it is 90: 10-50: 50.

本発明に係る半透膜支持体は、不織布ウェブをカレンダ装置により加熱加圧処理して繊維間を溶融接着せしめてシート強度を増強する工程において、図1に示すようにカレンダ装置の加熱ロールに沿ってウェブを走行させたのちニップにより加熱加圧された不織布であることが望ましい。   The semipermeable membrane support according to the present invention is a process for heating and pressurizing a nonwoven fabric web with a calendar device to melt and bond the fibers to enhance the sheet strength, as shown in FIG. It is desirable that the non-woven fabric is heated and pressed by a nip after running the web along the web.

本発明によって、XY方向に高い均一性を達成し、また生産速度、生産歩留まりを低下させる要因を発生させることなく、半透膜支持体として優れた合成繊維不織布を効率よく提供することが可能となった。   According to the present invention, it is possible to efficiently provide an excellent synthetic fiber nonwoven fabric as a semipermeable membrane support without achieving a high uniformity in the XY directions and without causing a factor to reduce production speed and production yield. became.

以下、本発明について実施形態を示して詳細に説明するが、本発明は、以下の実施の形態に制限されるものではない。   Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited to the following embodiments.

本実施形態に係る半透膜支持体は、合成繊維からなる不織布である。合成繊維の原料は、本発明の要件である質量分布係数が達成される限り、特に限定されず、用途に応じて様々な合成樹脂が用いられる。ポリエチレン、ポリプロピレン、ポリアクリレート、ポリエステル、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化エチレン、ポリアラミド、ポリイミド、ポリアクリロニトリル、ナイロン等の合成樹脂から紡糸された繊維を例示することができる。また、レーヨン等の再生セルロース、酢酸セルロース、ニトロセルロース等のセルロース誘導体、また近年生化学用途として活発に研究されているポリ乳酸、ポリ酪酸、ポリ琥珀酸等の天然物を原料ソースとした繊維も、本発明で言う合成繊維の範疇に含まれる。上記の合成繊維の中でも、ポリエステル繊維は、耐熱性、耐薬品性、価格の安さ、繊維径や性状の種類の豊富さなどから、好適に用いられる。   The semipermeable membrane support according to the present embodiment is a nonwoven fabric made of synthetic fibers. The raw material of the synthetic fiber is not particularly limited as long as the mass distribution coefficient that is a requirement of the present invention is achieved, and various synthetic resins are used depending on the application. Examples thereof include fibers spun from a synthetic resin such as polyethylene, polypropylene, polyacrylate, polyester, polyurethane, polyvinyl chloride, polyvinylidene chloride, polyfluorinated ethylene, polyaramid, polyimide, polyacrylonitrile, and nylon. In addition, fibers made from regenerated cellulose such as rayon, cellulose derivatives such as cellulose acetate and nitrocellulose, and natural products such as polylactic acid, polybutyric acid and polysuccinic acid, which have been actively studied for biochemical applications in recent years And included in the category of synthetic fibers in the present invention. Among the above synthetic fibers, polyester fibers are preferably used because of their heat resistance, chemical resistance, low cost, abundant types of fiber diameters and properties, and the like.

本実施形態に係る合成繊維のうち、低温での溶融接着を目的としない通常の融点を持つ合成繊維を、主体繊維と呼ぶ。主体繊維の形状は、本発明の要件である質量分布係数が得られる限りは限定されないが、繊維径が細いものを用いれば、完成したシートの孔径はより小さくなり、繊維径が太いものを用いれば、シートの強度が増す。繊維が短いものを用いれば水中での分散性が向上し、繊維が長いものを用いればシートの強度が増す。従って、支持体に求められる強度、孔径、シート均一性などを考慮して適当な形状を選ぶ必要があり、本実施形態においては太さ0.3〜5.0デシテックス、長さ1〜8mmの範囲のものが好適に用いられる。また、繊維の断面の形状は、必要に応じて適宜選択することが可能で、本実施形態においては限定されない。   Among the synthetic fibers according to the present embodiment, a synthetic fiber having a normal melting point that is not intended for fusion bonding at a low temperature is referred to as a main fiber. The shape of the main fiber is not limited as long as the mass distribution coefficient, which is a requirement of the present invention, is obtained, but if a fiber with a small fiber diameter is used, the hole diameter of the completed sheet becomes smaller and a fiber with a larger fiber diameter is used. This increases the strength of the sheet. If short fibers are used, dispersibility in water is improved, and if long fibers are used, the strength of the sheet is increased. Accordingly, it is necessary to select an appropriate shape in consideration of the strength required for the support, the hole diameter, the sheet uniformity, etc. In this embodiment, the thickness is 0.3 to 5.0 dtex and the length is 1 to 8 mm. Those in the range are preferably used. Moreover, the shape of the cross section of the fiber can be appropriately selected as necessary, and is not limited in the present embodiment.

本実施形態に係る合成繊維は、シート化工程、巻き取り工程の間に十分なシート強度を得るために、バインダー繊維を混合していることが望ましい。バインダー繊維とは、一般的に主体繊維よりも融点が低い(80〜160℃程度の)合成繊維のことを指し、抄紙後の乾燥工程における加熱で表面が溶融接着し、操業を可能とする引張強度をシートに付与する効果を持つ。ただし、繊維自体の引張強度は主体繊維より劣るため、操業のし易さと完成製品の強度のバランスが取れる配合率にする必要があり、本実施形態においては、主体繊維:バインダー繊維=90:10〜50:50の範囲が好ましい。バインダー繊維は、その構成樹脂全ての融点が低いものや、内側と外側の二重構造、いわゆる芯鞘構造と呼ばれる構造を持ち、表面だけが融着するタイプなどがあり、いずれも本実施形態において使用可能である。また、太さ、長さ、断面の形状等は、主体繊維と同様に目的に応じて選択が可能である。   In the synthetic fiber according to the present embodiment, it is desirable that a binder fiber is mixed in order to obtain sufficient sheet strength during the sheet forming process and the winding process. Binder fiber generally refers to synthetic fiber having a melting point lower than that of the main fiber (about 80 to 160 ° C), and the surface is melt-bonded by heating in the drying process after papermaking, and tension that enables operation Has the effect of imparting strength to the sheet. However, since the tensile strength of the fiber itself is inferior to that of the main fiber, it is necessary to set the blending ratio so that the ease of operation and the strength of the finished product can be balanced. In this embodiment, the main fiber: binder fiber = 90: 10. A range of ˜50: 50 is preferred. The binder fiber has a low melting point of all the constituent resins, a double structure inside and outside, a so-called core-sheath structure, and a type in which only the surface is fused. It can be used. The thickness, length, cross-sectional shape, and the like can be selected according to the purpose as in the case of the main fiber.

本実施形態に係る不織布の密度は特に限定しないが、支持体にもとめられる透液性を考慮して、0.6〜1.0g/cm3の範囲が好ましい。1.0g/cm3以上では支持体の孔径が小さくなりすぎ十分な通水性を得にくい。0.6g/cm3未満では逆に孔径が大きくなりすぎて塗工液の裏抜けが生じやすくなってしまう。また、支持体の坪量については20g/m以上であることが好ましく、20g/m未満では厚みが薄すぎて裏抜けが生じやすくなる。 Although the density of the nonwoven fabric which concerns on this embodiment is not specifically limited, The range of 0.6-1.0 g / cm < 3 > is preferable in consideration of the liquid permeability fixed to a support body. If it is 1.0 g / cm 3 or more, the pore diameter of the support becomes too small to obtain sufficient water permeability. If it is less than 0.6 g / cm 3 , the pore diameter becomes conversely too large and the coating liquid tends to break through. Further, the basis weight of the support is preferably 20 g / m 2 or more, and if it is less than 20 g / m 2 , the thickness tends to be too thin to easily cause through-through.

本実施形態においては、本発明の要件である質量分布係数を得られる限りはいかなる方法で繊維をシート化しても構わないが、繊維を水中に分散したのち、抄紙ワイヤ上に繊維を積層し、ワイヤ下方から脱水してシートを形成する、いわゆる湿式抄紙法が好適に用いられる。この際用いる抄紙機の種類は、本発明の要件である質量分布係数を得られる限りは限定されず、例えば長網式抄紙機、丸網式抄紙機、傾斜ワイヤ式抄紙機等を用いることができ、それら一種以上を組み合わせた多層抄き抄紙機を用いてもよい。完成した不織布の質量分布係数に大きな影響を与えるのが水中での繊維分散の均一性であり、更に詳しくは、抄紙ワイヤ上で脱水される瞬間の繊維の均一性である。そのため、抄紙時の繊維スラリーは繊維分濃度を0.01〜0.1質量%の範囲に調整することが望ましい。繊維スラリーの濃度が0.01%より低い場合、抄紙速度の著しい低下を招き、繊維スラリーの濃度が0.1%より高い場合、所望の質量分布均一性を得ることが難しい。該繊維濃度は殊に0.01〜0.08%、なかでも0.01〜0.05%であるのが有利である。   In this embodiment, as long as the mass distribution coefficient which is a requirement of the present invention can be obtained, the fiber may be formed into a sheet by any method, but after dispersing the fiber in water, the fiber is laminated on the papermaking wire, A so-called wet papermaking method in which a sheet is formed by dehydration from below the wire is preferably used. The type of paper machine used at this time is not limited as long as the mass distribution coefficient which is a requirement of the present invention can be obtained. For example, a long net type paper machine, a round net type paper machine, an inclined wire type paper machine or the like can be used. A multi-layer paper machine combining one or more of them may be used. It is the uniformity of fiber dispersion in water that has a great influence on the mass distribution coefficient of the finished nonwoven fabric, and more specifically, the uniformity of the fiber at the moment of dewatering on the papermaking wire. For this reason, it is desirable to adjust the fiber concentration of the fiber slurry during papermaking to a range of 0.01 to 0.1% by mass. When the concentration of the fiber slurry is lower than 0.01%, the paper making speed is significantly reduced. When the concentration of the fiber slurry is higher than 0.1%, it is difficult to obtain a desired mass distribution uniformity. The fiber concentration is particularly preferably 0.01 to 0.08%, in particular 0.01 to 0.05%.

また、半透膜支持体のように高度な均一性を要求される不織布については、抄紙濃度を低くしただけでは十分な均一性を得ることは難しい。本発明においては、これを分子量500万以上の高分子粘剤を用いることで可能となった。   In addition, for nonwoven fabrics that require a high degree of uniformity such as a semipermeable membrane support, it is difficult to obtain sufficient uniformity only by reducing the papermaking concentration. In the present invention, this is made possible by using a polymer viscosity agent having a molecular weight of 5 million or more.

一般に、スラリー中に分散した繊維は、分散機による比較的高速での分散時は均一に分散されているが、抄紙時の低速流動状態では、繊維同士が凝集し合い、結果得られるシートは不均一になってしまう。そこで、低シェアの繊維濃度において高粘度を示すある種の高分子粘剤を加えて低流速時の粘度を高くコントロールすることにより、繊維同士が凝集方向に動くのを防ぎ、均一なシートを形成することができる。本発明者の検討によれば、分子量500万以上の水溶性高分子を用いることにより、低シェアの繊維濃度における繊維の分散性を向上させることが出来る。この際注意しなければならないのは、高分子粘剤は、分散機やポンプのような流体に高いシェアを掛ける装置により構造破壊され、粘性が低下する可能性があることである。   In general, fibers dispersed in a slurry are uniformly dispersed when dispersed at a relatively high speed by a disperser. However, in a low-speed flow state during papermaking, the fibers aggregate together and the resulting sheet is not. It becomes uniform. Therefore, by adding a certain type of polymer viscosity agent that shows high viscosity at low shear fiber concentration and controlling the viscosity at low flow rate, it prevents the fibers from moving in the coagulation direction and forms a uniform sheet. can do. According to the study of the present inventor, the dispersibility of fibers at a low shear fiber concentration can be improved by using a water-soluble polymer having a molecular weight of 5 million or more. In this case, it should be noted that the polymer viscous agent may be structurally broken by a device that applies a high share to a fluid such as a disperser or a pump, and the viscosity may be lowered.

本実施形態における高分子粘剤としては、既知の合成あるいは天然の親水性高分子が使用できるが、高分子粘剤を用いる際の注意点として、これらの高分子を過剰に添加すると、濾水性が悪化して湿紙水分が高くなることによって、あるいは高分子自体の粘性によって、抄紙ワイヤと不織布ウェブの離型性が悪化して紙切れが発生し抄紙効率の著しい低下を引き起こす。また、粘剤が不織布の空隙を埋めることにより、半透膜支持体として必要な透気(透液)性を損なう。従って、少ない添加量で所望の繊維分散性・質量分布均一性を得ることが望ましい。本発明者の検討の結果、分子量500万以上の水溶性高分子粘剤を、繊維スラリー中の繊維質量を基準として3〜15質量%の範囲で含有することが望ましい。分子量が500万以下である場合、所望の質量分布係数が得られない。高分子粘剤の分子量は好ましくは600万以上、特に好ましくは700万以上である。また含有量が3質量%以下の場合所望の質量分布係数を得難く、含有量が15質量%以上の場合、ワイヤー剥離性などの抄紙性及び透気性が悪化する。   As the polymer viscous agent in the present embodiment, known synthetic or natural hydrophilic polymers can be used, but as a precaution when using the polymer adhesive agent, if these polymers are added excessively, As the wet paper web moisture increases, or due to the viscosity of the polymer itself, the releasability of the papermaking wire and the nonwoven web deteriorates, causing paper breakage and a significant reduction in papermaking efficiency. Moreover, the air permeability (liquid permeability) required as a semipermeable membrane support is impaired by the adhesive filling the voids of the nonwoven fabric. Therefore, it is desirable to obtain desired fiber dispersibility and mass distribution uniformity with a small addition amount. As a result of the study by the present inventors, it is desirable to contain a water-soluble polymer viscosity agent having a molecular weight of 5 million or more in a range of 3 to 15% by mass based on the mass of the fiber in the fiber slurry. When the molecular weight is 5 million or less, a desired mass distribution coefficient cannot be obtained. The molecular weight of the polymer viscosity agent is preferably 6 million or more, particularly preferably 7 million or more. Further, when the content is 3% by mass or less, it is difficult to obtain a desired mass distribution coefficient, and when the content is 15% by mass or more, papermaking properties such as wire peelability and air permeability are deteriorated.

高分子粘剤の種類としては、合成あるいは天然を問わず使用することが可能である。例えば天然高分子としてメチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース系高分子、カゼイン、ゼラチン、ニカワ等のタンパク質系高分子、ペクチン等の天然多糖類、あるいはでんぷん、トロロアオイ等が例示され、合成高分子としてはポリビニルアルコール(PVA)、ポリアクリルアミド系高分子(PAM)、ポリエチレンオキサイド系高分子(PEO)、ポリアクリル酸系高分子(PAA)を例示できる。中でも高分子量のものが容易に扱えるという点で、PAM、PEO、PAAが好適に用いられる。本発明では、これら高分子は単体あるいは共重合体あるいは混合物であっても構わず、二種類以上を併用することも構わない。また、高分子粘剤の性能を損なわない限りは、工程内でのそれらの添加位置は問わない。また、合成繊維の分散工程から抄紙工程までの間に、必要に応じて他の添加剤、例えばpH調整剤、キレート剤、分散剤、消泡剤、撥水剤、濡れ剤、防腐剤、帯電防止剤などを添加することも構わない。   As the kind of the polymer viscous agent, it is possible to use it regardless of whether it is synthetic or natural. Examples of natural polymers include cellulose polymers such as methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose; protein polymers such as casein, gelatin, and glue; natural polysaccharides such as pectin; starch, trooaoi, and the like. Examples thereof include polyvinyl alcohol (PVA), polyacrylamide polymer (PAM), polyethylene oxide polymer (PEO), and polyacrylic polymer (PAA). Among these, PAM, PEO, and PAA are preferably used because they can easily handle high molecular weight ones. In the present invention, these polymers may be a simple substance, a copolymer or a mixture, or two or more kinds may be used in combination. Moreover, as long as the performance of a polymer viscous agent is not impaired, those addition positions in a process are not ask | required. In addition, other additives such as pH adjusters, chelating agents, dispersants, antifoaming agents, water repellents, wetting agents, preservatives, electrification are necessary as necessary from the synthetic fiber dispersion process to the papermaking process. An inhibitor or the like may be added.

シート化工程及び乾燥工程を経た後の、バインダー繊維を含有した合成繊維シートはその状態でも不織布といえるが、一般的にはそのままでは半透膜支持体としては強度が不足している。そこで、半透膜支持体として十分な強度を得るために、主体繊維の融点付近の温度で加熱加圧処理することにより、主体繊維を溶融接着して強度を高めることが行われる。この処理は、200℃以上の温度で処理可能な金属ロールニップカレンダを通すことが一般的な方法であるが、高い耐熱性をもつ樹脂ロールであれば用いることも可能である。この際の温度条件、加圧条件、シートテンションは完成支持体の性能に影響を与えるが、本発明の要件である質量分布均一性を損なわない限りはいかなる条件も採用可能である。一般的には、160℃〜240℃の範囲が好ましいが、用いる合成繊維の種類によっては、より低い温度やより高い温度が望ましい場合もある。線圧は、50〜200kg/cmの範囲が好ましいが、その限りではない。また、ウェブ全体で均一な性能を発現させるためには、できるだけ均一な温度プロファイル、線圧プロファイルで処理することが望ましい。また、加熱加圧処理を多段で行うことも可能であり、その際、各段の条件や装置が異なっても構わない。   The synthetic fiber sheet containing the binder fiber after passing through the sheet forming step and the drying step can be said to be a non-woven fabric in that state as well, but generally the strength as a semipermeable membrane support is insufficient as it is. Therefore, in order to obtain sufficient strength as a semipermeable membrane support, heat treatment is performed at a temperature near the melting point of the main fiber to melt and bond the main fiber to increase the strength. In this treatment, a general method is to pass a metal roll nip calender that can be treated at a temperature of 200 ° C. or higher, but a resin roll having high heat resistance can also be used. The temperature condition, pressure condition, and sheet tension at this time affect the performance of the completed support, but any condition can be adopted as long as the mass distribution uniformity, which is a requirement of the present invention, is not impaired. Generally, a range of 160 ° C. to 240 ° C. is preferable, but a lower temperature or a higher temperature may be desirable depending on the type of synthetic fiber used. The linear pressure is preferably in the range of 50 to 200 kg / cm, but is not limited thereto. Further, in order to achieve uniform performance throughout the web, it is desirable to process with a temperature profile and linear pressure profile that are as uniform as possible. In addition, it is possible to perform the heat and pressure treatment in multiple stages, and the conditions and apparatuses in each stage may be different.

また、本発明者の検討によれば、加熱加圧工程におけるXY方向の収縮の程度により、支持体の質量分布均一性が変化する。図1に示すように、カレンダ装置のロール1からロール2(加熱ロール)に沿って不織布ウェブを走行させた後、ロール2とロール3により作られるニップにおいて加熱加圧処理をすることで、質量分布均一性が向上する。ここで、ロール1は加熱しないロールであり、ロール3は加熱しないか、あるいはロール2と同様加熱しても良い。ロール2(加熱ロール)は金属製ロールが望ましく、その他の加熱しないロールは金属製でも使用できるが、樹脂製ロール、コットン製ロール、あるいはアラミド製ロールがより好ましい。均一性向上の理由について本発明者は、加圧される前に加熱ロールに一定時間接触させてウェブ温度を上昇させることにより、ニップにおける急激な昇温による不均一な収縮を抑えられるためと推測している。この際、ロール1とロール2により作られるニップについては、加圧してもしなくても構わない。また、加熱ロールに沿ってウェブを走行させたのち加圧するという原則に則っていれば、ロールの本数、通過するニップの数については問わない。   Moreover, according to examination of this inventor, the mass distribution uniformity of a support body changes with the extent of the shrinkage | contraction in the XY direction in a heating-pressing process. As shown in FIG. 1, after the nonwoven fabric web is run along the roll 2 (heated roll) from the roll 1 of the calender device, the heat and pressure treatment is performed in the nip formed by the roll 2 and the roll 3, thereby reducing the mass. Distribution uniformity is improved. Here, the roll 1 is a roll that is not heated, and the roll 3 may not be heated or may be heated similarly to the roll 2. The roll 2 (heating roll) is preferably a metal roll, and the other unheated rolls can be made of metal, but a resin roll, a cotton roll, or an aramid roll is more preferable. The reason for the improvement in uniformity is that the present inventor can suppress uneven shrinkage due to rapid temperature rise in the nip by bringing the web temperature into contact with a heating roll for a certain period of time before being pressed. is doing. At this time, the nip formed by the roll 1 and the roll 2 may or may not be pressurized. Further, the number of rolls and the number of nips passing therethrough are not limited as long as the web is run along the heating roll and then pressed.

完成した半透膜支持体は、質量分布係数が0.1以下であることが、本発明の要件である。この要件を満たすことにより、後段の半透膜付与工程において塗工液の裏抜けによる欠陥と操業性の低下が生じず、さらに従来よりも薄い膜を均一に形成することができ、半透膜の性能が向上する。質量分布係数は好ましくは0.080以下、特に好ましくは0.069以下であるのが好ましい。   It is a requirement of the present invention that the completed semipermeable membrane support has a mass distribution coefficient of 0.1 or less. By satisfying this requirement, defects due to back-through of the coating liquid and deterioration of operability do not occur in the subsequent semipermeable membrane application step, and a thinner film than the conventional one can be uniformly formed. Improved performance. The mass distribution coefficient is preferably 0.080 or less, particularly preferably 0.069 or less.

本実施形態に係る半透膜支持体に、半透膜塗工液を塗布する方法は特に限定されない。一例を挙げると、バッキングロールに沿って走行する支持体ウェブ上に、スリットから供給される半透膜塗工液を層状に塗布する。この際に半透膜支持体の質量分布が均一でないと、支持体の薄い部分から裏側に塗工液が通過し、半透膜の欠陥となる上、バッキングロール汚れを発生する可能性があり、また均一な半透膜層を得るために必要以上の膜厚が要求される場合もある。   The method for applying the semipermeable membrane coating solution to the semipermeable membrane support according to this embodiment is not particularly limited. As an example, a semipermeable membrane coating solution supplied from a slit is applied in layers on a support web that runs along a backing roll. At this time, if the mass distribution of the semipermeable membrane support is not uniform, the coating liquid may pass from the thin part of the support to the back side, resulting in a defect in the semipermeable membrane and possibly causing a backing roll stain. In some cases, an excessive film thickness is required to obtain a uniform semipermeable membrane layer.

次いで、半透膜層を保持した支持体ウェブを凝固液で満たされた層内に導入して凝固せしめる。例えばポリスルフォンの半透膜を製造する場合には、塗工液はポリスルフォン樹脂のDMF(ジメチルホルムアミド)溶液を用い、凝固液には水が使用される。このようにして得られた半透膜は、そのままでも限外濾過膜として使用できるが、逆浸透膜として使用する場合には更にその表面に活性層と呼ばれる層を設ける。この活性層は、例えば酢酸セルロース、芳香族ポリアミド、架橋ポリアミド酸、ポリ尿素等を界面重合により超薄膜として支持半透膜上に形成することで得られる。   Next, the support web holding the semipermeable membrane layer is introduced into the layer filled with the coagulating liquid and solidified. For example, in the case of producing a polysulfone semipermeable membrane, a DMF (dimethylformamide) solution of polysulfone resin is used as a coating solution, and water is used as a coagulation solution. The semipermeable membrane thus obtained can be used as it is as an ultrafiltration membrane, but when used as a reverse osmosis membrane, a layer called an active layer is further provided on the surface thereof. This active layer can be obtained, for example, by forming cellulose acetate, aromatic polyamide, crosslinked polyamic acid, polyurea or the like as an ultrathin film on the supporting semipermeable membrane by interfacial polymerization.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、これら実施例に限定されるものではない。また、例中の「%」は、特に断らない限り「乾燥質量%」を表し、「部」は「乾燥質量部」を表す。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to these Examples. In the examples, “%” represents “dry mass%” unless otherwise specified, and “part” represents “dry mass part”.

(実施例1)
<繊維原料スラリーの調製>
太さ1.45デシテックス、カット長さ5mmの市販のポリエステル主体繊維(商品名:EP133、株式会社クラレ製)24kgと、太さ2.2デシテックス、カット長さ5mmの市販のポリエステルバインダー繊維(商品名:EP201、株式会社クラレ製)6kgを、水2970kgに投入し、カウレスミキサーで5分間分散し、繊維分濃度1%の繊維原料スラリー1を得た。
<高分子粘剤1の調製>
水200kgに、分子量800万のポリエチレンオキサイド/ポリアクリルアミド(部分加水分解)共重合型高分子粘剤(商品名:パムオールP−130、明成化学工業社製)90gを投入し、プロペラミキサーで2時間攪拌して、濃度0.045%の高分子粘剤1を得た。
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤1を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー1−1aを得た。
<シートの作製>
繊維スラリー1−1aを、短網式抄紙機のヘッドボックスに投入し繊維スラリー1−1aを抄紙したのち、表面温度120℃のシリンダドライヤでシート水分3%以下となるまで乾燥し、ロールに巻き取り、支持体原紙1−1aを得た。
<加熱加圧処理>
支持体原紙1−1aを、表面温度170℃、線圧100kg/cm、速度5m/分の条件で、図1に示すペーパーランにてコットンロール(非加熱;ロール1)−金属ロール(加熱;ロール2)−金属ロール(加熱;ロール3)のニップカレンダにて加熱加圧処理し、坪量75g/m、厚み100μmの半透膜支持体1−1aを得た。
Example 1
<Preparation of fiber raw material slurry>
24 kg of commercially available polyester-based fiber (trade name: EP133, manufactured by Kuraray Co., Ltd.) with a thickness of 1.45 dtex and a cut length of 5 mm, and a commercially available polyester binder fiber (product with a thickness of 2.2 dtex and a cut length of 5 mm) (Name: EP201, manufactured by Kuraray Co., Ltd.) 6 kg was introduced into 2970 kg of water and dispersed for 5 minutes with a cowless mixer to obtain a fiber raw material slurry 1 having a fiber concentration of 1%.
<Preparation of polymer viscous agent 1>
To 200 kg of water, 90 g of polyethylene oxide / polyacrylamide (partially hydrolyzed) copolymerization type polymer thickener (trade name: Pamol P-130, manufactured by Meisei Chemical Industry Co., Ltd.) having a molecular weight of 8 million is charged and propeller mixer is used for 2 hours. By stirring, the polymer viscous agent 1 having a concentration of 0.045% was obtained.
<Preparation of fiber slurry>
After adding the polymer viscous agent 1 to the fiber raw material slurry 1 so as to be 4% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 1-1a having a fiber concentration of 0.03%. .
<Production of sheet>
After the fiber slurry 1-1a is put into a head box of a short net type paper machine and the fiber slurry 1-1a is made, it is dried with a cylinder dryer having a surface temperature of 120 ° C. until the sheet moisture becomes 3% or less, and wound on a roll. The support base paper 1-1a was obtained.
<Heat and pressure treatment>
The support base paper 1-1a was subjected to a cotton roll (non-heated; roll 1) -metal roll (heated; heated in the paper run shown in FIG. 1 under conditions of a surface temperature of 170 ° C., a linear pressure of 100 kg / cm, and a speed of 5 m / min. Roll 2) -metal roll (heating; roll 3) was heated and pressurized in a nip calender to obtain a semipermeable membrane support 1-1a having a basis weight of 75 g / m 2 and a thickness of 100 μm.

(実施例2)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤1を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.01%の繊維スラリー1−1bを得た。
<シートの作製>
繊維スラリー1−1bを、実施例1に準じて抄紙し、支持体原紙1−1bを得た。
<加熱加圧処理>
支持体原紙1−1bを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−1bを得た。
(Example 2)
<Preparation of fiber slurry>
After adding the polymer adhesive 1 to the fiber raw material slurry 1 so as to be 4% to the fiber, the whole was diluted with water to obtain a fiber slurry 1-1b having a fiber concentration of 0.01%. .
<Production of sheet>
The fiber slurry 1-1b was paper-made according to Example 1 to obtain a support base paper 1-1b.
<Heat and pressure treatment>
The support base paper 1-1b was subjected to a heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1-1b.

(実施例3)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤1を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.1%の繊維スラリー1−1cを得た。
<シートの作製>
繊維スラリー1−1cを、実施例1に準じて抄紙し、支持体原紙1−1cを得た。
<加熱加圧処理>
支持体原紙1−1cを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−1cを得た。
(Example 3)
<Preparation of fiber slurry>
After adding the polymer viscous agent 1 to the fiber raw material slurry 1 so as to be 4% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 1-1c having a fiber concentration of 0.1%. .
<Production of sheet>
The fiber slurry 1-1c was made according to Example 1 to obtain a support base paper 1-1c.
<Heat and pressure treatment>
The support base paper 1-1c was heat-pressed according to Example 1 to obtain a semipermeable membrane support 1-1c.

(実施例4)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤1を、対繊維15%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー1−1dを得た。
<シートの作製>
繊維スラリー1−1dを、実施例1に準じて抄紙し、支持体原紙1−1dを得た。
<加熱加圧処理>
支持体原紙1−1dを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−1dを得た。
Example 4
<Preparation of fiber slurry>
After adding the polymer viscous agent 1 to the fiber raw material slurry 1 so as to be 15% to the fiber, the whole was diluted with water to obtain a fiber slurry 1-1d having a fiber concentration of 0.03%. .
<Production of sheet>
The fiber slurry 1-1d was made according to Example 1 to obtain a support base paper 1-1d.
<Heat and pressure treatment>
The support base paper 1-1d was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1-1d.

(実施例5)
<高分子粘剤2の調製>
水200kgに、分子量1000万のポリアクリルアミド(部分加水分解)高分子粘剤(商品名:パムオール、明成化学工業社製)90gを投入し、プロペラミキサーで2時間攪拌して、濃度0.045%の高分子粘剤2を得た。
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤2を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー1−2aを得た。
<シートの作製>
繊維スラリー1−2aを、短網式抄紙機のヘッドボックスに投入し繊維スラリー1−1aを抄紙したのち、表面温度120℃のシリンダドライヤでシート水分3%以下となるまで乾燥し、ロールに巻き取り、支持体原紙1−2aを得た。
<加熱加圧処理>
支持体原紙1−2aを、表面温度170℃、線圧100kg/cm、速度5m/分の条件で、図1に示すペーパーランにて金属ニップカレンダにて加熱加圧処理し、坪量75g/m、厚み100μmの半透膜支持体1−2aを得た。
(Example 5)
<Preparation of polymer viscous agent 2>
Into 200 kg of water, 90 g of polyacrylamide (partially hydrolyzed) polymer thickener (trade name: Pamall, manufactured by Meisei Chemical Co., Ltd.) with a molecular weight of 10 million was added and stirred for 2 hours with a propeller mixer to a concentration of 0.045% The high molecular viscosity agent 2 was obtained.
<Preparation of fiber slurry>
After adding the polymer viscous agent 2 to the fiber raw material slurry 1 so as to be 4% to the fiber, the whole was diluted with water to obtain a fiber slurry 1-2a having a fiber concentration of 0.03%. .
<Production of sheet>
After the fiber slurry 1-2a is put into the head box of a short net type paper machine and the fiber slurry 1-1a is made, it is dried with a cylinder dryer having a surface temperature of 120 ° C. until the sheet moisture becomes 3% or less and wound on a roll. The support base paper 1-2a was obtained.
<Heat and pressure treatment>
The support base paper 1-2a was heat-pressed with a metal nip calender in the paper run shown in FIG. 1 under the conditions of a surface temperature of 170 ° C., a linear pressure of 100 kg / cm, and a speed of 5 m / min. A semipermeable membrane support 1-2a with m 2 and a thickness of 100 μm was obtained.

(実施例6)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤2を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.01%の繊維スラリー1−2bを得た。
<シートの作製>
繊維スラリー1−2bを、実施例1に準じて抄紙し、支持体原紙1−2bを得た。
<加熱加圧処理>
支持体原紙1−2bを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−2bを得た。
(Example 6)
<Preparation of fiber slurry>
After adding the polymer viscous agent 2 to the fiber raw material slurry 1 so as to be 4% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 1-2b having a fiber concentration of 0.01%. .
<Production of sheet>
The fiber slurry 1-2b was made according to Example 1 to obtain a support base paper 1-2b.
<Heat and pressure treatment>
The support base paper 1-2b was heated and pressurized according to Example 1 to obtain a semipermeable membrane support 1-2b.

(実施例7)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤2を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.1質量%の繊維スラリー1−2cを得た。
<シートの作製>
繊維スラリー1−2cを、実施例1に準じて抄紙し、支持体原紙1−2cを得た。
<加熱加圧処理>
支持体原紙1−2cを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−2cを得た。
(Example 7)
<Preparation of fiber slurry>
After adding the polymer viscous agent 2 to the fiber raw material slurry 1 so as to be 4% to the fiber, the whole is diluted with water to obtain a fiber slurry 1-2c having a fiber concentration of 0.1% by mass. It was.
<Production of sheet>
The fiber slurry 1-2c was made according to Example 1 to obtain a support base paper 1-2c.
<Heat and pressure treatment>
The support base paper 1-2c was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1-2c.

(実施例8)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤2を、対繊維15%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー1−2dを得た。
<シートの作製>
繊維スラリー1−2dを、実施例1に準じて抄紙し、支持体原紙1−2dを得た。
<加熱加圧処理>
支持体原紙1−2dを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−2dを得た。
(Example 8)
<Preparation of fiber slurry>
After adding the polymer viscous agent 2 to the fiber raw material slurry 1 so as to be 15% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 1-2d having a fiber concentration of 0.03%. .
<Production of sheet>
The fiber slurry 1-2d was made according to Example 1 to obtain a support base paper 1-2d.
<Heat and pressure treatment>
The support base paper 1-2d was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1-2d.

(実施例9)
<繊維原料スラリーの調製>
太さ0.44デシテックス、カット長さ5mmの市販のポリエステル主体繊維(商品名:EP043、株式会社クラレ製)24kgと、太さ2.2デシテックス、カット長さ5mmの市販のポリエステルバインダー繊維(商品名:EP201、株式会社クラレ製)6kgを、水2970kgに投入し、カウレスミキサーで5分間分散し、繊維分濃度1%の繊維原料スラリー2を得た。
<繊維スラリーの調製>
繊維原料スラリー2に、高分子粘剤1を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー2−1aを得た。
<シートの作製>
繊維スラリー2−1aを、実施例1に準じて抄紙し、支持体原紙2−1aを得た。
<加熱加圧処理>
支持体原紙2−1aを、実施例1に準じて加熱加圧処理を行い、半透膜支持体2−1aを得た。
Example 9
<Preparation of fiber raw material slurry>
24 kg of commercially available polyester-based fiber (trade name: EP043, manufactured by Kuraray Co., Ltd.) with a thickness of 0.44 dtex and a cut length of 5 mm, and a commercially available polyester binder fiber (product with a thickness of 2.2 dtex and a cut length of 5 mm) (Name: EP201, manufactured by Kuraray Co., Ltd.) 6 kg was introduced into 2970 kg of water and dispersed for 5 minutes with a cowless mixer to obtain a fiber raw material slurry 2 having a fiber concentration of 1%.
<Preparation of fiber slurry>
After adding the polymer viscous agent 1 to the fiber raw material slurry 2 so as to be 4% to the fiber, the whole was diluted with water to obtain a fiber slurry 2-1a having a fiber concentration of 0.03%. .
<Production of sheet>
The fiber slurry 2-1a was paper-made according to Example 1 to obtain a support base paper 2-1a.
<Heat and pressure treatment>
The support base paper 2-1a was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 2-1a.

(実施例10)
<繊維原料スラリーの調製>
太さ3.3デシテックス、カット長さ5mmの市販のポリエステル主体繊維(商品名:EP303、株式会社クラレ製)24kgと、太さ2.2デシテックス、カット長さ5mmの市販のポリエステルバインダー繊維(商品名:EP201、株式会社クラレ製)6kgを、水2970kgに投入し、カウレスミキサーで5分間分散し、繊維分濃度1%の繊維原料スラリー3を得た。
<繊維スラリーの調製>
繊維原料スラリー3に、高分子粘剤1を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー3−1aを得た。
<シートの作製>
繊維スラリー3−1aを、実施例1に準じて抄紙し、支持体原紙3−1aを得た。
<加熱加圧処理>
支持体原紙3−1aを、実施例1に準じて加熱加圧処理を行い、半透膜支持体3−1aを得た。
(Example 10)
<Preparation of fiber raw material slurry>
24 kg of commercially available polyester fiber (product name: EP303, manufactured by Kuraray Co., Ltd.) with a thickness of 3.3 dtex and a cut length of 5 mm, and a commercially available polyester binder fiber (product with a thickness of 2.2 dtex and a cut length of 5 mm) (Name: EP201, manufactured by Kuraray Co., Ltd.) 6 kg was introduced into 2970 kg of water and dispersed for 5 minutes with a cowless mixer to obtain a fiber raw material slurry 3 having a fiber concentration of 1%.
<Preparation of fiber slurry>
After adding the polymer viscous agent 1 to the fiber raw material slurry 3 so as to be 4% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 3-1a having a fiber concentration of 0.03%. .
<Production of sheet>
The fiber slurry 3-1a was made according to Example 1 to obtain a support base paper 3-1a.
<Heat and pressure treatment>
The support base paper 3-1a was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 3-1a.

(実施例11)
<加熱加圧処理>
支持体原紙1−1aを、加熱ロールに沿わせず、ニップに直に通すペーパーラン(金属ロール(加熱;ロール2)−金属ロール(加熱;ロール3))にて表面温度170℃、線圧100kg/cm、速度5m/分の条件で加熱加圧を行い、半透膜支持体1−1axを得た。
(Example 11)
<Heat and pressure treatment>
The surface temperature of the support base paper 1-1a is 170 ° C. and linear pressure in a paper run (metal roll (heating; roll 2) −metal roll (heating; roll 3)) that passes directly through the nip without being along the heating roll. Heating and pressing were performed under the conditions of 100 kg / cm and a speed of 5 m / min to obtain a semipermeable membrane support 1-1ax.

(比較例1)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤1を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.20%の繊維スラリー1−1eを得た。
<シートの作製>
繊維スラリー1−1eを、実施例1に準じて抄紙し、支持体原紙1−1eを得た。
<加熱加圧処理>
支持体原紙1−1eを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−1eを得た。
(Comparative Example 1)
<Preparation of fiber slurry>
After adding the polymer viscous agent 1 to the fiber raw material slurry 1 so as to be 4% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 1-1e having a fiber concentration of 0.20%. .
<Production of sheet>
The fiber slurry 1-1e was made according to Example 1 to obtain a support base paper 1-1e.
<Heat and pressure treatment>
The support base paper 1-1e was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1-1e.

(比較例2)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤1を、対繊維20%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー1−1fを得た。
<シートの作製>
繊維スラリー1−1fを、実施例1に準じて抄紙し、支持体原紙1−1fを得た。
<加熱加圧処理>
支持体原紙1−1fを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−1fを得た。
(Comparative Example 2)
<Preparation of fiber slurry>
After adding the polymer viscous agent 1 to the fiber raw material slurry 1 so as to be 20% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 1-1f having a fiber concentration of 0.03%. .
<Production of sheet>
The fiber slurry 1-1f was made according to Example 1 to obtain a support base paper 1-1f.
<Heat and pressure treatment>
The support base paper 1-1f was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1-1f.

(比較例3)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤1を、対繊維2%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー1−1gを得た。
<シートの作製>
繊維スラリー1−1gを、実施例1に準じて抄紙し、支持体原紙1−1gを得た。
<加熱加圧処理>
支持体原紙1−1gを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−1gを得た。
(Comparative Example 3)
<Preparation of fiber slurry>
After adding the polymer viscous agent 1 to the fiber raw material slurry 1 so as to be 2% to the fiber, the whole was diluted by adding water to obtain 1-1 g of a fiber slurry having a fiber concentration of 0.03%. .
<Production of sheet>
The fiber slurry 1-1g was paper-made according to Example 1 to obtain a support base paper 1-1g.
<Heat and pressure treatment>
The support base paper 1-1g was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1-1g.

(比較例4)
<高分子粘剤3の調製>
水200kgに、分子量400万のポリエチレンオキサイド系高分子粘剤(商品名:アルコックスSP、明成化学工業社製)90gを投入し、プロペラミキサーで2時間攪拌して、濃度0.045%の高分子粘剤3を得た。
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤3を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー1−3aを得た。
<シートの作製>
繊維スラリー1−3aを、実施例1に準じて抄紙し、支持体原紙1−3aを得た。
<加熱加圧処理>
支持体原紙1−3aを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−3aを得た。
(Comparative Example 4)
<Preparation of polymer viscosity agent 3>
Into 200 kg of water, 90 g of polyethylene oxide polymer viscous agent (trade name: Alcox SP, manufactured by Meisei Chemical Industry Co., Ltd.) with a molecular weight of 4 million is added and stirred with a propeller mixer for 2 hours. Molecular sticking agent 3 was obtained.
<Preparation of fiber slurry>
After adding the polymer viscous agent 3 to the fiber raw material slurry 1 so as to be 4% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 1-3a having a fiber concentration of 0.03%. .
<Production of sheet>
The fiber slurry 1-3a was made according to Example 1 to obtain a support base paper 1-3a.
<Heat and pressure treatment>
The support base paper 1-3a was heat-pressed according to Example 1 to obtain a semipermeable membrane support 1-3a.

(比較例5)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤3を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.01%の繊維スラリー1−3bを得た。
<シートの作製>
繊維スラリー1−3bを、実施例1に準じて抄紙し、支持体原紙1−3bを得た。
<加熱加圧処理>
支持体原紙1−3bを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−3bを得た。
(Comparative Example 5)
<Preparation of fiber slurry>
After adding the polymer viscous agent 3 to the fiber raw material slurry 1 so as to be 4% to the fiber, water was added to dilute the whole to obtain a fiber slurry 1-3b having a fiber concentration of 0.01%. .
<Production of sheet>
The fiber slurry 1-3b was made according to Example 1 to obtain a support base paper 1-3b.
<Heat and pressure treatment>
The support base paper 1-3b was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1-3b.

(比較例6)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤3を、対繊維4%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.10%の繊維スラリー1−3cを得た。
<シートの作製>
繊維スラリー1−3cを、実施例1に準じて抄紙し、支持体原紙1−3cを得た。
<加熱加圧処理>
支持体原紙1−3cを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−3cを得た。
(Comparative Example 6)
<Preparation of fiber slurry>
After adding the polymer viscous agent 3 to the fiber raw material slurry 1 so as to be 4% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 1-3c having a fiber concentration of 0.10%. .
<Production of sheet>
The fiber slurry 1-3c was made according to Example 1 to obtain a support base paper 1-3c.
<Heat and pressure treatment>
The support base paper 1-3c was heat-pressed according to Example 1 to obtain a semipermeable membrane support 1-3c.

(比較例7)
<繊維スラリーの調製>
繊維原料スラリー1に、高分子粘剤3を、対繊維15%となるように添加したのち、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー1−3dを得た。
<シートの作製>
繊維スラリー1−3dを、実施例1に準じて抄紙し、支持体原紙1−3dを得た。
<加熱加圧処理>
支持体原紙1−3dを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1−3dを得た。
(Comparative Example 7)
<Preparation of fiber slurry>
After adding the polymer viscous agent 3 to the fiber raw material slurry 1 so as to be 15% to the fiber, the whole was diluted by adding water to obtain a fiber slurry 1-3d having a fiber concentration of 0.03%. .
<Production of sheet>
The fiber slurry 1-3d was made according to Example 1 to obtain a support base paper 1-3d.
<Heat and pressure treatment>
The support base paper 1-3d was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1-3d.

(比較例8)
<繊維スラリーの調製>
繊維原料スラリー1に、水を加えて全体を稀釈し、繊維分濃度0.03%の繊維スラリー1xを得た。高分子粘剤は添加しなかった。
<シートの作製>
繊維スラリー1xを、実施例1に準じて抄紙し、支持体原紙1xを得た。
<加熱加圧処理>
支持体原紙1xを、実施例1に準じて加熱加圧処理を行い、半透膜支持体1xを得た。
(Comparative Example 8)
<Preparation of fiber slurry>
The fiber raw material slurry 1 was diluted with water to obtain a fiber slurry 1x having a fiber concentration of 0.03%. No polymer viscosity was added.
<Production of sheet>
The fiber slurry 1x was made according to Example 1 to obtain a support base paper 1x.
<Heat and pressure treatment>
The support base paper 1x was subjected to heat and pressure treatment according to Example 1 to obtain a semipermeable membrane support 1x.

実施例に用いた高分子粘剤1〜3について、粘度を測定したデータを下記の表に示す。B型粘度計(東機産業株式会社製)とBLアダプタ(同)を用いて60rpm、20℃で測定した。

Figure 2008238147
The following table shows data obtained by measuring the viscosity of the polymer adhesives 1 to 3 used in the examples. It measured at 60 rpm and 20 degreeC using B type viscometer (made by Toki Sangyo Co., Ltd.) and BL adapter (same).
Figure 2008238147

実施例と比較例の半透膜支持体の構成一覧を表2に示す。

Figure 2008238147
Table 2 shows a list of configurations of the semipermeable membrane supports of Examples and Comparative Examples.
Figure 2008238147

以上の実施例及び比較例において得られた半透膜支持体について、表3に評価結果を示す。

Figure 2008238147
The evaluation results are shown in Table 3 for the semipermeable membrane supports obtained in the above Examples and Comparative Examples.
Figure 2008238147

(評価方法)
<ワイヤ剥離性>
抄紙前の繊維スラリーを繊維分で4.4gとなるように採取して25cm×25cmの角形手抄き装置に導入し、100メッシュのプラスチックワイヤを用いて抄紙して吸引脱水したのち、輪郭部より剥がしてワイヤからの湿紙の剥がれ方(剥がれ抵抗、ワイヤへの繊維の取られ)を目視評価した。評価は下記の要領で行った。
◎…ほとんど抵抗なく剥がれ、繊維も取られない。
○…軽く抵抗があるが繊維は取られない。(実用レベル)
△…抵抗が大きく、輪郭部などにわずかに繊維の残りがある。(実用下限レベル)、
×…抵抗が大きく剥がれにくく、部分的にワイヤ上に残る。(実用に適さない。)。
(Evaluation methods)
<Wire peelability>
The fiber slurry before paper making is collected to a fiber content of 4.4 g, introduced into a 25 cm × 25 cm square hand-making machine, made with 100 mesh plastic wire, and suction dehydrated. It was peeled off further and the wet paper was peeled off from the wire (peeling resistance, fibers were removed from the wire) and visually evaluated. Evaluation was performed as follows.
A: Peels almost without resistance, and fibers are not removed.
○: There is light resistance but fiber is not removed. (Practical level)
Δ: The resistance is large, and there is a slight fiber residue in the outline. (Practical lower limit level),
X: The resistance is large and hardly peeled off, and partially remains on the wire. (Not suitable for practical use.)

<質量分布均一性Sn>
得られた半透膜支持体を23℃、50%RHの環境で24時間調湿したのち、β線地合計(Beta Formation Tester BFT−1:AMBERTEC社製)を用いて質量分布標準偏差を測定し、式(A)に基づいて質量分布均一性Snを求めた。
<Mass distribution uniformity Sn>
The obtained semipermeable membrane support was conditioned for 24 hours in an environment of 23 ° C. and 50% RH, and then the mass distribution standard deviation was measured using β-line total (Beta Formation Tester BFT-1: manufactured by AMBERTEC). And mass distribution uniformity Sn was calculated | required based on Formula (A).

<フラジール透気度>
フラジール透気度は、JIS L1096に記載の通気性試験A法(フラジール形法)に準拠し、スイス テクステスト社製通気性試験機FX3300にて測定した。
<Fragile air permeability>
The Frazier air permeability was measured by a Swiss Textest Corporation air permeability tester FX3300 based on the air permeability test method A (Fragile method) described in JIS L1096.

<裏抜け>
得られた半透膜支持体を20cm×30cmに断裁し、ポリスルフォン樹脂のDMF(ジメチルホルムアミド)20%溶液をメイヤーバー#12を用いて半透膜支持体上に塗工し、支持体を裏面から観察して塗工液の裏抜けの程度を目視評価した。評価は下記の要領で行った。
◎…裏抜けはない。(実用レベル)
○…裏抜けはないが、地合の薄い部分で塗工液の浸透が見られる。(実用レベル)
△…何枚も塗工すると、裏抜けする場合がある。(実用下限レベル)
×…裏抜けがある。(実用に適さない)
<Back-through>
The obtained semipermeable membrane support was cut to 20 cm × 30 cm, and a 20% solution of polysulfone resin in DMF (dimethylformamide) was applied onto the semipermeable membrane support using a Mayer bar # 12. The degree of penetration of the coating liquid was visually evaluated from the back side. Evaluation was performed as follows.
◎ ... There is no strikethrough. (Practical level)
○: There is no show-through, but penetration of the coating solution is observed in the thin part of the formation. (Practical level)
Δ: If a number of coatings are applied, there may be a case where the film breaks through. (Practical lower limit level)
×… There is a strikethrough. (Not suitable for practical use)

実施例1〜10の半透膜支持体は、いずれも、質量分布係数Snが0.1以下であって、樹脂塗工液の裏抜けがなく良好であった。しかも、ワイヤ剥離性とフラジール透気度が実用レベル若しくは実用下限レベルを満足していた。実施例11では、実施例1と同様に抄紙したにも関わらず、加熱加圧処理の条件の違いにより質量分布係数が悪化した。   Each of the semipermeable membrane supports of Examples 1 to 10 had a mass distribution coefficient Sn of 0.1 or less, and was satisfactory without see-through of the resin coating solution. Moreover, the wire peelability and fragile air permeability satisfied the practical level or the practical lower limit level. In Example 11, although the paper was made in the same manner as in Example 1, the mass distribution coefficient deteriorated due to the difference in the conditions of the heat and pressure treatment.

一方、比較例1及び3〜9は質量分布係数が0.1を超えており、裏抜けが発生した。また、比較例2は、高分子粘剤を対繊維分20%と増やしたため、ワイヤ剥離性が実用レベルに達しなかった。比較例7は、分子量の低い高分子粘剤の添加量を増やしたが、質量分布係数の改善効果が低く裏抜けが発生し、かつ剥離性の悪化も同時に起こり両者のバランスをとることは出来なかった。比較例8は、高分子粘剤を用いなかったため剥離性は最も良かったが、裏抜けは悪かった。   On the other hand, Comparative Examples 1 and 3 to 9 had a mass distribution coefficient exceeding 0.1, and show-through occurred. In Comparative Example 2, the polymer adhesive was increased to 20% for the fiber, so the wire peelability did not reach a practical level. In Comparative Example 7, the addition amount of the polymer viscosity agent having a low molecular weight was increased, but the improvement effect of the mass distribution coefficient was low, and the back-through occurred, and the peelability deteriorated at the same time, and it was possible to balance the two. There wasn't. In Comparative Example 8, the peelability was the best because no polymer adhesive was used, but the show-through was bad.

は本発明の半透膜支持体の加熱加圧工程で使用されるカレンダ装置の概略図を示す。These show the schematic of the calendar apparatus used at the heating-pressing process of the semipermeable membrane support body of this invention.

符号の説明Explanation of symbols

1・・・ロール1(非加熱)
2・・・ロール2(加熱)
3・・・ロール3(加熱または非加熱)
1 ... Roll 1 (non-heated)
2 ... Roll 2 (heating)
3 ... Roll 3 (heated or non-heated)

Claims (4)

合成繊維から構成される不織布であり、該不織布の下式(A)で表される質量分布係数Snが0.1以下であることを特徴とする半透膜支持体:
Sn = D/M (A)
Sn :質量分布係数 [−]
D :単位面積当たり質量の標準偏差[g/m
M :単位面積当たり質量 [g/m]。
A semipermeable membrane support, which is a nonwoven fabric composed of synthetic fibers, and has a mass distribution coefficient Sn represented by the following formula (A) of the nonwoven fabric of 0.1 or less:
Sn = D / M (A)
Sn: Mass distribution coefficient [-]
D: Standard deviation of mass per unit area [g / m 2 ]
M: mass per unit area [g / m 2 ].
前記不織布が、前記合成繊維を水に分散した繊維スラリーを湿式抄紙して不織布とする工程において、抄紙時の該繊維スラリーの繊維分濃度を0.01〜0.1質量%とし且つ分子量500万以上の水溶性高分子粘剤を、該繊維スラリー中の繊維分質量を基準として3〜15質量%の比率で含有して抄紙されたことを特徴とする請求項1記載の半透膜支持体。   In the step of wet-paper-making a fiber slurry in which the synthetic fiber is dispersed in water to form a nonwoven fabric, the nonwoven fabric has a fiber content concentration of 0.01 to 0.1% by mass and a molecular weight of 5 million during papermaking. 2. The semipermeable membrane supporting material according to claim 1, wherein the above water-soluble polymer adhesive is made into a paper by containing 3 to 15% by mass based on the mass of the fiber in the fiber slurry. . 前記合成繊維が、太さ0.3〜5.0デシテックス、長さ1〜8mmのポリエステル繊維の主体繊維とバインダー繊維からなり、その乾燥質量比率が該ポリエステル主体繊維:ポリエステルバインダー繊維=90:10〜50:50であることを特徴とする請求項1または2記載の半透膜支持体。   The synthetic fiber comprises a polyester fiber main fiber and a binder fiber having a thickness of 0.3 to 5.0 dtex and a length of 1 to 8 mm, and the dry mass ratio is the polyester main fiber: polyester binder fiber = 90: 10. The semipermeable membrane support according to claim 1 or 2, wherein the ratio is -50: 50. 前記不織布が、不織布ウェブをカレンダ装置により加熱加圧処理して繊維間を溶融接着せしめてシート強度を増強する工程において、カレンダ装置の加熱ロールに沿ってウェブを走行させたのち加圧ニップにより加熱加圧された不織布であることを特徴とする請求項1〜3のいずれか一つに記載の半透膜支持体。   The non-woven fabric is heated by a pressure nip after running the web along a heating roll of the calendar device in a process of increasing the sheet strength by heat-pressing the non-woven web with a calendar device to melt and bond the fibers. The semipermeable membrane support according to any one of claims 1 to 3, which is a pressed nonwoven fabric.
JP2007086935A 2007-03-29 2007-03-29 Semipermeable membrane support Active JP5216229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086935A JP5216229B2 (en) 2007-03-29 2007-03-29 Semipermeable membrane support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086935A JP5216229B2 (en) 2007-03-29 2007-03-29 Semipermeable membrane support

Publications (2)

Publication Number Publication Date
JP2008238147A true JP2008238147A (en) 2008-10-09
JP5216229B2 JP5216229B2 (en) 2013-06-19

Family

ID=39910118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086935A Active JP5216229B2 (en) 2007-03-29 2007-03-29 Semipermeable membrane support

Country Status (1)

Country Link
JP (1) JP5216229B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180492A (en) * 2009-02-04 2010-08-19 Teijin Fibers Ltd Wet nonwoven fabric and method for producing the same
WO2011049231A1 (en) 2009-10-21 2011-04-28 三菱製紙株式会社 Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
WO2012090874A1 (en) 2010-12-27 2012-07-05 北越紀州製紙株式会社 Wet-laid nonwoven fabric for semipermeable membrane supporting body, method for producing said wet-laid nonwoven fabric, and method for identifying low-density defect of wet-laid nonwoven fabric
KR101254423B1 (en) 2010-02-16 2013-04-15 미쓰비시 세이시 가부시키가이샤 Semi-permeable membrane support and method for producing the same
JP2013192967A (en) * 2012-03-15 2013-09-30 Mitsubishi Paper Mills Ltd Semipermeable membrane support
JP2017170293A (en) * 2016-03-22 2017-09-28 三菱製紙株式会社 Semi-permeable membrane support
KR102013810B1 (en) * 2018-02-22 2019-08-23 국일제지 주식회사 Method for manufacturing separation membrane supportfor water treatment filter using wet laid process and separation membrane supportmanufactured thereby
CN112755796A (en) * 2020-12-16 2021-05-07 宁波日新恒力科技有限公司 Semipermeable membrane support and preparation method thereof
CN113045999A (en) * 2021-01-11 2021-06-29 宁波日新恒力科技有限公司 Preparation method of novel semipermeable membrane support body
WO2022210316A1 (en) 2021-03-31 2022-10-06 三菱製紙株式会社 Semipermeable membrane support and method for manufacturing semipermeable membrane support

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6886900B2 (en) * 2017-08-31 2021-06-16 北越コーポレーション株式会社 Nonwoven fabric for semipermeable membrane support and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232170A (en) * 1993-06-29 1996-09-10 New Oji Paper Co Ltd Nonwoven fabric coated with pigment and its production
JPH09310293A (en) * 1996-05-23 1997-12-02 Unitika Ltd Biodegradable wet nonwoven fabric and its production
JPH10225630A (en) * 1997-02-13 1998-08-25 Miki Tokushu Seishi Kk Semipermeable membrane supporting body
JP2002095937A (en) * 2000-09-22 2002-04-02 Hour Seishi Kk Semipermeable membrane support and its manufacturing method
JP2003336124A (en) * 2002-05-16 2003-11-28 Nippon Ester Co Ltd Non-crimped short-cut fiber of polylactic acid
WO2006068100A1 (en) * 2004-12-21 2006-06-29 Asahi Kasei Fibers Corporation Separation-membrane support

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232170A (en) * 1993-06-29 1996-09-10 New Oji Paper Co Ltd Nonwoven fabric coated with pigment and its production
JPH09310293A (en) * 1996-05-23 1997-12-02 Unitika Ltd Biodegradable wet nonwoven fabric and its production
JPH10225630A (en) * 1997-02-13 1998-08-25 Miki Tokushu Seishi Kk Semipermeable membrane supporting body
JP2002095937A (en) * 2000-09-22 2002-04-02 Hour Seishi Kk Semipermeable membrane support and its manufacturing method
JP2003336124A (en) * 2002-05-16 2003-11-28 Nippon Ester Co Ltd Non-crimped short-cut fiber of polylactic acid
WO2006068100A1 (en) * 2004-12-21 2006-06-29 Asahi Kasei Fibers Corporation Separation-membrane support

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180492A (en) * 2009-02-04 2010-08-19 Teijin Fibers Ltd Wet nonwoven fabric and method for producing the same
JP5789193B2 (en) * 2009-10-21 2015-10-07 三菱製紙株式会社 Semipermeable membrane support, spiral type semipermeable membrane element, and method for producing semipermeable membrane support
WO2011049231A1 (en) 2009-10-21 2011-04-28 三菱製紙株式会社 Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
KR101757491B1 (en) * 2009-10-21 2017-07-12 미쓰비시 세이시 가부시키가이샤 Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
CN102574070A (en) * 2009-10-21 2012-07-11 三菱制纸株式会社 Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
JPWO2011049231A1 (en) * 2009-10-21 2013-03-14 三菱製紙株式会社 Semipermeable membrane support, spiral type semipermeable membrane element, and method for producing semipermeable membrane support
KR101254423B1 (en) 2010-02-16 2013-04-15 미쓰비시 세이시 가부시키가이샤 Semi-permeable membrane support and method for producing the same
KR101313988B1 (en) * 2010-02-16 2013-10-01 미쓰비시 세이시 가부시키가이샤 Semi-permeable membrane support and method for producing the same
WO2012090874A1 (en) 2010-12-27 2012-07-05 北越紀州製紙株式会社 Wet-laid nonwoven fabric for semipermeable membrane supporting body, method for producing said wet-laid nonwoven fabric, and method for identifying low-density defect of wet-laid nonwoven fabric
KR101510976B1 (en) * 2010-12-27 2015-04-10 호쿠에츠 기슈 세이시 가부시키가이샤 Wet-laid nonwoven fabric for semipermeable membrane supporting body, method for producing said wet-laid nonwoven fabric, and method for identifying low-density defect of wet-laid nonwoven fabric
CN103269782A (en) * 2010-12-27 2013-08-28 北越纪州制纸株式会社 Wet-laid nonwoven fabric for semipermeable membrane supporting body, method for producing said wet-laid nonwoven fabric, and method for identifying low -density defect of wet laid nonwoven fabric
JP5934655B2 (en) * 2010-12-27 2016-06-15 北越紀州製紙株式会社 Method for producing wet nonwoven fabric for semipermeable membrane support and method for confirming low density defects thereof
EP2659955A4 (en) * 2010-12-27 2016-11-02 Hokuetsu Kishu Paper Co Ltd Wet-laid nonwoven fabric for semipermeable membrane supporting body, method for producing said wet-laid nonwoven fabric, and method for identifying low-density defect of wet-laid nonwoven fabric
US10443167B2 (en) 2010-12-27 2019-10-15 Hokuetsu Corporation Method for producing a wet-laid nonwoven fabric
JP2013192967A (en) * 2012-03-15 2013-09-30 Mitsubishi Paper Mills Ltd Semipermeable membrane support
JP2017170293A (en) * 2016-03-22 2017-09-28 三菱製紙株式会社 Semi-permeable membrane support
KR102013810B1 (en) * 2018-02-22 2019-08-23 국일제지 주식회사 Method for manufacturing separation membrane supportfor water treatment filter using wet laid process and separation membrane supportmanufactured thereby
CN112755796A (en) * 2020-12-16 2021-05-07 宁波日新恒力科技有限公司 Semipermeable membrane support and preparation method thereof
CN113045999A (en) * 2021-01-11 2021-06-29 宁波日新恒力科技有限公司 Preparation method of novel semipermeable membrane support body
WO2022210316A1 (en) 2021-03-31 2022-10-06 三菱製紙株式会社 Semipermeable membrane support and method for manufacturing semipermeable membrane support

Also Published As

Publication number Publication date
JP5216229B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5216229B2 (en) Semipermeable membrane support
WO2011049231A1 (en) Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
JP2013220382A (en) Semipermeable membrane support
KR20130112931A (en) Wet-laid nonwoven fabric for semipermeable membrane supporting body, method for producing said wet-laid nonwoven fabric, and method for identifying low-density defect of wet-laid nonwoven fabric
JP2012101213A (en) Semi-permeable membrane support
CN107405579B (en) Support, filtration membrane and module of semipermeable membrane for membrane separation activated sludge treatment
WO2013115149A1 (en) Non-woven fabric for semipermeable membrane support
JP7464655B2 (en) Semipermeable membrane support
JPH10225630A (en) Semipermeable membrane supporting body
US9889411B2 (en) Nonwoven fabric for semipermeable membrane support
JP2016140785A (en) Semipermeable membrane support
JP2012106177A (en) Semipermeable membrane support
CN112368067B (en) Support for semipermeable membrane for membrane separation activated sludge treatment
JP6886900B2 (en) Nonwoven fabric for semipermeable membrane support and its manufacturing method
JP2020163321A (en) Support medium of semipermeable membrane for membrane separation activated sludge treatment and filtration film
JP2014180638A (en) Method for manufacturing semipermeable membrane
JP2015058411A (en) Semipermeable membrane support
JP5809583B2 (en) Semipermeable membrane support
JP2012250223A (en) Semipermeable membrane support
JP5893971B2 (en) Method for producing semipermeable membrane support
JP2014180639A (en) Method for manufacturing semipermeable membrane
JP7341905B2 (en) semipermeable membrane support
JP7504020B2 (en) Wet-laid nonwoven fabric for semipermeable membrane support and method for producing same
JP2019171297A (en) Semipermeable membrane supporting body
JP7102572B1 (en) Method for manufacturing semipermeable membrane support and semipermeable membrane support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Ref document number: 5216229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250