JP7102572B1 - Method for manufacturing semipermeable membrane support and semipermeable membrane support - Google Patents

Method for manufacturing semipermeable membrane support and semipermeable membrane support Download PDF

Info

Publication number
JP7102572B1
JP7102572B1 JP2021060282A JP2021060282A JP7102572B1 JP 7102572 B1 JP7102572 B1 JP 7102572B1 JP 2021060282 A JP2021060282 A JP 2021060282A JP 2021060282 A JP2021060282 A JP 2021060282A JP 7102572 B1 JP7102572 B1 JP 7102572B1
Authority
JP
Japan
Prior art keywords
semipermeable membrane
fiber
membrane support
support
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021060282A
Other languages
Japanese (ja)
Other versions
JP2022156539A (en
Inventor
圭輔 宮城
由理 野上
真一 江角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2021060282A priority Critical patent/JP7102572B1/en
Priority to EP22780530.6A priority patent/EP4316633A1/en
Priority to CN202280010437.6A priority patent/CN116710196A/en
Priority to PCT/JP2022/014217 priority patent/WO2022210316A1/en
Application granted granted Critical
Publication of JP7102572B1 publication Critical patent/JP7102572B1/en
Publication of JP2022156539A publication Critical patent/JP2022156539A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Paper (AREA)

Abstract

【課題】本発明の課題は、半透膜と半透膜支持体の膜剥離強度が向上する半透膜支持体を提供することである。【解決手段】主体合成繊維とバインダー合成繊維とを含有する湿式不織布からなる半透膜支持体において、半透膜が設けられる塗布面の繊維配向強度が1.00以上1.30以下、非塗布面の繊維配向強度が1.00以上1.50以下であり、かつ半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm2以下であり、半透膜の残存率が2.5%以上5.0%以下であることを特徴とする半透膜支持体。【選択図】なしAn object of the present invention is to provide a semipermeable membrane support in which the peel strength between the semipermeable membrane and the semipermeable membrane support is improved. In a semipermeable membrane support made of a wet-laid nonwoven fabric containing main synthetic fibers and binder synthetic fibers, the fiber orientation strength of the coating surface on which the semipermeable membrane is provided is 1.00 or more and 1.30 or less, and the semipermeable membrane support is not coated. The fiber orientation strength of the surface is 1.00 or more and 1.50 or less, and the semipermeable membrane remaining on the coated surface of the semipermeable membrane support when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support. A semipermeable membrane support, wherein the average area of the permeable membrane is 500 μm 2 or less, and the residual rate of the semipermeable membrane is 2.5% or more and 5.0% or less. [Selection figure] None

Description

本発明は、半透膜支持体及び半透膜支持体の製造方法に関する。 The present invention relates to a semipermeable membrane support and a method for manufacturing a semipermeable membrane support.

海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で、半透膜が広く用いられている。半透膜は、セルロース系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、フッ素系樹脂、ポリエステル系樹脂等の合成樹脂で構成されている。しかしながら、半透膜単体では機械的強度に劣るため、不織布や織布等の繊維基材からなる半透膜支持体の片面に半透膜が設けられた複合体の形態である分離膜として使用されている。半透膜支持体の半透膜が設けられる面を「塗布面」と称し、反対側の面を「非塗布面」と称す。 Semipermeable membranes are widely used in fields such as seawater desalination, water purifiers, food concentration, wastewater treatment, medical use represented by hemofiltration, and ultrapure water production for semiconductor cleaning. The semipermeable membrane is composed of a synthetic resin such as a cellulosic resin, a polysulfone resin, a polyacrylonitrile resin, a fluorine resin, and a polyester resin. However, since the semipermeable membrane alone is inferior in mechanical strength, it is used as a separation membrane in the form of a composite in which a semipermeable membrane is provided on one side of a semipermeable membrane support made of a fiber base material such as a non-woven fabric or a woven fabric. Has been done. The surface of the semipermeable membrane support on which the semipermeable membrane is provided is referred to as a "coated surface", and the surface on the opposite side is referred to as a "non-coated surface".

主に、半透膜支持体としては、合成繊維を含有する不織布が用いられる。特に、ポリエステル系湿式不織布が多く使用されている(例えば、特許文献1及び2参照)。これらの半透膜支持体を構成するポリエステル繊維の重合触媒には、従来、三酸化アンチモンに代表されるアンチモン化合物が広く用いられている。三酸化アンチモンは安価で、優れた触媒活性を有するが、近年、環境面からアンチモンの安全性に対する問題が欧米をはじめ各国で指摘されている。 As the semipermeable membrane support, a non-woven fabric containing synthetic fibers is mainly used. In particular, polyester-based wet non-woven fabrics are often used (see, for example, Patent Documents 1 and 2). Conventionally, antimony compounds typified by antimony trioxide have been widely used as polymerization catalysts for polyester fibers constituting these semipermeable membrane supports. Antimony trioxide is inexpensive and has excellent catalytic activity, but in recent years, environmental problems have been pointed out in various countries including Europe and the United States.

また、半透膜支持体に要求される性能としては、半透膜と半透膜支持体との接着性が良好であること、半透膜を設けるために、半透膜溶液が半透膜支持体に塗布された際に、半透膜溶液が非塗布面に裏抜けしないこと、半透膜に欠点が少ないこと、半透膜が半透膜支持体から剥離しない等が挙げられる。 Further, as the performance required for the semipermeable membrane support, the adhesion between the semipermeable membrane and the semipermeable membrane support is good, and in order to provide the semipermeable membrane, the semipermeable membrane solution is a semipermeable membrane. When applied to the support, the semipermeable membrane solution does not strike through to the non-coated surface, the semipermeable membrane has few defects, and the semipermeable membrane does not peel off from the semipermeable membrane support.

半透膜を用いて分離を行う際、水中に含まれる不純物が半透膜表面に堆積し、半透膜の目詰まりや透過流束が低下した場合、高圧水流で膜洗浄を行う場合があり、半透膜と半透膜支持体の剥離強度が低いと、半透膜が半透膜支持体から剥離し、半透膜が損傷することで、十分な膜性能が得られなくなる。また、半透膜の高圧運転時を停止した際、透過水の逆流により半透膜が半透膜支持体から剥離した場合、半透膜性能が低下する。 When separating using a semi-transparent membrane, if impurities contained in water accumulate on the surface of the semi-transparent membrane and the semi-transparent membrane is clogged or the permeation flux is reduced, the membrane may be washed with a high-pressure water stream. If the peeling strength between the semitransparent film and the semitransparent film support is low, the semitransparent film is peeled off from the semitransparent film support and the semitransparent film is damaged, so that sufficient membrane performance cannot be obtained. Further, when the semipermeable membrane is stopped during high-pressure operation and the semipermeable membrane is peeled off from the semipermeable membrane support due to the backflow of permeated water, the semipermeable membrane performance is deteriorated.

半透膜溶液が裏抜けしないように、半透膜支持体の均一性を高めることを目的として、合成繊維を水に分散した繊維スラリーを湿式抄造して不織布とする工程において、抄紙時における該繊維スラリーの繊維分濃度を0.01~0.1質量%とし、かつ、該繊維スラリーに、高分子粘剤として、分子量500万以上の水溶性高分子を、繊維分質量を基準として3~15質量%含有させて抄紙する方法が提案されている(例えば、特許文献3参照)。しかし、高分子粘剤が過剰に添加されているため、均一性は高まるが、抄紙網上での繊維スラリー粘度が高まって、抄紙網からの脱水性が低下して、生産速度が上げられないという問題が起こる可能性があった。また、抄紙後の半透膜支持体を形成する繊維表面に高分子粘剤が残留するという問題もあった。 In the step of wet-making a fiber slurry in which synthetic fibers are dispersed in water to form a non-woven fabric, for the purpose of improving the uniformity of the semi-transparent film support so that the semi-transparent solution does not strike through, the said at the time of paper making. The fiber content concentration of the fiber slurry is 0.01 to 0.1% by mass, and a water-soluble polymer having a molecular weight of 5 million or more is added to the fiber slurry as a polymer viscous agent from 3 to 3 based on the fiber content mass. A method of making paper with a content of 15% by mass has been proposed (see, for example, Patent Document 3). However, since the polymer viscous agent is excessively added, the uniformity is improved, but the viscosity of the fiber slurry on the papermaking net is increased, the dehydration property from the papermaking net is lowered, and the production rate cannot be increased. There was a possibility that the problem would occur. In addition, there is also a problem that the polymer viscous agent remains on the surface of the fiber forming the semipermeable membrane support after papermaking.

また、太い繊維を使用した表面粗度の大きな表面層(太い繊維層)と細い繊維を使用した緻密な構造の裏面層(細い繊維層)との二重構造を基本とした多層構造の不織布よりなる半透膜支持体が提案されている(例えば、特許文献4参照)。具体的には、太い繊維層を塗布面とし、細い繊維層を非塗布面とした半透膜支持体、細い繊維層を太い繊維層で挟み込み、塗布面と非塗布面の両方を太い繊維層とした半透膜支持体が記載されている。しかしながら、塗布面において、太い繊維を使用しているため、半透膜支持体の均一性が低くなり、半透膜の浸透が不均一となることから、十分な膜剥離強度が得られなく、上記の半透膜支持体を用いた分離膜を高圧運転した際に膜剥離が起きる問題があった。また、平滑性が低く半透膜に欠点が生じやすいという問題があった。 Also, from a multilayer structure non-woven fabric based on a double structure consisting of a surface layer with a large surface roughness using thick fibers (thick fiber layer) and a back layer with a dense structure using fine fibers (thin fiber layer). A semi-transparent membrane support has been proposed (see, for example, Patent Document 4). Specifically, a semipermeable membrane support having a thick fiber layer as a coated surface and a thin fiber layer as a non-coated surface, and a thin fiber layer sandwiched between thick fiber layers, and both the coated surface and the non-coated surface are thick fiber layers. A semipermeable membrane support is described. However, since thick fibers are used on the coated surface, the uniformity of the semipermeable membrane support becomes low, and the permeation of the semipermeable membrane becomes non-uniform, so that sufficient film peeling strength cannot be obtained. There is a problem that membrane peeling occurs when the separation membrane using the above semipermeable membrane support is operated at high pressure. In addition, there is a problem that the smoothness is low and the semipermeable membrane tends to have defects.

また、半透膜溶液が塗布された際に、半透膜支持体が幅方向に湾曲することによって、不均一な半透膜が製造されるという課題を解決するために、抄紙流れ方向と幅方向の引張強度比が2:1~1:1にあり、繊維の配向がばらけた状態である半透膜支持体が提案されている(例えば、特許文献1参照)。さらに、特許文献1では、半透膜と半透膜支持体の接着性を良くすること及び裏抜け防止を目的として、半透膜支持体の通気度やポアサイズを調整する方法が提案されている。しかしながら、このJIS L1096に準拠した通気度は、半透膜支持体の片面から半透膜支持体内部を通過して別の片面へ透過する空気の量を基に算出されており、塗布面の表面に塗布された半透膜溶液の非塗布面への裏抜けを正確に反映しているものではない。そのため、特許文献1で示された範囲の通気度を有する半透膜支持体に半透膜溶液を塗布した場合、半透膜溶液が裏抜けしてしまう場合があった。 Further, in order to solve the problem that a non-uniform semipermeable membrane is produced by bending the semipermeable membrane support in the width direction when the semipermeable membrane solution is applied, the paper flow direction and width are used. A semipermeable membrane support in which the tensile strength ratio in the direction is 2: 1 to 1: 1 and the fibers are in a disoriented state has been proposed (see, for example, Patent Document 1). Further, Patent Document 1 proposes a method of adjusting the air permeability and pore size of the semipermeable membrane support for the purpose of improving the adhesiveness between the semipermeable membrane and the semipermeable membrane support and preventing strike-through. .. However, the air permeability according to JIS L1096 is calculated based on the amount of air that passes from one side of the semipermeable membrane support through the inside of the semipermeable membrane support and permeates to the other side, and is calculated based on the amount of air that permeates the other side. It does not accurately reflect the strike-through of the semipermeable membrane solution applied to the surface to the non-applied surface. Therefore, when the semipermeable membrane solution is applied to the semipermeable membrane support having the air permeability in the range shown in Patent Document 1, the semipermeable membrane solution may strike through.

強度と透水性を両立した複合半透膜を提供するために、半透膜支持体の単位当たりの重さAと前記半透膜支持体に浸透したドープの重さB(浸透量)の和(A+B)が30~100g/mであり、前記重さAと前記重さBとの比B/Aが0.10~0.60である半透膜と半透膜支持体の複合体(複合半透膜)が提供されている(例えば、特許文献5)しかし、半透膜支持体の空隙率が65%以上であるため、半透膜成膜の際、半透膜溶液が塗布面から裏面(非塗布面)に達して、裏抜けが発生する場合があった。 In order to provide a composite semipermeable membrane having both strength and water permeability, the sum of the weight A per unit of the semipermeable membrane support and the weight B (permeation amount) of the dope permeating the semipermeable membrane support. A composite of a semipermeable membrane and a semipermeable membrane support having (A + B) of 30 to 100 g / m 2 and a ratio B / A of the weight A to the weight B of 0.10 to 0.60. (Composite semipermeable membrane) is provided (for example, Patent Document 5) However, since the void ratio of the semipermeable membrane support is 65% or more, the semipermeable membrane solution is applied at the time of forming the semipermeable membrane. In some cases, strike-through may occur from the front surface to the back surface (non-coated surface).

特開2002-95937号公報JP-A-2002-95937 特開平10-225630号公報Japanese Unexamined Patent Publication No. 10-225630 特開2008-238147号公報Japanese Unexamined Patent Publication No. 2008-238147 特公平4-21526号公報Tokuho 4-21526 Gazette 国際公開第2014/192883号パンフレットInternational Publication No. 2014/192883 Pamphlet

本発明の課題は、半透膜の欠点が少なく、半透膜溶液が裏抜けし難く、半透膜と半透膜支持体の膜剥離強度が向上する半透膜支持体を提供することである。 An object of the present invention is to provide a semipermeable membrane support in which there are few defects of the semipermeable membrane, the semipermeable membrane solution is difficult to strike through, and the membrane peeling strength between the semipermeable membrane and the semipermeable membrane support is improved. be.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、下記発明によって該課題を解決することができた。 As a result of diligent studies to solve the above problems, the present inventors have been able to solve the problems by the following inventions.

(1)主体合成繊維とバインダー合成繊維とを含有する湿式不織布からなる半透膜支持体において、半透膜が設けられる塗布面の繊維配向強度が1.00以上1.30以下であり、非塗布面の繊維配向強度が1.00以上1.50以下であり、かつ半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm以下であり、半透膜の残存率が2.5%以上5.0%以下であることを特徴とする半透膜支持体。
(2)半透膜支持体のアンチモン元素溶出量が1.5μg/g未満である(1)に記載の半透膜支持体。
(3)(1)又は(2)記載の半透膜支持体を製造する半透膜支持体の製造方法において、バインダー合成繊維を分散した後に主体合成繊維を分散して得られる繊維分散液から湿式抄造法によって半透膜支持体を製造することを特徴とする半透膜支持体の製造方法。
(1) In a semipermeable membrane support made of a wet non-woven fabric containing a main synthetic fiber and a binder synthetic fiber, the fiber orientation strength of the coated surface on which the semipermeable membrane is provided is 1.00 or more and 1.30 or less, and is not. The fiber orientation strength of the coated surface is 1.00 or more and 1.50 or less, and remains on the coated surface of the semipermeable membrane support when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support. A semipermeable membrane support characterized in that the average area of the semipermeable membrane is 500 μm 2 or less, and the residual rate of the semipermeable membrane is 2.5% or more and 5.0% or less.
(2) The semipermeable membrane support according to (1), wherein the amount of antimony element eluted from the semipermeable membrane support is less than 1.5 μg / g.
(3) In the method for producing a semipermeable membrane support for producing the semipermeable membrane support according to (1) or (2), from the fiber dispersion obtained by dispersing the main synthetic fiber after dispersing the binder synthetic fiber. A method for producing a semipermeable membrane support, which comprises producing a semipermeable membrane support by a wet fabrication method.

本発明によれば、半透膜の欠点が少なく、半透膜溶液が裏抜けし難く、半透膜と半透膜支持体の膜剥離強度が向上した半透膜支持体を得ることができる。 According to the present invention, it is possible to obtain a semipermeable membrane support in which there are few defects of the semipermeable membrane, the semipermeable membrane solution is difficult to strike through, and the membrane peeling strength between the semipermeable membrane and the semipermeable membrane support is improved. ..

本発明の半透膜支持体は、主体合成繊維とバインダー合成繊維とを含有する湿式不織布からなる半透膜支持体において、半透膜が設けられる塗布面の繊維配向強度が1.00以上1.30以下であり、非塗布面の繊維配向強度が1.00以上1.50以下であり、かつ半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm以下であり、半透膜の残存率が2.5%以上5.0%以下であることを特徴とする。 The semipermeable membrane support of the present invention is a semipermeable membrane support made of a wet non-woven fabric containing a main synthetic fiber and a binder synthetic fiber, and the fiber orientation strength of the coated surface on which the semipermeable membrane is provided is 1.00 or more. .30 or less, the fiber orientation strength of the non-coated surface is 1.00 or more and 1.50 or less, and the semipermeable membrane support when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support. The average area of the semipermeable membrane remaining on the coated surface of the body is 500 μm 2 or less, and the residual rate of the semipermeable membrane is 2.5% or more and 5.0% or less.

本発明における「繊維配向強度」は、半透膜支持体全体ではなく、表層に存在する繊維のみの繊維配向(異方性)を重視する点で、MD方向とCD方向の引張強度比で表される繊維配向と大きく異なる。また、半透膜支持体の表層に存在する繊維配向を確認する手法として、MD方向を0°として、表層に存在する繊維1本1本の配向角を測定する手法がある。本発明における「繊維配向強度」は、異方性の度合いを計測しており、配向角とも大きく異なる。 The "fiber orientation strength" in the present invention is expressed by the tensile strength ratio in the MD direction and the CD direction in that the fiber orientation (anisotropic) of only the fibers existing on the surface layer is emphasized instead of the entire semitransparent film support. It is very different from the fiber orientation. Further, as a method for confirming the fiber orientation existing on the surface layer of the semipermeable membrane support, there is a method of measuring the orientation angle of each fiber existing on the surface layer with the MD direction set to 0 °. The "fiber orientation strength" in the present invention measures the degree of anisotropy and is significantly different from the orientation angle.

半透膜支持体の半透膜が設けられる塗布面の繊維配向強度が1.00以上1.30以下とし、非塗布面の繊維配向強度が1.00以上1.50以下にする方法として、
(I)主体合成繊維の最適化(繊維径、繊維長、断面アスペクト比)
(II)二段階分散による繊維の分散性向上
(III)原紙の抄造条件の最適化
(IV)熱圧加工条件(熱ロール温度、加工速度)の調整
等が挙げられる。(III)として、より具体的には、
(III-1)湿式抄造時の濃度(抄水量)の調整
(III-2)抄造速度の調整
(III-3)スラリー流速とワイヤーの相対速度(J/W比)の調整
(III-4)ワイヤーパートでの脱水圧力の調整
(III-5)ドライヤーパートにおける張力バランス
を単独又は組み合わせて行うことで、制御することができる。
As a method of setting the fiber orientation strength of the coated surface on which the semipermeable membrane of the semipermeable membrane support is provided to be 1.00 or more and 1.30 or less and the fiber orientation strength of the non-coated surface to be 1.00 or more and 1.50 or less.
(I) Optimization of main synthetic fiber (fiber diameter, fiber length, cross-sectional aspect ratio)
(II) Improvement of fiber dispersibility by two-step dispersion (III) Optimization of base paper fabrication conditions (IV) Adjustment of thermal pressure processing conditions (thermal roll temperature, processing speed), etc. As (III), more specifically
(III-1) Adjustment of concentration (water extraction amount) during wet papermaking (III-2) Adjustment of papermaking speed (III-3) Adjustment of slurry flow velocity and wire relative speed (J / W ratio) (III-4) Adjustment of dehydration pressure in the wire part (III-5) It can be controlled by performing the tension balance in the dryer part alone or in combination.

半透膜支持体を湿式抄造法によって製造する本発明の半透膜支持体の製造方法において、半透膜成膜後に半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm以下であり、半透膜の残存率が2.5%以上5.0%以下にする方法を説明する。半透膜成膜後に半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積及び半透膜の残存率をコントロールするためには、主体合成繊維とバインダー合成繊維を繊維分散装置(パルパー)内で水に分散して繊維束を単繊維に解きほぐすことが重要となる。単繊維に解きほぐす方法は、分散剤の添加、パルパーにおける羽根の形状の最適化、パルパー底面と羽根のクリアランスの最適化、パルパータンクの壁面への堰板の設置等が挙げられる。次に、単繊維に解繊後、白水(希釈水)で繊維分散液を希釈して抄紙網に送液する工程においては、希釈された繊維分散液を攪拌装置で分散することにより、単繊維化の度合いを高められる。また、パルパーでの繊維分散後及び/又は繊維分散液希釈後に高分子粘剤として、分子量500万以上の水溶性高分子の水溶液を添加することでさらに単繊維化の度合いが高まる。 In the method for manufacturing a semipermeable membrane support of the present invention in which the semipermeable membrane support is manufactured by a wet fabrication method, when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support after the semipermeable membrane is formed. The method for adjusting the average area of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support of the above to 500 μm 2 or less and the residual rate of the semipermeable membrane to 2.5% or more and 5.0% or less will be described. Average area of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support and the residual ratio of the semipermeable membrane when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support after the semipermeable membrane is formed. In order to control the above, it is important to disperse the main synthetic fiber and the binder synthetic fiber in water in a fiber disperser (palper) to loosen the fiber bundle into a single fiber. Examples of the method of unraveling into single fibers include addition of a dispersant, optimization of the shape of blades in the pulper, optimization of the clearance between the bottom surface of the pulper and the blades, installation of a weir plate on the wall surface of the pulper tank, and the like. Next, in the step of defibrating into single fibers, diluting the fiber dispersion with white water (diluted water), and sending the liquid to the papermaking net, the diluted fiber dispersion is dispersed by a stirrer to obtain single fibers. The degree of dilution can be increased. Further, by adding an aqueous solution of a water-soluble polymer having a molecular weight of 5 million or more as a polymer viscous agent after fiber dispersion with pulper and / or after dilution of the fiber dispersion liquid, the degree of monofiber formation is further increased.

そして、本発明の半透膜支持体の製造方法では、バインダー合成繊維を分散した後、主体合成繊維を分散する、二段階分散によって得られた繊維分散液から湿式抄造法によって半透膜支持体を製造することを特徴としている。パルパーに繊維を投入する際、バインダー合成繊維を先に投入して分散した後に、主体合成繊維を投入して分散することにより、主体合成繊維の単繊維化が仮に不十分であっても、十分に単繊維化されているバインダー合成繊維が主体合成繊維を覆うことが可能となり、細かく均一な孔を有する半透膜支持体を作製できるため、半透膜支持体の塗布面の繊維配向強度が1.00以上1.30以下、非塗布面の繊維配向強度が1.00以上1.50以下であり、半透膜成膜後に半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm以下であり、半透膜の残存率が2.5%以上5.0%以下である半透膜支持体が得られやすくなる。 Then, in the method for producing a semipermeable membrane support of the present invention, a semipermeable membrane support is dispersed by a wet fabrication method from a fiber dispersion obtained by two-step dispersion in which binder synthetic fibers are dispersed and then main synthetic fibers are dispersed. It is characterized by manufacturing. When the fibers are put into the pulper, the binder synthetic fibers are put in first and dispersed, and then the main synthetic fibers are put in and dispersed, so that even if the monofilament of the main synthetic fibers is insufficient, it is sufficient. Since the binder synthetic fiber that has been made into a single fiber can cover the main synthetic fiber and a semitransparent film support having fine and uniform pores can be produced, the fiber orientation strength of the coated surface of the semitransparent film support can be increased. The fiber orientation strength of the non-coated surface is 1.00 or more and 1.30 or less, and the fiber orientation strength of the non-coated surface is 1.00 or more and 1.50 or less. The average area of the semitransparent film remaining on the coated surface of the semitransparent film support when peeled off is 500 μm 2 or less, and the residual rate of the semitransparent film is 2.5% or more and 5.0% or less. It becomes easier to obtain a support.

また、湿式抄造法において、抄紙網上に繊維分散液が供給され、余分な水を搾水して湿紙を得る工程では、金属糸やプラスチック糸を編み込んだ抄紙網の上でシート状の湿紙が形成されながら、抄紙網下に徐々に搾水される。抄紙網上での湿紙の形成は、抄紙網表面に繊維が堆積して進行し、搾水の完了と共に湿紙形成が完了する。湿紙形成開始時は、抄紙網上に供給された繊維分散液の分散状態のまま繊維が堆積するために、抄紙網に接する面(以下、「抄紙網に接する面」を「抄紙網面」と称する場合がある)の繊維のほぐれ状態は均一になる。一方、抄紙網上に形成中の湿紙上には未だ繊維分散液が存在しており、サクションによる搾水の位置、サクションの強度、抄紙網速度、繊維分散液の流速等によって、湿紙形成完了時における抄紙網面と反対の面(以下、「抄紙網面と反対の面」を「抄紙フェルト面」と称する場合がある)の繊維のほぐれ状態を調整することができる。しかし、抄紙網面と比較すると、抄紙フェルト面では、繊維のほぐれ状態における均一性は低下する。また、湿紙形成の中盤から後半には、主体合成繊維とバインダー合成繊維の太さや長さが異なっている場合に、サクションによって同種繊維が寄り集まり、均一性がより低下する場合がある。バインダー合成繊維が寄り集まることによって、部分的にバインダー合成繊維が不足する箇所を招くことがある。そのため、湿式不織布の抄紙網面の繊維配向強度が抄紙フェルト面の繊維配向強度より低くなることから、抄紙網面が塗布面である場合、残存した半透膜の平均面積が小さくなり、半透膜の残存率が高くなるため、半透膜と半透膜支持体の膜剥離強度が高くなる。 Further, in the wet papermaking method, the fiber dispersion is supplied on the papermaking net, and in the process of squeezing excess water to obtain wet paper, a sheet-like wetness is placed on the papermaking net in which metal threads or plastic threads are woven. As the paper is formed, water is gradually squeezed under the papermaking net. The formation of wet paper on the papermaking net proceeds by depositing fibers on the surface of the papermaking net, and the formation of wet paper is completed when water is squeezed. At the start of wet paper formation, the fibers are deposited in the dispersed state of the fiber dispersion liquid supplied on the papermaking net, so that the surface in contact with the papermaking net (hereinafter, the "surface in contact with the papermaking net" is referred to as the "papermaking net surface". The loosened state of the fibers (sometimes referred to as) becomes uniform. On the other hand, the fiber dispersion still exists on the wet paper being formed on the paper net, and the wet paper formation is completed depending on the position of water extraction by suction, the strength of suction, the paper net speed, the flow velocity of the fiber dispersion, and the like. It is possible to adjust the loosened state of the fibers on the surface opposite to the papermaking net surface (hereinafter, the "surface opposite to the papermaking net surface" may be referred to as the "papermaking felt surface"). However, as compared with the papermaking net surface, the uniformity of the fibers in the loosened state is reduced on the papermaking felt surface. Further, in the middle to the latter half of the wet paper formation, when the thickness and length of the main synthetic fiber and the binder synthetic fiber are different, the same kind of fibers may gather together due to suction, and the uniformity may be further lowered. The gathering of the binder synthetic fibers may lead to a partial shortage of the binder synthetic fibers. Therefore, the fiber orientation strength of the paper-making net surface of the wet non-woven fabric is lower than the fiber orientation strength of the paper-making felt surface. Therefore, when the paper-making net surface is the coated surface, the average area of the remaining semipermeable membrane becomes small and the semipermeable membrane becomes semipermeable. Since the residual rate of the membrane is high, the peeling strength between the semipermeable membrane and the semipermeable membrane support is high.

湿式抄造法で得られた湿紙を乾燥して得られる原紙は、熱ロールによる熱圧加工(熱カレンダー)処理を行うことが好ましい。熱圧加工装置(熱カレンダー装置)において、ニップされているロール間に原紙が通されることによって、原紙が熱圧加工されることで、バインダー合成繊維を溶融・軟化して主体合成繊維を固定する。原紙にバインダー合成繊維が存在しない箇所があると、半透膜支持体に大きな孔が形成され、半透膜成膜後に半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が大きくなり、膜剥離強度向上のための投錨効果が得られにくくなるため、湿式抄造法での原紙内でのバインダー合成繊維の単繊維化と、バインダー合成繊維と主体合成繊維の分散性が重要となる。 The base paper obtained by drying the wet paper obtained by the wet papermaking method is preferably subjected to thermal pressure processing (thermal calendar) treatment with a thermal roll. In the thermal pressure processing device (thermal calendar device), the base paper is passed between the rolls that are nipped, and the base paper is thermally processed to melt and soften the binder synthetic fiber and fix the main synthetic fiber. do. If there is a place where the binder synthetic fiber does not exist in the base paper, large pores are formed in the semipermeable membrane support, and when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support after the semipermeable membrane is formed. Since the average area of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support of No. 1 becomes large and it becomes difficult to obtain the anchoring effect for improving the membrane peeling strength, the binder synthetic fiber in the base paper by the wet manufacturing method It is important to make the semipermeable membrane and the dispersibility of the binder synthetic fiber and the main synthetic fiber.

上記の対策を行うことにより、半透膜支持体の塗布面及び非塗布面の繊維配向強度、半透膜剥離後の半透膜の残存面積及び残存率をコントロールすることができる。 By taking the above measures, it is possible to control the fiber orientation strength of the coated surface and the non-coated surface of the semipermeable membrane support, the residual area and the residual ratio of the semipermeable membrane after the semipermeable membrane is peeled off.

本発明において、半透膜が設けられる塗布面の繊維配向強度は1.00以上1.30以下であり、1.00以上1.25以下がより好ましく、1.00以上1.20以下がさらに好ましい。繊維配向強度が1.00以上1.10以下の場合、繊維が無配向に近い状態であることを意味する。半透膜支持体の塗布面の繊維配向強度が1.30を超える場合、半透膜支持体表面の繊維と繊維の間隔が狭くなるため、半透膜の浸透が阻害され、膜剥離強度が低下する恐れがある。また、非塗布面の繊維配向強度は1.00以上1.50以下であり、1.00以上1.40以下がより好ましく、1.00以上1.30以下がさらに好ましい。半透膜支持体の非塗布面の繊維配向強度が1.50を超える場合、塗布面側から非塗布面側への半透膜溶液の浸透が阻害され、膜剥離強度が低下する恐れがある。 In the present invention, the fiber orientation strength of the coated surface on which the semipermeable membrane is provided is 1.00 or more and 1.30 or less, more preferably 1.00 or more and 1.25 or less, and further 1.00 or more and 1.20 or less. preferable. When the fiber orientation strength is 1.00 or more and 1.10 or less, it means that the fibers are in a state close to non-orientation. When the fiber orientation strength of the coated surface of the semipermeable membrane support exceeds 1.30, the distance between the fibers on the surface of the semipermeable membrane support is narrowed, so that the penetration of the semipermeable membrane is inhibited and the membrane peeling strength is increased. It may decrease. The fiber orientation strength of the non-coated surface is 1.00 or more and 1.50 or less, more preferably 1.00 or more and 1.40 or less, and further preferably 1.00 or more and 1.30 or less. If the fiber orientation strength of the non-coated surface of the semipermeable membrane support exceeds 1.50, the penetration of the semipermeable membrane solution from the coated surface side to the non-coated surface side may be hindered and the film peeling strength may decrease. ..

本発明において、半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積は500μm以下であり、450μm以下がより好ましく、400μm以下がさらに好ましい。500μmを超える場合、半透膜支持体への半透膜の浸透が不均一になり、投錨効果が低くなるため、膜剥離強度が低下する恐れがある。また、半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の残存率は2.5%以上5.0%以下であり、2.7%以上5.0%以下がより好ましく、3.0%以上5.0%以下がさらに好ましい。半透膜の残存率が、5.0%を超えると、半透膜支持体に半透膜が過剰に浸透するため、半透膜の裏抜けが発生する恐れがある。半透膜の残存率が2.0%未満であると、十分な投錨効果が得られず、膜剥離強度が低下し、半透膜の剥離が発生する恐れがある。 In the present invention, the average area of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support is 500 μm 2 or less, and 450 μm 2 The following is more preferable, and 400 μm 2 or less is further preferable. If it exceeds 500 μm 2 , the permeation of the semipermeable membrane into the semipermeable membrane support becomes non-uniform, and the anchoring effect is lowered, so that the membrane peeling strength may be lowered. Further, the residual rate of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support is 2.5% or more and 5.0% or less. It is more preferably 2.7% or more and 5.0% or less, and further preferably 3.0% or more and 5.0% or less. If the residual rate of the semipermeable membrane exceeds 5.0%, the semipermeable membrane excessively permeates the semipermeable membrane support, which may cause strike-through of the semipermeable membrane. If the residual rate of the semipermeable membrane is less than 2.0%, a sufficient anchoring effect cannot be obtained, the membrane peeling strength is lowered, and the semipermeable membrane may be peeled.

本発明において、半透膜支持体のアンチモン元素溶出量が1.5μg/g未満であることが好ましく、該半透膜支持体のアンチモン溶出量が1.0μg/g未満であることがより好ましい。半透膜支持体のアンチモン元素溶出量が1.5μg/g未満であることによって、半透膜支持体の抄造時の繊維分散性が向上し、半透膜成膜後の膜剥離強度が向上するという効果が得られる。 In the present invention, the amount of antimony element eluted from the semipermeable membrane support is preferably less than 1.5 μg / g, and more preferably the amount of antimony eluted from the semipermeable membrane support is less than 1.0 μg / g. .. When the amount of antimony element eluted from the semipermeable membrane support is less than 1.5 μg / g, the fiber dispersibility during fabrication of the semipermeable membrane support is improved, and the film peeling strength after the semipermeable membrane is formed is improved. The effect of doing is obtained.

本発明における「アンチモン元素溶出量」とは、繊維又は半透膜支持体を、比抵抗18.2MΩ・cm、温度25℃の超純水に24時間浸漬し、超純水中に溶出したアンチモン元素量をICP-MS(Inductively Coupled Plasma-Mass Spectro-metry)で定量分析した値から、<式1>を用いて算出したものである。 The "antimon element elution amount" in the present invention means an antimonate obtained by immersing a fiber or a semitransparent film support in ultrapure water having a specific resistance of 18.2 MΩ · cm and a temperature of 25 ° C. for 24 hours and eluting it in ultrapure water. The amount of the element was calculated by using <Equation 1> from the value quantitatively analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectro-metery).

<式1>
繊維又は半透膜支持体のアンチモン元素溶出量(μg/g)=溶出液のアンチモン元素含有量(μg/L)×溶出試験に使用した超純水の容積(L)/繊維又は半透膜支持体の質量(g)
<Equation 1>
Antimony element elution amount (μg / g) of fiber or semipermeable membrane support = Antimony element content (μg / L) of eluent x volume of ultrapure water used in elution test (L) / fiber or semipermeable membrane Support mass (g)

本発明において、主体合成繊維は、半透膜支持体の骨格を形成する繊維であり、バインダー合成繊維の軟化点又は溶融温度(融点)付近まで温度を上げる工程において、軟化又は溶融しにくく、繊維形状を維持する繊維である。主体合成繊維としては、例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系等の繊維が挙げられるが、耐熱性の高いポリエステル系の繊維がより好ましい。また、半合成繊維のアセテート、トリアセテート、プロミックスや、再生繊維のレーヨン、キュプラ、リヨセル繊維等は性能を阻害しない範囲で含有しても良い。 In the present invention, the main synthetic fiber is a fiber that forms the skeleton of the semipermeable membrane support, and is difficult to soften or melt in the step of raising the temperature to near the softening point or melting temperature (melting point) of the binder synthetic fiber, and the fiber. A fiber that maintains its shape. Examples of the main synthetic fiber include polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, vinylidene-based, polyvinyl chloride-based, polyester-based, benzoate-based, polyclaral-based, and phenol-based fibers, which are heat-resistant. Higher polyester fibers are more preferred. In addition, semi-synthetic fibers such as acetate, triacetate and promix, and regenerated fibers such as rayon, cupra and lyocell fibers may be contained within a range that does not impair the performance.

主体合成繊維の繊維径は、30μm以下であることが好ましい。主体合成繊維の繊維径が30μmを超えると、塗布面の繊維配向強度が1.30を超える場合、非塗布面の配向強度が1.50を超える場合、若しくは半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μmを超える場合、又は半透膜溶液の裏抜けが発生する場合がある。また、湿式不織布の表面の主体合成繊維が立ちやすくなり、半透膜を貫通して半透膜の欠点となる場合や膜性能が低下する場合がある。より好ましくは2~20μmであり、さらに好ましくは4~20μmであり、特に好ましくは6~20μmである。2μm未満の場合、半透膜溶液が半透膜支持体に浸透しにくくなり、半透膜と半透膜支持体との接着性が悪くなる場合がある。 The fiber diameter of the main synthetic fiber is preferably 30 μm or less. When the fiber diameter of the main synthetic fiber exceeds 30 μm, the fiber orientation strength of the coated surface exceeds 1.30, the orientation strength of the non-coated surface exceeds 1.50, or the semipermeable membrane and the semipermeable membrane support. When the semipermeable membrane is peeled off at the interface of the above, the average area of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support may exceed 500 μm 2 , or the semipermeable membrane solution may strike through. In addition, the main synthetic fibers on the surface of the wet non-woven fabric tend to stand up, which may penetrate the semipermeable membrane and become a defect of the semipermeable membrane, or the film performance may deteriorate. It is more preferably 2 to 20 μm, further preferably 4 to 20 μm, and particularly preferably 6 to 20 μm. If it is less than 2 μm, the semipermeable membrane solution may not easily penetrate into the semipermeable membrane support, and the adhesiveness between the semipermeable membrane and the semipermeable membrane support may be deteriorated.

本発明において、繊維径とは、半透膜支持体断面の走査型電子顕微鏡観察により、半透膜支持体を形成する繊維断面の面積を計測し、真円に換算した繊維の直径である。なお、繊維断面とは繊維の長さ方向に対して垂直に切断した際の断面とする。 In the present invention, the fiber diameter is the diameter of the fiber converted into a perfect circle by measuring the area of the fiber cross section forming the semipermeable membrane support by observing the cross section of the semipermeable membrane support with a scanning electron microscope. The fiber cross section is a cross section when the fiber is cut perpendicularly to the length direction of the fiber.

主体合成繊維の繊維長は、特に限定しないが、好ましくは1~15mmであり、より好ましくは3~10mmであり、さらに好ましくは4~6mmである。繊維長が1mm未満の場合には、半透膜支持体の強度が不十分となり、半透膜支持体が破れる恐れがある。繊維長が15mmを超える場合には、繊維分散性が低下しやすく、半透膜支持体の地合が不均一となり、塗布面の繊維配向強度が1.30を超える場合、非塗布面の配向強度が1.50を超える場合、又は半透膜の成膜性を損なう場合がある。 The fiber length of the main synthetic fiber is not particularly limited, but is preferably 1 to 15 mm, more preferably 3 to 10 mm, and further preferably 4 to 6 mm. If the fiber length is less than 1 mm, the strength of the semipermeable membrane support becomes insufficient, and the semipermeable membrane support may be torn. When the fiber length exceeds 15 mm, the fiber dispersibility tends to decrease, the formation of the semipermeable membrane support becomes non-uniform, and when the fiber orientation strength of the coated surface exceeds 1.30, the orientation of the non-coated surface If the strength exceeds 1.50, or the film forming property of the semipermeable membrane may be impaired.

主体合成繊維の断面形状は円形が好ましく、抄紙工程における水への分散前の繊維における断面アスペクト比(繊維断面長径/繊維断面短径)は、1.0~1.2未満であることが好ましい。繊維断面アスペクト比が1.2以上になると、繊維分散性が低下する場合や、繊維の絡まりやもつれの発生によって、半透膜支持体の均一性や塗布面の平滑性に悪影響を及ぼし、塗布面の繊維配向強度が1.30を超える場合、非塗布面の配向強度が1.50を超える場合、又は半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μmを超える場合がある。ただし、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、表面平滑性のために、繊維分散性等の他の特性を阻害しない範囲内で含有できる。 The cross-sectional shape of the main synthetic fiber is preferably circular, and the cross-sectional aspect ratio (fiber cross-sectional major axis / fiber cross-sectional minor axis) of the fiber before dispersion in water in the papermaking process is preferably 1.0 to less than 1.2. .. When the fiber cross-sectional aspect ratio is 1.2 or more, the fiber dispersibility is lowered, and the fibers are entangled or entangled, which adversely affects the uniformity of the semipermeable membrane support and the smoothness of the coated surface. Semipermeable membrane when the fiber orientation strength of the surface exceeds 1.30, the orientation strength of the non-coated surface exceeds 1.50, or when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support. The average area of the semipermeable membrane remaining on the coated surface of the membrane support may exceed 500 μm 2 . However, fibers having irregular cross sections such as T-type, Y-type, and triangular can also be contained within a range that does not impair other characteristics such as fiber dispersibility in order to prevent strike-through and surface smoothness.

主体合成繊維のアスペクト比(繊維長/繊維径)は、200~1000であることが好ましく、より好ましくは220~900であり、さらに好ましくは280~800である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙網から脱落する場合や、抄紙網に繊維が刺さって、抄紙網からの剥離性が悪化する場合がある。一方、1000を超えた場合、繊維の三次元ネットワーク形成に寄与はするものの、繊維の絡まりやもつれの発生によって、半透膜支持体の均一性や塗布面の平滑性に悪影響を及ぼす場合や、離脱繊維が発生し、半透膜成膜時に膜欠点が発生する場合がある。 The aspect ratio (fiber length / fiber diameter) of the main synthetic fiber is preferably 200 to 1000, more preferably 220 to 900, and further preferably 280 to 800. When the aspect ratio is less than 200, the dispersibility of the fibers is good, but when the fibers fall off from the papermaking net during papermaking, or when the fibers are stuck in the papermaking net, the peelability from the papermaking net deteriorates. In some cases. On the other hand, if it exceeds 1000, it contributes to the formation of a three-dimensional network of fibers, but the occurrence of entanglement and entanglement of fibers adversely affects the uniformity of the semipermeable membrane support and the smoothness of the coated surface. Detachment fibers may be generated, and film defects may occur during the formation of a semipermeable membrane.

本発明の半透膜支持体に係わる湿式不織布に対して、主体合成繊維の含有量は、40~90質量%が好ましく、50~80質量%がより好ましく、60~75質量%がさらに好ましい。主体合成繊維の含有量が40質量%未満の場合、通液性が低下する恐れがある。また、90質量%を超えた場合、離脱繊維が多発する場合や、半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均径が30μmを超える場合や、強度不足によって半透膜支持体が破れる恐れがある。 The content of the main synthetic fiber is preferably 40 to 90% by mass, more preferably 50 to 80% by mass, and even more preferably 60 to 75% by mass with respect to the wet nonwoven fabric related to the semipermeable membrane support of the present invention. If the content of the main synthetic fiber is less than 40% by mass, the liquid permeability may decrease. Further, when it exceeds 90% by mass, when detached fibers occur frequently, or when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support, the half remaining on the coated surface of the semipermeable membrane support. If the average diameter of the permeable membrane exceeds 30 μm, or the semipermeable membrane support may be torn due to insufficient strength.

本発明の半透膜支持体は、バインダー合成繊維を含有している。バインダー合成繊維の軟化点又は溶融温度(融点)付近まで温度を上げる工程を半透膜支持体の製造工程に組み入れることで、バインダー合成繊維が半透膜支持体の機械的強度を向上させる。例えば、半透膜支持体を湿式抄造法で製造し、その後の乾燥工程でバインダー合成繊維を軟化又は溶融させることができる。 The semipermeable membrane support of the present invention contains a binder synthetic fiber. By incorporating the step of raising the temperature to near the softening point or the melting temperature (melting point) of the binder synthetic fiber into the manufacturing process of the semipermeable membrane support, the binder synthetic fiber improves the mechanical strength of the semipermeable membrane support. For example, the semipermeable membrane support can be manufactured by a wet fabrication method, and the binder synthetic fiber can be softened or melted in a subsequent drying step.

バインダー合成繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維等の複合繊維、未延伸繊維等が挙げられる。複合繊維は、皮膜を形成しにくいので、半透膜支持体の空間を保持したまま、機械的強度を向上させることができる。より具体的には、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステル等の未延伸繊維が挙げられる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、半透膜支持体の乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲で使用することができる。本発明においては、ポリエステルの未延伸繊維を好ましく用いることができる。 Examples of the binder synthetic fiber include core-sheath fibers (core-shell type), parallel fibers (side-by-side type), composite fibers such as radial split fibers, and undrawn fibers. Since the composite fiber is difficult to form a film, the mechanical strength can be improved while maintaining the space of the semipermeable membrane support. More specifically, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high melting point polyester (core) and low melting point polyester (sheath), polyester, etc. Undrawn fibers can be mentioned. In addition, single fibers (zen'yu type) composed only of low melting point resins such as polyethylene and polypropylene, and hot water-soluble binders such as polyvinyl alcohols tend to form a film in the drying process of the semitransparent film support. However, it can be used as long as the characteristics are not impaired. In the present invention, polyester undrawn fibers can be preferably used.

バインダー合成繊維の繊維径は特に限定されないが、好ましくは2~20μmであり、より好ましくは5~15μmであり、さらに好ましくは7~13μmである。また、主体合成繊維と異なる繊維径であることが好ましい。主体合成繊維と繊維径が異なることで、主体合成繊維と共に均一な三次元ネットワークを形成する役割も果たす。さらに、バインダー合成繊維の軟化温度又は溶融温度以上まで温度を上げる工程では、半透膜支持体表面の平滑性をも向上させることができ、該工程では加圧が伴っているとより効果的である。 The fiber diameter of the binder synthetic fiber is not particularly limited, but is preferably 2 to 20 μm, more preferably 5 to 15 μm, and even more preferably 7 to 13 μm. Further, it is preferable that the fiber diameter is different from that of the main synthetic fiber. Since the fiber diameter is different from that of the main synthetic fiber, it also plays a role of forming a uniform three-dimensional network together with the main synthetic fiber. Further, in the step of raising the temperature to the softening temperature or the melting temperature or higher of the binder synthetic fiber, the smoothness of the surface of the semipermeable membrane support can also be improved, and it is more effective when the step is accompanied by pressurization. be.

バインダー合成繊維の繊維長は、特に限定しないが、好ましくは1~12mmであり、より好ましくは3~10mmであり、さらに好ましくは4~6mmである。バインダー合成繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、塗布面の平滑性、非塗布面同士の接着性のために、他の特性を阻害しない範囲内で含有できる。 The fiber length of the binder synthetic fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, and further preferably 4 to 6 mm. The cross-sectional shape of the binder synthetic fiber is preferably circular, but fibers having irregular cross-sections such as T-type, Y-type, and triangular are also used for preventing strike-through, smoothness of coated surfaces, and adhesion between non-coated surfaces. Can be contained within a range that does not impair the characteristics of.

バインダー合成繊維のアスペクト比(繊維長/繊維径)は、200~1000であることが好ましく、より好ましくは300~800であり、さらに好ましくは400~700である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙網から脱落する恐れや、抄紙網に繊維が刺さって、抄紙網からの剥離性が悪化する恐れがある。一方、1000を超えた場合、バインダー合成繊維は三次元ネットワーク形成に寄与はするものの、繊維が絡まる恐れや、もつれの発生によって、湿式不織布の均一性や塗布面の平滑性に悪影響を及ぼす場合や、離脱繊維が発生し半透膜成膜時に膜欠点が発生する場合がある。 The aspect ratio (fiber length / fiber diameter) of the binder synthetic fiber is preferably 200 to 1000, more preferably 300 to 800, and further preferably 400 to 700. When the aspect ratio is less than 200, the dispersibility of the fibers is good, but there is a risk that the fibers may fall off from the papermaking net during papermaking, or the fibers may stick into the papermaking net, resulting in poor peelability from the papermaking net. There is a fear. On the other hand, if it exceeds 1000, the binder synthetic fiber contributes to the formation of the three-dimensional network, but the fibers may be entangled or entangled, which adversely affects the uniformity of the wet non-woven fabric and the smoothness of the coated surface. , Withdrawal fibers may occur and film defects may occur during semipermeable membrane film formation.

本発明の半透膜支持体に係わる湿式不織布に対して、バインダー合成繊維の含有量は、10~60質量%が好ましく、20~50質量%がより好ましく、25~40質量%がさらに好ましい。上記範囲において、バインダー合成繊維の含有量を高めることによって、脱離繊維や主体合成繊維の毛羽立ちを抑制することができる。バインダー合成繊維の含有量が10質量%未満の場合、強度不足により破れる恐れがあり、主体合成繊維を覆うための本数が不足し離脱繊維が発生する場合がある。また、60質量%を超えた場合、通液性の低下や半透膜と半透膜支持体の接着性が悪くなる場合がある。 The content of the binder synthetic fiber is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, and even more preferably 25 to 40% by mass with respect to the wet nonwoven fabric related to the semipermeable membrane support of the present invention. In the above range, by increasing the content of the binder synthetic fiber, the fluffing of the desorbed fiber and the main synthetic fiber can be suppressed. If the content of the binder synthetic fiber is less than 10% by mass, it may be torn due to insufficient strength, and the number of fibers for covering the main synthetic fiber may be insufficient to generate detached fibers. On the other hand, if it exceeds 60% by mass, the liquid permeability may be lowered and the adhesiveness between the semipermeable membrane and the semipermeable membrane support may be deteriorated.

本発明の半透膜支持体の製造方法について説明する。本発明の半透膜支持体は、湿式抄造法によって原紙が作製された後に、この原紙が熱ロールによって熱圧加工される。 The method for producing the semipermeable membrane support of the present invention will be described. In the semipermeable membrane support of the present invention, after a base paper is produced by a wet papermaking method, the base paper is thermally pressure-processed by a heat roll.

湿式抄造法では、まず、バインダー合成繊維等をパルパー等の分散装置で均一に水中に分散させた後、主体合成繊維を投入して分散することにより、バインダー合成繊維が均一に主体合成繊維と混合する。その後、スクリーン(異物、塊等除去)等の工程を経て、白水(希釈水)で希釈し最終の繊維濃度を0.01~0.50質量%に調成されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。希釈したスラリーを攪拌機にて攪拌することは繊維束の単繊維化が促進し好ましい。繊維の分散性を均一にするために、工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。 In the wet papermaking method, first, the binder synthetic fiber or the like is uniformly dispersed in water by a disperser such as a pulper, and then the main synthetic fiber is charged and dispersed, so that the binder synthetic fiber is uniformly mixed with the main synthetic fiber. do. After that, through steps such as screen (removal of foreign matter, lumps, etc.), a slurry diluted with white water (diluted water) and prepared to have a final fiber concentration of 0.01 to 0.50% by mass is made with a paper machine. Raised to obtain wet paper. Stirring the diluted slurry with a stirrer is preferable because it promotes monofilament of the fiber bundle. In order to make the dispersibility of fibers uniform, chemicals such as dispersants, defoamers, hydrophilic agents, antistatic agents, polymer viscous agents, mold release agents, antibacterial agents, and bactericidal agents may be added in the process. be.

抄紙方式としては、例えば、長網、円網、傾斜ワイヤー式等の抄紙方式を用いることができる。これらの抄紙方式の群から選ばれる一機の抄紙方式を有する抄紙機、これらの抄紙方式の群から選ばれる同種又は異種の2機以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用することができる。また、2層以上の多層構造の湿式不織布を製造する場合には、各々の抄紙機で抄き上げた湿紙を積層する「抄き合わせ法」や、一方の層を形成した後に、該層上に繊維を分散したスラリーを流延して別の層を形成する「流延法」等を用いることができる。 As the papermaking method, for example, a papermaking method such as a long net, a circular net, or an inclined wire type can be used. Use a paper machine with one paper machine selected from these paper machines, or a combination paper machine with two or more paper machines of the same type or different types selected from these paper machines online. can do. Further, in the case of producing a wet non-woven fabric having a multi-layer structure of two or more layers, a "slurry method" in which wet papers made by each paper machine are laminated, or after forming one layer, the layer is formed. A "casting method" or the like can be used in which a slurry in which fibers are dispersed is cast on top to form another layer.

半透膜支持体の塗布面の繊維配向強度を1.00以上1.30以下、非塗布面の繊維配向強度を1.00以上1.50以下、かつ半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm以下であり、半透膜の残存率が2.5%以上5.0%以下にするためには、いずれの抄紙機においても、スラリーがヘッドボックスから抄紙ワイヤーに着地する際の流速とワイヤー速度の差が小さくなるように調整するのが良い。さらに、スラリーが抄紙ワイヤーに接してから、早いうちに水を引いて脱水を行って、繊維を不動化させることが重要である。そのために、湿式抄造時の濃度(抄水量)、抄造速度、スラリー流速と抄紙ワイヤーの相対速度(J/W比)、ワイヤーパートでの脱水圧力及びドライヤーパートにおける張力バランスの調整を単独又は組み合わせて行うことで、制御することができる。 The fiber orientation strength of the coated surface of the semipermeable membrane support is 1.00 or more and 1.30 or less, the fiber orientation strength of the non-coated surface is 1.00 or more and 1.50 or less, and the semipermeable membrane and the semipermeable membrane support The average area of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support when the semipermeable membrane is peeled off at the interface is 500 μm 2 or less, and the residual rate of the semipermeable membrane is 2.5% or more and 5.0%. In order to make the following, in any paper making machine, it is preferable to adjust so that the difference between the flow velocity and the wire speed when the slurry lands on the paper making wire from the head box becomes small. Furthermore, it is important to draw water and dehydrate the slurry as soon as it comes into contact with the papermaking wire to immobilize the fibers. For this purpose, the concentration during wet papermaking (water extraction amount), the papermaking speed, the slurry flow velocity and the relative speed of the papermaking wire (J / W ratio), the dehydration pressure at the wire part, and the tension balance adjustment at the dryer part are adjusted individually or in combination. By doing so, it can be controlled.

抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することによって、原紙を得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押し付けて乾燥させることを言う。熱ロールの表面温度は、100~180℃が好ましく、100~160℃がより好ましく、110~160℃がさらに好ましい。圧力は、好ましくは50~1000N/cm、より好ましくは100~800N/cmである。 The wet paper produced by the paper machine is dried with a Yankee dryer, an air dryer, a cylinder dryer, a suction drum type dryer, an infrared type dryer, or the like to obtain a base paper. When the wet paper is dried, it is brought into close contact with a heat roll such as a Yankee dryer and heat-pressure dried, so that the smoothness of the adhered surface is improved. Hot pressure drying means drying by pressing wet paper against the hot roll with a touch roll or the like. The surface temperature of the heat roll is preferably 100 to 180 ° C, more preferably 100 to 160 ° C, and even more preferably 110 to 160 ° C. The pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm.

次に、熱ロールによる熱圧加工について説明するが、本発明は下記説明に限定されない。熱圧加工装置(熱カレンダー装置)において、ニップされているロール間に原紙が通されることによって、原紙が熱圧加工される。ロールの組み合わせとしては、2本の金属ロール、金属ロールと樹脂ロール、金属ロールとコットンロール等が挙げられる。2本のロールのうち、少なくとも一方のロールが加熱されて、熱ロールとして使用される。主に、金属ロールが熱ロールとして使用される。熱ロールによる熱圧加工は2回以上行うことも可能であり、その場合、直列に配置された2組以上の上記のロール組み合わせを使用しても良いし、1組のロール組み合わせを用いて、2回加工しても良い。必要に応じて、原紙の表裏を逆にしても良い。熱ロールの表面温度、ロール間のニップ圧力、原紙の加工速度を制御することによって、所望の半透膜支持体が得られる。 Next, thermal pressure processing using a thermal roll will be described, but the present invention is not limited to the following description. In the thermal pressure processing device (thermal calendar device), the base paper is thermally processed by passing the base paper between the nipped rolls. Examples of the combination of rolls include two metal rolls, a metal roll and a resin roll, a metal roll and a cotton roll, and the like. At least one of the two rolls is heated and used as a heat roll. Mainly, metal rolls are used as thermal rolls. The thermal pressure processing by the thermal roll can be performed twice or more, and in that case, two or more sets of the above roll combinations arranged in series may be used, or one set of roll combinations may be used. It may be processed twice. If necessary, the front and back of the base paper may be reversed. The desired semipermeable membrane support can be obtained by controlling the surface temperature of the thermal rolls, the nip pressure between the rolls, and the processing speed of the base paper.

また、原紙に主体合成繊維の毛羽立ちが発生した場合であっても、熱ロールによる熱圧加工時にバインダー合成繊維を最適に溶融・軟化させて毛羽立ちをホールドすることによって、離脱繊維の発生や膜塗布後の欠点になることを防ぐことができる。そのためには、熱ロール温度をバインダー合成繊維の融点付近まで高めること、ニップ圧力を高めることが重要となる。また、加工速度をコントロールすることによって、バインダー合成繊維による毛羽立ちのホールドをある程度調整することができる。また、バインダー合成繊維の含有量を高めることによって、毛羽立ちのバインダー合成繊維によるホールド度合いを高めることができる。 In addition, even if fluffing of the main synthetic fibers occurs on the base paper, the binder synthetic fibers are optimally melted and softened during thermal pressure processing with a hot roll to hold the fluffing, so that detached fibers are generated and the film is applied. It is possible to prevent it from becoming a drawback later. For that purpose, it is important to raise the thermal roll temperature to near the melting point of the binder synthetic fiber and to raise the nip pressure. Further, by controlling the processing speed, the hold of fluffing by the binder synthetic fiber can be adjusted to some extent. Further, by increasing the content of the binder synthetic fiber, the degree of holding by the fluffy binder synthetic fiber can be increased.

熱ロールの温度はバインダー合成繊維の融点に対して-50℃~-10℃の範囲内であることが好ましい。より好ましくは、-40℃~-15℃の範囲内であり、さらに好ましくは、-30℃~-15℃の範囲である。熱圧加工における熱ロールの温度がバインダー合成繊維の融点に対して-50℃を下回る場合、バインダー合成繊維の温度が十分に上がらず主体合成繊維との接着不良が生じ、半透膜支持体の強度が低下する場合や、離脱繊維が発生する場合がある。一方、-10℃を超えた場合、バインダー合成繊維が失活し、バインダー合成繊維と主体合成繊維の接着が不十分になり、離脱繊維が発生する場合や、半透膜支持体が熱ロールに貼り付きやすくなり、半透膜支持体の表面が不均一になる場合や、塗布面の繊維配向強度が1.30を超える場合、非塗布面の繊維配向強度が1.50を超える場合がある。 The temperature of the heat roll is preferably in the range of −50 ° C. to −10 ° C. with respect to the melting point of the binder synthetic fiber. More preferably, it is in the range of −40 ° C. to −15 ° C., and even more preferably, it is in the range of −30 ° C. to −15 ° C. When the temperature of the thermal roll in the thermal pressure processing is lower than -50 ° C with respect to the melting point of the binder synthetic fiber, the temperature of the binder synthetic fiber does not rise sufficiently and poor adhesion with the main synthetic fiber occurs, so that the semipermeable membrane support The strength may decrease or detached fibers may occur. On the other hand, when the temperature exceeds -10 ° C, the binder synthetic fiber is inactivated, the adhesion between the binder synthetic fiber and the main synthetic fiber becomes insufficient, and detachment fiber is generated, or the semipermeable membrane support becomes a thermal roll. The surface of the semipermeable membrane support may become non-uniform due to sticking, the fiber orientation strength of the coated surface may exceed 1.30, or the fiber orientation strength of the non-coated surface may exceed 1.50. ..

熱圧加工におけるロールのニップ圧力は、好ましくは19~180kN/mであり、より好ましくは45~140kN/mである。ニップ圧力が19kN/m未満の場合、熱ロールと原紙の密着が低くなり繊維の毛羽立ちが起こり、離脱繊維が発生する場合や、半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μmを超える場合がある。一方、180kN/mを超えた場合、半透膜支持体が高密度化し、成膜溶液の浸透が減り半透膜と半透膜支持体の接着性が低下する場合や、ロールへの過剰な負荷が増すことによって、ロール寿命を短くする場合がある。 The nip pressure of the roll in the hot pressure processing is preferably 19 to 180 kN / m, more preferably 45 to 140 kN / m. When the nip pressure is less than 19 kN / m, the adhesion between the thermal roll and the base paper becomes low, causing fluffing of the fibers and causing detachment fibers, or the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support. The average area of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support may exceed 500 μm 2 . On the other hand, when it exceeds 180 kN / m, the density of the semipermeable membrane support becomes high, the penetration of the film-forming solution decreases, the adhesiveness between the semipermeable membrane and the semipermeable membrane support decreases, or the excess on the roll. The increased load may shorten the roll life.

熱圧加工における加工速度は、好ましくは4~100m/minであり、より好ましくは10~80m/minである。速度が4m/min未満の場合、生産性が劣ると共に、半透膜支持体の密度が高まり、通気性が低下し、半透膜溶液が浸透しにくくなり膜と支持体の接着性が低下する場合がある。一方、100m/minを超えた場合、原紙への熱の伝達が不十分となり、主体合成繊維の毛羽立ちが発生することにより、離脱繊維が発生する場合や、塗布面の繊維配向強度が1.30を超える場合、非塗布面の配向強度が1.50を超える場合や、半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μmを超える場合がある。 The processing speed in the hot pressure processing is preferably 4 to 100 m / min, and more preferably 10 to 80 m / min. When the speed is less than 4 m / min, the productivity is inferior, the density of the semipermeable membrane support is increased, the air permeability is lowered, the semipermeable membrane solution is difficult to permeate, and the adhesiveness between the membrane and the support is lowered. In some cases. On the other hand, when it exceeds 100 m / min, heat transfer to the base paper becomes insufficient and fluffing of the main synthetic fiber occurs, so that detached fibers are generated or the fiber orientation strength of the coated surface is 1.30. When the alignment strength of the non-coated surface exceeds 1.50, or when the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support, it remains on the coated surface of the semipermeable membrane support. The average area of the semipermeable membrane may exceed 500 μm 2 .

半透膜支持体の坪量は、特に限定しないが、20~150g/mが好ましく、より好ましくは50~100g/mである。20g/m未満の場合は、十分な引張強度が得られず、半透膜支持体が破れる場合がある。また、150g/mを超えた場合、通液抵抗が高くなる場合や厚みが増してユニットやモジュール内に規定量の半透膜を収納できない場合がある。 The basis weight of the semipermeable membrane support is not particularly limited, but is preferably 20 to 150 g / m 2 , and more preferably 50 to 100 g / m 2 . If it is less than 20 g / m 2 , sufficient tensile strength may not be obtained and the semipermeable membrane support may be torn. Further, if it exceeds 150 g / m 2 , the liquid passage resistance may increase or the thickness may increase and a specified amount of semipermeable membrane may not be stored in the unit or module.

また、半透膜支持体の密度は、0.5~1.0g/cmであることが好ましく、より好ましくは0.6~0.9g/cmである。半透膜支持体の密度が0.5g/cm未満の場合は、厚みが厚くなるため、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、1.0g/cmを超える場合は、半透膜溶液が半透膜支持体に浸透しにくくなり、半透膜と半透膜支持体との接着性が悪くなる場合や、半透膜成膜時の通液性が低くなることがあり、半透膜の寿命が短くなる場合がある。 The density of the semipermeable membrane support is preferably 0.5 to 1.0 g / cm 3 , and more preferably 0.6 to 0.9 g / cm 3 . If the density of the semipermeable membrane support is less than 0.5 g / cm 3 , the thickness becomes thicker, so that the area of the semipermeable membrane that can be incorporated into the unit becomes smaller, and as a result, the life of the semipermeable membrane becomes shorter. It may end up. On the other hand, when it exceeds 1.0 g / cm 3 , it becomes difficult for the semipermeable membrane solution to permeate into the semipermeable membrane support, and the adhesiveness between the semipermeable membrane and the semipermeable membrane support deteriorates, or the semipermeable membrane becomes semipermeable. The liquid permeability during film formation may be reduced, and the life of the semipermeable membrane may be shortened.

半透膜支持体の厚みは、50~150μmであることが好ましく、60~130μmであることがより好ましく、70~120μmであることがさらに好ましい。半透膜支持体の厚みが150μmを超えると、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、50μm未満の場合、十分な引張強度が得られない場合や通液性が低くなって、半透膜の寿命が短くなる場合がある。 The thickness of the semipermeable membrane support is preferably 50 to 150 μm, more preferably 60 to 130 μm, and even more preferably 70 to 120 μm. If the thickness of the semipermeable membrane support exceeds 150 μm, the area of the semipermeable membrane that can be incorporated into the unit becomes small, and as a result, the life of the semipermeable membrane may be shortened. On the other hand, if it is less than 50 μm, sufficient tensile strength may not be obtained or the liquid permeability may be lowered, so that the life of the semipermeable membrane may be shortened.

本発明を実施例によりさらに詳細に説明する。以下、特に断りの無い限り、実施例に記載される部及び比率は質量を基準とする。 The present invention will be described in more detail by way of examples. Hereinafter, unless otherwise specified, the parts and ratios described in the examples are based on mass.

≪主体合成繊維≫
PET繊維1:ポリエチレンテレフタレートからなる、繊維径7.5μm、繊維長5mm、Sb元素溶出量0.12μg/gの延伸ポリエステル繊維。
≪Main synthetic fiber≫
PET fiber 1: A stretched polyester fiber made of polyethylene terephthalate, having a fiber diameter of 7.5 μm, a fiber length of 5 mm, and an Sb element elution amount of 0.12 μg / g.

PET繊維2:ポリエチレンテレフタレートからなる、繊維径7.5μm、繊維長5mm、Sb元素溶出量0.01μg/gの延伸ポリエステル繊維。 PET fiber 2: A stretched polyester fiber made of polyethylene terephthalate, having a fiber diameter of 7.5 μm, a fiber length of 5 mm, and an Sb element elution amount of 0.01 μg / g.

PET繊維3:ポリエチレンテレフタレートからなる、繊維径7.5μm、繊維長6mm、Sb元素溶出量10.3μg/gの延伸ポリエステル繊維。 PET fiber 3: A stretched polyester fiber made of polyethylene terephthalate, having a fiber diameter of 7.5 μm, a fiber length of 6 mm, and an Sb element elution amount of 10.3 μg / g.

PET繊維4:ポリエチレンテレフタレートからなる、繊維径12.5μm、繊維長5mm、Sb溶出量11.9μg/gの延伸ポリエステル繊維。 PET fiber 4: A stretched polyester fiber made of polyethylene terephthalate, having a fiber diameter of 12.5 μm, a fiber length of 5 mm, and an Sb elution amount of 11.9 μg / g.

≪バインダー合成繊維≫
PET繊維5:ポリエチレンテレフタレートからなる、繊維径10.5μm、繊維長5mm、Sb元素溶出量0.04μg/gの未延伸ポリエステル繊維。
≪Binder synthetic fiber≫
PET fiber 5: An undrawn polyester fiber made of polyethylene terephthalate, having a fiber diameter of 10.5 μm, a fiber length of 5 mm, and an Sb element elution amount of 0.04 μg / g.

PET繊維6:ポリエチレンテレフタレートからなる、繊維径13.6μm、繊維長5mm、Sb元素溶出量0.01μg/gの未延伸ポリエステル繊維。 PET fiber 6: An undrawn polyester fiber made of polyethylene terephthalate, having a fiber diameter of 13.6 μm, a fiber length of 5 mm, and an Sb element elution amount of 0.01 μg / g.

PET繊維7:ポリエチレンテレフタレートからなる、繊維径11.8μm、繊維長5mm、Sb元素溶出量2.3μg/gの未延伸ポリエステル繊維。 PET fiber 7: An undrawn polyester fiber made of polyethylene terephthalate, having a fiber diameter of 11.8 μm, a fiber length of 5 mm, and an Sb element elution amount of 2.3 μg / g.

(原紙1~19、21及び22の製造:二段階分散有)
2mの分散タンクに水を投入後、表1に示す繊維配合で、バインダー合成繊維を先に分散タンクに投入し3分間分散した後、主体合成繊維を分散タンクに投入し7分間混合分散(分散濃度2.0%)して、傾斜ワイヤー/円網複合抄紙機を用い、傾斜ワイヤー上で形成した湿紙と、円網ワイヤー上で形成した湿紙を積層させた後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、目標坪量70g/mの原紙1~19、21及び22を得た。なお、傾斜ワイヤーと円網の繊維配合は同じである。
(Manufacturing of base papers 1 to 19, 21 and 22: with two-step dispersion)
After water is poured into a 2 m 3 dispersion tank, the binder synthetic fiber is first charged into the dispersion tank and dispersed for 3 minutes with the fiber composition shown in Table 1, and then the main synthetic fiber is charged into the dispersion tank and mixed and dispersed for 7 minutes ( Dispersion concentration is 2.0%), and after laminating the wet paper formed on the inclined wire and the wet paper formed on the circular net wire using an inclined wire / circular net composite paper machine, the surface temperature is 130 ° C. The base papers 1 to 19, 21 and 22 having a target basis weight of 70 g / m 2 were obtained by hot pressure drying with the Yankee dryer of the above. The fiber composition of the inclined wire and the circular net is the same.

(原紙20の製造:二段階分散無)
2mの分散タンクに水を投入後、表1に示す繊維配合で、バインダー合成繊維と主体合成繊維を同時に分散タンクに投入し7分間混合分散(分散濃度2.0%)して、傾斜ワイヤー/円網複合抄紙機を用い、傾斜ワイヤー上で形成した湿紙と、円網ワイヤー上で形成した湿紙を積層させた後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、目標坪量70g/mの原紙20を得た。なお、傾斜ワイヤーと円網の繊維配合は同じである。
(Manufacturing of base paper 20: No two-step dispersion)
After pouring water into a 2 m 3 dispersion tank, the binder synthetic fiber and the main synthetic fiber are simultaneously put into the dispersion tank with the fiber composition shown in Table 1, mixed and dispersed for 7 minutes (dispersion concentration 2.0%), and the inclined wire. / Using a circular net composite paper machine, the wet paper formed on the inclined wire and the wet paper formed on the circular net wire are laminated, and then hot-pressure dried with a Yankee dryer with a surface temperature of 130 ° C. A base paper 20 having an amount of 70 g / m 2 was obtained. The fiber composition of the inclined wire and the circular net is the same.

Figure 0007102572000001
Figure 0007102572000001

(熱カレンダー処理)
得られた原紙に対して、金属ロール(熱ロール)-弾性ロールの組み合わせの熱カレンダー装置、又は、金属ロール(熱ロール)-金属ロール(熱ロール)の組み合わせの熱カレンダー装置にて、表2に記載する熱カレンダー条件で実施例1~20及び比較例1~8の半透膜支持体を得た。なお、最初に熱圧加工を行う第1ステージにて、原紙が金属ロール(熱ロール)に接する面(処理面)を塗布面とし、2回目に熱圧加工を行う第2ステージの処理面は、第1ステージと反対面とした。また、金属ロール(熱ロール)-金属ロール(熱ロール)の組み合わせで熱カレンダー処理をした半透膜支持体は、円網面を塗布面とした。
(Thermal calendar processing)
For the obtained base paper, use a thermal calendar device with a combination of a metal roll (heat roll) and an elastic roll, or a thermal calendar device with a combination of a metal roll (heat roll) and a metal roll (heat roll). The semitransparent film supports of Examples 1 to 20 and Comparative Examples 1 to 8 were obtained under the thermal calendar conditions described in 1. In the first stage where the thermal pressure processing is performed first, the surface (processed surface) where the base paper is in contact with the metal roll (thermal roll) is set as the coating surface, and the treated surface in the second stage where the thermal pressure processing is performed second is , The opposite side of the first stage. Further, the semipermeable membrane support subjected to the thermal calendar treatment by the combination of the metal roll (heat roll) and the metal roll (heat roll) has a circular mesh surface as a coating surface.

Figure 0007102572000002
Figure 0007102572000002

実施例1~20及び比較例1~8で得られた半透膜支持体に対して、以下の測定及び評価を行い、結果を表3に示した。 The semipermeable membrane supports obtained in Examples 1 to 20 and Comparative Examples 1 to 8 were measured and evaluated as follows, and the results are shown in Table 3.

[坪量]
JIS P8124:2011に準拠して、坪量を測定した。
[Basis weight]
Basis weight was measured according to JIS P8124: 2011.

[半透膜支持体の厚さと密度]
JIS P8118:2014に準拠して、厚さを測定し、密度を算出した。
[Thickness and density of semipermeable membrane support]
The thickness was measured and the density was calculated according to JIS P8118: 2014.

[繊維配向強度]
半透膜支持体の半透膜が設けられる塗布面と反対の非塗布面を、走査電子顕微鏡(製品名:JSM-6610LV、日本電子社製)を用いて、倍率50倍で二次電子、加速電圧20kV、スポットサイズ30で撮影した。撮影の際、上下はMD方向(流れ方向)、左右はCD方向(幅方向)とした。1つの半透膜支持体の塗布面及び非塗布面につき測定点数10点の撮影を行った。
[Fiber orientation strength]
Using a scanning electron microscope (product name: JSM-6610LV, manufactured by JEOL Ltd.), the non-coated surface opposite to the coated surface on which the semi-transparent film of the semi-transparent film support is provided is subjected to secondary electrons at a magnification of 50 times. The image was taken with an acceleration voltage of 20 kV and a spot size of 30. At the time of shooting, the top and bottom were in the MD direction (flow direction), and the left and right were in the CD direction (width direction). Ten measurement points were photographed on the coated surface and the non-coated surface of one semipermeable membrane support.

プログラム「Fiber Orientation Analysis Ver.8.13 single(FiberOri8s03)」を使用した。本プログラムの中で、元画像から1024ピクセル×1024ピクセルの画像を抽出→移動平均による2値化→FFT変換→two axes modeにて配向角・配高度計算を行い、異方性の度合い「Orientation intensity」を測定した。各半透膜支持体の塗布面及び非塗布面について10点の測定を行い、平均値を本発明における「繊維配向強度」とした。 The program "FiberOrientation Analysis Ver.8.13 single (FiberOri8s03)" was used. In this program, an image of 1024 pixels x 1024 pixels is extracted from the original image → binarization by moving average → FFT conversion → calculation of orientation angle and altitude distribution by two axes mode, and the degree of anisotropy "Orientation" "Intensity" was measured. Ten points were measured on the coated surface and the non-coated surface of each semipermeable membrane support, and the average value was taken as the "fiber orientation strength" in the present invention.

[分離膜の成膜]
一定のクリアランスを有する定速塗布装置(商品名:TQC全自動フィルムアプリケーター、コーテック社製)を用いて、半透膜支持体の塗布面にポリスルホン樹脂のN,N-ジメチルホルムアミド(DMF)溶液(濃度:18%)を125μmの厚さで塗布し、凝固浴で相分離させ、多孔性ポリスルホン膜を作製した。この多孔性ポリスルホン膜に、m-フェニレンジアミン2質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液Aを接触させた後、余分の水溶液Aを除去して、水溶液Aの被覆層を形成した。次いで、水溶液Aの被覆層表面にトリメシン酸クロライド0.3質量%を含有する溶液Bを接触させ、余分な溶液Bを排出した。その後、120℃で乾燥を行い、分離機能層を形成し、多孔性ポリスルホン膜と分離機能層からなる複合半透膜が半透膜支持体の塗布面に設けられた分離膜を得た。得られた分離膜を、以下の残存した半透膜の平均面積測定、半透膜の残存率測定、半透膜の欠点評価、膜剥離強度評価で使用した。
[Separation film formation]
Using a constant-speed coating device (trade name: TQC fully automatic film applicator, manufactured by Cortec) with a constant clearance, a solution of N, N-dimethylformamide (DMF) of polysulfone resin was applied to the coated surface of the semipermeable membrane support. Concentration: 18%) was applied to a thickness of 125 μm and phase-separated in a coagulation bath to prepare a porous polysulfone membrane. An aqueous solution A containing 2% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was brought into contact with the porous polysulfone film, and then the excess aqueous solution A was removed to form a coating layer of the aqueous solution A. .. Next, a solution B containing 0.3% by mass of trimesic acid chloride was brought into contact with the surface of the coating layer of the aqueous solution A, and the excess solution B was discharged. Then, it was dried at 120 ° C. to form a separation functional layer, and a separation membrane in which a composite semipermeable membrane composed of a porous polysulfone membrane and a separation functional layer was provided on a coating surface of a semipermeable membrane support was obtained. The obtained separation membrane was used in the following measurement of the average area of the remaining semipermeable membrane, measurement of the residual ratio of the semipermeable membrane, evaluation of defects of the semipermeable membrane, and evaluation of membrane peeling strength.

[残存した半透膜の平均面積]
分離膜を風乾した後、MD方向を長辺として25mm×150mmの短冊状にカットし、分離膜面に両面テープ(商品名:ナイスタック(登録商標)NW-25、ニチバン社製)を貼り付け、膜剥離強度測定用試料を得た。定速緊張形引張試験機「シングルコラム型材料試験機、型番:STB-1225S」(エー・アンド・デイ社製)と用いて、チャック間距離20mmに設定し、チャックの移動速度50mm/minで、半透膜を半透膜支持体から剥離した。
[Average area of remaining semipermeable membrane]
After air-drying the separation film, cut it into strips of 25 mm x 150 mm with the MD direction as the long side, and attach double-sided tape (trade name: Nystack (registered trademark) NW-25, manufactured by Nichiban Co., Ltd.) to the separation film surface. , A sample for measuring the peeling strength of the film was obtained. Using a constant speed tension type tensile tester "single column type material tester, model number: STB-1225S" (manufactured by A & D Co., Ltd.), the distance between chucks is set to 20 mm, and the chuck movement speed is 50 mm / min. , The semipermeable membrane was peeled off from the semipermeable membrane support.

半透膜を剥離した半透膜支持体の塗布面を、走査電子顕微鏡(製品名:JSM-6610LV、日本電子社製)を用いて、倍率100倍で二次電子、加速電圧20kV、スポットサイズ70で、硫黄(S)元素のマッピング分析(観察サイズ:1285μm×970μm)を行った。1つの半透膜支持体の塗布面につき、測定点数5点のマッピング分析を行った。 Using a scanning electron microscope (product name: JSM-6610LV, manufactured by JEOL Ltd.), the coated surface of the semitransparent film support from which the semitransparent film has been peeled off has secondary electrons at a magnification of 100 times, an acceleration voltage of 20 kV, and a spot size. At 70, a mapping analysis of the sulfur (S) element (observation size: 1285 μm × 970 μm) was performed. A mapping analysis of 5 measurement points was performed on the coated surface of one semipermeable membrane support.

得られたマッピング画像のコピーの上に透明シートを重ね、黒いペン等を用いて、硫黄(S)元素の検出部分を黒く塗り潰し、その後透明シートを白紙にコピーすることにより、硫黄(S)元素検出部分は黒、非検出部分は白と明確に区別した。硫黄(S)元素検出部分がマッピング画像の境界と接する場合は、測定対象とみなさなかった。 A transparent sheet is placed on the copy of the obtained mapping image, the detected portion of the sulfur (S) element is painted black using a black pen or the like, and then the transparent sheet is copied to a blank sheet to obtain the sulfur (S) element. The detected part was clearly distinguished from black, and the non-detected part was clearly distinguished from white. When the sulfur (S) element detection portion touched the boundary of the mapping image, it was not considered as a measurement target.

画像解析ソフト「ImageJ」を利用して、二値化を行い、測定点数1点の硫黄(S)元素検出部分の面積(個々の面積)を求め、個々の面積の平均値を算出した。同様に各測定点における、それぞれの硫黄(S)元素検出部分の個々の面積の平均値を算出し、測定点数5点の平均値を「残存した半透膜の平均面積」とした。 Using the image analysis software "ImageJ", binarization was performed, the area (individual area) of the sulfur (S) element detection portion having one measurement point was obtained, and the average value of each area was calculated. Similarly, the average value of the individual areas of the sulfur (S) element detection portions at each measurement point was calculated, and the average value of the five measurement points was defined as the "average area of the remaining semipermeable membrane".

[半透膜の残存率]
半透膜を剥離した半透膜支持体の塗布面を、走査電子顕微鏡(製品名:JSM-6610LV、日本電子社製)を用いて、倍率100倍で二次電子、加速電圧20kV、スポットサイズ70で、硫黄(S)元素のマッピング分析(観察サイズ:1285μm×970μm)を行った。1つの半透膜支持体の塗布面につき、測定点数5点のマッピング分析を行った。
[Residual rate of semipermeable membrane]
Using a scanning electron microscope (product name: JSM-6610LV, manufactured by JEOL Ltd.), the coated surface of the semitransparent film support from which the semitransparent film has been peeled off has secondary electrons at a magnification of 100 times, an acceleration voltage of 20 kV, and a spot size. At 70, a mapping analysis of the sulfur (S) element (observation size: 1285 μm × 970 μm) was performed. A mapping analysis of 5 measurement points was performed on the coated surface of one semipermeable membrane support.

得られたマッピング画像のコピーの上に透明シートを重ね、黒いペン等を用いて、硫黄(S)元素の検出部分を黒く塗り潰し、その後透明シートを白紙にコピーすることにより、硫黄(S)元素検出部分は黒、非検出部分は白と明確に区別した。硫黄(S)元素検出部分がマッピング画像の境界と接する場合は、測定対象とみなさなかった。 A transparent sheet is placed on the copy of the obtained mapping image, the detected portion of the sulfur (S) element is painted black using a black pen or the like, and then the transparent sheet is copied to a blank sheet to obtain the sulfur (S) element. The detected part was clearly distinguished from black, and the non-detected part was clearly distinguished from white. When the sulfur (S) element detection portion touched the boundary of the mapping image, it was not considered as a measurement target.

画像解析ソフト「ImageJ」を利用して、二値化を行い、測定点数1点の硫黄(S)元素検出部分の面積(個々の面積)を求め、個々の面積を加算した総面積とマッピング画像面積(画像面積:1246450μm、観察サイズ:1285μm×970μm)から、マッピング画像中の硫黄元素の占有率を算出した。同様に各測定点における、それぞれの硫黄(S)元素検出部分の総面積とマッピング画像面積からマッピング画像中の硫黄元素の占有率を算出し、測定点数5点の平均値を「半透膜の残存率」とした。 Using the image analysis software "ImageJ", binarization is performed, the area (individual area) of the sulfur (S) element detection part with one measurement point is obtained, and the total area and mapping image obtained by adding the individual areas. From the area (image area: 1246450 μm 2 , observation size: 1285 μm × 970 μm), the occupancy rate of the sulfur element in the mapped image was calculated. Similarly, the occupancy rate of sulfur elements in the mapping image is calculated from the total area of each sulfur (S) element detection portion and the mapping image area at each measurement point, and the average value of 5 measurement points is "semipermeable membrane". Residual rate ”.

[アンチモン元素溶出量の測定]
繊維又は半透膜支持体1.6gを、比抵抗18.2MΩ・cm、温度25℃の超純水0.20Lに24時間浸漬させ、溶出液30mLを採取し、これに硝酸(キシダ化学(株)、精密分析用、濃度60%)1μLを添加した後、誘導結合プラズマ質量分析装置(ICP-MS)(装置名:iCAP-Qc、Thermo Fisher Scientific社製)にて、溶出液に含まれるアンチモン元素含有量を測定した上、検量線法により定量した。さらに、アンチモン元素溶出量を下式にて算出した。なお、該ICP-MSのアンチモン定量下限値は0.1ppbであり、該測定に使用した超純水のアンチモン含有量は定量下限値以下であった。
[Measurement of antimony element elution amount]
1.6 g of fiber or semi-transparent film support was immersed in 0.20 L of ultrapure water having a specific resistance of 18.2 MΩ · cm and a temperature of 25 ° C. for 24 hours, and 30 mL of the eluate was collected. Co., Ltd., for precision analysis, concentration 60%) After adding 1 μL, it is contained in the eluate by an inductively coupled plasma mass spectrometer (ICP-MS) (device name: iCAP-Qc, manufactured by Thermo Fisher Scientific). After measuring the antimony element content, it was quantified by the calibration linear method. Further, the amount of antimony element eluted was calculated by the following formula. The lower limit of antimony quantification of the ICP-MS was 0.1 ppb, and the antimony content of the ultrapure water used for the measurement was equal to or less than the lower limit of quantification.

<式1>
繊維又は半透膜支持体のアンチモン元素溶出量(μg/g)=溶出液のアンチモン元素含有量(μg/L)×溶出試験に使用した超純水の容積(L)/繊維又は半透膜支持体の質量(g)
<Equation 1>
Antimony element elution amount (μg / g) of fiber or semipermeable membrane support = Antimony element content (μg / L) of eluent x volume of ultrapure water used in elution test (L) / fiber or semipermeable membrane Support mass (g)

[半透膜欠点評価]
分離膜を14cm×19cmに断裁し、平膜試験装置(商品名:SEPA CFII、Suez社)にセットした。200ppmの染料(ダイレクトブルー1、分子量:993)を含む水溶液を、25℃で膜の供給側と透過側の膜間差圧1.5MPaで通液した。その後、複合半透膜表面に堆積している染料を純水で洗い流し、分離膜を乾燥させ、染色部分(膜欠点部分)の数を測定した。
[Semipermeable membrane defect evaluation]
The separation membrane was cut into 14 cm × 19 cm and set in a flat membrane test device (trade name: SEPA CFII, SUEZ). An aqueous solution containing a 200 ppm dye (Direct Blue 1, molecular weight: 993) was passed at 25 ° C. at a differential pressure of 1.5 MPa between the membrane supply side and the permeation side. Then, the dye accumulated on the surface of the composite semipermeable membrane was washed away with pure water, the separation membrane was dried, and the number of dyed portions (membrane defect portions) was measured.

「0~1箇所」:非常に良好なレベル。
「2~3箇所」:良好なレベル。
「4~6箇所」:使用可能なレベル。
「7箇所以上」:膜性能が劣り、使用不可レベル。
"0 to 1 place": Very good level.
"2 to 3 places": Good level.
"4 to 6 places": Usable level.
"7 or more places": Membrane performance is inferior and cannot be used.

[半透膜裏抜け]
一定のクリアランスを有する定速塗布装置(商品名:Automatic Film Applicator、安田精機製作所社製)を用いて、台紙の上に半透膜支持体をセットし、半透膜支持体の塗布面に黒色の油性インキを混合したポリスルホン樹脂のDMF溶液(濃度:18%)を塗布し、塗布後に半透膜支持体を貫通して台紙に写ったポリスルホン樹脂の量を目視で観察し、半透膜の裏抜け評価を行った。
[Semipermeable membrane strike through]
Using a constant-speed coating device with a certain clearance (trade name: Automatic Film Applicator, manufactured by Yasuda Seiki Seisakusho Co., Ltd.), set the semipermeable membrane support on the mount, and black on the coated surface of the semipermeable membrane support. Apply a DMF solution (concentration: 18%) of polysulfone resin mixed with the oil-based ink of the above, and after application, visually observe the amount of polysulfone resin reflected on the mount through the semipermeable membrane support, and observe the amount of polysulfone resin reflected in the semipermeable membrane. A strike-through evaluation was performed.

「1」:全く裏抜けしていない。非常に良好なレベル。
「2」:小さな点状で、ごくわずかに裏抜けしている。良好なレベル。
「3」:小さな点状で、裏抜けしている。実用上、使用可能レベル。
「4」:大きな点状で、多く裏抜けしている。実用上、使用不可レベル。
"1": No strike-through. Very good level.
"2": Small dots, very slightly strike-through. Good level.
"3": It is a small dot and strikes through. Practically usable level.
"4": Large dots, many strike through. Practically unusable level.

[膜剥離強度]
分離膜を風乾した後、MD方向を長辺として25mm×150mmの短冊状にカットし、分離膜面に両面テープ(商品名:ナイスタック(登録商標)NW-25、ニチバン社製)を貼り付け、膜剥離強度測定用試料を得た。定速緊張形引張試験機「シングルコラム型材料試験機、型番:STB-1225S」(エー・アンド・デイ社製)と用いて、チャック間距離20mmに設定し、チャックの移動速度50mm/minとして、T型剥離試験を行い、試験開始から移動量20mm~80mmの剥離強度の平均を算出することにより、剥離強度を得た。各試料について、得られた10個の剥離強度の平均値を表3に示している。
[Membrane peeling strength]
After air-drying the separation film, cut it into strips of 25 mm x 150 mm with the MD direction as the long side, and attach double-sided tape (trade name: Nystack (registered trademark) NW-25, manufactured by Nichiban Co., Ltd.) to the separation film surface. , A sample for measuring the peeling strength of the film was obtained. Using a constant speed tension type tensile tester "single column type material tester, model number: STB-1225S" (manufactured by A & D Co., Ltd.), set the distance between chucks to 20 mm and set the chuck movement speed to 50 mm / min. , T-type peeling test was performed, and the peeling strength was obtained by calculating the average peeling strength of the moving amount of 20 mm to 80 mm from the start of the test. Table 3 shows the average value of the 10 peel strengths obtained for each sample.

Figure 0007102572000003
Figure 0007102572000003

実施例1~20の半透膜支持体は、主体合成繊維とバインダー合成繊維とを含有する湿式不織布からなり、半透膜が設けられる塗布面の繊維配向強度が1.00以上1.30以下、非塗布面の繊維配向強度が1.00以上1.50以下であり、かつ半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm以下であり、半透膜の残存率が2.5%以上5.0%以下であるため、半透膜の欠点が少なく、半透膜が裏抜けし難く、半透膜と半透膜支持体の膜剥離強度が高いことが分かった。 The semipermeable membrane supports of Examples 1 to 20 are made of a wet non-woven fabric containing a main synthetic fiber and a binder synthetic fiber, and the fiber orientation strength of the coated surface on which the semipermeable membrane is provided is 1.00 or more and 1.30 or less. On the coated surface of the semipermeable membrane support when the fiber orientation strength of the non-coated surface is 1.00 or more and 1.50 or less and the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support. Since the average area of the remaining semipermeable membrane is 500 μm 2 or less and the residual rate of the semipermeable membrane is 2.5% or more and 5.0% or less, there are few defects of the semipermeable membrane and the semipermeable membrane strikes through. It was difficult to do so, and it was found that the semipermeable membrane and the semipermeable membrane support had high peeling strength.

実施例1及び実施例5~8の比較、並びに実施例9及び実施例11~12の比較から半透膜支持体の塗布面及び非塗布面の繊維配向強度は、抄造条件及び繊維配合によって調整可能であることが分かる。 From the comparison of Examples 1 and 5 to 8 and the comparison of Examples 9 and 11 to 12, the fiber orientation strength of the coated surface and the non-coated surface of the semipermeable membrane support is adjusted according to the papermaking conditions and the fiber composition. It turns out that it is possible.

実施例1と比較例1、実施例3と比較例2、実施例7と比較例4、実施例10と比較例5の半透膜支持体をそれぞれ比較すると、抄造速度を上げ、抄き水量及びJ/W比を下げると、透膜塗布面の繊維配向強度が1.30を超え、非当面の繊維配向強度が1.50を超え、半透膜浸透面積が500μmを超え、半透膜の残存率が2.0%を下回るため、膜剥離強度が低い結果であった。 Comparing the semipermeable membrane supports of Example 1 and Comparative Example 1, Example 3 and Comparative Example 2, Example 7 and Comparative Example 4, and Example 10 and Comparative Example 5, the fabrication speed was increased and the amount of water extracted was increased. When the J / W ratio is lowered, the fiber orientation strength of the permeable membrane coated surface exceeds 1.30, the fiber orientation strength of the non-immediate surface exceeds 1.50, the semipermeable membrane permeation area exceeds 500 μm 2 , and the semipermeable membrane is semipermeable. Since the residual rate of the film was less than 2.0%, the result was that the peeling strength of the film was low.

バインダー合成繊維の含有量が35%である実施例1の半透膜支持体と、バインダー合成繊維の含有量が30%である実施例9の半透膜支持体と、バインダー合成繊維の含有量が25%である実施例13の半透膜支持体を比較すると、バインダー合成繊維の含有量が増加すると、膜剥離強度が高くなることが分かる。一方、実施例13のPET繊維1を、Sb元素溶出量が多いPET繊維3に変えた比較例7は、半透膜の欠点及び半透膜裏抜けが悪くなり、膜剥離強度が低下することが分かる。 The content of the semipermeable membrane support of Example 1 in which the content of the binder synthetic fiber is 35%, the semipermeable membrane support of Example 9 in which the content of the binder synthetic fiber is 30%, and the content of the binder synthetic fiber. Comparing the semipermeable membrane supports of Example 13 in which the content is 25%, it can be seen that the membrane peeling strength increases as the content of the binder synthetic fiber increases. On the other hand, in Comparative Example 7 in which the PET fiber 1 of Example 13 was changed to the PET fiber 3 having a large amount of Sb element elution, the defects of the semipermeable membrane and the semipermeable membrane strike-through were deteriorated, and the film peeling strength was lowered. I understand.

塗布面の繊維配向強度が1.00以上1.30以下、非塗布面の繊維配向強度が1.00以上1.50以下であり、半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm以下、半透膜の残存率が2.5%以上5.0%以下であり、半透膜支持体のSb元素溶出量が1.5μg/g未満である実施例1の半透膜支持体に対し、塗布面の繊維配向強度が1.00以上1.30以下、非塗布面の繊維配向強度が1.00以上1.50以下であり、半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm以下、半透膜の残存率が2.5%以上5.0%以下であり、半透膜支持体のSb元素溶出量が1.5μg/gを超える実施例20の半透膜支持体は、使用可能レベルであるが、半透膜欠点が増加し、膜剥離強度が低下することが分かる。 The fiber orientation strength of the coated surface is 1.00 or more and 1.30 or less, the fiber orientation strength of the non-coated surface is 1.00 or more and 1.50 or less, and the semipermeable membrane is formed at the interface between the semipermeable membrane and the semipermeable membrane support. The average area of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support when the semipermeable membrane was peeled off was 500 μm 2 or less, the residual rate of the semipermeable membrane was 2.5% or more and 5.0% or less, and the semipermeable membrane. With respect to the semipermeable membrane support of Example 1 in which the amount of Sb element eluted from the support is less than 1.5 μg / g, the fiber orientation strength of the coated surface is 1.00 or more and 1.30 or less, and the fiber orientation of the non-coated surface is The average area of the semipermeable membrane remaining on the coated surface of the semipermeable membrane support when the strength is 1.00 or more and 1.50 or less and the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support. Is 500 μm 2 or less, the residual rate of the semipermeable membrane is 2.5% or more and 5.0% or less, and the amount of Sb element eluted from the semipermeable membrane support exceeds 1.5 μg / g. It can be seen that the support is at a usable level, but the semipermeable membrane defects increase and the membrane peeling strength decreases.

塗布面が円網面である実施例1、2、9の半透膜支持体に対し、塗布面が傾斜ワイヤー面である実施例3、4、10において、実施例1と実施例3、実施例2と実施例4、実施例9と実施例10をそれぞれ比較すると、傾斜ワイヤー面に比べ円網面の塗布面の繊維配向強度が低いため、半透膜欠点が少なくなることが分かる。 In Examples 3, 4 and 10 in which the coating surface is an inclined wire surface with respect to the semipermeable membrane supports of Examples 1, 2 and 9 in which the coating surface is a circular mesh surface, Examples 1 and 3 are carried out. Comparing Example 2 and Example 4, and Example 9 and Example 10, it can be seen that the fiber orientation strength of the coated surface of the circular mesh surface is lower than that of the inclined wire surface, so that the defects of the semipermeable membrane are reduced.

原紙製造時に二段階分散を行った実施例1の半透膜支持体に対し、二段階分散を行わなかった比較例6の半透膜支持体は、半透膜塗布面の繊維配向強度が1.30を超え、非当面の繊維配向強度が1.50を超え、半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μmを超え、半透膜の残存率が2.5%を下回るため、膜剥離強度が低い結果であった。 The semipermeable membrane support of Comparative Example 6 in which the two-step dispersion was not performed has a fiber orientation strength of 1 on the semipermeable membrane-coated surface, as opposed to the semipermeable membrane support of Example 1 in which the two-step dispersion was performed during the production of the base paper. The half remaining on the coated surface of the semipermeable membrane support when the semipermeable membrane was peeled off at the interface between the semipermeable membrane and the semipermeable membrane support, exceeding .30 and the non-immediate fiber orientation strength exceeded 1.50. Since the average area of the permeable membrane exceeds 500 μm 2 and the residual rate of the semipermeable membrane is less than 2.5%, the result is that the membrane peeling strength is low.

実施例1及び2と比較例3との比較から、第2ステージの熱ロールの温度が低かった比較例3は、半透膜の残存率が高く、半透膜の裏抜けが発生し、膜剥離強度も低かった。 From the comparison between Examples 1 and 2 and Comparative Example 3, in Comparative Example 3 in which the temperature of the heat roll in the second stage was low, the residual rate of the semipermeable membrane was high, the semipermeable membrane strike-through occurred, and the membrane was formed. The peel strength was also low.

Sb元素溶出量が多いPET繊維3及び4を配合し、第1ステージのロールの組み合わせを金属ロール-金属ロールに変えた比較例8は、半透膜の残存率が2.5%より低いため、膜剥離強度が低いことが分かる。 In Comparative Example 8 in which PET fibers 3 and 4 having a large amount of Sb element eluted were blended and the roll combination of the first stage was changed to a metal roll-metal roll, the residual rate of the semipermeable membrane was lower than 2.5%. It can be seen that the film peeling strength is low.

本発明の半透膜支持体は、海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で利用することができる。 The semipermeable membrane support of the present invention can be used in fields such as seawater desalination, water purifiers, food concentration, wastewater treatment, medical use represented by hemofiltration, and ultrapure water production for semiconductor cleaning. can.

Claims (3)

主体合成繊維とバインダー合成繊維とを含有する湿式不織布からなる半透膜支持体において、半透膜が設けられる塗布面の繊維配向強度が1.00以上1.30以下、非塗布面の繊維配向強度が1.00以上1.50以下であり、かつ半透膜と半透膜支持体の界面で半透膜を剥離した際の半透膜支持体の塗布面に残存した半透膜の平均面積が500μm以下であり、半透膜の残存率が2.5%以上5.0%以下であることを特徴とする半透膜支持体。 In a semipermeable membrane support made of a wet non-woven fabric containing a main synthetic fiber and a binder synthetic fiber, the fiber orientation strength of the coated surface on which the semipermeable membrane is provided is 1.00 or more and 1.30 or less, and the fiber orientation of the non-coated surface. The average of the semipermeable membranes remaining on the coated surface of the semipermeable membrane support when the strength is 1.00 or more and 1.50 or less and the semipermeable membrane is peeled off at the interface between the semipermeable membrane and the semipermeable membrane support. A semipermeable membrane support having an area of 500 μm 2 or less and a semipermeable membrane residual rate of 2.5% or more and 5.0% or less. 半透膜支持体のアンチモン元素溶出量が1.5μg/g未満である請求項1に記載の半透膜支持体。 The semipermeable membrane support according to claim 1, wherein the amount of antimony element eluted from the semipermeable membrane support is less than 1.5 μg / g. 請求項1及び請求項2のいずれか記載の半透膜支持体を製造する半透膜支持体の製造方法において、バインダー合成繊維を分散した後に主体合成繊維を分散して得られる繊維分散液から湿式抄造法によって半透膜支持体を製造することを特徴とする半透膜支持体の製造方法。 In the method for producing a semipermeable membrane support for producing the semipermeable membrane support according to any one of claims 1 and 2, the fiber dispersion obtained by dispersing the main synthetic fiber after dispersing the binder synthetic fiber is used. A method for producing a semipermeable membrane support, which comprises producing a semipermeable membrane support by a wet fabrication method.
JP2021060282A 2021-03-31 2021-03-31 Method for manufacturing semipermeable membrane support and semipermeable membrane support Active JP7102572B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021060282A JP7102572B1 (en) 2021-03-31 2021-03-31 Method for manufacturing semipermeable membrane support and semipermeable membrane support
EP22780530.6A EP4316633A1 (en) 2021-03-31 2022-03-25 Semipermeable membrane support and method for manufacturing semipermeable membrane support
CN202280010437.6A CN116710196A (en) 2021-03-31 2022-03-25 Semipermeable membrane support and method for manufacturing semipermeable membrane support
PCT/JP2022/014217 WO2022210316A1 (en) 2021-03-31 2022-03-25 Semipermeable membrane support and method for manufacturing semipermeable membrane support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060282A JP7102572B1 (en) 2021-03-31 2021-03-31 Method for manufacturing semipermeable membrane support and semipermeable membrane support

Publications (2)

Publication Number Publication Date
JP7102572B1 true JP7102572B1 (en) 2022-07-19
JP2022156539A JP2022156539A (en) 2022-10-14

Family

ID=82457386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060282A Active JP7102572B1 (en) 2021-03-31 2021-03-31 Method for manufacturing semipermeable membrane support and semipermeable membrane support

Country Status (2)

Country Link
JP (1) JP7102572B1 (en)
CN (1) CN116710196A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156680A (en) 1998-12-23 2000-12-05 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
JP2010194478A (en) 2009-02-26 2010-09-09 Teijin Fibers Ltd Wet nonwoven fabric for separation membrane and separation membrane support
JP2012161725A (en) 2011-02-04 2012-08-30 Daio Paper Corp Semipermeable membrane support, semipermeable membrane for water treatment, and method for manufacturing semipermeable membrane support
JP2014128769A (en) 2012-12-28 2014-07-10 Daio Paper Corp Semipermeable membrane support, method for producing semipermeable membrane support and semipermeable membrane
JP2017170293A (en) 2016-03-22 2017-09-28 三菱製紙株式会社 Semi-permeable membrane support
JP2019118907A (en) 2018-01-11 2019-07-22 三菱製紙株式会社 Substrate for semipermeable membrane
JP2020163321A (en) 2019-03-29 2020-10-08 三菱製紙株式会社 Support medium of semipermeable membrane for membrane separation activated sludge treatment and filtration film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156680A (en) 1998-12-23 2000-12-05 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
JP2010194478A (en) 2009-02-26 2010-09-09 Teijin Fibers Ltd Wet nonwoven fabric for separation membrane and separation membrane support
JP2012161725A (en) 2011-02-04 2012-08-30 Daio Paper Corp Semipermeable membrane support, semipermeable membrane for water treatment, and method for manufacturing semipermeable membrane support
JP2014128769A (en) 2012-12-28 2014-07-10 Daio Paper Corp Semipermeable membrane support, method for producing semipermeable membrane support and semipermeable membrane
JP2017170293A (en) 2016-03-22 2017-09-28 三菱製紙株式会社 Semi-permeable membrane support
JP2019118907A (en) 2018-01-11 2019-07-22 三菱製紙株式会社 Substrate for semipermeable membrane
JP2020163321A (en) 2019-03-29 2020-10-08 三菱製紙株式会社 Support medium of semipermeable membrane for membrane separation activated sludge treatment and filtration film

Also Published As

Publication number Publication date
CN116710196A (en) 2023-09-05
JP2022156539A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
KR101757491B1 (en) Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
JP5216229B2 (en) Semipermeable membrane support
WO2020004462A1 (en) Semipermeable membrane support for membrane bioreactor treatment
JP2016140785A (en) Semipermeable membrane support
JP6634180B1 (en) Support for semipermeable membrane for activated sludge treatment with membrane separation
JP2017170293A (en) Semi-permeable membrane support
JP2012106177A (en) Semipermeable membrane support
JP2017121606A (en) Semi-permeable membrane support for membrane separation active sludge treatment and filtering membrane
JP2020163321A (en) Support medium of semipermeable membrane for membrane separation activated sludge treatment and filtration film
CN113329803B (en) Wet nonwoven fabric, preparation method thereof and water treatment membrane comprising same
JP2014180638A (en) Method for manufacturing semipermeable membrane
JP5809583B2 (en) Semipermeable membrane support
JP7102572B1 (en) Method for manufacturing semipermeable membrane support and semipermeable membrane support
JP7102571B1 (en) Method for manufacturing semipermeable membrane support and semipermeable membrane support
JP2021137742A (en) Semipermeable film support body
JP2015058409A (en) Semipermeable membrane support
JP2013139030A (en) Semipermeable membrane support and method of manufacturing the same
WO2022210316A1 (en) Semipermeable membrane support and method for manufacturing semipermeable membrane support
JP2020146606A (en) Semipermeable membrane support body
KR20210111257A (en) Semipermeable membrane support and method for manufacturing semipermeable membrane support
JP2014180639A (en) Method for manufacturing semipermeable membrane
JP7341905B2 (en) semipermeable membrane support
JP6018514B2 (en) Method for producing semipermeable membrane support
JP5809588B2 (en) Semipermeable membrane support
JP2021053595A (en) Semipermeable membrane support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7102572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150