JP7102571B1 - Method for manufacturing semipermeable membrane support and semipermeable membrane support - Google Patents

Method for manufacturing semipermeable membrane support and semipermeable membrane support Download PDF

Info

Publication number
JP7102571B1
JP7102571B1 JP2021060281A JP2021060281A JP7102571B1 JP 7102571 B1 JP7102571 B1 JP 7102571B1 JP 2021060281 A JP2021060281 A JP 2021060281A JP 2021060281 A JP2021060281 A JP 2021060281A JP 7102571 B1 JP7102571 B1 JP 7102571B1
Authority
JP
Japan
Prior art keywords
semipermeable membrane
membrane support
fiber
synthetic fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021060281A
Other languages
Japanese (ja)
Other versions
JP2022156538A (en
Inventor
圭輔 宮城
光男 吉田
由理 野上
真一 江角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2021060281A priority Critical patent/JP7102571B1/en
Priority to EP22780530.6A priority patent/EP4316633A1/en
Priority to PCT/JP2022/014217 priority patent/WO2022210316A1/en
Application granted granted Critical
Publication of JP7102571B1 publication Critical patent/JP7102571B1/en
Publication of JP2022156538A publication Critical patent/JP2022156538A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Paper (AREA)

Abstract

【課題】本発明の課題は、半透膜の欠点が少なく、塩阻止率が向上する半透膜支持体を提供することである。【解決手段】主体合成繊維とバインダー合成繊維とを含有する湿式不織布からなる半透膜支持体において、テープ剥離試験での離脱繊維が30本以下であり、かつ共焦点レーザー顕微鏡によって半透膜が設けられる塗布面の表面粗さを測定して得られるコア部のレベル差が14μm以下であることを特徴とする半透膜支持体。【選択図】なしAn object of the present invention is to provide a semipermeable membrane support which has few defects of the semipermeable membrane and has an improved salt rejection rate. A semipermeable membrane support made of a wet-laid nonwoven fabric containing a main synthetic fiber and a binder synthetic fiber has 30 or less detached fibers in a tape peeling test, and the semipermeable membrane is separated by a confocal laser microscope. A semipermeable membrane support, wherein the difference in level of the core portion obtained by measuring the surface roughness of the coating surface provided is 14 μm or less. [Selection figure] None

Description

本発明は、半透膜支持体及び半透膜支持体の製造方法に関する。 The present invention relates to a semipermeable membrane support and a method for manufacturing a semipermeable membrane support.

海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で、半透膜が広く用いられている。半透膜は、セルロース系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、フッ素系樹脂、ポリエステル系樹脂等の合成樹脂で構成されている。しかしながら、半透膜単体では機械的強度に劣るため、不織布や織布等の繊維基材からなる半透膜支持体の片面に半透膜が設けられた複合体の形態である分離膜として使用されている。半透膜支持体の半透膜が設けられる面を「塗布面」と称し、反対側の面を「非塗布面」と称す。 Semipermeable membranes are widely used in fields such as seawater desalination, water purifiers, food concentration, wastewater treatment, medical use represented by hemofiltration, and ultrapure water production for semiconductor cleaning. The semipermeable membrane is composed of a synthetic resin such as a cellulosic resin, a polysulfone resin, a polyacrylonitrile resin, a fluorine resin, and a polyester resin. However, since the semipermeable membrane alone is inferior in mechanical strength, it is used as a separation membrane in the form of a composite in which a semipermeable membrane is provided on one side of a semipermeable membrane support made of a fiber base material such as a non-woven fabric or a woven fabric. Has been done. The surface of the semipermeable membrane support on which the semipermeable membrane is provided is referred to as a "coated surface", and the surface on the opposite side is referred to as a "non-coated surface".

主に、半透膜支持体としては、合成繊維を含有する不織布が用いられる。特に、ポリエステル系湿式不織布が多く使用されている(例えば、特許文献1及び2参照)。これらの半透膜支持体を構成するポリエステル繊維の重合触媒には、従来、三酸化アンチモンに代表されるアンチモン化合物が広く用いられている。三酸化アンチモンは安価で、優れた触媒活性を有するが、近年、環境面からアンチモンの安全性に対する問題が欧米をはじめ各国で指摘されている。 As the semipermeable membrane support, a non-woven fabric containing synthetic fibers is mainly used. In particular, polyester-based wet non-woven fabrics are often used (see, for example, Patent Documents 1 and 2). Conventionally, antimony compounds typified by antimony trioxide have been widely used as polymerization catalysts for polyester fibers constituting these semipermeable membrane supports. Antimony trioxide is inexpensive and has excellent catalytic activity, but in recent years, environmental problems have been pointed out in various countries including Europe and the United States.

また、半透膜支持体に要求される性能としては、半透膜と半透膜支持体との接着性が良好であること、半透膜を設けるために、半透膜溶液が半透膜支持体に塗布された際に、半透膜溶液が非塗布面に裏抜けしないこと、半透膜に欠点が少ないこと等が挙げられる。 Further, as the performance required for the semipermeable membrane support, the adhesion between the semipermeable membrane and the semipermeable membrane support is good, and in order to provide the semipermeable membrane, the semipermeable membrane solution is a semipermeable membrane. When applied to the support, the semipermeable membrane solution does not strike through to the non-coated surface, and the semipermeable membrane has few defects.

半透膜溶液が裏抜けしないように、半透膜支持体の均一性を高めることを目的として、合成繊維を水に分散した繊維スラリーを湿式抄造して不織布とする工程において、抄紙時における該繊維スラリーの繊維分濃度を0.01~0.1質量%とし、かつ、該繊維スラリーに、高分子粘剤として、分子量500万以上の水溶性高分子を、繊維分質量を基準として3~15質量%含有させて抄紙する方法が提案されている(例えば、特許文献3参照)。しかし、高分子粘剤が過剰に添加されているため、均一性は高まるが、抄紙網上での繊維スラリー粘度が高まって、抄紙網からの脱水性が低下して、生産速度が上げられないという問題が起こる可能性があった。また、抄紙後の半透膜支持体を形成する繊維表面に高分子粘剤が残留するという問題もあった。 In the step of wet-making a fiber slurry in which synthetic fibers are dispersed in water to form a non-woven fabric, for the purpose of improving the uniformity of the semi-transparent film support so that the semi-transparent solution does not strike through, the said at the time of paper making. The fiber content concentration of the fiber slurry is 0.01 to 0.1% by mass, and a water-soluble polymer having a molecular weight of 5 million or more is added to the fiber slurry as a polymer viscous agent from 3 to 3 based on the fiber content mass. A method of making paper with a content of 15% by mass has been proposed (see, for example, Patent Document 3). However, since the polymer viscous agent is excessively added, the uniformity is improved, but the viscosity of the fiber slurry on the papermaking net is increased, the dehydration property from the papermaking net is lowered, and the production rate cannot be increased. There was a possibility that the problem would occur. In addition, there is also a problem that the polymer viscous agent remains on the surface of the fiber forming the semipermeable membrane support after papermaking.

また、太い繊維を使用した表面粗度の大きな表面層(太い繊維層)と細い繊維を使用した緻密な構造の裏面層(細い繊維層)との二重構造を基本とした多層構造の不織布よりなる半透膜支持体が提案されている(例えば、特許文献4参照)。具体的には、太い繊維層を塗布面とし、細い繊維層を非塗布面とした半透膜支持体、細い繊維層を太い繊維層で挟み込み、塗布面と非塗布面の両方を太い繊維層とした半透膜支持体が記載されている。しかしながら、塗布面において、太い繊維を使用しているため、半透膜と半透膜支持体との接着性は向上するものの、平滑性が低く半透膜に欠点が生じやすいという問題があった。また、太い繊維を使用しているため、半透膜溶液が半透膜支持体の内部にまで入り込んでしまい、所望の半透膜の厚みを得るためには、大量の半透膜溶液が必要となるという問題があった。 Also, from a multilayer structure non-woven fabric based on a double structure consisting of a surface layer with a large surface roughness using thick fibers (thick fiber layer) and a back layer with a dense structure using fine fibers (thin fiber layer). A semi-transparent membrane support has been proposed (see, for example, Patent Document 4). Specifically, a semipermeable membrane support having a thick fiber layer as a coated surface and a thin fiber layer as a non-coated surface, and a thin fiber layer sandwiched between thick fiber layers, and both the coated surface and the non-coated surface are thick fiber layers. A semipermeable membrane support is described. However, since thick fibers are used on the coated surface, the adhesiveness between the semipermeable membrane and the semipermeable membrane support is improved, but there is a problem that the smoothness is low and the semipermeable membrane tends to have defects. .. In addition, since thick fibers are used, the semipermeable membrane solution penetrates into the inside of the semipermeable membrane support, and a large amount of semipermeable membrane solution is required to obtain the desired semipermeable membrane thickness. There was a problem that it became.

また、半透膜溶液が塗布された際に、半透膜支持体が幅方向に湾曲することによって、不均一な半透膜が製造されるという課題を解決するために、抄紙流れ方向と幅方向の引張強度比が2:1~1:1にあり、繊維の配向がばらけた状態である半透膜支持体が提案されている(例えば、特許文献1参照)。さらに、特許文献1では、半透膜と半透膜支持体の接着性を良くすること及び裏抜け防止を目的として、半透膜支持体の通気度やポアサイズを調整する方法が提案されている。しかしながら、このJIS L1096に準拠した通気度は、半透膜支持体の片面から半透膜支持体内部を通過して別の片面へ透過する空気の量を基に算出されており、塗布面の表面に塗布された半透膜溶液の非塗布面への裏抜けを正確に反映しているものではない。そのため、特許文献1で示された範囲の通気度を有する半透膜支持体に半透膜溶液を塗布した場合、半透膜溶液が裏抜けしてしまう場合があった。 Further, in order to solve the problem that a non-uniform semipermeable membrane is produced by bending the semipermeable membrane support in the width direction when the semipermeable membrane solution is applied, the paper flow direction and width are used. A semipermeable membrane support in which the tensile strength ratio in the direction is 2: 1 to 1: 1 and the fibers are in a disoriented state has been proposed (see, for example, Patent Document 1). Further, Patent Document 1 proposes a method of adjusting the air permeability and pore size of the semipermeable membrane support for the purpose of improving the adhesiveness between the semipermeable membrane and the semipermeable membrane support and preventing strike-through. .. However, the air permeability according to JIS L1096 is calculated based on the amount of air that passes from one side of the semipermeable membrane support through the inside of the semipermeable membrane support and permeates to the other side, and is calculated based on the amount of air that permeates the other side. It does not accurately reflect the strike-through of the semipermeable membrane solution applied to the surface to the non-applied surface. Therefore, when the semipermeable membrane solution is applied to the semipermeable membrane support having the air permeability in the range shown in Patent Document 1, the semipermeable membrane solution may strike through.

また、特許文献5では、半透膜支持体である湿式不織布シート上に局所スポット的に存在する欠点部分に半透膜溶液が塗布された場合、半透膜溶液の浸透性が部分的に変わって浸透しにくくなることによって、この部分の半透膜の厚みが極端に薄くなる場合や、半透膜表面がしわ状になる場合があるという課題を解決するために、湿式不織布を構成する合成繊維が疎な状態でシート密度が低くなっている箇所である低密度欠点を発生しにくくすることを目的として、湿式不織布の熱圧加工処理の回数、温度、ロールの種類を最適化する方法が提案されている。そして、特許文献5では、低密度欠点が無く、均一で、半透膜と半透膜支持体の接着性が良く、半透膜溶液が湿式不織布に浸透しすぎて半透膜が不均一になることを防ぐことができる半透膜支持体として、シート密度及び圧力損失を調整した半透膜支持体が提案されている。しかし、特許文献5で示された範囲のシート密度や圧力損失を有する半透膜支持体であっても、半透膜支持体の凸部による半透膜の欠点が発生する場合があった。 Further, in Patent Document 5, when the semipermeable membrane solution is applied to the defective portion locally existing on the wet non-woven sheet, which is the semipermeable membrane support, the permeability of the semipermeable membrane solution is partially changed. In order to solve the problem that the thickness of the semipermeable membrane in this portion may become extremely thin or the surface of the semipermeable membrane may become wrinkled due to the difficulty in penetrating, a synthesis constituting a wet non-woven fabric is performed. A method of optimizing the number of hot pressure processing of a wet non-woven film, the temperature, and the type of roll is used for the purpose of reducing the occurrence of low density defects, which is a place where the sheet density is low in a sparse fiber state. Proposed. Then, in Patent Document 5, there is no low density defect, it is uniform, the adhesion between the semipermeable membrane and the semipermeable membrane support is good, and the semipermeable membrane solution permeates the wet non-woven membrane too much and the semipermeable membrane becomes non-uniform. As a semipermeable membrane support that can prevent this from occurring, a semipermeable membrane support in which the sheet density and pressure loss are adjusted has been proposed. However, even a semipermeable membrane support having a sheet density and pressure loss in the range shown in Patent Document 5 may have a defect of the semipermeable membrane due to the convex portion of the semipermeable membrane support.

また、特許文献6では、半透膜の成膜工程で発生する欠点が少なく、半透膜を保持する樹脂フレームとの接着性が良好な膜分離活性汚泥処理用半透膜用支持体を得るために、延伸ポリエステル繊維と未延伸ポリエステル繊維とを含有してなる不織布であり、密度が0.50~0.70g/cmであり、内部結合強度が490mJ以上であることを特徴とする膜分離活性汚泥処理用半透膜用支持体が提案されている。そして、実施例では、半透膜用支持体の面強度の評価を行っている。具体的には、半透膜用支持体の表面に、透明粘着テープを空気が入らないように均一に貼り、充分に押し付けた後に、透明粘着テープをゆっくりと剥がし、透明粘着テープの粘着剤面に残った繊維の様子を目視によって評価を行い、粘着テープに繊維が貼り付くか否かを評価し、半透膜を設ける際の繊維脱落の指標としているが、半透膜の成膜性や欠点は評価されていない。 Further, in Patent Document 6, a support for semitransparent film for film separation active sludge treatment, which has few defects generated in the film forming process of the semitransparent film and has good adhesion to a resin frame holding the semitransparent film, is obtained. Therefore, it is a non-woven film containing stretched polyester fibers and unstretched polyester fibers, has a density of 0.50 to 0.70 g / cm 3 , and has an internal bond strength of 490 mJ or more. A semitransparent support for separating active sludge treatment has been proposed. Then, in the examples, the surface strength of the semipermeable membrane support is evaluated. Specifically, a transparent adhesive tape is evenly attached to the surface of the semi-transparent film support so as not to allow air to enter, and after sufficiently pressing the transparent adhesive tape, the transparent adhesive tape is slowly peeled off to form an adhesive surface of the transparent adhesive tape. The state of the fibers remaining in the adhesive tape is visually evaluated to evaluate whether or not the fibers adhere to the adhesive tape, and is used as an index for fiber shedding when the semitransparent film is provided. The shortcomings have not been evaluated.

また、特許文献7では、性能と加工性に優れた半透膜支持体を得るために、目付が10~200g/mの範囲内であり、表又は裏面の表面粗さの最大高さが500μm以内にあり、表裏の表面粗さの差が30μm以上であることを特徴とする半透膜支持体が提案されている。しかし、実施例において得られた半透膜支持体に半透膜を塗布し、加工性を評価しているものの、半透膜支持体に起因する半透膜の欠点の評価や半透膜成膜後の塩阻止率の評価はされていない。 Further, in Patent Document 7, in order to obtain a semipermeable membrane support having excellent performance and workability, the texture is in the range of 10 to 200 g / m 2 , and the maximum height of the surface roughness of the front or back surface is set. A semipermeable membrane support has been proposed, which is within 500 μm and has a difference in surface roughness between the front and back surfaces of 30 μm or more. However, although the semipermeable membrane is applied to the semipermeable membrane support obtained in the examples and the processability is evaluated, the defects of the semipermeable membrane caused by the semipermeable membrane support and the formation of the semipermeable membrane are evaluated. The post-membrane salt inhibition rate has not been evaluated.

特開2002-95937号公報JP-A-2002-95937 特開平10-225630号公報Japanese Unexamined Patent Publication No. 10-225630 特開2008-238147号公報Japanese Unexamined Patent Publication No. 2008-238147 特公平4-21526号公報Tokuho 4-21526 Gazette 国際公開第2012/090874号パンフレットInternational Publication No. 2012/090874 Pamphlet 特開2016-159197号公報Japanese Unexamined Patent Publication No. 2016-159197 特開2018-153758号公報JP-A-2018-153758

本発明の課題は、半透膜の欠点が少なく、塩阻止率が向上する半透膜支持体を提供することである。 An object of the present invention is to provide a semipermeable membrane support having few drawbacks of the semipermeable membrane and an improved salt inhibition rate.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、下記発明によって該課題を解決することができた。 As a result of diligent studies to solve the above problems, the present inventors have been able to solve the problems by the following inventions.

(1)主体合成繊維とバインダー合成繊維とを含有する湿式不織布からなる半透膜支持体において、テープ剥離試験での離脱繊維が30本以下であり、かつ共焦点レーザー顕微鏡によって半透膜が設けられる塗布面の表面粗さを測定して得られるコア部のレベル差が14μm以下であることを特徴とする半透膜支持体。
(2)主体合成繊維又はバインダー合成繊維におけるアンチモン元素溶出量が5μg/g未満である(1)に記載の半透膜支持体。
(3)半透膜支持体のアンチモン元素溶出量が1.5μg/g未満である(1)又は(2)に記載の半透膜支持体。
(4)(1)~(3)のいずれか記載の半透膜支持体を製造する半透膜支持体の製造方法において、バインダー合成繊維を分散した後に主体合成繊維を分散して得られる繊維分散液から湿式抄造法によって半透膜支持体を製造することを特徴とする半透膜支持体の製造方法。
(1) In a semipermeable membrane support made of a wet non-woven fabric containing a main synthetic fiber and a binder synthetic fiber, the number of detached fibers in the tape peeling test is 30 or less, and the semipermeable membrane is provided by a confocal laser microscope. A semipermeable membrane support characterized in that the level difference of the core portion obtained by measuring the surface roughness of the coated surface is 14 μm or less.
(2) The semipermeable membrane support according to (1), wherein the amount of antimony element eluted in the main synthetic fiber or the binder synthetic fiber is less than 5 μg / g.
(3) The semipermeable membrane support according to (1) or (2), wherein the amount of antimony element eluted from the semipermeable membrane support is less than 1.5 μg / g.
(4) In the method for producing a semipermeable membrane support according to any one of (1) to (3), the fiber obtained by dispersing the binder synthetic fiber and then the main synthetic fiber. A method for producing a semipermeable membrane support, which comprises producing a semipermeable membrane support from a dispersion liquid by a wet fabrication method.

本発明によれば、半透膜の欠点が少なく、塩阻止率が向上した半透膜支持体を得ることができる。 According to the present invention, it is possible to obtain a semipermeable membrane support having few defects of the semipermeable membrane and an improved salt blocking rate.

本発明の半透膜支持体は、主体合成繊維とバインダー合成繊維とを含有してなる湿式不織布からなり、テープ剥離試験において離脱繊維が30本以下であり、かつ共焦点レーザー顕微鏡によって半透膜が設けられる塗布面の表面粗さを測定して得られるコア部のレベル差が14μm以下であることを特徴とする。 The semipermeable membrane support of the present invention is made of a wet non-woven fabric containing a main synthetic fiber and a binder synthetic fiber, has 30 or less detached fibers in a tape peeling test, and is a semipermeable membrane by a confocal laser microscope. The level difference of the core portion obtained by measuring the surface roughness of the coated surface on which the is provided is 14 μm or less.

本発明において、特に断りの無い限り、離脱繊維は、単繊維でカウントする。すなわち、2本以上の繊維の側面同士が密着して平行に束状で存在する繊維束はそれぞれの繊維をカウントするものとする。 In the present invention, unless otherwise specified, the detached fibers are counted as single fibers. That is, the fiber bundles in which the side surfaces of two or more fibers are in close contact with each other and exist in parallel in a bundle form count each fiber.

本発明の半透膜支持体は、テープ剥離試験での離脱繊維が30本以下である半透膜支持体であるが、特に、半透膜が設けられる塗布面において、離脱繊維が30本以下である半透膜支持体である。離脱繊維とは、主体合成繊維とバインダー合成繊維の接着が甘く、物理的な衝撃や擦れにより半透膜支持体表面から離脱する繊維のことである。 The semipermeable membrane support of the present invention is a semipermeable membrane support in which the number of detached fibers in the tape peeling test is 30 or less. In particular, the number of detached fibers is 30 or less on the coated surface on which the semipermeable membrane is provided. Is a semipermeable membrane support. The detached fiber is a fiber that is loosely adhered between the main synthetic fiber and the binder synthetic fiber and is detached from the surface of the semipermeable membrane support by physical impact or rubbing.

半透膜支持体を湿式抄造法によって製造する本発明の半透膜支持体の製造方法において、離脱繊維を少なくする方法を説明する。離脱繊維を少なくするためには、主体合成繊維とバインダー合成繊維を繊維分散装置(パルパー)内で水に分散して繊維束を単繊維に解きほぐすことが重要となる。単繊維に解きほぐす方法は、分散剤の添加、パルパーにおける羽根の形状の最適化、パルパー底面と羽根のクリアランスの最適化、パルパータンクの壁面への堰板の設置等が挙げられる。次に、単繊維に解繊後、白水(希釈水)で繊維分散液を希釈して抄紙網に送液する工程においては、希釈された繊維分散液を攪拌装置で分散することにより、単繊維化の度合いを高められる。また、パルパーでの繊維分散後及び/又は繊維分散液希釈後に高分子粘剤として、分子量500万以上の水溶性高分子の水溶液を添加することでさらに単繊維化の度合いが高まる。 In the method for producing a semipermeable membrane support of the present invention in which the semipermeable membrane support is produced by a wet fabrication method, a method for reducing detached fibers will be described. In order to reduce the number of detached fibers, it is important to disperse the main synthetic fiber and the binder synthetic fiber in water in a fiber disperser (palper) to loosen the fiber bundle into a single fiber. Examples of the method of unraveling into single fibers include addition of a dispersant, optimization of the shape of blades in the pulper, optimization of the clearance between the bottom surface of the pulper and the blades, installation of a weir plate on the wall surface of the pulper tank, and the like. Next, in the step of defibrating into single fibers, diluting the fiber dispersion with white water (diluted water), and sending the liquid to the papermaking net, the diluted fiber dispersion is dispersed by a stirrer to obtain single fibers. The degree of dilution can be increased. Further, by adding an aqueous solution of a water-soluble polymer having a molecular weight of 5 million or more as a polymer viscous agent after fiber dispersion with pulper and / or after dilution of the fiber dispersion liquid, the degree of monofiber formation is further increased.

そして、本発明の半透膜支持体の製造方法では、バインダー合成繊維を分散した後、主体合成繊維を分散する、二段階分散によって得られた繊維分散液から湿式抄造法によって半透膜支持体を製造することを特徴としている。パルパーに繊維を投入する際、バインダー合成繊維を先に投入して分散した後に、主体合成繊維を投入して分散することにより、主体合成繊維の単繊維化が仮に不十分であっても、十分に単繊維化されているバインダー合成繊維が主体合成繊維を覆うことが可能となり、半透膜支持体からの離脱繊維を抑制できる。 Then, in the method for producing a semipermeable membrane support of the present invention, a semipermeable membrane support is dispersed by a wet fabrication method from a fiber dispersion obtained by two-step dispersion in which binder synthetic fibers are dispersed and then main synthetic fibers are dispersed. It is characterized by manufacturing. When the fibers are put into the pulper, the binder synthetic fibers are put in first and dispersed, and then the main synthetic fibers are put in and dispersed, so that even if the monofilament of the main synthetic fibers is insufficient, it is sufficient. It is possible to cover the main synthetic fiber with the binder synthetic fiber which is made into a single fiber, and it is possible to suppress the detached fiber from the semitransparent film support.

また、湿式抄造法において、抄紙網上に繊維分散液が供給され、余分な水を搾水して湿紙を得る工程では、金属糸やプラスチック糸を編み込んだ抄紙網の上でシート状の湿紙が形成されながら、抄紙網下に徐々に搾水される。抄紙網上での湿紙の形成は、抄紙網表面に繊維が堆積して進行し、搾水の完了と共に湿紙形成が完了する。湿紙形成開始時は、抄紙網上に供給された繊維分散液の分散状態のまま繊維が堆積するために、抄紙網に接する面(以下、「抄紙網に接する面」を「抄紙網面」と称する場合がある)の繊維のほぐれ状態は均一になる。一方、抄紙網上に形成中の湿紙上には未だ繊維分散液が存在しており、サクションによる搾水の位置、サクションの強度、抄紙網速度、繊維分散液の流速等によって、湿紙形成完了時における抄紙網面と反対の面(以下、「抄紙網面と反対の面」を「抄紙フェルト面」と称する場合がある)の繊維のほぐれ状態を調整することができる。しかし、抄紙網面と比較すると、抄紙フェルト面では、繊維のほぐれ状態における均一性は低下する。また、湿紙形成の中盤から後半には、主体合成繊維とバインダー合成繊維の太さや長さが異なっている場合に、サクションによって同種繊維が寄り集まり、均一性がより低下する場合がある。バインダー合成繊維が寄り集まることによって、部分的にバインダー合成繊維が不足する箇所を招くことがある。そのため、湿式不織布の抄紙網面の表面強度が抄紙フェルト面の表面強度よりも高くなることから、抄紙網面が塗布面である場合、離脱繊維による半透膜の欠点が減少し、半透膜の成膜時に塩阻止率が向上する。 Further, in the wet papermaking method, the fiber dispersion is supplied on the papermaking net, and in the process of squeezing excess water to obtain wet paper, a sheet-like wetness is placed on the papermaking net in which metal threads or plastic threads are woven. As the paper is formed, water is gradually squeezed under the papermaking net. The formation of wet paper on the papermaking net proceeds by depositing fibers on the surface of the papermaking net, and the formation of wet paper is completed when water is squeezed. At the start of wet paper formation, the fibers are deposited in the dispersed state of the fiber dispersion liquid supplied on the papermaking net, so that the surface in contact with the papermaking net (hereinafter, the "surface in contact with the papermaking net" is referred to as the "papermaking net surface". The loosened state of the fibers (sometimes referred to as) becomes uniform. On the other hand, the fiber dispersion still exists on the wet paper being formed on the paper net, and the wet paper formation is completed depending on the position of water extraction by suction, the strength of suction, the paper net speed, the flow velocity of the fiber dispersion, and the like. It is possible to adjust the loosened state of the fibers on the surface opposite to the papermaking net surface (hereinafter, the "surface opposite to the papermaking net surface" may be referred to as the "papermaking felt surface"). However, as compared with the papermaking net surface, the uniformity of the fibers in the loosened state is reduced on the papermaking felt surface. Further, in the middle to the latter half of the wet paper formation, when the thickness and length of the main synthetic fiber and the binder synthetic fiber are different, the same kind of fibers may gather together due to suction, and the uniformity may be further lowered. The gathering of the binder synthetic fibers may lead to a partial shortage of the binder synthetic fibers. Therefore, the surface strength of the papermaking mesh surface of the wet non-woven fabric is higher than the surface strength of the papermaking felt surface. Therefore, when the papermaking mesh surface is the coated surface, the defects of the semitransparent film due to the detached fibers are reduced, and the semitransparent film The salt blocking rate is improved during film formation.

湿式抄造法で得られた湿紙を乾燥して得られる原紙は、熱ロールによる熱圧加工(熱カレンダー)処理を行うことが好ましい。熱圧加工装置(熱カレンダー装置)において、ニップされているロール間に原紙が通されることによって、原紙が熱圧加工されることで、バインダー合成繊維を溶融・軟化して主体合成繊維を固定する。原紙にバインダー合成繊維が存在しない箇所があると、離脱繊維により半透膜が突き破られ、膜欠点が発生するため、湿式抄造法での原紙内でのバインダー合成繊維の単繊維化と、バインダー合成繊維と主体合成繊維の分散性が重要となる。 The base paper obtained by drying the wet paper obtained by the wet papermaking method is preferably subjected to thermal pressure processing (thermal calendar) treatment with a thermal roll. In the thermal pressure processing device (thermal calendar device), the base paper is passed between the rolls that are nipped, and the base paper is thermally processed to melt and soften the binder synthetic fiber and fix the main synthetic fiber. do. If there is a place where the binder synthetic fiber does not exist in the base paper, the semi-transparent film is pierced by the detached fiber and film defects occur. Dispersibility of synthetic fibers and main synthetic fibers is important.

上記の対策を行うことにより、離脱繊維を抑制することができる。 By taking the above measures, the detached fibers can be suppressed.

本発明において、離脱繊維は、30本以下であり、20本以下であることがより好ましく、10本以下であることがさらに好ましい。離脱繊維が30本を超えると、半透膜成膜時に半透膜表面を繊維が突き破り、膜欠点が生じ、塩阻止率が低下する。 In the present invention, the number of detached fibers is 30 or less, more preferably 20 or less, and further preferably 10 or less. If the number of detached fibers exceeds 30, the fibers break through the surface of the semipermeable membrane during the formation of the semipermeable membrane, causing film defects and reducing the salt inhibition rate.

本発明の半透膜支持体は、共焦点レーザー顕微鏡によって半透膜が設けられる塗布面の表面粗さを測定して得られるコア部のレベル差Skが14μm以下であることを特徴とする。コア部のレベル差Skとは、表面粗さを比較する指標であり、ISO25178に準拠したコア部の上側レベルと下側レベルの差である。 The semipermeable membrane support of the present invention is characterized in that the level difference Sk of the core portion obtained by measuring the surface roughness of the coated surface on which the semipermeable membrane is provided by a confocal laser microscope is 14 μm or less. The level difference Sk of the core portion is an index for comparing the surface roughness, and is the difference between the upper level and the lower level of the core portion in accordance with ISO25178.

Skが14μm以下の場合、半透膜成膜時の半透膜欠点が少なくなり、半透膜成膜後の塩阻止率の低下を招きにくい。Skは、より好ましくは13μm以下であり、さらに好ましくは12μm以下であり、特に好ましくは11.5μm以下である。Skが14μmを超える場合、半透膜支持体に設けた半透膜の厚みが不均一になり、半透膜が薄い箇所で欠点が発生し、膜性能の低下を招く。Skの下限値は8μmが好ましい。Skが8μmより小さい場合、半透膜と半透膜支持体の接着性が低下する恐れがある。 When Sk is 14 μm or less, the defects of the semipermeable membrane during the formation of the semipermeable membrane are reduced, and the salt inhibition rate after the formation of the semipermeable membrane is unlikely to decrease. Sk is more preferably 13 μm or less, further preferably 12 μm or less, and particularly preferably 11.5 μm or less. When Sk exceeds 14 μm, the thickness of the semipermeable membrane provided on the semipermeable membrane support becomes non-uniform, defects occur in places where the semipermeable membrane is thin, and the membrane performance is deteriorated. The lower limit of Sk is preferably 8 μm. If Sk is smaller than 8 μm, the adhesiveness between the semipermeable membrane and the semipermeable membrane support may decrease.

半透膜支持体のSkを14μm以下にする方法として、以下が挙げられる。
(I)二段階分散による繊維の分散性の向上
(II)配合設計の最適化(繊維選定及びバインダー合成繊維の含有量)
(III)原紙の抄造条件の最適化
(IV)熱圧加工条件の調整
Examples of the method for reducing the Sk of the semipermeable membrane support to 14 μm or less include the following.
(I) Improvement of fiber dispersibility by two-step dispersion (II) Optimization of compounding design (fiber selection and content of binder synthetic fiber)
(III) Optimization of papermaking conditions for base paper (IV) Adjustment of thermal pressure processing conditions

本発明において、主体合成繊維又はバインダー合成繊維におけるアンチモン(Sb)元素溶出量が5μg/g未満であることが好ましく、1μg/g未満であることがより好ましい。主体合成繊維又はバインダー合成繊維におけるアンチモン元素溶出量が5μg/g未満であることによって、半透膜支持体から発生する離脱繊維を抑制でき、半透膜成膜後の塩阻止率が向上するという効果が得られる。 In the present invention, the amount of antimony (Sb) element eluted in the main synthetic fiber or the binder synthetic fiber is preferably less than 5 μg / g, and more preferably less than 1 μg / g. When the amount of antimony element eluted in the main synthetic fiber or the binder synthetic fiber is less than 5 μg / g, the detached fibers generated from the semipermeable membrane support can be suppressed, and the salt inhibition rate after the semipermeable membrane formation is improved. The effect is obtained.

また、半透膜支持体のアンチモン元素溶出量が1.5μg/g未満であることが好ましく、該半透膜支持体のアンチモン溶出量が1.0μg/g未満であることがより好ましい。半透膜支持体のアンチモン元素溶出量が1.5μg/g未満であることによって、半透膜支持体から発生する離脱繊維を抑制でき、半透膜成膜後の塩阻止率が向上するという効果が得られる。 Further, the amount of antimony element eluted from the semipermeable membrane support is preferably less than 1.5 μg / g, and more preferably the amount of antimony eluted from the semipermeable membrane support is less than 1.0 μg / g. When the amount of antimony element eluted from the semipermeable membrane support is less than 1.5 μg / g, it is possible to suppress the detached fibers generated from the semipermeable membrane support and improve the salt inhibition rate after the semipermeable membrane film is formed. The effect is obtained.

本発明における「アンチモン元素溶出量」とは、主体合成繊維、バインダー合成繊維又は半透膜支持体を、比抵抗18.2MΩ・cm、温度25℃の超純水に24時間浸漬し、超純水中に溶出したアンチモン元素量をICP-MS(Inductively Coupled Plasma-Mass Spectro-metry)で定量分析した値から、<式1>を用いて算出したものである。 The "antimony element elution amount" in the present invention means that a main synthetic fiber, a binder synthetic fiber or a semitransparent film support is immersed in ultrapure water having a specific resistance of 18.2 MΩ · cm and a temperature of 25 ° C. for 24 hours to be ultrapure. The amount of antimony element eluted in water was calculated by using <Formula 1> from the value quantitatively analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectro-metri).

<式1>
アンチモン元素溶出量(μg/g)=溶出液のアンチモン元素含有量(μg/L)×溶出試験に使用した超純水の容積(L)/主体合成繊維、バインダー合成繊維又は半透膜支持体の質量(g)
<Equation 1>
Antimony element elution amount (μg / g) = Antimony element content of eluent (μg / L) × Volume of ultrapure water used in elution test (L) / Main synthetic fiber, binder synthetic fiber or semi-transparent film support Mass (g)

本発明において、主体合成繊維は、半透膜支持体の骨格を形成する繊維であり、バインダー合成繊維の軟化点又は溶融温度(融点)付近まで温度を上げる工程において、軟化又は溶融しにくく、繊維形状を維持する繊維である。主体合成繊維としては、例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系等の繊維が挙げられるが、耐熱性の高いポリエステル系の繊維がより好ましい。また、半合成繊維のアセテート、トリアセテート、プロミックスや、再生繊維のレーヨン、キュプラ、リヨセル繊維等は性能を阻害しない範囲で含有しても良い。 In the present invention, the main synthetic fiber is a fiber that forms the skeleton of the semipermeable membrane support, and is difficult to soften or melt in the step of raising the temperature to near the softening point or melting temperature (melting point) of the binder synthetic fiber, and the fiber. A fiber that maintains its shape. Examples of the main synthetic fiber include polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, vinylidene-based, polyvinyl chloride-based, polyester-based, benzoate-based, polyclaral-based, and phenol-based fibers, which are heat-resistant. Higher polyester fibers are more preferred. In addition, semi-synthetic fibers such as acetate, triacetate and promix, and regenerated fibers such as rayon, cupra and lyocell fibers may be contained within a range that does not impair the performance.

主体合成繊維の繊維径は、特に限定しないが、30μm以下であることが好ましい。主体合成繊維の繊維径が30μmを超えると、所望の半透膜の厚みを得るためには、大量の半透膜溶液が必要となるという問題が発生する場合や、半透膜溶液の裏抜けが発生する場合がある。また、湿式不織布の表面の主体合成繊維が立ちやすくなり、半透膜を貫通して半透膜の性能が低下する場合がある。より好ましくは2~20μmであり、さらに好ましくは4~20μm、特に好ましくは6~20μmである。2μm未満の場合、半透膜溶液が半透膜支持体に浸透しにくくなり、半透膜と半透膜支持体との接着性が悪くなる場合がある。 The fiber diameter of the main synthetic fiber is not particularly limited, but is preferably 30 μm or less. If the fiber diameter of the main synthetic fiber exceeds 30 μm, there may be a problem that a large amount of semipermeable membrane solution is required to obtain a desired semipermeable membrane thickness, or strike-through of the semipermeable membrane solution. May occur. In addition, the main synthetic fibers on the surface of the wet non-woven fabric tend to stand up and penetrate the semipermeable membrane, which may reduce the performance of the semipermeable membrane. It is more preferably 2 to 20 μm, still more preferably 4 to 20 μm, and particularly preferably 6 to 20 μm. If it is less than 2 μm, the semipermeable membrane solution may not easily penetrate into the semipermeable membrane support, and the adhesiveness between the semipermeable membrane and the semipermeable membrane support may be deteriorated.

主体合成繊維の繊維長は、特に限定しないが、好ましくは1~12mmであり、より好ましくは3~10mmであり、さらに好ましくは4~6mmである。主体合成繊維の断面形状は円形が好ましく、抄紙工程における水への分散前の繊維における断面アスペクト比(繊維断面長径/繊維断面短径)は、1.0~1.2未満であることが好ましい。繊維断面アスペクト比が1.2以上になると、繊維分散性が低下する場合や、繊維の絡まりやもつれの発生によって、半透膜支持体の均一性や塗布面の平滑性に悪影響を及ぼす場合がある。ただし、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、表面平滑性のために、繊維分散性等の他の特性を阻害しない範囲内で含有できる。 The fiber length of the main synthetic fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, and further preferably 4 to 6 mm. The cross-sectional shape of the main synthetic fiber is preferably circular, and the cross-sectional aspect ratio (fiber cross-sectional major axis / fiber cross-sectional minor axis) of the fiber before dispersion in water in the papermaking process is preferably 1.0 to less than 1.2. .. When the fiber cross-sectional aspect ratio is 1.2 or more, the fiber dispersibility may decrease, or the uniformity of the semipermeable membrane support and the smoothness of the coated surface may be adversely affected due to the occurrence of fiber entanglement and entanglement. be. However, fibers having irregular cross sections such as T-type, Y-type, and triangular can also be contained within a range that does not impair other characteristics such as fiber dispersibility in order to prevent strike-through and surface smoothness.

主体合成繊維のアスペクト比(繊維長/繊維径)は、200~1000であることが好ましく、より好ましくは220~900であり、さらに好ましくは280~800である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙網から脱落する場合や、抄紙網に繊維が刺さって、抄紙網からの剥離性が悪化する場合がある。一方、1000を超えた場合、繊維の三次元ネットワーク形成に寄与はするものの、繊維の絡まりやもつれの発生によって、半透膜支持体の均一性や塗布面の平滑性に悪影響を及ぼす場合があり、離脱繊維の発生につながる場合や、Skが14μmを超える場合がある。 The aspect ratio (fiber length / fiber diameter) of the main synthetic fiber is preferably 200 to 1000, more preferably 220 to 900, and further preferably 280 to 800. When the aspect ratio is less than 200, the dispersibility of the fibers is good, but when the fibers fall off from the papermaking net during papermaking, or when the fibers are stuck in the papermaking net, the peelability from the papermaking net deteriorates. In some cases. On the other hand, if it exceeds 1000, although it contributes to the formation of a three-dimensional network of fibers, the uniformity of the semipermeable membrane support and the smoothness of the coated surface may be adversely affected by the occurrence of entanglement and entanglement of the fibers. , It may lead to the generation of detached fibers, or Sk may exceed 14 μm.

本発明の半透膜支持体に係わる不織布に対して、主体合成繊維の含有量は、40~90質量%が好ましく、50~80質量%がより好ましく、60~75質量%がさらに好ましい。主体合成繊維の含有量が40質量%未満の場合、通液性が低下する恐れがある。また、90質量%を超えた場合、離脱繊維が多発する場合や、強度不足によって破れる恐れがある。 The content of the main synthetic fiber is preferably 40 to 90% by mass, more preferably 50 to 80% by mass, and even more preferably 60 to 75% by mass with respect to the nonwoven fabric related to the semipermeable membrane support of the present invention. If the content of the main synthetic fiber is less than 40% by mass, the liquid permeability may decrease. Further, if it exceeds 90% by mass, there is a risk of frequent occurrence of detached fibers or tearing due to insufficient strength.

本発明の半透膜支持体は、バインダー合成繊維を含有している。バインダー合成繊維の軟化点又は溶融温度(融点)付近まで温度を上げる工程を半透膜支持体の製造工程に組み入れることで、バインダー合成繊維が半透膜支持体の機械的強度を向上させる。例えば、半透膜支持体を湿式抄造法で製造し、その後の乾燥工程でバインダー合成繊維を軟化又は溶融させることができる。 The semipermeable membrane support of the present invention contains a binder synthetic fiber. By incorporating the step of raising the temperature to near the softening point or the melting temperature (melting point) of the binder synthetic fiber into the manufacturing process of the semipermeable membrane support, the binder synthetic fiber improves the mechanical strength of the semipermeable membrane support. For example, the semipermeable membrane support can be manufactured by a wet fabrication method, and the binder synthetic fiber can be softened or melted in a subsequent drying step.

バインダー合成繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維等の複合繊維、未延伸繊維等が挙げられる。複合繊維は、皮膜を形成しにくいので、半透膜支持体の空間を保持したまま、機械的強度を向上させることができる。より具体的には、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステル等の未延伸繊維が挙げられる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、半透膜支持体の乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲で使用することができる。本発明においては、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステルの未延伸繊維を好ましく用いることができる。 Examples of the binder synthetic fiber include core-sheath fibers (core-shell type), parallel fibers (side-by-side type), composite fibers such as radial split fibers, and undrawn fibers. Since the composite fiber is difficult to form a film, the mechanical strength can be improved while maintaining the space of the semipermeable membrane support. More specifically, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high melting point polyester (core) and low melting point polyester (sheath), polyester, etc. Undrawn fibers can be mentioned. In addition, single fibers (zen'yu type) composed only of low melting point resins such as polyethylene and polypropylene, and hot water-soluble binders such as polyvinyl alcohols tend to form a film in the drying process of the semitransparent film support. However, it can be used as long as the characteristics are not impaired. In the present invention, a combination of a high melting point polyester (core) and a low melting point polyester (sheath), and undrawn polyester fibers can be preferably used.

バインダー合成繊維の繊維径は特に限定されないが、好ましくは2~20μmであり、より好ましくは5~15μmであり、さらに好ましくは7~13μmである。また、主体合成繊維と異なる繊維径であることが好ましい。主体合成繊維と繊維径が異なることで、主体合成繊維と共に均一な三次元ネットワークを形成する役割も果たす。 The fiber diameter of the binder synthetic fiber is not particularly limited, but is preferably 2 to 20 μm, more preferably 5 to 15 μm, and even more preferably 7 to 13 μm. Further, it is preferable that the fiber diameter is different from that of the main synthetic fiber. Since the fiber diameter is different from that of the main synthetic fiber, it also plays a role of forming a uniform three-dimensional network together with the main synthetic fiber.

バインダー合成繊維の繊維長は、特に限定しないが、好ましくは1~12mmであり、より好ましくは3~10mmであり、さらに好ましくは4~6mmである。バインダー合成繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、塗布面の平滑性、非塗布面同士の接着性のために、他の特性を阻害しない範囲内で含有できる。 The fiber length of the binder synthetic fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, and further preferably 4 to 6 mm. The cross-sectional shape of the binder synthetic fiber is preferably circular, but fibers having irregular cross-sections such as T-type, Y-type, and triangular are also used for preventing strike-through, smoothness of coated surfaces, and adhesion between non-coated surfaces. Can be contained within a range that does not impair the characteristics of.

バインダー合成繊維のアスペクト比(繊維長/繊維径)は、200~1000であることが好ましく、より好ましくは300~800であり、さらに好ましくは400~700である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙網から脱落する恐れや、抄紙網に繊維が刺さって、抄紙網からの剥離性が悪化する恐れがある。一方、1000を超えた場合、バインダー合成繊維は三次元ネットワーク形成に寄与はするものの、繊維が絡まる恐れや、もつれの発生によって、不織布の均一性や塗布面の平滑性に悪影響を及ぼす恐れがあり、離脱繊維の発生につながる場合や、Skが14μmを超える場合がある。 The aspect ratio (fiber length / fiber diameter) of the binder synthetic fiber is preferably 200 to 1000, more preferably 300 to 800, and further preferably 400 to 700. When the aspect ratio is less than 200, the dispersibility of the fibers is good, but there is a risk that the fibers may fall off from the papermaking net during papermaking, or the fibers may stick into the papermaking net, resulting in poor peelability from the papermaking net. There is a fear. On the other hand, if it exceeds 1000, the binder synthetic fiber contributes to the formation of the three-dimensional network, but the fibers may be entangled or entangled, which may adversely affect the uniformity of the non-woven fabric and the smoothness of the coated surface. , It may lead to the generation of detached fibers, or Sk may exceed 14 μm.

本発明の半透膜支持体に係わる不織布に対して、バインダー合成繊維の含有量は、10~60質量%が好ましく、20~50質量%がより好ましく、25~40質量%がさらに好ましい。上記範囲において、バインダー合成繊維の含有量を高めることによって、脱離繊維や主体合成繊維の毛羽立ちを抑制することができる。バインダー合成繊維の含有量が10質量%未満の場合、強度不足により破れる恐れがあり、主体合成繊維を覆うための本数が不足し離脱繊維が発生する場合がある。また、60質量%を超えた場合、通液性の低下や半透膜と半透膜支持体の接着性が悪くなる場合がある。 The content of the binder synthetic fiber is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, and even more preferably 25 to 40% by mass with respect to the nonwoven fabric related to the semipermeable membrane support of the present invention. In the above range, by increasing the content of the binder synthetic fiber, the fluffing of the desorbed fiber and the main synthetic fiber can be suppressed. If the content of the binder synthetic fiber is less than 10% by mass, it may be torn due to insufficient strength, and the number of fibers for covering the main synthetic fiber may be insufficient to generate detached fibers. On the other hand, if it exceeds 60% by mass, the liquid permeability may be lowered and the adhesiveness between the semipermeable membrane and the semipermeable membrane support may be deteriorated.

本発明の半透膜支持体の製造方法について説明する。本発明の半透膜支持体は、湿式抄造法によって原紙が作製された後に、この原紙が熱ロールによって熱圧加工される。 The method for producing the semipermeable membrane support of the present invention will be described. In the semipermeable membrane support of the present invention, after a base paper is produced by a wet papermaking method, the base paper is thermally pressure-processed by a heat roll.

湿式抄造法では、まず、バインダー合成繊維等をパルパー等の分散装置で均一に水中に分散させた後、主体合成繊維を投入して分散することにより、バインダー合成繊維が均一に主体合成繊維と混合する。その後、スクリーン(異物、塊等除去)等の工程を経て、白水(希釈水)で希釈し最終の繊維濃度を0.01~0.50質量%に調成されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。希釈したスラリーを攪拌機にて攪拌することは繊維束の単繊維化が促進し好ましい。繊維の分散性を均一にするために、工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。 In the wet papermaking method, first, the binder synthetic fiber or the like is uniformly dispersed in water by a disperser such as a pulper, and then the main synthetic fiber is charged and dispersed, so that the binder synthetic fiber is uniformly mixed with the main synthetic fiber. do. After that, through steps such as screen (removal of foreign matter, lumps, etc.), a slurry diluted with white water (diluted water) and prepared to have a final fiber concentration of 0.01 to 0.50% by mass is made with a paper machine. Raised to obtain wet paper. Stirring the diluted slurry with a stirrer is preferable because it promotes monofilament of the fiber bundle. In order to make the dispersibility of fibers uniform, chemicals such as dispersants, defoamers, hydrophilic agents, antistatic agents, polymer viscous agents, mold release agents, antibacterial agents, and bactericidal agents may be added in the process. be.

抄紙方式としては、例えば、長網、円網、傾斜ワイヤー式等の抄紙方式を用いることができる。これらの抄紙方式の群から選ばれる一機の抄紙方式を有する抄紙機、これらの抄紙方式の群から選ばれる同種又は異種の2機以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用することができる。また、2層以上の多層構造の不織布を製造する場合には、各々の抄紙機で抄き上げた湿紙を積層する「抄き合わせ法」や、一方の層を形成した後に、該層上に繊維を分散したスラリーを流延して別の層を形成する「流延法」等を用いることができる。 As the papermaking method, for example, a papermaking method such as a long net, a circular net, or an inclined wire type can be used. Use a paper machine with one paper machine selected from these paper machines, or a combination paper machine with two or more paper machines of the same type or different types selected from these paper machines online. can do. Further, in the case of producing a non-woven fabric having a multi-layer structure of two or more layers, a "slurry method" in which wet papers made by each paper machine are laminated, or after forming one layer, on the layer. A "casting method" or the like can be used in which a slurry in which fibers are dispersed is cast to form another layer.

抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することによって、原紙を得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押し付けて乾燥させることを言う。熱ロールの表面温度は、100~180℃が好ましく、100~160℃がより好ましく、110~160℃がさらに好ましい。圧力は、好ましくは50~1000N/cm、より好ましくは100~800N/cmである。 The wet paper produced by the paper machine is dried with a Yankee dryer, an air dryer, a cylinder dryer, a suction drum type dryer, an infrared type dryer, or the like to obtain a base paper. When the wet paper is dried, it is brought into close contact with a heat roll such as a Yankee dryer and heat-pressure dried, so that the smoothness of the adhered surface is improved. Hot pressure drying means drying by pressing wet paper against the hot roll with a touch roll or the like. The surface temperature of the heat roll is preferably 100 to 180 ° C, more preferably 100 to 160 ° C, and even more preferably 110 to 160 ° C. The pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm.

半透膜支持体のSkは、湿紙の表面平滑性や熱ロールでの熱圧乾燥の影響を受けるため、熱圧乾燥時の湿紙の熱ロールへの押し付け圧力を調整する必要がある。湿紙表面が荒れた場合や凹凸が生じた場合であっても、熱ロールの表面温度、湿紙の熱ロールへの押し付け圧力を調整することで、半透膜支持体のSkを調整することができる。半透膜支持体のSkを14μm以下にするためには、熱圧乾燥時に湿紙の熱ロールへの押し付け圧力を高めに設定し、300~800N/cmがさらに好ましい。 Since Sk of the semipermeable membrane support is affected by the surface smoothness of the wet paper and the heat pressure drying on the heat roll, it is necessary to adjust the pressing pressure of the wet paper on the heat roll during the heat pressure drying. Even if the surface of the wet paper is rough or uneven, the Sk of the semipermeable membrane support can be adjusted by adjusting the surface temperature of the heat roll and the pressing pressure of the wet paper against the heat roll. Can be done. In order to reduce the Sk of the semipermeable membrane support to 14 μm or less, the pressing pressure of the wet paper against the heat roll is set high during hot pressure drying, and 300 to 800 N / cm is more preferable.

半透膜支持体のSkを14μm以下にするためには、湿紙の熱圧乾燥の際に、ヤンキードライヤー等の熱ロールに密着させることで、平滑性が向上した面を半透膜支持体の塗布面とすることも効果的である。 In order to reduce the Sk of the semipermeable membrane support to 14 μm or less, when the wet paper is hot-pressure dried, the surface with improved smoothness is brought into close contact with a heat roll such as a Yankee dryer to make the surface of the semipermeable membrane support improved. It is also effective to use the coated surface of.

次に、熱ロールによる熱圧加工について説明するが、本発明は下記説明に限定されない。熱圧加工装置(熱カレンダー装置)において、ニップされているロール間に原紙が通されることによって、原紙が熱圧加工される。ロールの組み合わせとしては、2本の金属ロール、金属ロールと樹脂ロール、金属ロールとコットンロール等が挙げられる。2本のロールのうち、少なくとも一方のロールが加熱されて、熱ロールとして使用される。主に、金属ロールが熱ロールとして使用される。熱ロールによる熱圧加工は2回以上行うことも可能であり、その場合、直列に配置された2組以上の上記のロール組み合わせを使用しても良いし、1組のロール組み合わせを用いて、2回加工しても良い。必要に応じて、原紙の表裏を逆にしても良い。熱ロールの表面温度、ロール間のニップ圧力、原紙の加工速度を制御することによって、所望の半透膜支持体が得られる。 Next, thermal pressure processing using a thermal roll will be described, but the present invention is not limited to the following description. In the thermal pressure processing device (thermal calendar device), the base paper is thermally processed by passing the base paper between the nipped rolls. Examples of the combination of rolls include two metal rolls, a metal roll and a resin roll, a metal roll and a cotton roll, and the like. At least one of the two rolls is heated and used as a heat roll. Mainly, metal rolls are used as thermal rolls. The thermal pressure processing by the thermal roll can be performed twice or more, and in that case, two or more sets of the above roll combinations arranged in series may be used, or one set of roll combinations may be used. It may be processed twice. If necessary, the front and back of the base paper may be reversed. The desired semipermeable membrane support can be obtained by controlling the surface temperature of the thermal rolls, the nip pressure between the rolls, and the processing speed of the base paper.

また、原紙に主体合成繊維の毛羽立ちが発生した場合であっても、熱ロールによる熱圧加工時にバインダー合成繊維を最適に溶融・軟化させて毛羽立ちをホールドすることによって、離脱繊維の発生や膜塗布後の欠点になることを防ぐことができる。そのためには、熱ロール温度をバインダー合成繊維の融点付近まで高めること、ニップ圧力を高めることが重要となる。また、加工速度をコントロールすることによって、バインダー合成繊維による毛羽立ちのホールドをある程度調整することができる。また、バインダー合成繊維の含有量を高めることによって、毛羽立ちのバインダー合成繊維によるホールド度合いを高めることができる。 In addition, even if fluffing of the main synthetic fibers occurs on the base paper, the binder synthetic fibers are optimally melted and softened during thermal pressure processing with a hot roll to hold the fluffing, so that detached fibers are generated and the film is applied. It is possible to prevent it from becoming a drawback later. For that purpose, it is important to raise the thermal roll temperature to near the melting point of the binder synthetic fiber and to raise the nip pressure. Further, by controlling the processing speed, the hold of fluffing by the binder synthetic fiber can be adjusted to some extent. Further, by increasing the content of the binder synthetic fiber, the degree of holding by the fluffy binder synthetic fiber can be increased.

半透膜支持体のSkを14μm以下にするためには、熱圧加工の条件の最適化が必要である。熱圧加工の条件を調整し、塗布面の平滑性を高めることによって、半透膜欠点を防ぐことができる。そのためには、熱ロール温度をバインダー合成繊維の融点付近まで高めること、加工速度をコントロールして半透膜支持体に十分な熱量を与えること、ニップ圧を高めることが重要となる。 In order to reduce the Sk of the semipermeable membrane support to 14 μm or less, it is necessary to optimize the conditions of thermal pressure processing. Semipermeable membrane defects can be prevented by adjusting the conditions of thermal pressure processing and increasing the smoothness of the coated surface. For that purpose, it is important to raise the heat roll temperature to near the melting point of the binder synthetic fiber, control the processing speed to give a sufficient amount of heat to the semipermeable membrane support, and increase the nip pressure.

熱ロールの温度はバインダー合成繊維の融点に対して-50℃~-10℃の範囲内であることが好ましい。より好ましくは、-40℃~-15℃の範囲内であり、さらに好ましくは、-30℃~-15℃の範囲である。熱圧加工における熱ロールの温度がバインダー合成繊維の融点に対して-50℃を下回る場合、バインダー合成繊維の温度が十分に上がらず主体合成繊維との接着不良が生じ離脱繊維が発生する場合や、原紙が潰れ難くなり半透膜支持体の塗布面のSkが14μmを超える場合がある。一方、-10℃を超えた場合、バインダー合成繊維が失活し、バインダー合成繊維と主体合成繊維の接着が不十分になり、離脱繊維が発生する場合や、半透膜支持体の塗布面のSkが14μmを超える場合がある。 The temperature of the heat roll is preferably in the range of −50 ° C. to −10 ° C. with respect to the melting point of the binder synthetic fiber. More preferably, it is in the range of −40 ° C. to −15 ° C., and even more preferably, it is in the range of −30 ° C. to −15 ° C. When the temperature of the thermal roll in the thermal pressure processing is lower than -50 ° C with respect to the melting point of the binder synthetic fiber, the temperature of the binder synthetic fiber does not rise sufficiently and adhesion failure with the main synthetic fiber occurs and detachment fiber occurs. , The base paper is hard to be crushed, and the Sk of the coated surface of the semitransparent film support may exceed 14 μm. On the other hand, when the temperature exceeds -10 ° C, the binder synthetic fiber is inactivated, the adhesion between the binder synthetic fiber and the main synthetic fiber becomes insufficient, and detachment fiber is generated, or the coated surface of the semipermeable membrane support. Sk may exceed 14 μm.

熱圧加工におけるロールのニップ圧力は、好ましくは19~180kN/mであり、より好ましくは45~140kN/mである。ニップ圧力が19kN/m未満の場合、熱ロールと原紙の密着が低くなり繊維の毛羽立ちが起こり、離脱繊維が発生する場合や半透膜支持体のSkが14μmを超える場合がある。一方、180kN/mを超えた場合、半透膜支持体が高密度化し、成膜溶液の浸透が減り半透膜と半透膜支持体の接着性が低下する場合や、ロールへの過剰な負荷が増すことによって、ロール寿命を短くする場合がある。 The nip pressure of the roll in the hot pressure processing is preferably 19 to 180 kN / m, more preferably 45 to 140 kN / m. When the nip pressure is less than 19 kN / m, the adhesion between the thermal roll and the base paper becomes low and the fibers may fluff, and detached fibers may occur or the Sk of the semipermeable membrane support may exceed 14 μm. On the other hand, when it exceeds 180 kN / m, the density of the semipermeable membrane support becomes high, the penetration of the film-forming solution decreases, the adhesiveness between the semipermeable membrane and the semipermeable membrane support decreases, or the excess on the roll. The increased load may shorten the roll life.

熱圧加工における加工速度は、好ましくは4~100m/minであり、より好ましくは10~80m/minである。速度が4m/min未満の場合、生産性が劣ると共に、半透膜支持体の密度が高まり、通気性が低下し、半透膜溶液が浸透しにくくなり膜と支持体の接着性が低下する場合がある。一方、100m/minを超えた場合、原紙への熱の伝達が不十分となり、主体合成繊維の毛羽立ちが発生することにより、離脱繊維が発生する場合や、半透膜支持体の塗布面のSkが14μmを超える場合がある。 The processing speed in the hot pressure processing is preferably 4 to 100 m / min, and more preferably 10 to 80 m / min. When the speed is less than 4 m / min, the productivity is inferior, the density of the semipermeable membrane support is increased, the air permeability is lowered, the semipermeable membrane solution is difficult to permeate, and the adhesiveness between the membrane and the support is lowered. In some cases. On the other hand, if it exceeds 100 m / min, heat transfer to the base paper becomes insufficient and fluffing of the main synthetic fiber occurs, resulting in detachment fiber or Sk on the coated surface of the semipermeable membrane support. May exceed 14 μm.

半透膜支持体の坪量は、特に限定しないが、20~150g/mが好ましく、より好ましくは50~100g/mである。20g/m未満の場合は、十分な引張強度が得られない場合がある。また、150g/mを超えた場合、通液抵抗が高くなる場合や厚みが増してユニットやモジュール内に規定量の半透膜を収納できない場合がある。 The basis weight of the semipermeable membrane support is not particularly limited, but is preferably 20 to 150 g / m 2 , and more preferably 50 to 100 g / m 2 . If it is less than 20 g / m 2 , sufficient tensile strength may not be obtained. Further, if it exceeds 150 g / m 2 , the liquid passage resistance may increase or the thickness may increase and a specified amount of semipermeable membrane may not be stored in the unit or module.

また、半透膜支持体の密度は、0.5~1.0g/cmであることが好ましく、より好ましくは0.6~0.9g/cmである。半透膜支持体の密度が0.5g/cm未満の場合は、厚みが厚くなるため、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、1.0g/cmを超える場合は、通液性が低くなることがあり、半透膜の寿命が短くなる場合がある。 The density of the semipermeable membrane support is preferably 0.5 to 1.0 g / cm 3 , and more preferably 0.6 to 0.9 g / cm 3 . If the density of the semipermeable membrane support is less than 0.5 g / cm 3 , the thickness becomes thicker, so that the area of the semipermeable membrane that can be incorporated into the unit becomes smaller, and as a result, the life of the semipermeable membrane becomes shorter. It may end up. On the other hand, if it exceeds 1.0 g / cm 3 , the liquid permeability may be lowered and the life of the semipermeable membrane may be shortened.

半透膜支持体の厚みは、50~150μmであることが好ましく、60~130μmであることがより好ましく、70~120μmであることがさらに好ましい。半透膜支持体の厚みが150μmを超えると、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、50μm未満の場合、十分な引張強度が得られない場合や通液性が低くなって、半透膜の寿命が短くなる場合がある。 The thickness of the semipermeable membrane support is preferably 50 to 150 μm, more preferably 60 to 130 μm, and even more preferably 70 to 120 μm. If the thickness of the semipermeable membrane support exceeds 150 μm, the area of the semipermeable membrane that can be incorporated into the unit becomes small, and as a result, the life of the semipermeable membrane may be shortened. On the other hand, if it is less than 50 μm, sufficient tensile strength may not be obtained or the liquid permeability may be lowered, so that the life of the semipermeable membrane may be shortened.

本発明を実施例によりさらに詳細に説明する。以下、特に断りの無い限り、実施例に記載される部及び比率は質量を基準とする。 The present invention will be described in more detail by way of examples. Hereinafter, unless otherwise specified, the parts and ratios described in the examples are based on mass.

≪主体合成繊維≫
PET繊維1:ポリエチレンテレフタレートからなる、繊維径7.5μm、繊維長5mm、Sb元素溶出量0.01μg/g以下の延伸ポリエステル繊維。
≪Main synthetic fiber≫
PET fiber 1: A stretched polyester fiber made of polyethylene terephthalate, having a fiber diameter of 7.5 μm, a fiber length of 5 mm, and an Sb element elution amount of 0.01 μg / g or less.

PET繊維2:ポリエチレンテレフタレートからなる、繊維径7.5μm、繊維長5mm、Sb元素溶出量0.12μg/gの延伸ポリエステル繊維。 PET fiber 2: A stretched polyester fiber made of polyethylene terephthalate, having a fiber diameter of 7.5 μm, a fiber length of 5 mm, and an Sb element elution amount of 0.12 μg / g.

PET繊維3:ポリエチレンテレフタレートからなる、繊維径7.5μm、繊維長6mm、Sb元素溶出量10.3μg/gの延伸ポリエステル繊維。 PET fiber 3: A stretched polyester fiber made of polyethylene terephthalate, having a fiber diameter of 7.5 μm, a fiber length of 6 mm, and an Sb element elution amount of 10.3 μg / g.

PET繊維4:ポリエチレンテレフタレートからなる、繊維径12.5μm、繊維長5mm、Sb元素溶出量11.9μg/gの延伸ポリエステル繊維。 PET fiber 4: A stretched polyester fiber made of polyethylene terephthalate, having a fiber diameter of 12.5 μm, a fiber length of 5 mm, and an Sb element elution amount of 11.9 μg / g.

≪バインダー合成繊維≫
PET繊維5:ポリエチレンテレフタレートからなる、繊維径11.8μm、繊維長5mm、Sb元素溶出量2.3μg/gの未延伸ポリエステル繊維。
≪Binder synthetic fiber≫
PET fiber 5: An undrawn polyester fiber made of polyethylene terephthalate, having a fiber diameter of 11.8 μm, a fiber length of 5 mm, and an Sb element elution amount of 2.3 μg / g.

PET繊維6:ポリエチレンテレフタレートからなる、繊維径10.5μm、繊維長5mm、Sb元素溶出量0.04μg/gの未延伸ポリエステル繊維。 PET fiber 6: An undrawn polyester fiber made of polyethylene terephthalate, having a fiber diameter of 10.5 μm, a fiber length of 5 mm, and an Sb element elution amount of 0.04 μg / g.

PET繊維7:ポリエチレンテレフタレートからなる、繊維径11.8μm、繊維長5mm、Sb元素溶出量0.01μg/g以下の未延伸ポリエステル繊維。 PET fiber 7: An undrawn polyester fiber made of polyethylene terephthalate, having a fiber diameter of 11.8 μm, a fiber length of 5 mm, and an Sb element elution amount of 0.01 μg / g or less.

PET繊維8:ポリエチレンテレフタレートからなる、繊維径13.6μm、繊維長5mm、Sb元素溶出量0.01μg/g以下の未延伸ポリエステル繊維。 PET fiber 8: An undrawn polyester fiber made of polyethylene terephthalate, having a fiber diameter of 13.6 μm, a fiber length of 5 mm, and an Sb element elution amount of 0.01 μg / g or less.

PET繊維9:ポリエチレンテレフタレートからなる、繊維径13.6μm、繊維長10mm、Sb元素溶出量0.01μg/g以下の未延伸ポリエステル繊維。 PET fiber 9: An undrawn polyester fiber made of polyethylene terephthalate, having a fiber diameter of 13.6 μm, a fiber length of 10 mm, and an Sb element elution amount of 0.01 μg / g or less.

(原紙1~3及び5~16の製造:二段階分散有)
2mの分散タンクに水を投入後、表1に示す繊維配合で、バインダー合成繊維を先に分散タンクに投入し3分間分散した後、主体合成繊維を分散タンクに投入し7分間混合分散(分散濃度2.0%)して、傾斜ワイヤー/円網複合抄紙機を用い、傾斜ワイヤー上で形成した湿紙と、円網上で形成した湿紙を積層させた後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、目標坪量70g/mの原紙1~3及び5~16を得た。なお、傾斜ワイヤーと円網の繊維配合は、同じである。
(Manufacturing of base papers 1 to 3 and 5 to 16: with two-step dispersion)
After water is poured into a 2 m 3 dispersion tank, the binder synthetic fiber is first charged into the dispersion tank and dispersed for 3 minutes with the fiber composition shown in Table 1, and then the main synthetic fiber is charged into the dispersion tank and mixed and dispersed for 7 minutes ( Dispersion concentration is 2.0%), and after laminating the wet paper formed on the inclined wire and the wet paper formed on the circular net using an inclined wire / circular net composite paper machine, the surface temperature is 130 ° C. It was hot-pressure dried with a Yankee dryer to obtain base papers 1 to 3 and 5 to 16 having a target basis weight of 70 g / m 2 . The fiber composition of the inclined wire and the circular net is the same.

(原紙4の製造:二段階分散無)
2mの分散タンクに水を投入後、表1に示す繊維配合で、バインダー合成繊維と主体合成繊維を同時に分散タンクに投入し7分間混合分散(分散濃度2.0%)して、傾斜ワイヤー/円網複合抄紙機を用い、傾斜ワイヤー上で形成した湿紙と、円網上で形成した湿紙を積層させた後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、目標坪量70g/mの原紙4を得た。なお、傾斜ワイヤーと円網の繊維配合は同じである。
(Manufacturing of base paper 4: No two-step dispersion)
After pouring water into a 2 m 3 dispersion tank, the binder synthetic fiber and the main synthetic fiber are simultaneously put into the dispersion tank with the fiber composition shown in Table 1, mixed and dispersed for 7 minutes (dispersion concentration 2.0%), and the inclined wire. / Using a circular net composite paper machine, the wet paper formed on the inclined wire and the wet paper formed on the circular net are laminated, and then hot-pressure dried with a Yankee dryer with a surface temperature of 130 ° C to achieve the target basis weight. A base paper 4 of 70 g / m 2 was obtained. The fiber composition of the inclined wire and the circular net is the same.

Figure 0007102571000001
Figure 0007102571000001

(熱カレンダー処理)
得られた原紙に対して、金属ロール(熱ロール)-弾性ロールの組み合わせの熱カレンダー装置、又は、金属ロール(熱ロール)-金属ロール(熱ロール)の組み合わせの熱カレンダー装置にて、表2に記載する熱カレンダー条件で実施例1~16及び比較例1~7の半透膜支持体を得た。なお、最初に熱圧加工を行う第1ステージにて、原紙が金属ロール(熱ロール)に接する面(処理面)を塗布面とし、2回目に熱圧加工を行う第2ステージの処理面は、第1ステージと反対面とした。表2において、円網面が円網で形成された面であり、傾斜面が傾斜ワイヤーで形成された面である。
(Thermal calendar processing)
For the obtained base paper, use a thermal calendar device with a combination of a metal roll (heat roll) and an elastic roll, or a thermal calendar device with a combination of a metal roll (heat roll) and a metal roll (heat roll). The semitransparent film supports of Examples 1 to 16 and Comparative Examples 1 to 7 were obtained under the thermal calendar conditions described in 1. In the first stage where the thermal pressure processing is performed first, the surface (processed surface) where the base paper is in contact with the metal roll (thermal roll) is set as the coating surface, and the treated surface in the second stage where the thermal pressure processing is performed second time is , The opposite side of the first stage. In Table 2, the circular net surface is a surface formed by a circular net, and the inclined surface is a surface formed by an inclined wire.

Figure 0007102571000002
Figure 0007102571000002

実施例1~16及び比較例1~7で得られた半透膜支持体に対して、以下の測定及び評価を行い、結果を表3に示した。 The semipermeable membrane supports obtained in Examples 1 to 16 and Comparative Examples 1 to 7 were measured and evaluated as follows, and the results are shown in Table 3.

[坪量]
JIS P8124:2011に準拠して、坪量を測定した。
[Basis weight]
Basis weight was measured according to JIS P8124: 2011.

[半透膜支持体の厚さと密度]
JIS P8118:2014に準拠して測定した。
[Thickness and density of semipermeable membrane support]
Measured according to JIS P8118: 2014.

[テープ剥離試験:離脱繊維数]
半透膜支持体を幅45mm×長さ60mmに断裁して試料とする。断裁した半透膜支持体の塗布面に幅24mm、長さ100mmに切ったセロハン粘着テープ(ニチバン社製、商品名:エルパック(登録商標)LP24)を試料の中央部に長さ方向にテープ両端がはみ出すようゴムマット上で貼り付ける。テープを貼った試料の上で表面が平滑な金属ロール(直径4cm、長さ30cm、重さ3kg)を3回転がし、テープを試料に均一に貼り付ける。貼り付けたテープの試料からはみ出した部分を持ち、試料からテープをゆっくりと剥がし、テープに貼り付いた繊維を観察する。試料を5枚準備して、5回のテストを行った。試料から剥がしたテープの中央部(20mm×50mm)に存在する、離脱繊維の本数を計測し、5回のテストの平均数を算出した。
[Tape peeling test: number of detached fibers]
The semipermeable membrane support is cut into a width of 45 mm and a length of 60 mm to prepare a sample. A cellophane adhesive tape (manufactured by Nichiban Co., Ltd., trade name: Elpack (registered trademark) LP24) cut into a width of 24 mm and a length of 100 mm is taped to the center of the sample in the length direction on the coated surface of the cut semipermeable membrane support. Stick it on a rubber mat so that both ends stick out. A metal roll (diameter 4 cm, length 30 cm, weight 3 kg) having a smooth surface is rotated three times on the sample to which the tape is attached, and the tape is uniformly attached to the sample. Hold the part of the tape that sticks out of the sample, slowly peel off the tape from the sample, and observe the fibers that stick to the tape. Five samples were prepared and tested five times. The number of detached fibers present in the central portion (20 mm × 50 mm) of the tape peeled from the sample was measured, and the average number of five tests was calculated.

[コア部のレベル差Skの測定]
半透膜支持体を幅45mm×長さ60mmに断裁して試料とする。共焦点レーザー顕微鏡(商品名:VK-X1050、キーエンス社製)を用い、観察倍率20倍に設定し、撮影サイズを縦3mm×横2mmに設定し、撮影を行う。計測領域は全領域を指定し、Skを測定する。
[Measurement of core level difference Sk]
The semipermeable membrane support is cut into a width of 45 mm and a length of 60 mm to prepare a sample. Using a confocal laser scanning microscope (trade name: VK-X1050, manufactured by KEYENCE CORPORATION), the observation magnification is set to 20 times, the imaging size is set to 3 mm in length × 2 mm in width, and imaging is performed. The entire area is specified as the measurement area, and Sk is measured.

[アンチモン元素溶出量の測定]
主体合成繊維、バインダー合成繊維又は半透膜支持体1.6gを、比抵抗18.2MΩ・cm、温度25℃の超純水0.20Lに24時間浸漬させて得られた溶出液30mLを採取し、これに硝酸(キシダ化学(株)、精密分析用、濃度60%)1μLを添加した後、誘導結合プラズマ質量分析装置(ICP-MS)(装置名:iCAP-Qc、Thermo Fisher Scientific社製)にて、溶出液に含まれるアンチモン元素含有量を測定した上、検量線法により定量した。さらに、アンチモン元素溶出量を<式1>にて算出した。なお、該ICP-MSのアンチモン定量下限値は0.1ppbであり、該測定に使用した超純水のアンチモン含有量は定量下限値以下であった。
[Measurement of antimony element elution amount]
Collect 30 mL of the eluate obtained by immersing 1.6 g of a main synthetic fiber, a binder synthetic fiber or a semitransparent film support in 0.20 L of ultrapure water having a specific resistance of 18.2 MΩ · cm and a temperature of 25 ° C. for 24 hours. Then, after adding 1 μL of nitrate (Kishida Chemical Co., Ltd., for precision analysis, concentration 60%), inductively coupled plasma mass spectrometer (ICP-MS) (device name: iCAP-Qc, manufactured by Thermo Fisher Scientific). ), The antimony element content contained in the eluent was measured and then quantified by the calibration linear method. Further, the amount of antimony element eluted was calculated by <Equation 1>. The lower limit of antimony quantification of the ICP-MS was 0.1 ppb, and the antimony content of the ultrapure water used for the measurement was equal to or less than the lower limit of quantification.

[塩阻止率の測定]
一定のクリアランスを有する定速塗布装置(商品名:TQC全自動フィルムアプリケーター、コーテック社製)を用いて、半透膜支持体の塗布面にポリスルホン樹脂のDMF溶液(濃度:18%)を125μmの厚さで塗布し、凝固浴で相分離させ、多孔性ポリスルホン膜を作製した。この多孔性ポリスルホン膜に、m-フェニレンジアミン2質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液Aを接触させた後、余分の水溶液Aを除去して、水溶液Aの被覆層を形成した。次いで、水溶液Aの被覆層表面にトリメシン酸クロライド0.3質量%を含有する溶液Bを接触させ、余分な溶液Bを排出した。その後、120℃で乾燥を行い、分離機能層を形成し、多孔性ポリスルホン膜と分離機能層からなる複合半透膜が半透膜支持体の塗布面に設けられた分離膜を得た。
[Measurement of salt inhibition rate]
Using a constant-speed coating device (trade name: TQC fully automatic film applicator, manufactured by Cortec) with a constant clearance, 125 μm of DMF solution (concentration: 18%) of polysulfone resin was applied to the coated surface of the semipermeable membrane support. It was applied to a thickness and phase-separated in a coagulation bath to prepare a porous polysulfone membrane. An aqueous solution A containing 2% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was brought into contact with the porous polysulfone film, and then the excess aqueous solution A was removed to form a coating layer of the aqueous solution A. .. Next, a solution B containing 0.3% by mass of trimesic acid chloride was brought into contact with the surface of the coating layer of the aqueous solution A, and the excess solution B was discharged. Then, it was dried at 120 ° C. to form a separation functional layer, and a separation membrane in which a composite semipermeable membrane composed of a porous polysulfone membrane and a separation functional layer was provided on a coating surface of a semipermeable membrane support was obtained.

分離膜を14cm×19cmに断裁し、平膜試験装置(商品名:SEPA CFII、Suez社)にセットした。25℃の3.0質量%の塩化ナトリウム水溶液を供給側と透過側の膜間差圧5.0MPaで通液した。この操作によって得られた透過水の電導度を測定し、塩阻止率(%)を算出した。塩阻止率は、塩化ナトリウム濃度と水溶液電導度から検量線を作成し、それを用いて<式2>より算出した。 The separation membrane was cut into 14 cm × 19 cm and set in a flat membrane test device (trade name: SEPA CFII, SUEZ). A 3.0 mass% sodium chloride aqueous solution at 25 ° C. was passed through the membrane at a differential pressure of 5.0 MPa between the supply side and the permeation side. The conductivity of the permeated water obtained by this operation was measured, and the salt inhibition rate (%) was calculated. The salt blocking rate was calculated from <Equation 2> by preparing a calibration curve from the sodium chloride concentration and the aqueous conductivity.

<式2>
塩阻止率(%)=(1-(透過液の塩化ナトリウム濃度)/(供給液の塩化ナトリウム濃度))×100
<Equation 2>
Salt inhibition rate (%) = (1- (sodium chloride concentration of permeate) / (sodium chloride concentration of feed solution)) x 100

[半透膜欠点評価]
分離膜を14cm×19cmに断裁し、平膜試験装置(商品名:SEPA CFII、Suez社)にセットした。200ppmの染料(ダイレクトブルー1、分子量:993)を含む水溶液を、25℃で膜の供給側と透過側の膜間差圧1.5MPaで通液した。その後、複合半透膜表面に堆積している染料を純水で洗い流し、分離膜を乾燥させ、染色部分(膜欠点部分)の数を測定した。
[Semipermeable membrane defect evaluation]
The separation membrane was cut into 14 cm × 19 cm and set in a flat membrane test device (trade name: SEPA CFII, SUEZ). An aqueous solution containing a 200 ppm dye (Direct Blue 1, molecular weight: 993) was passed at 25 ° C. at a differential pressure of 1.5 MPa between the membrane supply side and the permeation side. Then, the dye accumulated on the surface of the composite semipermeable membrane was washed away with pure water, the separation membrane was dried, and the number of dyed portions (membrane defect portions) was measured.

0~1箇所は非常に良好なレベルであり、2~3箇所は良好なレベルであり、4~6箇所は使用可能なレベルであり、7箇所以上は膜性能が劣り使用不可レベルである。 0 to 1 points are very good levels, 2 to 3 places are good levels, 4 to 6 places are usable levels, and 7 or more places are inferior in film performance and unusable.

[半透膜裏抜け]
一定のクリアランスを有する定速塗布装置(商品名:Automatic Film Applicator、安田精機製作所社製)を用いて、台紙の上に半透膜支持体をセットし、半透膜支持体の塗布面に黒色の油性インキを混合したポリスルホン樹脂のDMF溶液(濃度:18%)を塗布し、塗布後に半透膜支持体を貫通して台紙に写ったポリスルホン樹脂の量を目視で観察し、半透膜の裏抜け評価を行った。
[Semipermeable membrane strike through]
Using a constant-speed coating device with a certain clearance (trade name: Automatic Film Applicator, manufactured by Yasuda Seiki Seisakusho Co., Ltd.), set the semipermeable membrane support on the mount, and black on the coated surface of the semipermeable membrane support. Apply a DMF solution (concentration: 18%) of polysulfone resin mixed with the oil-based ink of the above, and after application, visually observe the amount of polysulfone resin reflected on the mount through the semipermeable membrane support, and observe the amount of polysulfone resin reflected in the semipermeable membrane. A strike-through evaluation was performed.

1:全く裏抜けしていない。非常に良好なレベル。
2:小さな点状で、ごくわずかに裏抜けしている。良好なレベル。
3:小さな点状で、裏抜けしている。実用上、使用可能レベル。
4:大きな点状で、多く裏抜けしている。実用上、使用不可レベル。
1: There is no strike-through. Very good level.
2: It is a small dot, and it is very slightly strike-through. Good level.
3: It is a small dot and strikes through. Practically usable level.
4: Large dots, many strike through. Practically unusable level.

Figure 0007102571000003
Figure 0007102571000003

実施例1~16の半透膜支持体は、主体合成繊維とバインダー合成繊維とを含有する湿式不織布からなり、テープ剥離試験での離脱繊維が30本以下であり、かつ共焦点レーザー顕微鏡によって半透膜が設けられる塗布面の表面粗さを測定して得られるコア部のレベル差が14μm以下であるため、塩阻止率が高く、半透膜の欠点が少なく、半透膜が裏抜けし難いことが分かった。 The semipermeable membrane supports of Examples 1 to 16 are made of a wet non-woven fabric containing a main synthetic fiber and a binder synthetic fiber, have 30 or less detached fibers in the tape peeling test, and are semi-permeable by a confocal laser microscope. Since the level difference of the core portion obtained by measuring the surface roughness of the coated surface on which the permeable membrane is provided is 14 μm or less, the salt blocking rate is high, there are few defects of the semipermeable membrane, and the semipermeable membrane strikes through. It turned out to be difficult.

実施例1~3と比較例1及び2との比較並びに実施例7と比較例4及び5との比較から、第1ステージの熱ロール又は第2ステージの熱ロールの温度が低かった比較例1及び2並びに比較例4及び5の半透膜支持体は、離脱繊維が30本を超え、塩阻止率が低かった。 From the comparison between Examples 1 to 3 and Comparative Examples 1 and 2 and the comparison between Example 7 and Comparative Examples 4 and 5, the temperature of the heat roll of the first stage or the heat roll of the second stage was low. And 2 and the semipermeable membrane supports of Comparative Examples 4 and 5 had more than 30 detached fibers and a low salt inhibition rate.

バインダー合成繊維の含有量が25%である実施例5の半透膜支持体は、バインダー合成繊維の含有量が30%である実施例1の半透膜支持体と比較して、塩阻止率が低く、半透膜の欠点が多かったが、使用可能なレベルであった。一方、実施例5のPET繊維1を、Sb元素溶出量が多いPET繊維3に変えた比較例6は、離脱繊維が多く、塩阻止率が低いことが分かる。 The semipermeable membrane support of Example 5 having a binder synthetic fiber content of 25% has a salt inhibition rate as compared with the semipermeable membrane support of Example 1 having a binder synthetic fiber content of 30%. Although it was low and had many drawbacks of the semipermeable membrane, it was at a usable level. On the other hand, it can be seen that in Comparative Example 6 in which the PET fiber 1 of Example 5 was changed to the PET fiber 3 having a large amount of Sb element elution, the number of detached fibers was large and the salt inhibition rate was low.

Sb元素溶出量が多いPET繊維3と、Sb元素溶出量が多く、かつ、繊維径が太いPET繊維4を配合し、第1ステージのロールの組み合わせを金属ロール-金属ロールに変えた比較例7は、離脱繊維が多く、コア部レベル差Skが14μmを超えるため、塩阻止率が低いことが分かる。 Comparative Example 7 in which PET fiber 3 having a large amount of Sb element elution and PET fiber 4 having a large amount of Sb element elution and a large fiber diameter were blended, and the combination of rolls in the first stage was changed to a metal roll-metal roll. It can be seen that the salt blocking rate is low because there are many detached fibers and the core level difference Sk exceeds 14 μm.

半透膜支持体のSb元素溶出量が1.5μg/g以下である実施例1~15並びに比較例1、2、4及び5の半透膜支持体において、第1ステージ又は第2ステージの熱ロールの温度が低い比較例1、2、4及び5では、離脱繊維が30本を超え、コア部レベル差Skが高いため、塩阻止率が低いことが分かる。 In the semipermeable membrane supports of Examples 1 to 15 and Comparative Examples 1, 2, 4 and 5 in which the Sb element elution amount of the semipermeable membrane support is 1.5 μg / g or less, the first stage or the second stage In Comparative Examples 1, 2, 4 and 5 in which the temperature of the heat roll is low, it can be seen that the salt inhibition rate is low because the number of detached fibers exceeds 30 and the core level difference Sk is high.

塗布面が円網面の実施例1の半透膜支持体に対し、塗布面が傾斜ワイヤー面である実施例4の半透膜支持体は、使用可能なレベルではあるが、半透膜の欠点が増加し、塩阻止率が低下することが分かる。 The semipermeable membrane support of Example 4 in which the coating surface is an inclined wire surface is a semipermeable membrane support, although the coating surface is a usable level, as opposed to the semipermeable membrane support of Example 1 in which the coating surface is a circular mesh surface. It can be seen that the defects increase and the salt inhibition rate decreases.

原紙製造時に二段階分散を行った実施例6の半透膜支持体に対し、二段階分散を行わなかった比較例3の半透膜支持体は、コア部レベル差Skが14μmを超え、半透膜の欠点評価において使用不可のレベルであった。 In contrast to the semipermeable membrane support of Example 6 in which two-step dispersion was performed during the production of the base paper, the semipermeable membrane support of Comparative Example 3 in which the two-step dispersion was not performed had a core level difference Sk of more than 14 μm, which was half. It was a level that could not be used in the evaluation of defects in the permeable membrane.

テープ剥離試験での離脱繊維が30本以下であり、コア部レベル差Skが14μm以下であり、主体合成繊維及びバインダー合成繊維のアンチモン元素溶出量が5μg/g未満であり、半透膜支持体のアンチモン元素溶出量が1.5μg/g未満である実施例1及び7の半透膜に対し、離脱繊維が30本以下であり、かつコア部レベル差Skが14μm以下であるが、主体合成繊維のアンチモン元素溶出量が5μg/gを超え、半透膜支持体のアンチモン元素溶出量1.5μg/gを超える実施例16の半透膜支持体は、使用可能なレベルではあるが、半透膜の欠点が増加し、塩阻止率が低下することが分かる。 The number of detached fibers in the tape peeling test is 30 or less, the core level difference Sk is 14 μm or less, the amount of antimony element eluted from the main synthetic fiber and the binder synthetic fiber is less than 5 μg / g, and the semipermeable membrane support. The number of detached fibers is 30 or less and the core level difference Sk is 14 μm or less with respect to the semipermeable membranes of Examples 1 and 7 in which the amount of antimony element eluted is less than 1.5 μg / g. The semipermeable membrane support of Example 16 in which the amount of antimony element eluted from the fiber exceeds 5 μg / g and the amount of antimony element eluted from the semipermeable membrane support exceeds 1.5 μg / g is semipermeable, although it is at a usable level. It can be seen that the defects of the permeable membrane increase and the salt inhibition rate decreases.

本発明の半透膜支持体は、海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で利用することができる。 The semipermeable membrane support of the present invention can be used in fields such as seawater desalination, water purifiers, food concentration, wastewater treatment, medical use represented by hemofiltration, and ultrapure water production for semiconductor cleaning. can.

Claims (4)

主体合成繊維とバインダー合成繊維とを含有する湿式不織布からなる半透膜支持体において、テープ剥離試験での離脱繊維が30本以下であり、かつ共焦点レーザー顕微鏡によって半透膜が設けられる塗布面の表面粗さを測定して得られるコア部のレベル差が14μm以下であることを特徴とする半透膜支持体。 In a semipermeable membrane support made of a wet non-woven fabric containing a main synthetic fiber and a binder synthetic fiber, the number of detached fibers in the tape peeling test is 30 or less, and the coated surface on which the semipermeable membrane is provided by a confocal laser microscope. A semipermeable membrane support characterized in that the level difference of the core portion obtained by measuring the surface roughness of the above is 14 μm or less. 主体合成繊維又はバインダー合成繊維におけるアンチモン元素溶出量が5μg/g未満である請求項1に記載の半透膜支持体。 The semipermeable membrane support according to claim 1, wherein the amount of antimony element eluted from the main synthetic fiber or the binder synthetic fiber is less than 5 μg / g. 半透膜支持体のアンチモン元素溶出量が1.5μg/g未満である請求項1又は2に記載の半透膜支持体。 The semipermeable membrane support according to claim 1 or 2, wherein the amount of antimony element eluted from the semipermeable membrane support is less than 1.5 μg / g. 請求項1~3のいずれか記載の半透膜支持体を製造する半透膜支持体の製造方法において、バインダー合成繊維を分散した後に主体合成繊維を分散して得られる繊維分散液から湿式抄造法によって半透膜支持体を製造することを特徴とする半透膜支持体の製造方法。 In the method for producing a semipermeable membrane support for producing the semipermeable membrane support according to any one of claims 1 to 3, wet fabrication is performed from a fiber dispersion obtained by dispersing the binder synthetic fiber and then dispersing the main synthetic fiber. A method for producing a semipermeable membrane support, which comprises producing a semipermeable membrane support by a method.
JP2021060281A 2021-03-31 2021-03-31 Method for manufacturing semipermeable membrane support and semipermeable membrane support Active JP7102571B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021060281A JP7102571B1 (en) 2021-03-31 2021-03-31 Method for manufacturing semipermeable membrane support and semipermeable membrane support
EP22780530.6A EP4316633A1 (en) 2021-03-31 2022-03-25 Semipermeable membrane support and method for manufacturing semipermeable membrane support
PCT/JP2022/014217 WO2022210316A1 (en) 2021-03-31 2022-03-25 Semipermeable membrane support and method for manufacturing semipermeable membrane support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060281A JP7102571B1 (en) 2021-03-31 2021-03-31 Method for manufacturing semipermeable membrane support and semipermeable membrane support

Publications (2)

Publication Number Publication Date
JP7102571B1 true JP7102571B1 (en) 2022-07-19
JP2022156538A JP2022156538A (en) 2022-10-14

Family

ID=82457392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060281A Active JP7102571B1 (en) 2021-03-31 2021-03-31 Method for manufacturing semipermeable membrane support and semipermeable membrane support

Country Status (1)

Country Link
JP (1) JP7102571B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156680A (en) 1998-12-23 2000-12-05 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
JP2010194478A (en) 2009-02-26 2010-09-09 Teijin Fibers Ltd Wet nonwoven fabric for separation membrane and separation membrane support
JP2012161725A (en) 2011-02-04 2012-08-30 Daio Paper Corp Semipermeable membrane support, semipermeable membrane for water treatment, and method for manufacturing semipermeable membrane support
JP2014128769A (en) 2012-12-28 2014-07-10 Daio Paper Corp Semipermeable membrane support, method for producing semipermeable membrane support and semipermeable membrane
JP2017170293A (en) 2016-03-22 2017-09-28 三菱製紙株式会社 Semi-permeable membrane support
JP2019118907A (en) 2018-01-11 2019-07-22 三菱製紙株式会社 Substrate for semipermeable membrane
JP2020163321A (en) 2019-03-29 2020-10-08 三菱製紙株式会社 Support medium of semipermeable membrane for membrane separation activated sludge treatment and filtration film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156680A (en) 1998-12-23 2000-12-05 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
JP2010194478A (en) 2009-02-26 2010-09-09 Teijin Fibers Ltd Wet nonwoven fabric for separation membrane and separation membrane support
JP2012161725A (en) 2011-02-04 2012-08-30 Daio Paper Corp Semipermeable membrane support, semipermeable membrane for water treatment, and method for manufacturing semipermeable membrane support
JP2014128769A (en) 2012-12-28 2014-07-10 Daio Paper Corp Semipermeable membrane support, method for producing semipermeable membrane support and semipermeable membrane
JP2017170293A (en) 2016-03-22 2017-09-28 三菱製紙株式会社 Semi-permeable membrane support
JP2019118907A (en) 2018-01-11 2019-07-22 三菱製紙株式会社 Substrate for semipermeable membrane
JP2020163321A (en) 2019-03-29 2020-10-08 三菱製紙株式会社 Support medium of semipermeable membrane for membrane separation activated sludge treatment and filtration film

Also Published As

Publication number Publication date
JP2022156538A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
KR101757491B1 (en) Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
JP5216229B2 (en) Semipermeable membrane support
JP2012101213A (en) Semi-permeable membrane support
CN107405579B (en) Support, filtration membrane and module of semipermeable membrane for membrane separation activated sludge treatment
JP2013220382A (en) Semipermeable membrane support
WO2020004462A1 (en) Semipermeable membrane support for membrane bioreactor treatment
JP2016140785A (en) Semipermeable membrane support
JP2016159197A (en) Semipermeable membrane substrate for membrane separation activated sludge treatment
JP2017170293A (en) Semi-permeable membrane support
JP2012106177A (en) Semipermeable membrane support
CN112368067B (en) Support for semipermeable membrane for membrane separation activated sludge treatment
KR20190127715A (en) Semipermeable membrane support
JP2017121606A (en) Semi-permeable membrane support for membrane separation active sludge treatment and filtering membrane
JP2014180638A (en) Method for manufacturing semipermeable membrane
JP5809583B2 (en) Semipermeable membrane support
JP7325643B2 (en) Wet-laid nonwoven fabric, method of making same, and water treatment membrane comprising wet-laid nonwoven fabric
JP2019118907A (en) Substrate for semipermeable membrane
JP7102571B1 (en) Method for manufacturing semipermeable membrane support and semipermeable membrane support
JP2012250223A (en) Semipermeable membrane support
JP2017047333A (en) Semipermeable membrane support
JP2021137742A (en) Semipermeable film support body
JP7102572B1 (en) Method for manufacturing semipermeable membrane support and semipermeable membrane support
WO2020145240A1 (en) Semi-permeable membrane support and method for producing semi-permeable membrane support
JP2015058409A (en) Semipermeable membrane support
JP2013139030A (en) Semipermeable membrane support and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220517

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7102571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150