JP5902886B2 - Method for producing semipermeable membrane support - Google Patents

Method for producing semipermeable membrane support Download PDF

Info

Publication number
JP5902886B2
JP5902886B2 JP2011000314A JP2011000314A JP5902886B2 JP 5902886 B2 JP5902886 B2 JP 5902886B2 JP 2011000314 A JP2011000314 A JP 2011000314A JP 2011000314 A JP2011000314 A JP 2011000314A JP 5902886 B2 JP5902886 B2 JP 5902886B2
Authority
JP
Japan
Prior art keywords
fiber
semipermeable membrane
membrane support
cross
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011000314A
Other languages
Japanese (ja)
Other versions
JP2012040546A (en
Inventor
吉田 光男
光男 吉田
和彦 高山
和彦 高山
竹内 常括
常括 竹内
均 藤木
均 藤木
木村 薫
薫 木村
元道 福田
元道 福田
新井 克明
克明 新井
未樹 安野
未樹 安野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011000314A priority Critical patent/JP5902886B2/en
Priority to KR1020110013190A priority patent/KR101254423B1/en
Priority to CN201110039485.1A priority patent/CN102188910B/en
Publication of JP2012040546A publication Critical patent/JP2012040546A/en
Priority to KR1020120109389A priority patent/KR101313988B1/en
Application granted granted Critical
Publication of JP5902886B2 publication Critical patent/JP5902886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Description

本発明は、半透膜支持体の製造方法に関する。 The present invention relates to a method for producing a semipermeable membrane support.

海水の淡水化、水の浄化、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で、半透膜が広く用いられている。半透膜は、セルロース系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等の合成樹脂で構成されている。しかしながら、半透膜単体では機械的強度に劣るため、不織布や織布などの繊維基材からなる半透膜支持体の片面(以下、「半透膜塗布面」という)に半透膜が設けられた形態で使用されている。   Semipermeable membranes are widely used in the fields of desalination of seawater, water purification, food concentration, wastewater treatment, production of ultrapure water for medical use, semiconductor cleaning, and the like. The semipermeable membrane is made of a synthetic resin such as a cellulose resin, a polysulfone resin, a polyacrylonitrile resin, a fluorine resin, a polyester resin, a polyamide resin, or a polyimide resin. However, since the semipermeable membrane itself is inferior in mechanical strength, a semipermeable membrane is provided on one side (hereinafter referred to as “semipermeable membrane application surface”) of a semipermeable membrane support made of a fiber base material such as a nonwoven fabric or a woven fabric. It is used in the form.

半透膜支持体に半透膜が設けられた形態は、上述したポリスルホン系樹脂等の合成樹脂を有機溶媒に溶解し、半透膜溶液を調製した後、この半透膜溶液を半透膜支持体上に塗布する方法が広く用いられている。そして、効率的に濾過を行うために、スパイラル型の半透膜エレメントが形成され、さらに、半透膜モジュールが組み立てられる(例えば、特許文献1参照)。   The semipermeable membrane is provided on the semipermeable membrane support by dissolving the above-mentioned synthetic resin such as polysulfone resin in an organic solvent, preparing a semipermeable membrane solution, and then adding the semipermeable membrane solution to the semipermeable membrane. A method of coating on a support is widely used. And in order to perform filtration efficiently, a spiral type semipermeable membrane element is formed, and a semipermeable membrane module is further assembled (for example, refer to patent documents 1).

高い濾過流束と濾過性能を得るためには、半透膜表面に凹凸が少なく、半透膜形成時の横方向湾曲やシワの発生がなく、半透膜支持体上に半透膜が均一な厚みで設けられる必要がある。そのため、半透膜支持体の半透膜塗布面には、優れた平滑性が必要とされる。そして、良好な濾過性能を得るためには、半透膜と半透膜支持体との接着性にも優れている必要がある。また、半透膜モジュールを組み立てる際に、接着剤を使って、半透膜塗布面の反対面である半透膜非塗布面(以下、「非塗布面」という)同士を貼り合わせる工程があるため、この非塗布面同士の接着性に優れていることも要求されている。さらに、半透膜溶液が非塗布面に裏抜けしないことが要求されている。この裏抜けが発生すると、半透膜の厚みが不均一になる、非塗布面同士の接着性が低下するという問題が発生するからである。   In order to obtain a high filtration flux and filtration performance, the semipermeable membrane surface has few irregularities, no lateral bending or wrinkling occurs when the semipermeable membrane is formed, and the semipermeable membrane is uniform on the semipermeable membrane support. It is necessary to be provided with an appropriate thickness. Therefore, excellent smoothness is required for the semipermeable membrane application surface of the semipermeable membrane support. And in order to obtain favorable filtration performance, it is necessary to be excellent also in the adhesiveness of a semipermeable membrane and a semipermeable membrane support body. Further, when assembling the semipermeable membrane module, there is a step of bonding the semipermeable membrane non-coated surfaces (hereinafter referred to as “non-coated surfaces”), which are opposite to the semipermeable membrane coated surfaces, using an adhesive. Therefore, it is also required that the adhesion between the non-coated surfaces is excellent. Furthermore, it is required that the semipermeable membrane solution does not penetrate the non-coated surface. This is because when this breakthrough occurs, the thickness of the semipermeable membrane becomes non-uniform and the adhesion between the non-coated surfaces decreases.

半透膜支持体として、主体合成繊維とバインダー合成繊維とを含有してなり、湿式抄造法で製造され、熱圧処理された不織布が提案されている。例えば、太い繊維を使用した表面粗度の大きな表面層(太い繊維層)と細い繊維を使用した緻密な構造の裏面層(細い繊維層)との二重構造を基本とした多層構造の不織布よりなる半透膜支持体が提案されている(例えば、特許文献2参照)。具体的には、太い繊維層を半透膜塗布面とし、細い繊維層を非塗布面とした半透膜支持体及び細い繊維層を太い繊維層で挟み込み、半透膜塗布面と非塗布面の両方を太い繊維層とした半透膜支持体が記載されている。しかしながら、半透膜塗布面において、太い繊維を使用しているため、半透膜と半透膜支持体との接着性は向上するものの、平滑性が低いという問題があった。また、太い繊維を使用しているため、半透膜溶液が半透膜支持体の内部にまで入り込んでしまい、所望の半透膜の厚みを得るためには、大量の半透膜溶液が必要となるという問題があった。また、前者では、非塗布面に細い繊維を使用しているため、非塗布面同士の接着性が良くないという問題もあった。   As a semipermeable membrane support, a nonwoven fabric comprising a main synthetic fiber and a binder synthetic fiber, manufactured by a wet papermaking method, and subjected to a hot-pressure treatment has been proposed. For example, a non-woven fabric with a multilayer structure based on a double structure consisting of a surface layer with a large surface roughness (thick fiber layer) using thick fibers and a back layer (thin fiber layer) with a dense structure using thin fibers. A semipermeable membrane support has been proposed (see, for example, Patent Document 2). Specifically, a semipermeable membrane support having a thick fiber layer as a semipermeable membrane application surface and a thin fiber layer as a non-application surface and a thin fiber layer sandwiched between the thick fiber layers, the semipermeable membrane application surface and the non-application surface A semipermeable membrane support is described in which both are thick fiber layers. However, since thick fibers are used on the semipermeable membrane application surface, the adhesion between the semipermeable membrane and the semipermeable membrane support is improved, but there is a problem that the smoothness is low. In addition, because thick fibers are used, the semipermeable membrane solution penetrates into the semipermeable membrane support, and a large amount of semipermeable membrane solution is required to obtain the desired semipermeable membrane thickness. There was a problem of becoming. Moreover, in the former, since the thin fiber was used for the non-application surface, there also existed a problem that the adhesiveness of non-application surfaces was not good.

半透膜塗布面の表面粗さを非塗布面よりも大きくした単層構造の不織布よりなる半透膜支持体も開示されているが、この半透膜支持体も半透膜塗布面の平滑性、半透膜の均一性、非塗布面同士の接着性に問題があった(例えば、特許文献3参照)。また、特許文献3の半透膜支持体では、抄紙流れ方向(縦方向、MD)と幅方向(横方向、CD)の引張強度比が規定されているが、これは、半透膜形成時の幅方向湾曲防止を目的としたものである。抄紙流れ方向と幅方向の引張強度比を特定の範囲内に収めるために、抄紙工程において、原料分散混合液の濃度、水流速度、傾斜金網のワイヤーの速度、傾斜の角度等を調整する必要がある。また、抄紙流れ方向と幅方向の引張強度比を調整しても、半透膜形成時の湯洗浄や乾燥パートにおいて発生する半透膜支持体の幅収縮抑制は困難であり、幅収縮によるシワの発生や湾曲の発生を解決することはできていなかった。さらに、特許文献3の半透膜支持体には、バインダー合成繊維の含有量を多くすると、平滑性が高くなることが記載されているが、同時に、通気性が小さくなりすぎ、濾過時の濾過流束が低下するという問題が発生する。   A semipermeable membrane support made of a nonwoven fabric having a single layer structure in which the surface roughness of the semipermeable membrane application surface is made larger than that of the non-application surface is also disclosed, but this semipermeable membrane support is also smooth on the semipermeable membrane application surface. There was a problem in the property, the uniformity of the semipermeable membrane, and the adhesion between the non-coated surfaces (for example, see Patent Document 3). Moreover, in the semipermeable membrane support of Patent Document 3, the tensile strength ratio in the papermaking flow direction (longitudinal direction, MD) and the width direction (transverse direction, CD) is defined. This is intended to prevent the bending in the width direction. In order to keep the tensile strength ratio in the paper flow direction and the width direction within a specific range, it is necessary to adjust the concentration of the raw material dispersion, the water flow speed, the wire speed of the inclined wire mesh, the angle of inclination, etc. in the paper making process. is there. Moreover, even if the tensile strength ratio in the paper flow direction and the width direction is adjusted, it is difficult to suppress the width shrinkage of the semipermeable membrane support that occurs in the hot water washing and drying part when forming the semipermeable membrane. It has not been possible to solve the occurrence of the occurrence of bending and the occurrence of bending. Furthermore, the semipermeable membrane support of Patent Document 3 describes that when the content of the binder synthetic fiber is increased, the smoothness is increased, but at the same time, the air permeability becomes too small, and the filtration during filtration is performed. The problem arises that the flux decreases.

さらに、特許文献3では、半透膜と半透膜支持体の接着性を良くすること及び裏抜け防止を目的として、半透膜支持体の通気度やポアサイズを調整する方法が提示されている。しかしながら、このJIS L1096に準拠した通気度は、半透膜支持体の片面から半透膜支持体内部を通過して別の片面へ透過する空気の量をもとに算出されており、半透膜塗布面の表面に塗布された半透膜溶液の非塗布面への裏抜けを正確に反映しているものではない。そのため、特許文献3で示された範囲の通気度を有する半透膜支持体に半透膜溶液を塗布した場合、半透膜支持体非塗布面まで半透膜溶液が裏抜けしてしまい、半透膜支持体非塗布面同士を貼り付けて半透膜モジュールを作製した場合に、接着力が低下し、濾過性能が著しく低下するという問題が発生する場合がある。また、支持体の通気性を低くする方法として、半透膜支持体を構成する繊維の繊維径を小さくする方法が提案されているが、この場合も、非塗布面の平滑性も高くなり、非塗布面同士の接着性が低下するという問題があった。   Further, Patent Document 3 proposes a method for adjusting the air permeability and pore size of the semipermeable membrane support for the purpose of improving the adhesion between the semipermeable membrane and the semipermeable membrane support and preventing the back-through. . However, the air permeability according to JIS L1096 is calculated on the basis of the amount of air passing from one side of the semipermeable membrane support through the inside of the semipermeable membrane support to another side. This does not accurately reflect the penetration of the semipermeable membrane solution applied to the surface of the film application surface to the non-application surface. Therefore, when the semipermeable membrane solution is applied to the semipermeable membrane support having the air permeability in the range shown in Patent Document 3, the semipermeable membrane solution penetrates to the non-coated surface of the semipermeable membrane support, When semi-permeable membrane modules are produced by attaching semi-permeable membrane support non-coated surfaces to each other, there may be a problem that the adhesive strength is reduced and the filtration performance is remarkably reduced. Further, as a method of reducing the air permeability of the support, a method of reducing the fiber diameter of the fibers constituting the semipermeable membrane support has been proposed, but also in this case, the smoothness of the non-coated surface is increased, There was a problem that the adhesiveness between the non-coated surfaces decreased.

また、特許文献3記載のJIS K3832に準拠したバブルポイント法による平均ポアサイズは、表面張力既知の液体を満たした半透膜支持体の下面より気体を加圧状態で噴出させ、半透膜支持体の上面に気体が通過したときの気体の圧力変化からポアサイズを求める方法であるが、これについても、半透膜塗布面の表面に塗布された半透膜溶液の非塗布面への裏抜けを正確に反映しているものではない。よって、特許文献3で示されている範囲のポアサイズを有する半透膜支持体に半透膜溶液を塗布した場合、裏抜けを完全に防ぐことは困難であった。   In addition, the average pore size by the bubble point method based on JIS K3832 described in Patent Document 3 is such that a gas is ejected in a pressurized state from the lower surface of a semipermeable membrane support filled with a liquid whose surface tension is known. This is a method for obtaining the pore size from the change in pressure of the gas when the gas passes through the upper surface of the film, but also in this case, the penetration of the semipermeable membrane solution applied to the surface of the semipermeable membrane applied surface to the non-coated surface It is not an accurate reflection. Therefore, when a semipermeable membrane solution is applied to a semipermeable membrane support having a pore size in the range shown in Patent Document 3, it is difficult to completely prevent the back-through.

半透膜溶液の裏抜けを抑制し、半透膜と半透膜支持体との接着性を向上させると共に、安価に提供できる半透膜支持体として、天然繊維である製紙用繊維(パルプ)を主体とする半透膜支持体が提案されている。例えば、主体合成繊維とバインダー合成繊維とを含有する上層と製紙用繊維(パルプ)とバインダー合成繊維とを含有する下層とからなる2層構造の半透膜支持体(例えば、特許文献4参照)、製紙用繊維(パルプ)とバインダー合成繊維とを含有する上層と主体合成繊維とバインダー合成繊維とを含有する下層とからなる2層構造の半透膜支持体(例えば、特許文献5参照)、製紙用繊維(パルプ)とバインダー合成繊維とを含有する上下層からなる2層構造の半透膜支持体(例えば、特許文献6参照)が提案されている。しかしながら、半透膜塗布面の層よりも非塗布面の層が密な構造となっているため、半透膜塗布面の均一性や平滑性、非塗布面同士の接着性に問題ある半透膜支持体であった。また、製紙用繊維(パルプ)を使用した場合、カビや菌が増殖するため、清浄な水を製造することができないという半透膜支持体にとって致命的な問題もあった。   Fiber for making paper (pulp), which is a natural fiber, as a semipermeable membrane support that can be provided at low cost while preventing the back-through of the semipermeable membrane solution and improving the adhesion between the semipermeable membrane and the semipermeable membrane support A semipermeable membrane supporting body mainly composed of the above has been proposed. For example, a semipermeable membrane support having a two-layer structure comprising an upper layer containing main synthetic fibers and binder synthetic fibers, and a lower layer containing paper-making fibers (pulp) and binder synthetic fibers (see, for example, Patent Document 4) , A semipermeable membrane support having a two-layer structure comprising an upper layer containing papermaking fibers (pulp) and binder synthetic fibers, and a lower layer containing main synthetic fibers and binder synthetic fibers (see, for example, Patent Document 5), A two-layered semipermeable membrane support comprising upper and lower layers containing a papermaking fiber (pulp) and a binder synthetic fiber has been proposed (for example, see Patent Document 6). However, since the non-coated surface layer has a denser structure than the semi-permeable film coated surface layer, there is a problem with the semi-permeable film coating surface uniformity and smoothness, and the non-coated surface adhesion property. It was a membrane support. In addition, when papermaking fibers (pulp) are used, mold and fungi grow, so that there is a fatal problem for the semipermeable membrane support that clean water cannot be produced.

主体合成繊維とバインダー合成繊維とを含有してなり、湿式抄造法で製造され、熱圧処理された不織布からなる半透膜支持体において、特許文献2〜6に記載されている半透膜支持体とは反対に、非塗布面の密度が半透膜塗布面の密度よりも低く、半透膜塗布面の方が非塗布面よりも平滑である半透膜支持体も提案されている(例えば、特許文献7参照)。しかしながら、非塗布面に凹部を有する半透膜支持体の該凹部にまで到達するように半透膜を設けているか、半透膜塗布面に形成されている孔を通って、半透膜が非塗布面にまで到達するように半透膜を設けているため、半透膜の厚みが均一にならないという問題があった。また、特許文献5には、半透膜溶液の非塗布面への裏抜けを防止する方法として、非塗布面から全厚みの50%までの領域の平均密度を塗布面から全厚みの50%までの領域の平均密度に対して5〜90%の範囲内にする方法も示されている。しかしながら、この方法では、半透膜塗布面側から全厚みの50%までの領域の平均密度の絶対値が低いという特性を有する半透膜支持体では、半透膜溶液の裏抜けを防止することはできないという問題があった。   A semipermeable membrane support described in Patent Documents 2 to 6 in a semipermeable membrane support comprising a non-woven fabric that contains a main synthetic fiber and a binder synthetic fiber, is manufactured by a wet papermaking method, and is heat-pressed. Contrary to the body, a semipermeable membrane support in which the density of the non-coated surface is lower than the density of the semipermeable membrane coated surface and the semipermeable membrane coated surface is smoother than the non-coated surface has also been proposed ( For example, see Patent Document 7). However, a semipermeable membrane is provided so as to reach the concave portion of the semipermeable membrane support having a concave portion on the non-coated surface, or the semipermeable membrane is formed through a hole formed on the semipermeable membrane coated surface. Since the semipermeable membrane is provided so as to reach the non-coated surface, there is a problem that the thickness of the semipermeable membrane is not uniform. In Patent Document 5, as a method for preventing the penetration of the semipermeable membrane solution to the non-coated surface, the average density of the region from the non-coated surface to 50% of the total thickness is 50% of the total thickness from the coated surface. The method of making it in the range of 5-90% with respect to the average density of the area | region until is also shown. However, in this method, in the semipermeable membrane support having the characteristic that the absolute value of the average density in the region from the semipermeable membrane application surface side to 50% of the total thickness is low, the back-through of the semipermeable membrane solution is prevented. There was a problem that we couldn't.

引張応力がかかった際の寸法安定性を向上させ、半透膜塗布面が平滑で、裏抜けがなく、半透膜の付着性に優れた半透膜支持体として、5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km以上であり、通気度が0.2〜10.0cc/cm・秒である不織布からなる半透膜支持体が提案されている(例えば、特許文献8参照)。この半透膜支持体は、強度が高く、伸びが小さい不織布である。そのため、この半透膜支持体を作製するためには、複屈折(Δn)が高く、特定の熱収縮応力を有するポリエステル系繊維を用いる必要がある。また、裂断長を高めるためには、熱圧処理工程において、不織布に与える熱や圧力を高める必要があり、引張応力や熱による繊維の部分的な伸縮不均一による不織布の不均一性を改良する効果はあるものの、不織布の厚み方向全てに熱・圧力が過剰に加わってしまい、不織布に含まれるバインダー合成繊維が過剰に溶融し、空隙が減少しすぎる問題や半透膜塗布時にシワが発生する問題が残っていた。また、半透膜塗布面の平滑性にはさらなる改良が必要であった。特に、特許文献8では、半透膜塗布面と非塗布面の平滑性を均等化させるように製造されているため、半透膜塗布面の平滑性と半透膜と半透膜支持体の接着性との両立が困難になるという問題があり、さらに、非塗布面同士の接着性についても問題が残っていた。 As a semipermeable membrane support that improves the dimensional stability when subjected to tensile stress, has a smooth semipermeable membrane application surface, no back-through, and excellent semipermeable membrane adhesion, it has a longitudinal length of 5% when stretched. Semipermeable membrane support made of non-woven fabric having an average value of direction (MD) and transverse direction (CD) tear lengths of 4.0 km or more and an air permeability of 0.2 to 10.0 cc / cm 2 · sec Has been proposed (see, for example, Patent Document 8). This semipermeable membrane support is a nonwoven fabric having high strength and small elongation. Therefore, in order to produce this semipermeable membrane support, it is necessary to use a polyester fiber having a high birefringence (Δn) and a specific heat shrinkage stress. In addition, in order to increase the tearing length, it is necessary to increase the heat and pressure applied to the nonwoven fabric in the hot-pressure treatment process, improving the non-uniformity of the nonwoven fabric due to the tensile stress and partial unevenness of the fiber due to heat. Although there is an effect, excessive heat and pressure are applied in all the thickness direction of the nonwoven fabric, the binder synthetic fiber contained in the nonwoven fabric is excessively melted, and the voids are excessively reduced, and wrinkles are generated when a semipermeable membrane is applied. There was a problem to do. Moreover, further improvement was required for the smoothness of the semipermeable membrane application surface. In particular, Patent Document 8 is manufactured so as to equalize the smoothness of the semipermeable membrane application surface and the non-application surface, so the smoothness of the semipermeable membrane application surface and the semipermeable membrane and the semipermeable membrane support There is a problem that it is difficult to achieve compatibility with adhesiveness, and there is still a problem with respect to adhesiveness between non-coated surfaces.

半透膜と半透膜支持体の接着性を高めるために、半透膜塗布面層に異型断面繊維を含有させた半透膜支持体も提案されているが、異型断面繊維を半透膜支持体に配合した場合、湿式抄紙工程で繊維を水に分散する際に異型断面繊維に形成されている凸部や凹部に繊維が引っかかり、もつれが発生して均一な分散ができないという問題があった(例えば、特許文献9参照)。   In order to improve the adhesion between the semipermeable membrane and the semipermeable membrane support, a semipermeable membrane support in which a modified cross-section fiber is included in the semipermeable membrane coated surface layer has also been proposed. When blended with a support, there is a problem that when the fibers are dispersed in water in the wet papermaking process, the fibers get caught in the convex portions and concave portions formed in the irregular cross-section fibers, and entanglement occurs, and uniform dispersion cannot be achieved. (For example, see Patent Document 9).

半透膜支持体にポリアクリロニトリル系合成繊維を含有させることによって、ポリアクリロニトリル系合成繊維が半透膜溶液に使用される溶媒に溶解することから、半透膜と半透膜支持体との接着性を向上させる技術が提案されている(例えば、特許文献10参照)。しかしながら、半透膜溶液に使用される溶媒によっては、溶融しない場合がある。また、溶融する溶媒を使用しても、半透膜溶液が半透膜支持体に接してから水洗工程に移るまでの時間は非常に短いため、接着性の向上は期待できなかった。   By including polyacrylonitrile-based synthetic fiber in the semipermeable membrane support, the polyacrylonitrile-based synthetic fiber dissolves in the solvent used in the semipermeable membrane solution. A technique for improving the performance has been proposed (see, for example, Patent Document 10). However, depending on the solvent used for the semipermeable membrane solution, it may not melt. Even when a solvent to be melted is used, the time from the contact of the semipermeable membrane solution with the semipermeable membrane support to the transition to the water washing step is very short, and therefore improvement in adhesion cannot be expected.

裏抜けが生じないように、半透膜支持体の均一性を高めることを目的として、合成繊維を水に分散した繊維スラリーを湿式抄紙して不織布とする工程において、抄紙時における該繊維スラリーの繊維分濃度を0.01〜0.1質量%とし、かつ、該繊維スラリーに、高分子粘剤として、分子量500万以上の水溶性高分子を、繊維分質量を基準として3〜15質量%含有させて抄紙する方法が提案されている(例えば、特許文献11参照)。しかし、高分子粘剤が過剰に添加されているため、均一性は高まるが、抄紙ワイヤー上での繊維スラリー粘度が高まって、ワイヤーからの脱水性が低下して、生産速度が上げられないという問題が起こる可能性がある。また、抄紙後の半透膜支持体を形成する繊維表面に高分子粘剤が残留するという問題もあった。   In order to improve the uniformity of the semipermeable membrane support so as not to cause back-through, the fiber slurry in which the synthetic fiber is dispersed in water is made into a non-woven fabric by wet paper making. The fiber concentration is 0.01 to 0.1% by mass, and a water-soluble polymer having a molecular weight of 5 million or more is added to the fiber slurry as a polymer viscosity agent, and 3 to 15% by mass based on the fiber mass. There has been proposed a method of making paper by containing (for example, see Patent Document 11). However, since the polymer viscosity agent is added excessively, the uniformity is increased, but the fiber slurry viscosity on the papermaking wire is increased, the dewaterability from the wire is decreased, and the production rate cannot be increased. Problems can arise. In addition, there has been a problem that the polymer adhesive remains on the surface of the fibers forming the semipermeable membrane support after paper making.

繊維径の異なる2種類の主体合成繊維と融点の異なる2種類のバインダー合成繊維を含有させ、湿式抄造法の乾燥温度と熱圧処理の温度を変えることを特徴とした半透膜支持体も提案されているが、これは湿式抄造法で半透膜支持体を容易に製造することを目的としたものであり、半透膜と半透膜支持体の接着性、非塗布面同士の接着性、半透膜塗布面の平滑性、裏抜け防止等については、何ら考慮されていない(例えば、特許文献12及び13参照)。   Proposal of semi-permeable membrane support characterized in that it contains two types of main synthetic fibers with different fiber diameters and two types of binder synthetic fibers with different melting points, and changes the drying temperature of the wet papermaking method and the temperature of the hot pressing process. However, this is for the purpose of easily producing a semipermeable membrane support by a wet papermaking method. Adhesion between the semipermeable membrane and the semipermeable membrane support, adhesion between non-coated surfaces No consideration is given to the smoothness of the semipermeable membrane application surface, prevention of breakthrough, etc. (see, for example, Patent Documents 12 and 13).

また、特許文献12及び13では、バインダー合成繊維として、芯鞘型ポリエステル複合繊維からなるバインダー合成繊維を使用している。しかし、芯鞘型ポリエステル複合繊維からなるバインダー合成繊維を使用した場合、バインダー成分が鞘部のみであるために未延伸バインダー合成繊維と比較してバインダー成分が約1/2であるために十分な接着強度が得られない場合があった。   Moreover, in patent document 12 and 13, the binder synthetic fiber which consists of a core sheath type polyester composite fiber is used as a binder synthetic fiber. However, when a binder synthetic fiber composed of a core-sheath polyester composite fiber is used, the binder component is only the sheath portion, and therefore, the binder component is about ½ compared to the unstretched binder synthetic fiber. In some cases, adhesive strength could not be obtained.

このように、半透膜塗布面の平滑性、半透膜と半透膜支持体との接着性、非塗布面同士の接着性、裏抜け防止、半透膜形成時の横方向湾曲防止やシワの発生防止等の性能を全てバランス良く満たした半透膜支持体は得られていない。特に非塗布面同士の接着性については、特許文献1〜13において、何ら考慮されていない。   In this way, smoothness of the semipermeable membrane application surface, adhesion between the semipermeable membrane and the semipermeable membrane support, adhesion between non-application surfaces, prevention of back-through, prevention of lateral bending during semipermeable membrane formation and A semipermeable membrane support that satisfies all of the properties of preventing wrinkles and the like in a well-balanced manner has not been obtained. In particular, no consideration is given to the adhesion between non-coated surfaces in Patent Documents 1 to 13.

特開2001−252543号公報JP 2001-252543 A 特開昭60−238103号公報JP 60-238103 A 特開2002−95937号公報JP 2002-95937 A 特開2009−178915号公報JP 2009-178915 A 特開2009−240893号公報JP 2009-240893 A 特開2009−240894号公報JP 2009-240894 A 特開2003−245530号公報JP 2003-245530 A 特開平10−225630号公報Japanese Patent Laid-Open No. 10-225630 特開平11−347383号公報JP 11-347383 A 特開2001−79368号公報JP 2001-79368 A 特開2008−238147号公報JP 2008-238147 A 米国特許第5851355号明細書US Pat. No. 5,851,355 米国特許第6156680号明細書US Pat. No. 6,156,680

本発明の課題は、半透膜塗布面の平滑性に優れ、半透膜溶液が裏抜けせず、非塗布面の接着性が良好な半透膜支持体を提供することにある。   An object of the present invention is to provide a semipermeable membrane support that is excellent in smoothness of a semipermeable membrane application surface, does not allow the semipermeable membrane solution to penetrate, and has good adhesion to a non-application surface.

本発明は、これまでの半透膜支持体では、検討されていなかった主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)(以下、「断面アスペクト比」と略す場合がある)に着目し、上記課題を解決したものである。   In the present invention, the cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber that has not been studied in the conventional semipermeable membrane support (hereinafter sometimes referred to as “cross-section aspect ratio”) This is a solution to the above problem.

すなわち、本発明は下記のとおりである。   That is, the present invention is as follows.

(1)半透膜支持体の製造方法において、
該半透膜支持体が繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを少なくとも含有し、半透膜塗布面及び半透膜非塗布面を有する湿式抄造不織布からなり、不織布の断面SEMで観察される厚み方向で、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)及び半透膜非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.2〜3.0であり、
長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機の群から選ばれる1種の抄紙機によって製造された単層の湿紙又は該群から選ばれる同種若しくは異種の抄紙機を複数組み合わせたコンビネーション抄紙機によって製造された多層構造の湿紙を熱圧乾燥させてシートを作製した後、熱圧加工し、
熱圧乾燥における熱ロールの表面温度が100〜180℃であり、圧力が50〜1000N/cmであり、
熱圧加工における熱ロールの表面温度が150〜260℃であり、ロールのニップ圧力が190〜1800N/cmであり、加工速度が3〜100m/minであることを特徴とする半透膜支持体の製造方法
(2)半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.3〜3.0である(1)記載の半透膜支持体の製造方法
(3)半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.4〜3.0である(1)記載の半透膜支持体の製造方法
(4)非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.2〜2.7である(1)記載の半透膜支持体の製造方法
(5)非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.2〜2.5である(1)記載の半透膜支持体の製造方法
(6)バインダー合成繊維が未延伸合成繊維である(1)〜(5)のいずれかに記載の半透膜支持体の製造方法
(7)主体合成繊維とバインダー合成繊維との合計質量に対するバインダー合成繊維の含有率が20質量%超40質量%以下である(1)〜(6)のいずれかに記載の半透膜支持体の製造方法
(8)主体合成繊維とバインダー合成繊維との合計質量に対するバインダー合成繊維の含有率が25質量%以上35質量%以下である(1)〜(6)のいずれかに記載の半透膜支持体の製造方法
(9)不織布の5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km未満であり、かつ、不織布の横方向(CD)の加熱寸法変化率が−0.3〜+1.0%である(1)〜(8)のいずれかに記載の半透膜支持体の製造方法
(10)主体合成繊維の伸び率(JIS L1013 2010)が25〜150%であり、主体合成繊維の引張強さが0.08〜0.8N/texである(9)記載の半透膜支持体の製造方法
(11)不織布が多層構造である(1)〜(10)のいずれかに記載の半透膜支持体の製造方法。
(1) In the method for producing a semipermeable membrane support,
The semipermeable membrane support comprises at least two or more main synthetic fibers and binder synthetic fibers having different fiber diameters, and comprises a wet papermaking nonwoven fabric having a semipermeable membrane application surface and a semipermeable membrane non-application surface, The cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 in the thickness direction observed by the cross-sectional SEM and the semipermeable membrane non-application surface The cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface to 1/3 is 1.2 to 3.0,
A single-layer wet paper manufactured by one type of paper machine selected from the group of long paper machines, circular paper machines, and inclined wire type paper machines, or a combination of the same or different types of paper machines selected from this group A wet paper with a multilayer structure manufactured by a combination paper machine is hot-pressure dried to produce a sheet, and then hot-pressed .
The surface temperature of the hot roll in hot pressure drying is 100 to 180 ° C., the pressure is 50 to 1000 N / cm,
The semipermeable membrane support, wherein the surface temperature of the hot roll in hot pressing is 150 to 260 ° C., the nip pressure of the roll is 190 to 1800 N / cm, and the processing speed is 3 to 100 m / min. Manufacturing method .
(2) The cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 is 1.3 to 3.0. A method for producing a semipermeable membrane support.
(3) The cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 is 1.4 to 3.0. A method for producing a semipermeable membrane support.
(4) Semi-transparent as described in (1), wherein the cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the non-coated surface to 1/3 is 1.2 to 2.7 A method for producing a membrane support.
(5) Semi-transparent as described in (1), wherein the cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the non-coated surface to 1/3 is 1.2 to 2.5 A method for producing a membrane support.
(6) The method for producing a semipermeable membrane support according to any one of (1) to (5), wherein the binder synthetic fiber is an unstretched synthetic fiber.
(7) The semipermeable membrane supporting material according to any one of (1) to (6), wherein the content of the binder synthetic fiber relative to the total mass of the main synthetic fiber and the binder synthetic fiber is more than 20% by mass and 40% by mass or less. Manufacturing method .
(8) The semipermeable membrane support according to any one of (1) to (6), wherein the content of the binder synthetic fiber relative to the total mass of the main synthetic fiber and the binder synthetic fiber is 25% by mass or more and 35% by mass or less. Manufacturing method .
(9) The average value of the longitudinal direction (MD) and transverse direction (CD) breaking lengths at 5% elongation of the nonwoven fabric is less than 4.0 km, and the transverse dimension (CD) heating dimensional change rate of the nonwoven fabric The method for producing a semipermeable membrane supporting material according to any one of (1) to (8), wherein is -0.3 to + 1.0%.
(10) Semipermeable membrane support according to (9), wherein the elongation percentage of the main synthetic fiber (JIS L1013 2010) is 25 to 150%, and the tensile strength of the main synthetic fiber is 0.08 to 0.8 N / tex. Body manufacturing method .
(11) The method for producing a semipermeable membrane supporting material according to any one of (1) to (10), wherein the nonwoven fabric has a multilayer structure .

本発明の半透膜支持体は、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維を含有してなる湿式抄造不織布からなる。そして、本発明に係わる主体合成繊維は、不織布製造前には略円状の断面形状を有しているが、抄紙機による湿紙の製造、熱圧乾燥、熱圧加工を経ることによって得られた本発明の半透膜支持体では、不織布の断面SEMで観察される半透膜塗布面及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2〜3.0である。このような断面アスペクト比を有することで、半透膜溶液が裏抜けしにくく、半透膜塗布面の平滑性にも優れ、非塗布面の接着性が良好な半透膜支持体を生み出すことが可能となった。 The semipermeable membrane support of the present invention comprises a wet papermaking nonwoven fabric containing two or more main synthetic fibers and binder synthetic fibers having different fiber diameters. The main synthetic fiber according to the present invention has a substantially circular cross-sectional shape before the production of the nonwoven fabric, and is obtained by manufacturing wet paper using a paper machine, hot-pressure drying, and hot-pressure processing. in semipermeable membrane support of the present invention is a cross-sectional aspect ratio of the main synthetic fibers present to 1/3 from the surface of the semipermeable membrane coating surface及beauty uncoated surface observed in nonwoven sectional SEM 1.2 ~ 3.0. By having such a cross-sectional aspect ratio, the semipermeable membrane solution is difficult to be penetrated, the smoothness of the semipermeable membrane application surface is excellent, and a semipermeable membrane support with good adhesion of the non-application surface is produced. Became possible.

繊維断面長径と繊維断面短径を説明するための繊維断面図である。It is a fiber sectional view for explaining a fiber section major axis and a fiber section minor axis.

主体合成繊維は、低温で溶融接着することなく、半透膜支持体の骨格を形成する合成繊維である。例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系などの繊維が挙げられるが、半透膜接着性を向上させることができ、耐熱性も高いポリエステル系の繊維がより好ましい。また、半合成繊維のアセテート、トリアセテート、プロミックスや、再生繊維のレーヨン、キュプラ、リヨセル繊維等は、性能を阻害しない範囲で含有しても良い。   The main synthetic fiber is a synthetic fiber that forms the skeleton of the semipermeable membrane support without melting and bonding at low temperature. For example, polyolefin, polyamide, polyacrylic, vinylon, vinylidene, polyvinyl chloride, polyester, benzoate, polyclar, and phenol fibers can be used, but the semipermeable membrane adhesion is improved. Polyester fibers that can be used and have high heat resistance are more preferable. Semi-synthetic fibers such as acetate, triacetate, promix, and regenerated fibers such as rayon, cupra, and lyocell fiber may be contained within a range that does not impair the performance.

主体合成繊維として、繊維径が1種の繊維を含有させ、バインダー合成繊維として、繊維径の異なる2種以上の繊維を含有させた場合には、バインダー合成繊維は湿式抄造時には繊維形状を維持して複雑な繊維構造体を形成する役割を果たすものの、乾燥工程や熱圧加工処理によって、軟化又は溶融して繊維形状が変化するため、最終的に半透膜支持体の繊維ネットワークには寄与しにくい。本発明のように、繊維径の異なる2種以上の主体合成繊維を含有させることで、複雑な繊維構造体が形成され、半透膜塗布面においては、平滑性が高く、凹凸が少なく、半透膜と半透膜支持体との接着性に優れるという効果が得られ、非塗布面においては、非塗布面同士の接着性が高いという効果が得られる。また、複雑に絡んだ繊維間に半透膜溶液が浸み込むため、裏抜けも抑制される。繊維径が太い主体合成繊維を「太径繊維」と記載し、繊維径が細い主体合成繊維を「細径繊維」と記載する。   When the main synthetic fiber contains one type of fiber and the binder synthetic fiber contains two or more types of fibers with different fiber diameters, the binder synthetic fiber maintains its fiber shape during wet papermaking. Although it plays a role in forming complex fiber structures, the fiber shape changes due to softening or melting due to the drying process or hot pressing process, which ultimately contributes to the fiber network of the semipermeable membrane support. Hateful. As in the present invention, by containing two or more main synthetic fibers having different fiber diameters, a complex fiber structure is formed. On the semipermeable membrane application surface, smoothness is high, there are few irregularities, and half The effect that the adhesion between the permeable membrane and the semipermeable membrane support is excellent is obtained, and the effect that the adhesion between the non-coated surfaces is high is obtained on the non-coated surface. Moreover, since the semipermeable membrane solution permeates between the intricately entangled fibers, the back-through is also suppressed. The main synthetic fiber having a large fiber diameter is referred to as “thick fiber”, and the main synthetic fiber having a small fiber diameter is referred to as “thin fiber”.

主体繊維の断面形状は略円形が好ましく、抄紙工程における水への分散前の主体繊維における断面アスペクト比は、1.0〜1.2未満であることが好ましい。水への分散前における主体繊維の断面アスペクト比が1.2以上になると、繊維分散性が低下する場合や、繊維の絡まりやもつれの発生により、不織布の均一性や半透膜塗布面の平滑性に悪影響を及ぼす場合がある。T型、Y型、三角等の異形断面を有する繊維については、裏抜け防止、表面平滑性のために、繊維分散性等の他の特性を阻害しない範囲内で含有できる。異型断面を有する繊維を配合する場合の配合量は、不織布に対して、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましい。   The cross-sectional shape of the main fiber is preferably substantially circular, and the cross-sectional aspect ratio of the main fiber before dispersion in water in the paper making process is preferably 1.0 to less than 1.2. If the cross-sectional aspect ratio of the main fiber before dispersion in water is 1.2 or more, the uniformity of the nonwoven fabric or the smoothness of the semipermeable membrane application surface may be caused by the fiber dispersibility being reduced or the occurrence of fiber entanglement or tangles. May adversely affect sex. About the fiber which has irregular cross sections, such as T type, Y type, and a triangle, it can contain in the range which does not inhibit other characteristics, such as fiber dispersibility, for back-through prevention and surface smoothness. 30 mass% or less is preferable with respect to a nonwoven fabric, as for the compounding quantity in the case of mix | blending the fiber which has an atypical cross section, 20 mass% or less is more preferable, and 10 mass% or less is further more preferable.

太径繊維の繊維径は、特に限定しないが、30.0μm以下が好ましく、より好ましくは2.0〜25.0μmであり、さらに好ましくは5.0〜20.0μmであり、特に好ましくは10.0〜20.0μmである。2.0μm未満の場合、非塗布面同士の接着性が悪くなる場合がある。主体繊維の繊維径が30.0μmを超えると、半透膜塗布面の平滑性が低くなり、半透膜溶液の裏抜けが発生する場合がある。また、不織布の表面に毛羽が立ちやすくなる場合がある。太径繊維の繊維長は、特に限定しないが、好ましくは1〜12mmであり、より好ましくは3〜10mmであり、さらに好ましくは4〜6mmである。   The fiber diameter of the thick fiber is not particularly limited, but is preferably 30.0 μm or less, more preferably 2.0 to 25.0 μm, still more preferably 5.0 to 20.0 μm, and particularly preferably 10 0.0-20.0 μm. If it is less than 2.0 μm, the adhesion between the non-coated surfaces may deteriorate. When the fiber diameter of the main fiber exceeds 30.0 μm, the smoothness of the semipermeable membrane application surface is lowered, and the back-through of the semipermeable membrane solution may occur. In addition, fluff may be easily formed on the surface of the nonwoven fabric. Although the fiber length of a large diameter fiber is not specifically limited, Preferably it is 1-12 mm, More preferably, it is 3-10 mm, More preferably, it is 4-6 mm.

太径繊維のアスペクト比(繊維長/繊維径)は、200〜1000が好ましく、より好ましくは220〜900であり、さらに好ましくは280〜800である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する場合や、抄紙ワイヤーに繊維が刺さって、ワイヤーからの剥離性が悪化する場合がある。一方、1000を超えた場合、繊維の三次元ネットワーク形成に寄与はするものの、繊維の絡まりやもつれの発生により、不織布の均一性や半透膜塗布面の平滑性に悪影響を及ぼす場合がある。   The aspect ratio (fiber length / fiber diameter) of the large diameter fiber is preferably 200 to 1000, more preferably 220 to 900, and still more preferably 280 to 800. When the aspect ratio is less than 200, the dispersibility of the fiber is good. However, when the fiber is dropped from the paper making wire during paper making, or when the fiber is stuck in the paper making wire and the peelability from the wire is deteriorated. There is. On the other hand, when it exceeds 1000, although it contributes to the formation of a three-dimensional network of fibers, the occurrence of entanglement and entanglement may adversely affect the uniformity of the nonwoven fabric and the smoothness of the semipermeable membrane coated surface.

主体合成繊維とバインダー合成繊維との合計質量に対する太径繊維の含有量は、10〜70質量%が好ましく、20〜60質量%がより好ましく、30〜50質量%がさらに好ましい。太径繊維の含有量が10質量%未満の場合、不織布の硬さが不足する恐れがある。また、70質量%を超えた場合、強度不足により破れる恐れがある。   10-70 mass% is preferable, as for content of the large diameter fiber with respect to the total mass of a main body synthetic fiber and a binder synthetic fiber, 20-60 mass% is more preferable, and 30-50 mass% is further more preferable. When the content of the large-diameter fiber is less than 10% by mass, the hardness of the nonwoven fabric may be insufficient. Moreover, when it exceeds 70 mass%, there exists a possibility of breaking by intensity | strength lack.

細径繊維とは、太径繊維よりも繊維径が細い繊維であり、好ましくは、太径繊維以上のアスペクト比を有する繊維である。細径繊維のアスペクト比(繊維長/繊維径)は、200〜2000であることが好ましく、より好ましくは300〜1500であり、さらに好ましくは400〜1000である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する場合や、抄紙ワイヤーに繊維が刺さってワイヤーからの剥離性が悪化する場合がある。一方、2000を超えた場合、細径繊維は三次元ネットワーク形成に寄与はするものの、繊維が絡まる場合や、もつれの発生により、不織布の均一性や半透膜塗布面の平滑性に悪影響を及ぼす場合がある。   The fine fiber is a fiber having a smaller fiber diameter than that of the thick fiber, and is preferably a fiber having an aspect ratio equal to or greater than that of the thick fiber. The aspect ratio (fiber length / fiber diameter) of the fine fiber is preferably 200 to 2000, more preferably 300 to 1500, and still more preferably 400 to 1000. When the aspect ratio is less than 200, the dispersibility of the fiber is good, but the fiber may fall off the paper making wire during paper making, or the fiber may be stuck in the paper making wire and the peelability from the wire may deteriorate. is there. On the other hand, if it exceeds 2000, fine fibers contribute to the formation of a three-dimensional network, but if the fibers are entangled or entangled, the uniformity of the nonwoven fabric and the smoothness of the semipermeable membrane coated surface are adversely affected. There is a case.

細径繊維は、太径繊維が形成した半透膜支持体の骨格の隙間を埋めて、均一で複雑な三次元ネットワークを形成する役割を果たす。また、空隙をコントロールし、平滑性を高め、半透膜支持体表面の毛羽立ちを抑制する効果を発現する。そのため、細径繊維の繊維径は太径繊維よりも細ければ、特に限定されない。好ましくは2.0〜20.0μmであり、より好ましくは3.0〜18.0μmであり、さらに好ましくは5.0〜15.0μmである。また、半透膜塗布面の平滑性を高めるためには、細径繊維に捲縮が加わっていないことが重要である。細径繊維の繊維長は、特に限定されないが、好ましくは1〜12mmであり、より好ましくは2〜10mmであり、さらに好ましくは3〜6mmであり、特に好ましくは4〜6mmである。   The small-diameter fiber plays a role of filling a gap in the skeleton of the semipermeable membrane support formed by the large-diameter fiber to form a uniform and complicated three-dimensional network. Moreover, the effect | action which controls the space | gap, improves smoothness, and suppresses the fuzz on the semipermeable membrane support body surface is expressed. Therefore, the fiber diameter of the small-diameter fiber is not particularly limited as long as it is thinner than the large-diameter fiber. Preferably it is 2.0-20.0 micrometers, More preferably, it is 3.0-18.0 micrometers, More preferably, it is 5.0-15.0 micrometers. Moreover, in order to improve the smoothness of a semipermeable membrane application surface, it is important that the crimp is not added to the thin fiber. The fiber length of the fine fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 2 to 10 mm, further preferably 3 to 6 mm, and particularly preferably 4 to 6 mm.

主体合成繊維とバインダー合成繊維との合計質量に対する細径繊維の含有量は、10〜70質量%が好ましく、20〜60質量%がより好ましく、30〜50質量%がさらに好ましい。細径繊維の含有量が10質量%未満の場合、地合が悪化する恐れがある。また、70質量%を超えた場合、不織布の硬さが不足する恐れや強度不足によって破れる恐れがある。   10-70 mass% is preferable, as for content of the small diameter fiber with respect to the total mass of a main body synthetic fiber and a binder synthetic fiber, 20-60 mass% is more preferable, and 30-50 mass% is further more preferable. When the content of the fine fiber is less than 10% by mass, the formation may be deteriorated. Moreover, when it exceeds 70 mass%, there exists a possibility that it may be torn by the fear that the hardness of a nonwoven fabric may run short or the intensity | strength is insufficient.

太径繊維及び細径繊維は1種ずつ選択して使用しても良いし、複数種の太径繊維と1種の細径繊維の組み合わせ、1種の太径繊維と複数種の細径繊維の組み合わせ等、適宜選択することができる。   A large diameter fiber and a small diameter fiber may be selected and used one by one, or a combination of a plurality of types of large diameter fibers and one type of small diameter fiber, one type of large diameter fiber and a plurality of types of small diameter fibers A combination of these can be selected as appropriate.

バインダー合成繊維は、軟化点又は溶融温度(融点)以上まで温度を上げる工程を半透膜支持体の製造工程に組み入れることで、溶融接着することを目的とした繊維であり、半透膜支持体の機械的強度を向上させる。例えば、半透膜支持体を湿式抄造法で製造し、その後の乾燥工程や熱圧加工でバインダー合成繊維を軟化又は溶融させることができる。   The binder synthetic fiber is a fiber intended to melt and bond by incorporating a process of raising the temperature to the softening point or higher than the melting temperature (melting point) into the manufacturing process of the semipermeable membrane support, and the semipermeable membrane support. Improve the mechanical strength. For example, a semipermeable membrane support can be produced by a wet papermaking method, and the binder synthetic fiber can be softened or melted by a subsequent drying step or hot pressing.

バインダー合成繊維としては、芯鞘型(コアシェルタイプ)、並列型(サイドバイサイドタイプ)、放射状分割型などの複合繊維や未延伸繊維等が挙げられる。より具体的には、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、高融点ポリエステル(芯)とポリエチレン(鞘)の組み合わせ等の複合繊維、ポリエステル等の未延伸繊維が挙げられる。複合繊維は、皮膜を形成しにくいので、半透膜支持体の空間を保持したまま、機械的強度を向上させることができる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、半透膜支持体の乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲で使用することができる。本発明においては、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステル等の未延伸繊維が、湿式抄造法にて不織布を形成する際に強度を発現できると共に、熱圧加工の際に第二段の強度発現が可能であることから、好ましく用いることができる。ポリエステル等の未延伸繊維は、芯鞘型繊維よりも、バインダー成分が多いため、接着強度が得られやすく、特に好ましい。   Examples of the binder synthetic fiber include composite fibers such as a core-sheath type (core-shell type), a parallel type (side-by-side type), and a radial split type, and unstretched fibers. More specifically, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high melting point polyester (core) and low melting point polyester (sheath), high melting point Examples include composite fibers such as a combination of polyester (core) and polyethylene (sheath), and unstretched fibers such as polyester. Since the composite fiber hardly forms a film, the mechanical strength can be improved while maintaining the space of the semipermeable membrane support. In addition, a single fiber (fully fused type) composed only of a low melting point resin such as polyethylene or polypropylene, or a hot water-soluble binder such as polyvinyl alcohol easily forms a film in the drying process of the semipermeable membrane support. However, it can be used as long as the properties are not impaired. In the present invention, a combination of a high-melting polyester (core) and a low-melting polyester (sheath), unstretched fibers such as polyester can exhibit strength when forming a nonwoven fabric by a wet papermaking method, In this case, it can be preferably used because the second-stage strength can be developed. Unstretched fibers such as polyester are particularly preferable because they have a binder component more than the core-sheath fiber, and thus it is easy to obtain adhesive strength.

バインダー合成繊維の繊維径は、特に限定されないが、好ましくは2.0〜20.0μmであり、より好ましくは5.0〜15.0μmであり、さらに好ましくは7.0〜12.0μmである。また、主体合成繊維と異なる繊維径であることが好ましく、特に、太径繊維よりも細い繊維径であることが好ましい。主体合成繊維と繊維径が異なることで、バインダー合成繊維は半透膜支持体の機械的強度を向上させる役割の他に、湿式抄造時に、主体合成繊維と共に均一な三次元ネットワークを形成する役割も果たす。さらに、バインダー合成繊維の軟化温度又は溶融温度以上まで温度を上げる工程では、半透膜支持体表面の平滑性をも向上させることができ、該工程では加圧が伴っているとより効果的である。   Although the fiber diameter of a binder synthetic fiber is not specifically limited, Preferably it is 2.0-20.0 micrometers, More preferably, it is 5.0-15.0 micrometers, More preferably, it is 7.0-12.0 micrometers. . Moreover, it is preferable that it is a fiber diameter different from a main synthetic fiber, and it is especially preferable that it is a fiber diameter thinner than a large diameter fiber. Because the fiber diameter is different from the main synthetic fiber, the binder synthetic fiber has the role of forming a uniform three-dimensional network with the main synthetic fiber during wet papermaking in addition to the role of improving the mechanical strength of the semipermeable membrane support. Fulfill. Furthermore, in the step of raising the temperature to the softening temperature or melting temperature of the binder synthetic fiber, the smoothness of the semipermeable membrane support surface can be improved, and in this step, it is more effective when accompanied by pressurization. is there.

バインダー合成繊維の繊維長は、特に限定しないが、好ましくは1〜12mmであり、より好ましくは3〜10mmであり、さらに好ましくは3〜6mmであり、特に好ましくは4〜6mmである。バインダー合成繊維の断面形状は略円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、半透膜塗布面の平滑性、非塗布面同士の接着性のために、他の特性を阻害しない範囲内で含有できる。   Although the fiber length of a binder synthetic fiber is not specifically limited, Preferably it is 1-12 mm, More preferably, it is 3-10 mm, More preferably, it is 3-6 mm, Most preferably, it is 4-6 mm. The cross-sectional shape of the binder synthetic fiber is preferably substantially circular. However, fibers having irregular cross-sections such as T-type, Y-type, and triangle can also be used to prevent back-through, smoothness of a semipermeable membrane application surface, and adhesion between non-application surfaces. Therefore, it can be contained within a range that does not inhibit other characteristics.

バインダー合成繊維のアスペクト比(繊維長/繊維径)は、好ましくは200〜1000であり、より好ましくは300〜800であり、さらに好ましくは400〜700である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する場合や、抄紙ワイヤーに繊維が刺さって、ワイヤーからの剥離性が悪化する恐れがある。一方、1000を超えた場合、バインダー合成繊維は三次元ネットワーク形成に寄与はするものの、繊維が絡まる場合や、もつれの発生により、不織布の均一性や半透膜塗布面の平滑性に悪影響を及ぼすことがある。   The aspect ratio (fiber length / fiber diameter) of the binder synthetic fiber is preferably 200 to 1000, more preferably 300 to 800, and still more preferably 400 to 700. When the aspect ratio is less than 200, the dispersibility of the fibers is good, but the fibers may fall off from the paper making wire during paper making, or the fibers may pierce the paper making wire and the peelability from the wire may deteriorate. There is. On the other hand, if it exceeds 1000, the binder synthetic fiber contributes to the formation of a three-dimensional network, but if the fibers are entangled or entangled, the uniformity of the nonwoven fabric and the smoothness of the semipermeable membrane coated surface are adversely affected. Sometimes.

主体合成繊維とバインダー合成繊維との合計質量に対するバインダー合成繊維の含有量は、20質量%超40質量%以下が好ましく、20質量%超35質量%以下がより好ましく、25質量%以上35質量%以下がさらに好ましい。バインダー合成繊維の含有量が20質量%以下の場合、毛羽立ちが多くなる恐れや強度不足により破れる恐れがある。また、40質量%を超えた場合、通液性が低下する恐れや熱圧加工時にロールへの貼り付きが発生する場合がある。   The content of the binder synthetic fiber with respect to the total mass of the main synthetic fiber and the binder synthetic fiber is preferably more than 20% by mass and 40% by mass or less, more preferably more than 20% by mass and 35% by mass or less, and more preferably 25% by mass to 35% by mass. More preferred are: When the content of the binder synthetic fiber is 20% by mass or less, there is a fear that fuzzing increases or there is a risk of tearing due to insufficient strength. Moreover, when it exceeds 40 mass%, there exists a possibility that liquid permeability may fall or sticking to a roll may occur at the time of hot pressing.

本発明の半透膜支持体において、各層の繊維配合が同一である多層構造不織布であっても良いし、各層の繊維配合が異なる多層不織布であっても良い。多層構造にすることで、各層の坪量が下がることにより、スラリーの繊維濃度を下げることができるため、不織布の地合が良くなり、その結果、半透膜塗布面の平滑性や均一性が向上する。また、各層の地合が不均一であった場合でも、積層することで補填できる。さらに、抄紙速度を上げることができ、操業性が向上する。   The semipermeable membrane support of the present invention may be a multilayer nonwoven fabric in which the fiber blending of each layer is the same, or may be a multilayer nonwoven fabric in which the fiber blending of each layer is different. By making the multilayer structure, the basis weight of each layer is lowered, so that the fiber concentration of the slurry can be lowered, so that the formation of the nonwoven fabric is improved. As a result, the smoothness and uniformity of the semipermeable membrane application surface is improved. improves. Moreover, even when the formation of each layer is non-uniform | heterogenous, it can compensate by laminating | stacking. Further, the paper making speed can be increased, and the operability is improved.

本発明の半透膜支持体の製造方法について説明する。本発明の半透膜支持体は、湿式抄造法によりシート化された後に、熱ロールによって熱圧加工される。   The method for producing the semipermeable membrane support of the present invention will be described. The semipermeable membrane support of the present invention is formed into a sheet by a wet papermaking method and then hot-pressed with a hot roll.

湿式抄造法では、まず、主体繊維、細径繊維、バインダー合成繊維を均一に水中に分散させ、その後、スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.01〜0.50質量%に調製されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。繊維の分散性を均一にするために、工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。   In the wet papermaking method, first, the main fibers, fine fibers, and binder synthetic fibers are uniformly dispersed in water, and then passed through processes such as screen (removal of foreign matters, lumps, etc.), and the final fiber concentration is 0.01 to The slurry prepared to 0.50% by mass is made up with a paper machine to obtain a wet paper. In order to make the dispersibility of the fibers uniform, chemicals such as dispersants, antifoaming agents, hydrophilic agents, antistatic agents, polymer thickeners, mold release agents, antibacterial agents, bactericides, etc. may be added during the process. is there.

抄紙機としては、例えば、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機を用いることができる。これらの抄紙機は、単独でも使用できるし、同種又は異種の2機以上の抄紙機がオンラインで設置されているコンビネーション抄紙機を使用しても良い。また、不織布が2層以上の多層構造の場合には、各々の抄紙機で抄き上げた湿紙を積層する抄き合わせ法や、一方のシートを形成した後に、該シートの上に繊維を分散したスラリーを流延する方法のいずれでも良い。   As the paper machine, for example, a long net paper machine, a circular net paper machine, or an inclined wire type paper machine can be used. These paper machines can be used alone, or a combination paper machine in which two or more same or different types of paper machines are installed online may be used. In addition, when the nonwoven fabric has a multilayer structure of two or more layers, a fiber bonding method in which wet papers made by each paper machine are laminated, or after forming one sheet, fibers are placed on the sheet. Any method of casting the dispersed slurry may be used.

抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することにより、シートを得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることをいう。熱ロールの表面温度は、100〜180℃が好ましく、100〜160℃がより好ましく、110〜160℃がさらに好ましい。圧力は、好ましくは50〜1000N/cm、より好ましくは100〜800N/cmである。   Sheets are obtained by drying wet paper produced by a paper machine with a Yankee dryer, air dryer, cylinder dryer, suction drum dryer, infrared dryer, or the like. When the wet paper is dried, it is brought into close contact with a hot roll such as a Yankee dryer and dried by heat and pressure to improve the smoothness of the contacted surface. Hot-pressure drying means that the wet paper is pressed against the heat roll with a touch roll or the like and dried. The surface temperature of the hot roll is preferably 100 to 180 ° C, more preferably 100 to 160 ° C, and still more preferably 110 to 160 ° C. The pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm.

次に、熱ロールによる熱圧加工について説明するが、本発明は下記のものに特定されない。シート熱圧加工装置のロール間をニップしながら、湿式抄紙法で製造されたシートを通過させて熱圧加工を行う。ロールの組み合わせとしては、2本の金属ロール、金属ロールと樹脂ロール、金属ロールとコットンロール等が挙げられる。2本のロールは、一方あるいは両方を加熱する。その際に、両方共に加熱した2本の金属ロールで加工しても良いし、加熱金属ロールと樹脂ロール、加熱金属ロールとコットンロール等の組み合わせで熱圧加工しても良い。さらに、加熱金属ロールと樹脂ロール、加熱金属ロールとコットンロール、加熱した2本の金属ロール等の組み合わせで、最初にコットンロール又は樹脂ロールに接した面を加熱金属ロールに接するようにして、熱圧加工しても良い。   Next, although hot press processing by a hot roll is demonstrated, this invention is not specified to the following. The sheet manufactured by the wet papermaking method is passed through the hot pressing process while niping between the rolls of the sheet hot pressing apparatus. Examples of the combination of rolls include two metal rolls, a metal roll and a resin roll, and a metal roll and a cotton roll. Two rolls heat one or both. At that time, both of them may be processed with two heated metal rolls, or may be hot-pressed with a combination of a heated metal roll and a resin roll, a heated metal roll and a cotton roll, or the like. Further, in a combination of a heated metal roll and a resin roll, a heated metal roll and a cotton roll, two heated metal rolls, etc., the surface that first contacts the cotton roll or the resin roll is in contact with the heated metal roll. You may press-process.

熱ロールの表面温度、ロール間のニップ圧力、シートの加工速度を制御することによって、所望の半透膜支持体を得る。熱ロールの表面温度は、好ましくは150〜260℃であり、より好ましくは180〜240℃である。ロールのニップ圧力は、好ましくは190〜1800N/cmであり、より好ましくは390〜1500N/cmである。加工速度は、好ましくは3〜100m/minであり、より好ましくは4〜100m/minであり、さらに好ましくは10〜80m/minである。熱ロールによる熱圧加工は2回以上行うことも可能であり、その場合、直列に配置された2組以上の上記のロール組み合わせを使用しても良いし、1組のロール組み合わせを用いて、2回加工しても良い。必要に応じて、シートの表裏を逆にしても良い。   A desired semipermeable membrane support is obtained by controlling the surface temperature of the hot roll, the nip pressure between the rolls, and the processing speed of the sheet. The surface temperature of the hot roll is preferably 150 to 260 ° C, more preferably 180 to 240 ° C. The roll nip pressure is preferably 190 to 1800 N / cm, more preferably 390 to 1500 N / cm. A processing speed becomes like this. Preferably it is 3-100 m / min, More preferably, it is 4-100 m / min, More preferably, it is 10-80 m / min. It is also possible to perform the hot pressing with a hot roll two or more times. In that case, two or more sets of rolls arranged in series may be used, or one set of rolls may be used. You may process twice. If necessary, the front and back of the sheet may be reversed.

本発明の半透膜支持体における不織布の断面SEMで観察される厚み方向で、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2〜3.0である。主体合成繊維は、湿式抄紙工程までは繊維の分散性、地合を良好に保つために繊維断面のアスペクト比は1.0〜1.2未満の略真円状であることが重要である。その後の熱圧乾燥及び熱ロールによる熱圧加工により、バインダー合成繊維が溶融変形することによって、主体合成繊維と接着して強度を高めると共に、表面の平滑性を高めることができる。この際に、主体合成繊維の断面形状も変形させることが重要である。熱圧加工工程で不織布の断面SEMで観察される厚み方向で半透膜塗布面の表面から1/3までの主体合成繊維の断面アスペクト比を、1.0〜1.2未満から1.2〜3.0にまで高めることが重要である。断面アスペクト比1.2〜3.0の範囲に収めるためには、湿式抄紙工程での湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させる工程において、タッチロール等で熱ロールに湿紙を押しつける圧力を高めることにより制御できる。また、熱圧加工時の熱ロールの表面温度、ロール間のニップ圧力、加工速度を制御する。熱ロール温度が高く、ニップ圧力が高く、加工速度が遅い場合にアスペクト比が大きくなるが、それらが相乗して過剰になった場合、通液性、通気性が損なわれることがある。 In the thickness direction is observed by cross-sectional SEM of the nonwoven fabric in a semipermeable membrane support of the present invention, the surface of the cross-sectional aspect Hi及beauty uncoated surface of the metallic synthetic fibers present to 1/3 from the surface of the semipermeable membrane coating surface To 1/3, the cross-sectional aspect ratio of the main synthetic fiber is 1.2 to 3.0. It is important that the main synthetic fiber has a substantially circular shape with an aspect ratio of the fiber cross section of 1.0 to less than 1.2 in order to maintain good dispersibility and formation of the fiber until the wet papermaking process. The binder synthetic fiber is melted and deformed by subsequent hot-pressure drying and hot-pressing with a hot roll, so that it can be bonded to the main synthetic fiber to increase the strength and the surface smoothness. At this time, it is important to change the cross-sectional shape of the main synthetic fiber. The cross-sectional aspect ratio of the main synthetic fiber from 1 to 3 in the thickness direction observed in the cross-sectional SEM of the nonwoven fabric in the hot pressing process is from 1.0 to less than 1.2 to 1.2. It is important to increase to ~ 3.0. In order to keep the cross-sectional aspect ratio in the range of 1.2 to 3.0, in the process of drying by wet pressure in the wet papermaking process, the process is performed in the process of hot-pressure drying in close contact with a heat roll such as a Yankee dryer. The pressure can be controlled by increasing the pressure with which the wet paper is pressed against the heat roll. Moreover, the surface temperature of the hot roll at the time of hot pressing, the nip pressure between rolls, and the processing speed are controlled. When the hot roll temperature is high, the nip pressure is high, and the processing speed is low, the aspect ratio becomes large. However, when they are synergistically excessive, liquid permeability and air permeability may be impaired.

繊維の断面アスペクト比の計測は、半透膜支持体の流れ方向を横切る方向で半透膜支持体を裁断し、その断面のSEM(電子顕微鏡)写真撮影を行い、半透膜支持体断面の厚さを3等分し、半透膜塗布面の表面から裏面に向けて、全体の1/3の厚さまでに存在する繊維の中で、繊維長さ方向に対して垂直に裁断されている太径繊維及び細径繊維をランダムに各々10本見出し、その繊維断面長径及び繊維断面短径を計測して、断面アスペクト比を算出し、その平均値を主体合成繊維の断面アスペクト比とする。図1(A)及び(B)は繊維の断面図であるが、繊維径のうち最も長い径を繊維断面長径とした後、それと直交する繊維径の中から最も長いものを繊維断面短径とする。   The cross-sectional aspect ratio of the fiber is measured by cutting the semipermeable membrane support in a direction crossing the flow direction of the semipermeable membrane support, taking an SEM (electron microscope) photograph of the cross section, The thickness is divided into three equal parts, and is cut perpendicularly to the fiber length direction among the fibers existing up to 1/3 of the total thickness from the front surface to the back surface of the semipermeable membrane application surface. Ten large-diameter fibers and 10 small-diameter fibers are randomly found, the fiber cross-section major axis and the fiber cross-section minor axis are measured, the cross-section aspect ratio is calculated, and the average value is taken as the cross-section aspect ratio of the main synthetic fiber. 1 (A) and 1 (B) are cross-sectional views of the fiber. After making the longest diameter among the fiber diameters into the fiber cross-section long axis, the longest of the fiber diameters orthogonal to the fiber cross-section is referred to as the fiber cross-section short axis. To do.

半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2未満の場合、半透膜成分を塗布する際に該膜成分が滲み込みすぎるという問題が発生する場合がある。3.0を超えた場合、該膜成分が半透膜支持体に入り込まず、半透膜と半透膜支持体のアンカー効果による接着が満たされずに、接着不良の問題が発生する場合がある。半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比は、1.3〜3.0であることがより好ましく、1.4〜3.0であることがさらに好ましい。   When the cross-sectional aspect ratio of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 is less than 1.2, there is a problem that the membrane component is excessively permeated when the semipermeable membrane component is applied. There is a case. When the ratio exceeds 3.0, the membrane component does not enter the semipermeable membrane support, and the adhesion due to the anchor effect of the semipermeable membrane and the semipermeable membrane support is not satisfied, which may cause a problem of adhesion failure. . The cross-sectional aspect ratio of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 is more preferably 1.3 to 3.0, and further preferably 1.4 to 3.0. preferable.

非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2未満の場合、非塗布面同士を接着させる際に、接着剤が浸透しすぎて接着不良の問題が発生する場合がある。3.0を超えた場合、接着剤が入り込まずに、アンカー効果による接着が期待できず接着不良という問題が発生する場合がある。非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比は、1.2〜2.7であることがより好ましく、1.2〜2.5であることがさらに好ましい。   When the cross-sectional aspect ratio of the main synthetic fiber existing from the surface of the non-coated surface to 1/3 is less than 1.2, when the non-coated surfaces are bonded to each other, the adhesive permeates too much and there is a problem of poor adhesion. May occur. When 3.0 is exceeded, the adhesive agent does not enter, adhesion due to the anchor effect cannot be expected, and a problem of poor adhesion may occur. The cross-sectional aspect ratio of the main synthetic fiber existing 1/3 from the surface of the non-coated surface is more preferably 1.2 to 2.7, and further preferably 1.2 to 2.5.

本発明では、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び/又は非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比を規定しているが、半透膜塗布面と非塗布面の両方において、断面アスペクト比が本発明で規定される範囲内に入っているのが最も好ましく、半透膜塗布面の断面アスペクト比のみが本発明で規定される範囲内に入っているのが次に好ましく、非塗布面のみが本発明で規定される範囲内に入っているのが、その次に好ましい。   In the present invention, the cross-sectional aspect ratio of the main synthetic fiber existing up to 1/3 from the surface of the semipermeable membrane application surface and / or the cross-sectional aspect ratio of the main synthetic fiber existing up to 1/3 from the surface of the non-application surface Although it is specified, it is most preferable that the cross-sectional aspect ratio is within the range specified by the present invention in both the semipermeable membrane coated surface and the non-coated surface, and only the sectional aspect ratio of the semipermeable membrane coated surface Is preferably within the range defined by the present invention, and only the non-coated surface is preferably within the range defined by the present invention.

また、中間部分に存在する主体合成繊維の断面アスペクト比は、特に限定されない。中間部分に存在する主体合成繊維の断面アスペクト比は、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比と非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比を反映しているが、これら表面付近に存在する主体合成繊維の断面アスペクト比と比較して小さくなる。これは熱圧加工の際に半透膜塗布面や非塗布面付近と比較して熱伝導が少ないためと考えられる。また、半透膜支持体全体に分布しているバインダー合成繊維は、熱圧加工により繊維形状を失った形で、主体合成繊維間に存在している。   Further, the cross-sectional aspect ratio of the main synthetic fiber present in the intermediate portion is not particularly limited. The cross-sectional aspect ratio of the main synthetic fiber existing in the intermediate portion is 1/3 from the cross-sectional aspect ratio of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 from the surface of the non-application surface. Although the cross-sectional aspect ratio of the main synthetic fiber is reflected, it is smaller than the cross-sectional aspect ratio of the main synthetic fiber existing near the surface. This is considered to be because the heat conduction is less in the hot pressing process than in the vicinity of the semipermeable membrane coated surface or the non-coated surface. In addition, the binder synthetic fiber distributed throughout the semipermeable membrane support is present between the main synthetic fibers in a form in which the fiber shape has been lost by hot pressing.

本発明において、さらに、不織布の5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km未満であり、かつ、横方向(CD)の加熱寸法変化率が−0.3〜+1.0%であることが好ましい。半透膜塗布工程において、半透膜支持体の5%伸長時の裂断長及び加熱寸法変化率が極めて重要な要件となる。そして、特に、半透膜支持体を構成する不織布の5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値[以下「平均裂断長(5%伸長時)」という]が4.0km未満であり、半透膜支持体を90℃湯浴に10分間浸した前後の横方向(CD)の加熱寸法変化率が−0.3〜+1.0%であることが重要であるという知見を得た。   In the present invention, the average value of the longitudinal direction (MD) and transverse direction (CD) breaking length at 5% elongation of the nonwoven fabric is less than 4.0 km, and the transverse dimension (CD) heating dimensional change The rate is preferably -0.3 to + 1.0%. In the semipermeable membrane coating process, the breaking length at 5% elongation of the semipermeable membrane support and the heating dimensional change rate are extremely important requirements. And especially the average value of the longitudinal direction (MD) and transverse direction (CD) breaking length at the time of 5% elongation of the nonwoven fabric constituting the semipermeable membrane support [hereinafter referred to as "average breaking length (at 5% elongation)" ”Is less than 4.0 km, and the transverse dimensional change rate (CD) before and after immersing the semipermeable membrane support in a 90 ° C. hot water bath for 10 minutes is −0.3 to + 1.0%. I learned that this is important.

本発明の半透膜支持体では、平均裂断長(5%伸長時)が4.0km未満であることが好ましい。半透膜支持体の平均裂断長(5%伸長時)が4.0km以上になると、強度が過剰となり、通気性の低下を招く場合がある。本発明の半透膜支持体においては、平均裂断長(5%伸長時)は4.0km未満であることが好ましく、より好ましくは3.8km以下、さらに好ましくは3.6km以下である。また、半透膜支持体の横方向(CD)の加熱寸法変化率が−0.3〜+1.0%であることが好ましく、より好ましくは−0.2〜+0.8%であり、さらに好ましくは−0.1〜+0.6%である。支持体の横方向(CD)の加熱寸法変化率が−0.3%未満の場合、横方向の収縮が過大であり、半透膜支持体エッジ部の半透膜非塗布部でカールによるシワが発生する場合がある。一方、+1.0%を超えた場合、半透膜塗布面に向かって、幅方向全体にカールによるシワの発生が起こる場合がある。   In the semipermeable membrane support of the present invention, the average breaking length (at 5% elongation) is preferably less than 4.0 km. If the average breaking length (at 5% elongation) of the semipermeable membrane support is 4.0 km or more, the strength becomes excessive and the air permeability may be lowered. In the semipermeable membrane support of the present invention, the average breaking length (at 5% elongation) is preferably less than 4.0 km, more preferably 3.8 km or less, and further preferably 3.6 km or less. Moreover, it is preferable that the transverse dimension (CD) heating dimensional change rate of the semipermeable membrane support is −0.3 to + 1.0%, more preferably −0.2 to + 0.8%, Preferably, it is -0.1 to + 0.6%. When the dimensional change rate in the transverse direction (CD) of the support is less than −0.3%, the shrinkage in the lateral direction is excessive, and wrinkles due to curling occur at the semipermeable membrane non-coated portion at the edge of the semipermeable membrane support. May occur. On the other hand, if it exceeds + 1.0%, wrinkles due to curling may occur in the entire width direction toward the semipermeable membrane application surface.

平均裂断長(5%伸長時)を4.0km未満にするためには、主体合成繊維の伸び率(JIS L1013 2010)が25〜150%であることが好ましく、主体合成繊維の引張強さ(JIS L1013 2010)が0.08〜0.80N/texであることが好ましい。主体合成繊維の伸び率が25%未満の場合、平均裂断長(5%伸長時)が4.0kmを超える場合や、熱圧加工の際に不織布の伸び不足によって、断紙する場合がある。一方、150%を超えた場合、熱圧加工の際に不織布の収縮過剰によって、シワの発生を招く場合がある。そのため、主体合成繊維の伸び率は25〜150%が好ましく、より好ましくは30〜120%であり、さらに好ましくは35〜100%である。また、主体合成繊維の引張強さは0.08〜0.80N/texが好ましく、より好ましくは0.10〜0.70N/texであり、さらに好ましくは0.20〜0.60N/texである。0.08N/tex未満の場合、強度不足により、不織布を形成する湿式抄造工程での断紙又は熱圧加工工程で断紙を招く場合がある。また、0.80N/texを超えた場合、得られる不織布が硬いために、熱圧加工後も平滑性が得られない場合があるばかりでなく、裂断長が4.0km超となりやすくなる。   In order to make the average breaking length (at 5% elongation) less than 4.0 km, the elongation percentage of the main synthetic fiber (JIS L1013 2010) is preferably 25 to 150%, and the tensile strength of the main synthetic fiber It is preferable that (JIS L1013 2010) is 0.08 to 0.80 N / tex. When the elongation percentage of the main synthetic fiber is less than 25%, the average tear length (at 5% elongation) may exceed 4.0 km, or the paper may be cut due to insufficient elongation of the nonwoven fabric during hot pressing. . On the other hand, if it exceeds 150%, wrinkles may occur due to excessive shrinkage of the nonwoven fabric during hot pressing. Therefore, the elongation percentage of the main synthetic fiber is preferably 25 to 150%, more preferably 30 to 120%, and still more preferably 35 to 100%. The tensile strength of the main synthetic fiber is preferably 0.08 to 0.80 N / tex, more preferably 0.10 to 0.70 N / tex, and still more preferably 0.20 to 0.60 N / tex. is there. In the case of less than 0.08 N / tex, paper breakage may be caused in the wet papermaking process for forming the nonwoven fabric or in the hot pressing process due to insufficient strength. Moreover, when it exceeds 0.80 N / tex, since the obtained nonwoven fabric is hard, not only smoothness may not be obtained even after hot pressing, but the breaking length is likely to exceed 4.0 km.

半透膜支持体の横方向(CD)の加熱寸法変化率を−0.3〜+1.0%に収めるためには、湿式抄造工程で湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて乾燥させることや熱圧加工時のロール温度、熱圧加工回数、熱圧加工後の加熱加工処理等を、上述の範囲内において、最適に組み合わせることが重要となる。   In order to keep the dimensional change rate in the transverse direction (CD) of the semipermeable membrane support to −0.3 to + 1.0%, a hot roll such as a Yankee dryer is used when wet paper is dried in the wet papermaking process. It is important to optimally combine, for example, the roll temperature during hot pressing, the number of times of hot pressing, the heat processing after hot pressing, and the like within the above-mentioned range.

裂断長とは、JIS P8113 1976に準拠して測定した値をいい、不織布試料の坪量や幅などに左右されない不織布自体の抗張力を示す指標である。そして、本発明の半透膜支持体に係わる不織布の「平均裂断長(5%伸長時)」は、実施例に詳述する方法で求められる。   The breaking length refers to a value measured in accordance with JIS P8113 1976, and is an index indicating the tensile strength of the nonwoven fabric itself that is not affected by the basis weight or width of the nonwoven fabric sample. And the "average tear length (at the time of 5% expansion | extension)" of the nonwoven fabric concerning the semipermeable membrane support body of this invention is calculated | required by the method explained in full detail in an Example.

加熱寸法変化率とは、半透膜支持体に半透膜を形成する工程において、半透膜支持体に加えられる熱(例えば、湯洗浄工程、乾燥工程で加えられる熱)による半透膜支持体の寸法変化を数値化するものである。この数値が特定の範囲内に収まっていることが、シワの発生抑制、湾曲抑制のために重要となる。   The rate of change in heating dimension is the semipermeable membrane support by heat applied to the semipermeable membrane support in the step of forming the semipermeable membrane on the semipermeable membrane support (for example, heat applied in the hot water washing step or drying step). The dimensional change of the body is quantified. It is important for this numerical value to fall within a specific range to suppress wrinkling and curving.

半透膜支持体の坪量は、特に限定しないが、20〜150g/mが好ましく、より好ましくは50〜100g/mである。20g/m未満の場合は、十分な引張強度が得られない場合がある。また、150g/mを超えた場合、通液抵抗が高くなる場合や厚みが増してユニットやモジュール内に規定量の半透膜を収納できない場合がある。 Although the basic weight of a semipermeable membrane support body is not specifically limited, 20-150 g / m < 2 > is preferable, More preferably, it is 50-100 g / m < 2 >. If it is less than 20 g / m 2 , sufficient tensile strength may not be obtained. Moreover, when it exceeds 150 g / m < 2 >, a liquid flow resistance may become high, thickness may increase, and a predetermined amount of semipermeable membrane may not be accommodated in a unit or a module.

また、半透膜支持体の密度は、0.5〜1.0g/cmであることが好ましく、より好ましくは0.6〜0.9g/cmである。半透膜支持体の密度が0.5g/cm未満の場合は、厚みが厚くなるため、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、1.0g/cmを超える場合は、通液性が低くなることがあり、半透膜の寿命が短くなる場合がある。 The density of the semi-permeable membrane support is preferably 0.5 to 1.0 g / cm 3, more preferably 0.6~0.9g / cm 3. When the density of the semipermeable membrane support is less than 0.5 g / cm 3 , the thickness increases, and the area of the semipermeable membrane that can be incorporated into the unit is reduced. As a result, the life of the semipermeable membrane is shortened. May end up. On the other hand, when it exceeds 1.0 g / cm 3 , the liquid permeability may be lowered, and the life of the semipermeable membrane may be shortened.

半透膜支持体の厚みは、50〜150μmであることが好ましく、60〜130μmであることがより好ましく、70〜120μmであることがさらに好ましい。半透膜支持体の厚みが150μmを超えると、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜の寿命が短くなってしまうことがある。一方、50μm未満の場合、十分な引張強度が得られない場合や通液性が低くなって、半透膜の寿命が短くなる場合がある。   The thickness of the semipermeable membrane support is preferably 50 to 150 μm, more preferably 60 to 130 μm, and even more preferably 70 to 120 μm. When the thickness of the semipermeable membrane support exceeds 150 μm, the area of the semipermeable membrane that can be incorporated into the unit is reduced, and as a result, the life of the semipermeable membrane may be shortened. On the other hand, when the thickness is less than 50 μm, sufficient tensile strength may not be obtained or liquid permeability may be reduced, and the life of the semipermeable membrane may be shortened.

本発明を実施例によりさらに詳細に説明する。以下、特にことわりのないかぎり、実施例に記載される部及び比率は質量を基準とする。なお、実施例41、42及び56は参考例である。 The invention is explained in more detail by means of examples. Hereinafter, unless otherwise specified, the parts and ratios described in the examples are based on mass. Examples 41, 42 and 56 are reference examples.

<主体合成繊維の伸び率及び引張強さ>
主体合成繊維の伸び率及び引張強さは、測定A及びBの方法で測定した。
<Elongation rate and tensile strength of main synthetic fiber>
The elongation and tensile strength of the main synthetic fiber were measured by methods A and B.

測定A(主体合成繊維の伸び率)
JIS L1013 2010に準じ、主体合成繊維の伸び率を測定した。
Measurement A (Elongation rate of main synthetic fiber)
In accordance with JIS L1013 2010, the elongation of the main synthetic fiber was measured.

測定B(主体合成繊維の引張強さ)
JIS L1013 2010に準じ、主体合成繊維の引張強さを測定した。
Measurement B (Tensile strength of the main synthetic fiber)
The tensile strength of the main synthetic fiber was measured in accordance with JIS L1013 2010.

<評価>
実施例及び比較例で得られた半透膜支持体は、下記の試験によって、評価した。
<Evaluation>
The semipermeable membrane supports obtained in Examples and Comparative Examples were evaluated by the following tests.

試験1(厚さ)
JIS P8118に準じ、厚さを測定した。
Test 1 (thickness)
The thickness was measured according to JIS P8118.

試験2(平滑性)
JIS P8119に準じ、ベック平滑度試験機を用いて測定した。
Test 2 (Smoothness)
According to JIS P8119, it measured using the Beck smoothness tester.

試験3(X面の繊維毛羽立ち)
幅30cmの半透膜支持体の流れ方向を横切るように、X面を山にして折り目を付け、折り目の上にステンレス製の直径5cm、長さ40cmの円柱状ロールを転がし、折り目に発生した繊維の毛羽立ち本数を計測した。測定はn=4で行い、平均値を示す。
Test 3 (X surface fiber fluffing)
A crease was made with the X surface as a mountain so as to cross the flow direction of the 30 cm-width semipermeable membrane support, and a cylindrical roll made of stainless steel with a diameter of 5 cm and a length of 40 cm was rolled on the crease. The number of fluffs of the fiber was measured. The measurement is performed at n = 4 and the average value is shown.

0〜10本:毛羽立ちが少なく、非常に良好なレベル。
11〜20本:良好なレベル。
21〜30本:実用上、下限レベル。
31本以上:使用不可レベル。
0 to 10: Very good level with less fuzz.
11 to 20: good level.
21-30: practically lower limit level.
31 or more: Unusable level.

試験4(Y面の繊維毛羽立ち)
幅30cmの半透膜支持体の流れ方向を横切るように、Y面を山にして折り目を付け、折り目の上にステンレス製の直径5cm、長さ40cmの円柱状ロールを転がし、折り目に発生した繊維の毛羽立ち本数を計測した。測定はn=4で行い、平均値を示す。
Test 4 (Y surface fiber fluff)
A crease was made with the Y surface as a mountain so as to cross the flow direction of the semipermeable membrane support having a width of 30 cm, and a cylindrical roll made of stainless steel having a diameter of 5 cm and a length of 40 cm was rolled on the crease. The number of fluffs of the fiber was measured. The measurement is performed at n = 4 and the average value is shown.

0〜10本:毛羽立ちが少なく、非常に良好なレベル。
11〜20本:良好なレベル。
21〜30本:実用上、下限レベル。
31本以上:使用不可レベル。
0 to 10: Very good level with less fuzz.
11 to 20: good level.
21-30: practically lower limit level.
31 or more: Unusable level.

試験5(5%伸長時の平均裂断長)
半透膜支持体から縦×横=15mm×250mmの試験片を採取し、その試験片を用いて、JIS P8113 1976に準拠して、2個の掴み具の間隔を180mmとして、その縦方向及び横方向の引張強さを測定し、その5%伸長時に対応する荷重を読み裂断長を求めた。次いで、縦方向と横方向の裂断長の平均値{(縦方向の5%裂断長+横方向の5%裂断長)/2}を求めて、不織布の平均裂断長(5%伸長時)とした(単位:km)。半透膜支持体の測定箇所は、半透膜支持体の幅が1000mmを超えた場合、横方向で3箇所(右、中央、左)から採取し、各々の縦方向、横方向の裂断長を測定し、この3箇所全ての縦横平均値を平均裂断長(5%伸長時)とした。半透膜支持体の幅が500〜1000mmの場合、横方向で2分割して2箇所(右側の中央、左側の中央)から採取し、各々の縦方向、横方向の裂断長を測定し、この2箇所全ての縦横平均値を平均裂断長(5%伸長時)とした。半透膜支持体の幅が500mm以下の場合は中央部の縦横平均値とした。
Test 5 (average fracture length at 5% elongation)
A test piece of length × width = 15 mm × 250 mm was taken from the semipermeable membrane support, and the test piece was used in accordance with JIS P8113 1976 with the distance between the two grippers set to 180 mm, The tensile strength in the transverse direction was measured, and the corresponding load at the time of 5% elongation was read to determine the breaking length. Next, the average value of the longitudinal and lateral tear lengths {(longitudinal 5% tear length + 5% transverse length) / 2} was determined, and the average tear length of the nonwoven fabric (5%). (Unit: km). When the width of the semipermeable membrane support exceeds 1000 mm, the semipermeable membrane support is sampled from three locations (right, center, left) in the lateral direction, and the longitudinal and lateral tears are taken. The length was measured, and the vertical and horizontal average values at all three locations were defined as the average breaking length (at 5% elongation). When the width of the semipermeable membrane support is 500 to 1000 mm, it is divided into two in the horizontal direction, sampled from two locations (right center, left center), and the longitudinal and lateral tear lengths are measured. The vertical and horizontal average values of all these two locations were taken as the average breaking length (at 5% elongation). When the width of the semipermeable membrane support was 500 mm or less, the average value in the vertical and horizontal directions at the center was used.

試験6(加熱寸法変化率)
半透膜支持体を、縦方向200mm、横方向1000mmの長方形に裁断し、横方向の3箇所に印を付け、幅を0.1mm単位で測定しておく。寸法測定後の半透膜支持体を90℃の湯浴に10分間浸した後に水分を拭き取り、再度、同一の3箇所の幅を0.1mm単位で測定する。90℃湯浴に浸した前後の寸法変化量を算出し、湯浴に浸す前の寸法に対する加熱寸法変化率を求めた。
Test 6 (heating dimensional change rate)
The semipermeable membrane support is cut into a rectangle of 200 mm in the vertical direction and 1000 mm in the horizontal direction, marked at three locations in the horizontal direction, and the width is measured in units of 0.1 mm. After the dimension measurement, the semipermeable membrane support is immersed in a 90 ° C. hot water bath for 10 minutes, and then the moisture is wiped off. Again, the same three widths are measured in units of 0.1 mm. The amount of dimensional change before and after being immersed in a 90 ° C. hot water bath was calculated, and the heating dimensional change rate relative to the size before being immersed in the hot water bath was determined.

試験7(熱圧加工時の状況)
不織布の熱圧加工に加熱ロール出口での断紙やシワの発生を確認した。断紙やシワの発生がなかった場合、「○」とした。
Test 7 (Situation during hot pressing)
The occurrence of paper breaks and wrinkles at the heating roll outlet was confirmed in the hot-pressure processing of the nonwoven fabric. When there was no paper break or wrinkle, “○” was given.

試験8(半透膜滲み込み)
一定のクリアランスを有する定速塗工装置(商品名:Automatic Film Applicator、安田精機社製)を用いて、半透膜支持体のX面又はY面に、ポリスルホン樹脂(SIGMA−ALDRICH Corporation製、重量平均分子量M<35,000、数平均分子量M<16,000、商品番号428302)のジメチルホルムアミド(DMF)溶液(濃度:18質量%)を塗布し、水洗、乾燥を行い、支持体の表面にポリスルホン膜を形成させ半透膜を作製し、半透膜の断面SEM写真を撮影して、ポリスルホン樹脂の半透膜支持体への滲み込み度合いを評価した。
Test 8 (semi-permeable membrane soaking)
Using a constant speed coating apparatus (trade name: Automatic Film Applicator, manufactured by Yasuda Seiki Co., Ltd.) having a certain clearance, a polysulfone resin (manufactured by SIGMA-ALDRICH Corporation, weight) is used on the X or Y surface of the semipermeable membrane support. A dimethylformamide (DMF) solution (concentration: 18% by mass) having an average molecular weight M w <35,000 and a number average molecular weight M n <16,000, product number 428302) is applied, washed with water, dried, A polysulfone membrane was formed on the surface to prepare a semipermeable membrane, and a cross-sectional SEM photograph of the semipermeable membrane was taken to evaluate the degree of penetration of the polysulfone resin into the semipermeable membrane support.

◎:ポリスルホン樹脂が半透膜支持体の中心付近までしか滲み込んでいない。非常に良好なレベル。
○:ポリスルホン樹脂が半透膜支持体の非塗布面に滲み出ていない。良好なレベル。
△:ポリスルホン樹脂が半透膜支持体の非塗布面に一部滲み出ている。実用上、使用可能レベル。
×:ポリスルホン樹脂が半透膜支持体の非塗布面に滲み出ている。実用上、使用不可レベル。
(Double-circle): The polysulfone resin has soaked only to the vicinity of the center of the semipermeable membrane support. Very good level.
○: The polysulfone resin does not ooze out on the non-coated surface of the semipermeable membrane support. Good level.
Δ: The polysulfone resin oozes partly on the non-coated surface of the semipermeable membrane support. Practically usable level.
X: The polysulfone resin oozes out on the non-application surface of the semipermeable membrane support. Unusable level for practical use.

試験9(半透膜接着性)
試験8で作製した半透膜に関して、ポリスルホン樹脂からなる半透膜と半透膜支持体間の接着度合いを、剥離するときの抵抗度合いで判断した。
Test 9 (Semipermeable membrane adhesion)
Regarding the semipermeable membrane produced in Test 8, the degree of adhesion between the semipermeable membrane made of polysulfone resin and the semipermeable membrane support was determined by the degree of resistance when peeling.

◎:半透膜と半透膜支持体の接着性が非常に高く、剥離できない。非常に良好なレベル。
○:部分的に剥離しやすい所が存在する。良好なレベル。
△:半透膜と半透膜支持体とが接着はしているが、全体的に剥離しやすい。実用上、下限レベル。
×:半透膜塗布後の水洗又は乾燥工程で剥離が発生する。使用不可レベル。
(Double-circle): The adhesiveness of a semipermeable membrane and a semipermeable membrane support body is very high, and cannot peel. Very good level.
○: There is a place where it is easy to partially peel off. Good level.
Δ: The semipermeable membrane and the semipermeable membrane support are adhered, but are easy to peel off as a whole. Practically lower limit level.
X: Peeling occurs in the water washing or drying step after the semipermeable membrane application. Unusable level.

試験10(非塗布面接着性)
試験8で半透膜を作製した半透膜支持体の非塗布面同士の間に、加温して溶融させた酢酸ビニル系接着剤を塗布して、直ぐに加圧して接着させた。接着後、サンプルを幅25mm、長さ200mmに裁断し、引張試験機(商品名:STA−1150テンシロン引張試験機、オリエンテック社製)を使用し、剥離角度180度、剥離速度100mm/minで接着部の剥離テストを行い、非塗布面接着性を評価した。
Test 10 (non-coated surface adhesion)
Between the non-application surfaces of the semipermeable membrane support on which the semipermeable membrane was prepared in Test 8, a heated and melted vinyl acetate adhesive was applied and immediately pressed to adhere. After bonding, the sample was cut into a width of 25 mm and a length of 200 mm, and a tensile tester (trade name: STA-1150 Tensilon tensile tester, manufactured by Orientec Co., Ltd.) was used, with a peeling angle of 180 degrees and a peeling speed of 100 mm / min. A peel test of the bonded portion was performed to evaluate non-coated surface adhesion.

◎:剥離強度が極めて高く、半透膜支持体層内部で剥離が起こっている。
○:剥離強度が高く、接着剤と半透膜支持体間で部分的に剥離が起こっているが、大部分の剥離は半透膜支持体層内部で剥離が起こっている。
△:剥離強度がやや高く、接着剤と半透膜支持体間での剥離が起こっているが、半透膜支持体層内部でも剥離が確認される。実用上、下限レベル。
×:剥離強度が低く、全体的に接着剤と半透膜支持体の間で剥離が起こっている。使用不可レベル。
(Double-circle): Peeling strength is very high and peeling has occurred inside the semipermeable membrane support layer.
○: Peeling strength is high, and partial peeling occurs between the adhesive and the semipermeable membrane support, but most peeling occurs within the semipermeable membrane support layer.
(Triangle | delta): Although peeling strength is somewhat high and peeling has occurred between an adhesive agent and a semipermeable membrane support body, peeling is also confirmed inside a semipermeable membrane support body layer. Practically lower limit level.
X: Peeling strength is low, and peeling occurs between the adhesive and the semipermeable membrane support as a whole. Unusable level.

試験11(半透膜塗布時のシワ)
半透膜支持体への半透膜塗布工程において、ポリスルホン(SIGMA−ALDRICH Corporation製、重量平均分子量M<35,000、数平均分子量M<16,000、商品番号428302)のDMF溶液(濃度18質量%、温度20℃)をX面又はY面に塗布後、20℃の純水に浸してポリスルホンを凝固させた後、85℃湯浴での洗浄後のシワの発生状況を確認した。
Test 11 (wrinkles when semipermeable membrane is applied)
In a semipermeable membrane coating step on a semipermeable membrane support, a DMF solution of polysulfone (manufactured by SIGMA-ALDRICH Corporation, weight average molecular weight M w <35,000, number average molecular weight M n <16,000, product number 428302) ( After coating the X surface or Y surface with a concentration of 18% by mass and a temperature of 20 ° C., the polysulfone was solidified by immersing in 20 ° C. pure water, and then the occurrence of wrinkles after washing in a 85 ° C. hot water bath was confirmed. .

○:シワが全くない、又は僅かにシワが発生しているが良好なレベル。
△:シワの発生がやや見られるが、実用下限レベル。
×:シワが多く発生し、実用不可レベル。
○: No wrinkle or slight wrinkle but good level.
Δ: Some wrinkles are observed, but the practical lower limit level.
X: Many wrinkles are generated and it is not practical.

(実施例1)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)を35:30:35の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 1)
Large diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 230 ° C), fine fiber (stretched polyester fiber, fiber diameter 6.4μm, fiber length 5mm, elongation 45%, tensile strength 0.40N / tex) 35:30:35 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度6m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面をX面とした。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 6 m / min, using a calender device that is a combination of a heated metal roll and a heated metal roll, and a semipermeable membrane support was obtained. Obtained. In addition, the surface which contacted the Yankee dryer was made into the X surface.

(実施例2)
熱圧加工時の加工速度を30m/minにした以外は、実施例1と同様の方法で、半透膜支持体を得た。
(Example 2)
A semipermeable membrane support was obtained in the same manner as in Example 1 except that the processing speed at the time of hot pressing was 30 m / min.

(実施例3)
熱圧加工時の加工速度を60m/minにした以外は、実施例1と同様の方法で、半透膜支持体を得た。
(Example 3)
A semipermeable membrane support was obtained in the same manner as in Example 1 except that the processing speed during hot pressing was 60 m / min.

(実施例4)
熱圧加工時の加工速度を4m/minにした以外は、実施例1と同様の方法で、半透膜支持体を得た。
Example 4
A semipermeable membrane support was obtained in the same manner as in Example 1 except that the processing speed during hot pressing was 4 m / min.

(実施例5)
熱圧加工時の加工速度を9m/minにした以外は、実施例1と同様の方法で、半透膜支持体を得た。
(Example 5)
A semipermeable membrane support was obtained in the same manner as in Example 1 except that the processing speed during hot pressing was 9 m / min.

(実施例6)
熱圧加工時の加工速度を3m/minにした以外は、実施例1と同様の方法で、半透膜支持体を得た。
(Example 6)
A semipermeable membrane support was obtained in the same manner as in Example 1 except that the processing speed during hot pressing was 3 m / min.

(実施例7)
熱圧加工時の加工速度を5.5m/minにした以外は、実施例1と同様の方法で、半透膜支持体を得た。
(Example 7)
A semipermeable membrane support was obtained in the same manner as in Example 1 except that the processing speed at the time of hot pressing was set to 5.5 m / min.

(実施例8)
熱圧加工時の加工速度を5m/minにした以外は、実施例1と同様の方法で、半透膜支持体を得た。
(Example 8)
A semipermeable membrane support was obtained in the same manner as in Example 1 except that the processing speed at the time of hot pressing was 5 m / min.

(比較例1)
熱圧加工時の加工速度を2m/minにした以外は、実施例1と同様の方法で、半透膜支持体を得た。
(Comparative Example 1)
A semipermeable membrane support was obtained in the same manner as in Example 1 except that the processing speed during hot pressing was 2 m / min.

(比較例2)
熱圧加工時の加工速度を120m/minにした以外は、実施例1と同様の方法で、半透膜支持体を得た。
(Comparative Example 2)
A semipermeable membrane support was obtained in the same manner as in Example 1 except that the processing speed at the time of hot pressing was 120 m / min.

Figure 0005902886
Figure 0005902886

実施例1〜8の半透膜支持体は、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを少なくとも含有し、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2〜3.0であり、熱圧加工時の状況、半透膜滲み込み、半透膜接着性、表面の毛羽立ち、半透膜塗布時のシワの評価において、実用上使用可能なレベルを達成した。 The semipermeable membrane supports of Examples 1 to 8 contain at least two or more types of main synthetic fibers and binder synthetic fibers having different fiber diameters, and are present from the surface of the semipermeable membrane application surface to 1/3. sectional aspect ratio of the main synthetic fibers present to 1/3 from a cross-sectional aspect Hi及beauty uncoated surface surface of the synthetic fibers is 1.2 to 3.0, conditions at the time hot press, bleeding semipermeable membrane In the evaluation of wrinkles, semi-permeable membrane adhesiveness, surface fluffing, and wrinkles during semi-permeable membrane application, a practically usable level was achieved.

実施例1〜8における半透膜の滲み込みの比較から、半透膜塗布面の断面アスペクト比が1.3以上である場合がより優れていることが確認された。   From the comparison of the penetration of the semipermeable membrane in Examples 1 to 8, it was confirmed that the case where the cross-sectional aspect ratio of the semipermeable membrane application surface was 1.3 or more was superior.

実施例1〜8の比較から、断面アスペクト比が1.3〜3.0である場合の毛羽立ちが少なく、該断面アスペクト比が1.4〜3.0である場合の毛羽立ちがより少ないことが確認された。   From the comparison of Examples 1 to 8, there is less fuzz when the cross-sectional aspect ratio is 1.3 to 3.0, and less fuzz when the cross-sectional aspect ratio is 1.4 to 3.0. confirmed.

実施例1〜8における非塗布面接着性の評価結果から、非塗布面の断面アスペクト比が1.2に近い方が、接着性が高いことが確認された。また、断面アスペクト比が2.7以下であることがより好ましく、2.5以下であることがさらに好ましいことがわかる。   From the evaluation results of the non-coated surface adhesiveness in Examples 1 to 8, it was confirmed that the cross-sectional aspect ratio of the non-coated surface is close to 1.2, the adhesiveness is high. Further, it is understood that the cross-sectional aspect ratio is more preferably 2.7 or less, and further preferably 2.5 or less.

比較例1の半透膜支持体は、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを少なくとも含有しているものの、主体合成繊維の断面のアスペクト比が3.0を超えているため、半透膜接着性、非塗布面接着性が悪かった。また、比較例2の半透膜支持体は、主体合成繊維の断面のアスペクト比が1.2未満のため、表面の毛羽立ちが非常に多く、半透膜滲み込みの評価結果も悪く、実用に適さなかった。   Although the semipermeable membrane support of Comparative Example 1 contains at least two or more main synthetic fibers and binder synthetic fibers having different fiber diameters, the cross-sectional aspect ratio of the main synthetic fibers exceeds 3.0. Therefore, the semipermeable membrane adhesion and the non-coated surface adhesion were poor. Further, the semipermeable membrane support of Comparative Example 2 has a surface aspect ratio of less than 1.2 of the main synthetic fiber, so that the surface is very fluffy, the evaluation result of the semipermeable membrane soaking is poor, and is practical. It was not suitable.

(実施例9)
太径繊維(延伸ポリエステル系繊維、繊維径24.7μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)を35:30:35の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
Example 9
Large diameter fiber (stretched polyester fiber, fiber diameter 24.7 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 230 ° C), fine fiber (stretched polyester fiber, fiber diameter 14.3μm, fiber length 5mm, elongation 45%, tensile strength 0.40N / tex) 35:30:35 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度30m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面をX面とした。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min using a calendering device that is a combination of a heated metal roll and a heated metal roll, and a semipermeable membrane support was obtained. Obtained. In addition, the surface which contacted the Yankee dryer was made into the X surface.

(実施例10)
太径繊維(延伸ポリエステル系繊維、繊維径24.7μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)を35:30:35の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 10)
Large diameter fiber (stretched polyester fiber, fiber diameter 24.7 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5 mm, melting point 230 ° C.), fine fiber (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex) 35:30:35 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度30m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面をX面とした。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min using a calendering device that is a combination of a heated metal roll and a heated metal roll, and a semipermeable membrane support was obtained. Obtained. In addition, the surface which contacted the Yankee dryer was made into the X surface.

(実施例11)
バインダー合成繊維として、未延伸ポリエステル系繊維(繊維径10.5μm、繊維長5mm、融点260℃)を使用し、熱圧加工時の温度を225℃にした以外は、実施例9と同様の方法で、半透膜支持体を得た。
(Example 11)
The same method as in Example 9, except that unstretched polyester fiber (fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.) was used as the binder synthetic fiber, and the temperature during hot pressing was 225 ° C. Thus, a semipermeable membrane support was obtained.

(実施例12)
バインダー合成繊維として、未延伸ポリエステル系繊維(繊維径10.5μm、繊維長5mm、融点260℃)を使用し、熱圧加工時の温度を225℃にした以外は、実施例10と同様の方法で、半透膜支持体を得た。
(Example 12)
The same method as in Example 10 except that unstretched polyester fiber (fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.) was used as the binder synthetic fiber, and the temperature during hot pressing was 225 ° C. Thus, a semipermeable membrane support was obtained.

(実施例13)
バインダー合成繊維として、芯鞘型ポリエステル系繊維(繊維径10.5μm、繊維長5mm、鞘部融点107℃)を使用し、熱圧加工時の温度を160℃にした以外は、実施例9と同様の方法で、半透膜支持体を得た。
(Example 13)
Example 9 except that a core-sheath polyester fiber (fiber diameter: 10.5 μm, fiber length: 5 mm, sheath melting point: 107 ° C.) was used as the binder synthetic fiber, and the temperature during hot pressing was 160 ° C. A semipermeable membrane support was obtained in the same manner.

(実施例14)
バインダー合成繊維として、芯鞘型ポリエステル系繊維(繊維径10.5μm、繊維長:5mm、鞘部融点107℃)を使用し、熱圧加工時の温度を160℃にした以外は、実施例10と同様の方法で、半透膜支持体を得た。
(Example 14)
Example 10 except that a core-sheath type polyester fiber (fiber diameter: 10.5 μm, fiber length: 5 mm, sheath melting point: 107 ° C.) was used as the binder synthetic fiber, and the temperature during hot pressing was 160 ° C. A semipermeable membrane support was obtained in the same manner as above.

Figure 0005902886
Figure 0005902886

実施例9〜14の半透膜支持体は、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを少なくとも含有し、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2〜3.0であり、半透膜滲み込み、半透膜接着性、非塗布面接着性、半透膜塗布時のシワの評価において、実用上使用可能なレベルを達成した。 The semipermeable membrane supports of Examples 9 to 14 contain at least two or more types of main synthetic fibers and binder synthetic fibers having different fiber diameters, and are present from the surface of the semipermeable membrane application surface to 1/3. sectional aspect ratio of the main synthetic fibers present to 1/3 from a cross-sectional aspect Hi及beauty uncoated surface surface of the synthetic fibers is 1.2 to 3.0, impregnation semipermeable membrane, a semipermeable membrane adhesion In the evaluation of non-coated surface adhesiveness and wrinkles during semipermeable membrane coating, a practically usable level was achieved.

融点が260℃の未延伸ポリエステル系繊維をバインダー合成繊維として用いた実施例11及び実施例12の半透膜支持体は、融点が230℃の未延伸ポリエステル系繊維をバインダー合成繊維として用いた実施例9及び10の半透膜支持体と比較して、主体合成繊維の断面アスペクト比が大きくなる傾向が見られ、毛羽立ちが少なくなった。   The semipermeable membrane support of Example 11 and Example 12 using unstretched polyester fibers having a melting point of 260 ° C. as binder synthetic fibers was carried out using unstretched polyester fibers having a melting point of 230 ° C. as binder synthetic fibers. Compared to the semipermeable membrane supports of Examples 9 and 10, there was a tendency for the cross-sectional aspect ratio of the main synthetic fibers to increase, and fuzzing decreased.

芯鞘型ポリエステル系繊維をバインダー合成繊維として用いた実施例13及び14の半透膜支持体と比較して、未延伸ポリエステル系繊維をバインダー合成繊維として用いた実施例9〜12の半透膜支持体は、断面アスペクト比が大きくなる傾向が見られ、毛羽立ちが少なかった。また、実施例13及び14では、熱圧加工の際に熱ロールへの貼り付きによるシワが僅かに発生した。   Semi-permeable membranes of Examples 9-12 using unstretched polyester fibers as binder synthetic fibers compared to the semi-permeable membrane supports of Examples 13 and 14 using core-sheath type polyester fibers as binder synthetic fibers The support had a tendency to increase the cross-sectional aspect ratio and had less fuzz. Moreover, in Example 13 and 14, the wrinkle by sticking to a hot roll generate | occur | produced in the case of the hot-pressure process.

(実施例15)
太径繊維1(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、太径繊維2(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、伸び率40%、引張強さ0.5N/tex)を30:30:30:10の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 15)
Large diameter fiber 1 (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), large diameter fiber 2 (stretched polyester fiber, fiber diameter 12.5 μm) , Fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, fiber length 5 mm, melting point 230 ° C.), fine fiber (stretched) Polyester fiber, fiber diameter 7.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.5 N / tex) is mixed and dispersed in water at a blending ratio of 30: 30: 30: 10. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.

シートの巻取りを巻き出し装置に設置し、ヤンキードライヤーによる熱圧乾燥から60分後に、シートを、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力490N/cm)、加熱金属ロール(200℃)と弾性ロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力736N/cm)が直列に配列されている装置を用いて、熱圧加工速度30m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で熱圧加工し、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面をX面とした。   Sheet winding is installed in an unwinding device, and after 60 minutes from hot-pressure drying with a Yankee dryer, the sheet is calendered with a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.) (first A calender device (second hot pressure roll nip, roll nip pressure 736 N / cm) of a combination of a hot pressure roll nip, roll nip pressure 490 N / cm), a heated metal roll (200 ° C.) and an elastic roll (normal temperature) is arranged in series. Using a device, hot pressing is performed under the conditions of a hot pressing speed of 30 m / min (the fiber substrate passes through the second hot pressing roll nip 12 seconds after passing through the first hot pressing roll nip), and is supported by a semipermeable membrane. Got the body. The surface in contact with the heated metal roll surface of the second hot-press roll nip was defined as the X surface.

(実施例16)
第一の熱圧ロールニップのロールニップ圧力を736N/cmにした以外は、実施例15と同様の方法で、半透膜支持体を得た。
(Example 16)
A semipermeable membrane support was obtained in the same manner as in Example 15 except that the roll nip pressure of the first hot pressure roll nip was changed to 736 N / cm.

(実施例17)
第一の熱圧ロールニップのロールニップ圧力を981N/cmにした以外は、実施例15と同様の方法で、半透膜支持体を得た。
(Example 17)
A semipermeable membrane support was obtained in the same manner as in Example 15 except that the roll nip pressure of the first hot pressure roll nip was set to 981 N / cm.

(実施例18)
第一の熱圧ロールニップのロールニップ圧力を1226N/cmにした以外は、実施例15と同様の方法で、半透膜支持体を得た。
(Example 18)
A semipermeable membrane support was obtained in the same manner as in Example 15 except that the roll nip pressure of the first hot pressure roll nip was changed to 1226 N / cm.

(実施例19)
第一の熱圧ロールニップのロールニップ圧力を1471N/cmにした以外は、実施例15と同様の方法で、半透膜支持体を得た。
(Example 19)
A semipermeable membrane support was obtained in the same manner as in Example 15 except that the roll nip pressure of the first hot pressure roll nip was changed to 1471 N / cm.

(実施例20)
第一の熱圧ロールニップのロールニップ圧力を1717N/cmにした以外は、実施例15と同様の方法で、半透膜支持体を得た。
(Example 20)
A semipermeable membrane support was obtained in the same manner as in Example 15 except that the roll nip pressure of the first hot pressure roll nip was changed to 1717 N / cm.

(実施例21)
バインダー合成繊維として、未延伸ポリエステル系繊維(繊維径10.5μm、繊維長5mm、融点260℃)を使用し、第一の熱圧ロールニップのロールニップ圧力を736N/cmとし、第一の熱圧ロールニップにおける2つの加熱金属ロールの温度を225℃にした以外は、実施例15と同様の方法で、半透膜支持体を得た。
(Example 21)
As the binder synthetic fiber, unstretched polyester fiber (fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.) is used, and the first hot press roll nip has a roll nip pressure of 736 N / cm, and the first hot press roll nip A semipermeable membrane support was obtained in the same manner as in Example 15 except that the temperature of the two heated metal rolls was set to 225 ° C.

(比較例3)
第一及び第二の熱圧ロールニップのロールニップ圧力を245N/cmとした以外は、実施例15と同様の方法で、半透膜支持体を得た。
(Comparative Example 3)
A semipermeable membrane support was obtained in the same manner as in Example 15 except that the roll nip pressure of the first and second hot pressure roll nips was 245 N / cm.

(比較例4)
第一の熱圧ロールニップのロールニップ圧力を1961N/cmとした以外は、実施例15と同様の方法で、半透膜支持体を得た。
(Comparative Example 4)
A semipermeable membrane support was obtained in the same manner as in Example 15 except that the roll nip pressure of the first hot-pressure roll nip was 1961 N / cm.

Figure 0005902886
Figure 0005902886

実施例15〜21の半透膜支持体は、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを少なくとも含有し、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2〜3.0であり、半透膜滲み込み、半透膜接着性、非塗布面接着性、半透膜塗布時のシワ、表面の毛羽立ちの評価において、実用上使用可能なレベルを達成した。 The semipermeable membrane supports of Examples 15 to 21 contain at least two or more types of main synthetic fibers and binder synthetic fibers having different fiber diameters, and are present from the surface of the semipermeable membrane application surface to 1/3. sectional aspect ratio of the main synthetic fibers present to 1/3 from a cross-sectional aspect Hi及beauty uncoated surface surface of the synthetic fibers is 1.2 to 3.0, impregnation semipermeable membrane, a semipermeable membrane adhesion In the evaluation of non-coated surface adhesiveness, wrinkles during semipermeable membrane coating, and surface fluffing, a practically usable level was achieved.

実施例16と実施例21の比較から、融点が260℃の未延伸ポリエステル系繊維をバインダー合成繊維として用いた実施例21の半透膜支持体は、融点が230℃の未延伸ポリエステル系繊維をバインダー合成繊維として用いた実施例16の半透膜支持体と比較して、毛羽立ちが少なく、X面を半透膜塗布面とした場合の半透膜滲み込み、非塗布面接着性が良好であったが、Y面を半透膜塗布面とした場合の半透膜接着性、非塗布面接着性がやや劣っていた。   From a comparison between Example 16 and Example 21, the semipermeable membrane support of Example 21 using unstretched polyester fiber having a melting point of 260 ° C. as the binder synthetic fiber was obtained by using unstretched polyester fiber having a melting point of 230 ° C. Compared with the semipermeable membrane support of Example 16 used as a binder synthetic fiber, there was less fuzzing, and the semipermeable membrane soaking and non-coated surface adhesion were good when the X surface was a semipermeable membrane coated surface. However, the semipermeable membrane adhesiveness and the non-coated surface adhesiveness were slightly inferior when the Y surface was a semipermeable membrane coated surface.

比較例3の半透膜支持体は、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを少なくとも含有してはいるが、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2未満のため、X面及びY面の毛羽立ちが非常に多く、半透膜の滲み込みも悪く、実用に適さなかった。一方、比較例4の半透膜支持体は、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを少なくとも含有してはいるが、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が3.0を超えているため、非塗布面接着性が悪く、X面に半透膜塗布面とした場合の半透膜接着性も悪かった。   The semipermeable membrane support of Comparative Example 3 contains at least two or more kinds of main synthetic fibers and binder synthetic fibers having different fiber diameters, but exists from the surface of the semipermeable membrane application surface to 1/3. Since the cross-sectional aspect ratio of the main synthetic fiber and the cross-section aspect ratio of the main synthetic fiber existing 1/3 from the surface of the non-coated surface are less than 1.2, the fluffing of the X and Y planes is very large, The permeation of the permeable membrane was poor, and it was not suitable for practical use. On the other hand, the semipermeable membrane support of Comparative Example 4 contains at least two or more main synthetic fibers and binder synthetic fibers having different fiber diameters, but from the surface of the semipermeable membrane application surface to 1/3. Since the cross-sectional aspect ratio of the main synthetic fiber existing in the cross section and the cross-sectional aspect ratio of the main synthetic fiber existing 1/3 from the surface of the non-coated surface exceeds 3.0, the non-coated surface adhesion is poor, and X The semipermeable membrane adhesion when the surface was coated with a semipermeable membrane was also poor.

(実施例22)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)の配合比率を41:18:41とした以外は、実施例2と同様の方法で、半透膜支持体を得た。
(Example 22)
Large diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, The blending ratio of fiber length 5 mm, melting point 230 ° C.) and fine fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) is 41:18: A semipermeable membrane support was obtained in the same manner as in Example 2 except that the amount was 41.

(実施例23)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)の配合比率を40:20:40とした以外は、実施例2と同様の方法で、半透膜支持体を得た。
(Example 23)
Large diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, The blending ratio of fiber length 5 mm, melting point 230 ° C., fine fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) is 40:20: A semipermeable membrane support was obtained in the same manner as in Example 2 except that the number was 40.

(実施例24)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)の配合比率を40:21:39とした以外は、実施例2と同様の方法で、半透膜支持体を得た。
(Example 24)
Large diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, The blending ratio of fiber length 5 mm, melting point 230 ° C., fine fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) is 40:21: A semipermeable membrane support was obtained in the same manner as in Example 2, except that the number was 39.

(実施例25)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)の配合比率を38:25:37とした以外は、実施例2と同様の方法で、半透膜支持体を得た。
(Example 25)
Large diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, The blending ratio of fiber length 5 mm, melting point 230 ° C.) and fine fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) is 38:25: A semipermeable membrane support was obtained in the same manner as in Example 2 except that it was 37.

(実施例26)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)の配合比率を35:35:30とした以外は、実施例2と同様の方法で、半透膜支持体を得た。
(実施例27)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率40%、引張強さ0.5N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.5N/tex)の配合比率を33:37:30とした以外は、実施例2と同様の方法で、半透膜支持体を得た。
(Example 26)
Large diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, The blending ratio of the fiber length 5 mm, melting point 230 ° C.) and fine fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) is 35:35: A semipermeable membrane support was obtained in the same manner as in Example 2 except that the number was 30.
(Example 27)
Large fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 40%, tensile strength 0.5 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, The blending ratio of fiber length 5 mm, melting point 230 ° C., fine fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.5 N / tex) is 33:37: A semipermeable membrane support was obtained in the same manner as in Example 2 except that the number was 30.

(実施例28)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率40%、引張強さ0.5N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.5N/tex)の配合比率を30:40:30とした以外は、実施例2と同様の方法で、半透膜支持体を得た。
(Example 28)
Large fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 40%, tensile strength 0.5 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, The blending ratio of fiber length 5 mm, melting point 230 ° C., fine fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.5 N / tex) is 30:40: A semipermeable membrane support was obtained in the same manner as in Example 2 except that the number was 30.

(実施例29)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率40%、引張強さ0.5N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.5N/tex)の配合比率を28:45:27とした以外は、実施例2と同様の方法で、半透膜支持体を得た。
(Example 29)
Large fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 40%, tensile strength 0.5 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, The blending ratio of fiber length 5 mm, melting point 230 ° C., fine fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.5 N / tex) is 28:45: A semipermeable membrane supporting member was obtained in the same manner as in Example 2 except that it was 27.

Figure 0005902886
Figure 0005902886

実施例2、実施例22〜29の比較から、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを含有し、主体合成繊維とバインダー合成繊維との合計質量に対するバインダー合成繊維の含有率が20質量%以下である実施例22及び23では、毛羽立ちが多くなる傾向が確認された。また、該含有量が40質量%超の実施例29の半透膜支持体は、X面を半透膜塗布面にした場合でも、Y面を半透膜塗布面にした場合でも、半透膜接着性及び非塗布面接着性が悪くなる傾向が確認された。また、熱圧加工時において、ロールに貼り付き、実用上限度レベルであった。   From the comparison between Example 2 and Examples 22 to 29, two or more main synthetic fibers and binder synthetic fibers having different fiber diameters are contained, and the binder synthetic fiber is contained with respect to the total mass of the main synthetic fiber and the binder synthetic fiber. In Examples 22 and 23 in which the rate was 20% by mass or less, a tendency for fuzz to increase was confirmed. Further, the semipermeable membrane support of Example 29 having a content of more than 40% by mass is semipermeable regardless of whether the X surface is a semipermeable membrane coated surface or the Y surface is a semipermeable membrane coated surface. The tendency for film adhesion and non-coated surface adhesion to deteriorate was confirmed. Moreover, it was sticking to a roll at the time of a hot press process, and was a practical use upper limit level.

毛羽立ち、熱圧加工時の状況、半透膜滲み込み、半透膜接着性、非塗布面接着性、半透膜塗布時のシワの評価から、総合的に判断すると、該含有率が20質量%超40質量%以下である実施例2、24〜28が優れており、また、該含有率が25質量%以上35質量%以下である実施例2、25及び26がより優れていた。該含有率が37質量%及び40質量%である実施例27及び28では、熱圧加工時において、ロールへの貼り付きが若干見られたが、実用上問題なかった。   When judged comprehensively from the evaluation of fluffing, conditions during hot pressing, semipermeable membrane soaking, semipermeable membrane adhesion, non-coated surface adhesion, and wrinkles during semipermeable membrane application, the content is 20 mass. %, Which is more than 40% by mass and less than 40% by mass, was excellent, and Examples 2, 25 and 26 whose content was 25% by mass to 35% by mass were more excellent. In Examples 27 and 28 in which the content was 37% by mass and 40% by mass, a slight sticking to the roll was observed during hot pressing, but there was no practical problem.

(実施例30)
X面層として、太径繊維1(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、太径繊維2(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を30:30:30:10の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。
(Example 30)
As the X-plane layer, large diameter fiber 1 (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), large diameter fiber 2 (stretched polyester fiber, Fiber diameter 12.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.), Fine fibers (stretched polyester fiber, fiber diameter 7.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) are mixed and dispersed in water at a mixing ratio of 30: 30: 30: 10. And stored in a stock tank with a stirrer.

次いで、Y面層として、太径繊維1(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、太径繊維2(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を30:30:30:10の配合比率で水に混合分散し、X面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。   Next, as the Y-plane layer, large diameter fiber 1 (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), large diameter fiber 2 (stretched polyester fiber) Fiber, fiber diameter 12.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C. ), Fine fiber (stretched polyester fiber, fiber diameter 7.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) mixed with water at a mixing ratio of 30: 30: 30: 10 Dispersed and stored in a stock tank having a stirring device separately from the dispersion for the X-plane layer.

傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、X面層を傾斜ワイヤー抄紙機、Y面層を円網抄紙機で、乾燥質量でX面層20g/m、Y面層60g/mの抄き合わせ湿紙を形成した後、X面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、坪量80g/mの抄き合わせシートを得た。 Using a combination machine of inclined wire paper machine and circular paper machine, X surface layer is inclined wire paper machine, Y surface layer is circular paper machine, dry surface X surface layer 20g / m 2 , Y surface layer After forming 60 g / m 2 of wet paper web, the hot-press drying is performed so that the X-plane layer is in contact with a Yankee dryer having a surface temperature of 130 ° C. to obtain a paper sheet of 80 g / m 2 basis weight. It was.

シートの巻取りを巻き出し装置に設置し、ヤンキードライヤーによる熱圧乾燥から60分後に、シートを、加熱金属ロール(225℃)と弾性ロール(加熱なし)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力736N/cm)、弾性ロール(加熱なし)と加熱金属ロール(225℃)との組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力736N/cm)が直列に配列されている装置を用いて、熱圧加工速度20m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で熱圧加工し、半透膜支持体を得た。
なお、X面が第二の熱圧ロールで金属ロール面に接するようにした。
Sheet winding is installed in an unwinding device, and after 60 minutes from hot-pressure drying with a Yankee dryer, the sheet is calendered with a combination of a heated metal roll (225 ° C.) and an elastic roll (no heating) (first heat A pressure roll nip, roll nip pressure 736 N / cm), a calender device (second hot pressure roll nip, roll nip pressure 736 N / cm) of a combination of an elastic roll (no heating) and a heated metal roll (225 ° C.) arranged in series Using a device that is hot-pressed under conditions of a hot-pressing speed of 20 m / min (the fiber substrate passes through the second hot-pressing roll nip 12 seconds after passing through the first hot-pressing roll nip). A support was obtained.
The X surface was in contact with the metal roll surface with the second hot-pressing roll.

(実施例31)
X面層として、太径繊維1(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、太径繊維2(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を25:30:35:10の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。
(Example 31)
As the X-plane layer, large diameter fiber 1 (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), large diameter fiber 2 (stretched polyester fiber, Fiber diameter 12.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.), Fine fibers (stretched polyester fiber, fiber diameter 7.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) are mixed and dispersed in water at a blending ratio of 25: 30: 35: 10. And stored in a stock tank with a stirrer.

次いで、Y面層として、太径繊維1(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、太径繊維2(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を35:30:25:10の配合比率で水に混合分散し、X面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。   Next, as the Y-plane layer, large diameter fiber 1 (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), large diameter fiber 2 (stretched polyester fiber) Fiber, fiber diameter 12.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C. ), Fine fiber (drawn polyester fiber, fiber diameter 7.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) mixed with water at a blending ratio of 35: 30: 25: 10 Dispersed and stored in a stock tank having a stirring device separately from the dispersion for the X-plane layer.

傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、X面層を傾斜ワイヤー抄紙機、Y面層を円網抄紙機で、乾燥質量でX面層20g/m、Y面層60g/mの抄き合わせ湿紙を形成した後、X面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、坪量80g/mの抄き合わせシートを得た。 Using a combination machine of inclined wire paper machine and circular paper machine, X surface layer is inclined wire paper machine, Y surface layer is circular paper machine, dry surface X surface layer 20g / m 2 , Y surface layer After forming 60 g / m 2 of wet paper web, the hot-press drying is performed so that the X-plane layer is in contact with a Yankee dryer having a surface temperature of 130 ° C. to obtain a paper sheet of 80 g / m 2 basis weight. It was.

シートの巻取りを巻き出し装置に設置し、ヤンキードライヤーによる熱圧乾燥から60分後に、シートを、加熱金属ロール(225℃)と弾性ロール(加熱なし)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力736N/cm)、弾性ロール(加熱なし)と加熱金属ロール(225℃)との組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力736N/cm)が直列に配列されている装置を用いて、熱圧加工速度20m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で熱圧加工し、半透膜支持体を得た。なお、X面が第二の熱圧ロールで金属ロール面に接するようにした。   Sheet winding is installed in an unwinding device, and after 60 minutes from hot-pressure drying with a Yankee dryer, the sheet is calendered with a combination of a heated metal roll (225 ° C.) and an elastic roll (no heating) (first heat A pressure roll nip, roll nip pressure 736 N / cm), a calender device (second hot pressure roll nip, roll nip pressure 736 N / cm) of a combination of an elastic roll (no heating) and a heated metal roll (225 ° C.) arranged in series Using a device that is hot-pressed under conditions of a hot-pressing speed of 20 m / min (the fiber substrate passes through the second hot-pressing roll nip 12 seconds after passing through the first hot-pressing roll nip). A support was obtained. The X surface was in contact with the metal roll surface with the second hot-pressing roll.

(実施例32)
X面層として、太径繊維1(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、太径繊維2(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を25:30:35:10の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。
(Example 32)
As the X-plane layer, large diameter fiber 1 (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), large diameter fiber 2 (stretched polyester fiber, Fiber diameter 12.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.), Fine fibers (stretched polyester fiber, fiber diameter 7.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) are mixed and dispersed in water at a blending ratio of 25: 30: 35: 10. And stored in a stock tank with a stirrer.

次いで、Y面層として、太径繊維1(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、太径繊維2(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を35:30:25:10の配合比率で水に混合分散し、X面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。   Next, as the Y-plane layer, large diameter fiber 1 (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), large diameter fiber 2 (stretched polyester fiber) Fiber, fiber diameter 12.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C. ), Fine fiber (drawn polyester fiber, fiber diameter 7.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) mixed with water at a blending ratio of 35: 30: 25: 10 Dispersed and stored in a stock tank having a stirring device separately from the dispersion for the X-plane layer.

傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、X面層を傾斜ワイヤー抄紙機、Y面層を円網抄紙機で、乾燥質量でX面層20g/m、Y面層60g/mの抄き合わせ湿紙を形成した後、X面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、坪量80g/mの抄き合わせシートを得た。 Using a combination machine of inclined wire paper machine and circular paper machine, X surface layer is inclined wire paper machine, Y surface layer is circular paper machine, dry surface X surface layer 20g / m 2 , Y surface layer After forming 60 g / m 2 of wet paper web, the hot-press drying is performed so that the X-plane layer is in contact with a Yankee dryer having a surface temperature of 130 ° C. to obtain a paper sheet of 80 g / m 2 basis weight. It was.

シートの巻取りを巻き出し装置に設置し、ヤンキードライヤーによる熱圧乾燥から60分後に、シートを、加熱金属ロール(225℃)と弾性ロール(加熱なし)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力736N/cm)、加熱金属ロール(225℃)と加熱金属ロール(225℃)との組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力736N/cm)が直列に配列されている装置を用いて、熱圧加工速度20m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で熱圧加工し、半透膜支持体を得た。なお、X面が第一及び第二の熱圧ロールで金属ロール面に接するようにした。   Sheet winding is installed in an unwinding device, and after 60 minutes from hot-pressure drying with a Yankee dryer, the sheet is calendered with a combination of a heated metal roll (225 ° C.) and an elastic roll (no heating) (first heat A pressure roll nip, a roll nip pressure 736 N / cm), and a calender device (second hot pressure roll nip, roll nip pressure 736 N / cm) of a combination of a heated metal roll (225 ° C.) and a heated metal roll (225 ° C.) are arranged in series Is subjected to hot pressing under the conditions of a hot pressing speed of 20 m / min (the fiber substrate passes through the second hot pressing roll nip 12 seconds after passing through the first hot pressing roll nip). A membrane support was obtained. The X surface was in contact with the metal roll surface with the first and second hot-pressing rolls.

(実施例33)
X面層として、太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を37.5:25:37.5の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。
(Example 33)
As the X-plane layer, large-diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber) 37. diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.), thin fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex). It was mixed and dispersed in water at a mixing ratio of 5: 25: 37.5, and stored in a stock tank having a stirring device.

次いで、Y面層として、太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を37.5:25:37.5の配合比率で水に混合分散し、X面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。   Next, as the Y-plane layer, large-diameter fibers (stretched polyester fibers, fiber diameter 14.3 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fibers (unstretched polyester fibers) , Fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.), thin fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) It was mixed and dispersed in water at a mixing ratio of 37.5: 25: 37.5, and stored in a stock tank having a stirring device separately from the dispersion for the X-plane layer.

傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、X面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量でX面層20g/m、Y面層60g/mの抄き合わせ湿紙を形成した後、X面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、坪量80g/mの抄き合わせシートを得た。 Using a combination machine of inclined wire paper machine and circular paper machine, X surface layer is inclined wire paper machine, uncoated surface layer is circular paper machine, X surface layer is 20g / m 2 by dry mass, Y surface After forming a wet paper web having a layer of 60 g / m 2 , it was hot-pressure dried so that the X-plane layer was in contact with a Yankee dryer having a surface temperature of 130 ° C. to prepare a paper sheet having a basis weight of 80 g / m 2. Obtained.

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度30m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面がX面である。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min using a calendering device that is a combination of a heated metal roll and a heated metal roll, and a semipermeable membrane support was obtained. Obtained. The surface in contact with the Yankee dryer is the X surface.

(実施例34)
X面層として、太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を45:35:20の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。
(Example 34)
As the X-plane layer, large-diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber) Diameter: 10.5 μm, fiber length: 5 mm, melting point: 260 ° C.), fine fiber (stretched polyester fiber, fiber diameter: 6.4 μm, fiber length: 5 mm, elongation: 40%, tensile strength: 0.50 N / tex) 45: It was mixed and dispersed in water at a blending ratio of 35:20 and stored in a stock tank having a stirring device.

次いで、Y面層として、太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を20:35:45の配合比率で水に混合分散し、X面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。   Next, as the Y-plane layer, large-diameter fibers (stretched polyester fibers, fiber diameter 14.3 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fibers (unstretched polyester fibers) , Fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.), thin fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) It was mixed and dispersed in water at a mixing ratio of 20:35:45, and stored in a stock tank having a stirring device separately from the dispersion for the X-plane layer.

傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、X面層を傾斜ワイヤー抄紙機、Y面層を円網抄紙機で、乾燥質量でX面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、X面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、坪量80g/mの抄き合わせシートを得た。 Using a combination machine of inclined wire paper machine and circular paper machine, X surface layer is inclined wire paper machine, Y surface layer is circular paper machine, X surface layer 20g / m 2 by dry mass, non-coated surface After forming a wet paper web having a layer of 60 g / m 2 , it was hot-pressure dried so that the X-plane layer was in contact with a Yankee dryer having a surface temperature of 130 ° C. to prepare a paper sheet having a basis weight of 80 g / m 2. Obtained.

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度30m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面がX面である。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min using a calendering device that is a combination of a heated metal roll and a heated metal roll, and a semipermeable membrane support was obtained. Obtained. The surface in contact with the Yankee dryer is the X surface.

(実施例35)
X面層として、太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を20:30:50の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。
(Example 35)
As the X-plane layer, large-diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber) Diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.), fine fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) 20: It was mixed and dispersed in water at a mixing ratio of 30:50 and stored in a stock tank having a stirring device.

次いで、Y面層として、太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)を50:30:20の配合比率で水に混合分散し、X面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。   Next, as the Y-plane layer, large-diameter fibers (stretched polyester fibers, fiber diameter 14.3 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fibers (unstretched polyester fibers) , Fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.), thin fiber (stretched polyester fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex) It was mixed and dispersed in water at a blending ratio of 50:30:20, and stored in a stock tank having a stirrer separately from the dispersion for the X-plane layer.

傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、X面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量でX面層20g/m、Y面層60g/mの抄き合わせ湿紙を形成した後、X面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、坪量80g/mの抄き合わせシートを得た。 Using a combination machine of inclined wire paper machine and circular paper machine, X surface layer is inclined wire paper machine, uncoated surface layer is circular paper machine, X surface layer is 20g / m 2 by dry mass, Y surface After forming a wet paper web having a layer of 60 g / m 2 , it was hot-pressure dried so that the X-plane layer was in contact with a Yankee dryer having a surface temperature of 130 ° C. to prepare a paper sheet having a basis weight of 80 g / m 2. Obtained.

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度30m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面がX面である。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min using a calendering device that is a combination of a heated metal roll and a heated metal roll, and a semipermeable membrane support was obtained. Obtained. The surface in contact with the Yankee dryer is the X surface.

Figure 0005902886
Figure 0005902886

実施例30〜32、実施例33〜35の比較から、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを含有し、2層構造で、2回の熱圧加工を行った実施例30〜32の半透膜支持体は、X面を半透膜塗布面にした場合でも、Y面を半透膜塗布面にした場合でも、半透膜滲み込み、半透膜接着性、非塗布面接着性、半透膜塗布時のシワの全ての評価で、優れていた。   From comparison between Examples 30 to 32 and Examples 33 to 35, two or more kinds of main synthetic fibers and binder synthetic fibers having different fiber diameters were contained, and two-layer structure was subjected to two hot pressing processes. The semipermeable membrane support of Examples 30 to 32 has a semipermeable membrane permeation, semipermeable membrane adhesion, even when the X surface is a semipermeable membrane coated surface or the Y surface is a semipermeable membrane coated surface. It was excellent in all evaluations of non-coated surface adhesiveness and wrinkles during semipermeable membrane coating.

(比較例5)
主体合成繊維(延伸ポリエステル系繊維、繊維径24.7μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Comparative Example 5)
Main synthetic fiber (stretched polyester fiber, fiber diameter 24.7 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, (Fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a blending ratio of 70:30, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. An 80 g / m 2 sheet was obtained.

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度60m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面をX面とした。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 60 m / min using a calendering device that is a combination of a heated metal roll and a heated metal roll. Obtained. In addition, the surface which contacted the Yankee dryer was made into the X surface.

(比較例6)
熱圧加工時の加工速度を120m/minにした以外は、比較例5と同様の方法で、半透膜支持体を得た。
(Comparative Example 6)
A semipermeable membrane support was obtained in the same manner as in Comparative Example 5, except that the processing speed during hot pressing was 120 m / min.

(比較例7)
熱圧加工時の加工速度を30m/minにした以外は、比較例5と同様の方法で、半透膜支持体を得た。
(Comparative Example 7)
A semipermeable membrane support was obtained in the same manner as in Comparative Example 5 except that the processing speed during hot pressing was 30 m / min.

(比較例8)
熱圧加工時の加工速度を6m/minにした以外は、比較例5と同様の方法で、半透膜支持体を得た。
(Comparative Example 8)
A semipermeable membrane support was obtained in the same manner as in Comparative Example 5, except that the processing speed during hot pressing was 6 m / min.

(比較例9)
熱圧加工時の加工速度を2m/minにした以外は、比較例5と同様の方法で、半透膜支持体を得た。
(Comparative Example 9)
A semipermeable membrane support was obtained in the same manner as in Comparative Example 5 except that the processing speed during hot pressing was 2 m / min.

Figure 0005902886
Figure 0005902886

繊維径が1種類の主体合成繊維しか含有していない比較例5〜9の半透膜支持体においては、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比の数値によらず、毛羽立ちが多くなる傾向が見られ、半透膜滲み込みの評価結果が悪かった。   In the semipermeable membrane supports of Comparative Examples 5 to 9 containing only one type of main synthetic fiber, the cross-sectional aspect ratio of the main synthetic fibers existing from the surface of the semipermeable membrane application surface to 1/3 Moreover, regardless of the numerical value of the cross-sectional aspect ratio of the main synthetic fiber existing 1/3 from the surface of the non-coated surface, there was a tendency for fuzz to increase and the evaluation result of the semipermeable membrane soaking was poor.

(比較例10)
主体合成繊維(延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、融点260℃)を80:20の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Comparative Example 10)
Main synthetic fiber (stretched polyester fiber, fiber diameter 11.6 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 14.3 μm, Fiber length 5mm, melting point 260 ° C) was mixed and dispersed in water at a blending ratio of 80:20, wet paper was formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer with a surface temperature of 130 ° C, and the basis weight An 80 g / m 2 sheet was obtained.

シートの巻取りを巻き出し装置に設置し、シートを、コットンロールと加熱金属ロール(170℃)と加熱金属ロール(170℃)とをスーパーカレンダーのように組み合わせたカレンダー装置(第一の熱圧ロールニップと第二の熱圧ロールニップが連続している)で、第一及び第二の熱圧ロールニップ圧力1000N/cm、加工速度5m/minの条件で熱圧加工し、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面をX面とした。   Sheet winding is installed in the unwinding device, and the sheet is combined with a cotton roll, a heated metal roll (170 ° C.), and a heated metal roll (170 ° C.) like a super calender (first hot pressure) The roll nip and the second hot-press roll nip are continuous), and the hot-press processing is performed under the conditions of the first and second hot-press roll nip pressure of 1000 N / cm and the processing speed of 5 m / min to obtain a semipermeable membrane support. It was. The surface in contact with the heated metal roll surface of the second hot-press roll nip was defined as the X surface.

(比較例11)
主体合成繊維(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率40%、引張強さ0.50N/tex)、バインダー合成繊維(芯鞘型ポリエステル系繊維、繊維径10.5μm、繊維長:5mm、鞘部融点107℃)を80:20の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Comparative Example 11)
Main synthetic fiber (drawn polyester fiber, fiber diameter 12.5 μm, fiber length 5 mm, elongation 40%, tensile strength 0.50 N / tex), binder synthetic fiber (core-sheath type polyester fiber, fiber diameter 10.5 μm) Fiber length: 5 mm, sheath melting point 107 ° C.) is mixed and dispersed in water at a blending ratio of 80:20, wet paper is formed with a circular net paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. And a sheet having a basis weight of 80 g / m 2 was obtained.

得られたシートを、加熱金属ロールとコットンロール(加熱なし)の組み合わせのカレンダー装置を用いて、加熱金属ロール温度160℃、圧力2000N/cm、加工速度30m/minの条件で熱圧加工し、半透膜支持体を得た。なお、加熱金属ロールに接した面をX面とした。   The obtained sheet was hot-pressed under the conditions of a heated metal roll temperature of 160 ° C., a pressure of 2000 N / cm, and a processing speed of 30 m / min, using a calender device in combination of a heated metal roll and a cotton roll (no heating). A semipermeable membrane support was obtained. The surface in contact with the heated metal roll was taken as the X surface.

(比較例12)
主体合成繊維(アクリル繊維、繊維径22.5μm、繊維長5mm、伸び率40%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、融点260℃)を80:20の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Comparative Example 12)
Main synthetic fiber (acrylic fiber, fiber diameter 22.5 μm, fiber length 5 mm, elongation 40%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, melting point 260 ° C.) was mixed and dispersed in water at a blending ratio of 80:20, and wet paper was formed with a circular paper machine, followed by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C., and a basis weight of 80 g / An m 2 sheet was obtained.

得られたシートを、加熱金属ロールと弾性(加熱なし)の組み合わせのカレンダー装置を用いて、加熱金属ロール温度225℃、圧力1000N/cm、加工速度20m/minの条件で熱圧加工し、半透膜支持体を得た。なお、加熱金属ロールに接した面をX面とした。   The obtained sheet was hot-pressed under the conditions of a heated metal roll temperature of 225 ° C., a pressure of 1000 N / cm, and a processing speed of 20 m / min, using a calender device that was a combination of a heated metal roll and elasticity (no heating). A permeable membrane support was obtained. The surface in contact with the heated metal roll was taken as the X surface.

(比較例13)
X面層として、主体合成繊維(断面形状がトライローバル状(三角形)の延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率45%、引張強さ0.4N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を60:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量40g/mのシートを得た。
(Comparative Example 13)
As the X-plane layer, a main synthetic fiber (stretched polyester fiber having a cross-sectional shape of trilobal (triangle), fiber diameter 12.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.4 N / tex), binder Synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, fiber length 5 mm, melting point 260 ° C.) is mixed and dispersed in water at a blending ratio of 60:40, and wet paper is formed on a circular net paper machine. It was hot-pressure dried with a Yankee dryer having a temperature of 130 ° C. to obtain a sheet having a basis weight of 40 g / m 2 .

Y面層として、主体合成繊維(延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、伸び率45%、引張強さ0.4N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を60:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量40g/mのシートを得た。 As the Y-plane layer, the main synthetic fiber (stretched polyester fiber, fiber diameter 7.4 μm, fiber length 5 mm, elongation 45%, tensile strength 0.4 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber) 10.5 μm in diameter, fiber length 5 mm, melting point 260 ° C.) is mixed and dispersed in water at a blending ratio of 60:40, wet paper is formed with a circular paper machine, and then hot pressure is applied with a Yankee dryer having a surface temperature of 130 ° C. The sheet was dried to obtain a sheet having a basis weight of 40 g / m 2 .

得られたX面層とY面層を重ねて、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度220℃、圧力980N/cm、加工速度5m/minの条件で熱圧加工し、半透膜支持体を得た。   The obtained X-plane layer and Y-plane layer are overlapped, and using a calender device that is a combination of a heated metal roll and a heated metal roll, hot pressing is performed at a temperature of 220 ° C., a pressure of 980 N / cm, and a processing speed of 5 m / min. Thus, a semipermeable membrane support was obtained.

Figure 0005902886
Figure 0005902886

繊維径が1種類の主体合成繊維しか含有しておらず、かつバインダー合成繊維の配合率が20%である比較例10〜12の半透膜支持体においては、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2〜3.0であるものの、毛羽立ちが多く、実用不可レベルであった。また、Y面を半透膜塗布面とした場合、比較例11及び12では、半透膜滲み込みが悪かった。   In the semipermeable membrane support of Comparative Examples 10 to 12, which contains only one type of main synthetic fiber and the blending ratio of the binder synthetic fiber is 20%, from the surface of the semipermeable membrane application surface Although the cross-sectional aspect ratio of the main synthetic fiber existing up to 1/3 and the cross-sectional aspect ratio of the main synthetic fiber existing up to 1/3 from the surface of the non-coated surface are 1.2 to 3.0, there are many fluffs The level was not practical. Moreover, when the Y surface was a semipermeable membrane application surface, in Comparative Examples 11 and 12, the semipermeable membrane soaking was bad.

X面層に断面形状がトライローバル状(三角形)の1種類の主体合成繊維しか含有しておらず、Y面層にも繊維径が1種類の主体合成繊維しか含有しておらず、かつバインダー合成繊維の配合率が40質量%である比較例13の半透膜支持体においては、X面層のシートの地合が悪かった。また、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比及び非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比が1.2〜3.0であるものの、X面を半透膜塗布面とした場合の非塗布面接着性、Y面を半透膜塗布面とした場合の半透膜接着性が、実用不可レベルであった。   The X-plane layer contains only one type of principal synthetic fiber having a cross-sectional shape of trilobal (triangle), the Y-plane layer contains only one type of principal synthetic fiber, and a binder. In the semipermeable membrane supporting material of Comparative Example 13 in which the blending ratio of the synthetic fiber was 40% by mass, the formation of the X-plane layer sheet was poor. Moreover, the cross-sectional aspect ratio of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 and the cross-sectional aspect ratio of the main synthetic fiber existing from the surface of the non-application surface to 1/3 are 1.2 to Although it was 3.0, the non-coated surface adhesiveness when the X surface was a semipermeable membrane coated surface and the semipermeable membrane adhesive property when the Y surface was a semipermeable membrane coated surface were unpractical levels. .

(実施例36)
太径繊維(アクリル繊維、繊維径14.3μm、繊維長5mm、伸び率40%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(アクリル繊維、繊維径6.4μm、繊維長5mm、伸び率40%、引張強さ0.40N/tex)を35:30:35の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 36)
Large diameter fiber (acrylic fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 40%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, fiber length 5 mm, melting point 230 ° C.), fine fiber (acrylic fiber, fiber diameter 6.4 μm, fiber length 5 mm, elongation 40%, tensile strength 0.40 N / tex) in water at a mixing ratio of 35:30:35 After mixing and dispersing and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度30m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面をX面とした。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min using a calendering device that is a combination of a heated metal roll and a heated metal roll, and a semipermeable membrane support was obtained. Obtained. In addition, the surface which contacted the Yankee dryer was made into the X surface.

(実施例37)
細径繊維(延伸ポリエステル系繊維、繊維径6.6μm、繊維長10mm、伸び率45%、引張強さ0.50N/tex)、太径繊維(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率45%、引張強さ0.50N/tex)、バインダー合成繊維1(未延伸ポリエステル系繊維、繊維径10.1μm、繊維長5mm、融点191℃)、バインダー合成繊維2(芯鞘型ポリエステル系繊維、繊維径14.3μm、繊維長:5mm、鞘部融点107℃)を20.4:40.7:36.6:2.3の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 37)
Fine fiber (stretched polyester fiber, fiber diameter 6.6 μm, fiber length 10 mm, elongation 45%, tensile strength 0.50 N / tex), large fiber (stretched polyester fiber, fiber diameter 12.5 μm, fiber 5 mm in length, 45% elongation, tensile strength 0.50 N / tex), binder synthetic fiber 1 (unstretched polyester fiber, fiber diameter 10.1 μm, fiber length 5 mm, melting point 191 ° C.), binder synthetic fiber 2 (core) Sheath-type polyester fiber, fiber diameter 14.3 μm, fiber length: 5 mm, sheath melting point 107 ° C.) is mixed and dispersed in water at a blending ratio of 20.4: 40.7: 36.6: 2.3. After forming wet paper with a net paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度225℃、圧力785N/cm、加工速度20m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。   The obtained sheet was hot-pressed under the conditions of a temperature of 225 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min using a calender device that is a combination of a heated metal roll and a heated metal roll. Obtained. The surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.

(実施例38)
太径繊維(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286、伸び率45%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、アスペクト比399、伸び率45%、引張強さ0.50N/tex)を30:40:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量34g/mのシートCを得た。
(Example 38)
Large diameter fiber (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, aspect ratio 286, elongation 45%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 μm, fiber length 5 mm, melting point 260 ° C., fine fiber (stretched polyester fiber, fiber diameter 12.5 μm, fiber length 5 mm, aspect ratio 399, elongation 45%, tensile strength 0.50 N / tex) Was mixed and dispersed in water at a mixing ratio of 30:40:30, wet paper was formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C., and a sheet having a basis weight of 34 g / m 2 . C was obtained.

得られたシートを、加熱金属ロールと弾性ロールの組み合わせのカレンダー装置を用いて、温度225℃、圧力588N/cm、加工速度25m/minの条件で熱圧加工し、不織布Cを得た。   The obtained sheet was hot-pressed under the conditions of a temperature of 225 ° C., a pressure of 588 N / cm, and a processing speed of 25 m / min using a calender device that is a combination of a heated metal roll and an elastic roll, and a nonwoven fabric C was obtained.

次いで、太径繊維(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286、伸び率45%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を60:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量34g/mのシートDを得た。 Next, large diameter fiber (stretched polyester fiber, fiber diameter 17.5 μm, fiber length 5 mm, aspect ratio 286, elongation 45%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, A fiber diameter of 10.5 μm, fiber length of 5 mm, melting point of 260 ° C.) was mixed and dispersed in water at a blending ratio of 60:40, wet paper was formed with a circular paper machine, and then heated with a Yankee dryer with a surface temperature of 130 ° C. Pressure-drying was performed to obtain a sheet D having a basis weight of 34 g / m 2 .

不織布CをX面層とし、シートDをY面層として、不織布CとシートDを重ねて、シートDが加熱金属ロールに接するように、加熱金属ロールと弾性ロールの組み合わせのカレンダー装置において、加熱金属ロール温度225℃、圧力588N/cm、加工速度25m/minの条件で熱圧加工し、X面層とY面層の坪量比が1:1で、総坪量70g/mの半透膜支持体を得た。 In the calender device of the combination of the heated metal roll and the elastic roll, the nonwoven fabric C and the sheet D are overlapped with the nonwoven fabric C as the X plane layer and the nonwoven fabric C and the sheet D are overlapped. Hot pressing under the conditions of a metal roll temperature of 225 ° C., a pressure of 588 N / cm, and a processing speed of 25 m / min, the basis weight ratio of the X plane layer and the Y plane layer is 1: 1, and the total basis weight is 70 g / m 2 A permeable membrane support was obtained.

(実施例39)
細径繊維(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、伸び率45%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を60:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量40g/mのシートEを得た。
(Example 39)
Fine fiber (stretched polyester fiber, fiber diameter 12.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, (Fiber length 5 mm, melting point 260 ° C.) is mixed and dispersed in water at a blending ratio of 60:40, and wet paper is formed by a circular paper machine, followed by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C. A sheet E of 40 g / m 2 was obtained.

次いで、太径繊維(延伸ポリエステル系繊維、繊維径22.5μm、繊維長5mm、伸び率45%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を60:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量50g/mのシートFを得た。 Subsequently, a thick fiber (stretched polyester fiber, fiber diameter 22.5 μm, fiber length 5 mm, elongation 45%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10. 5 μm, fiber length 5 mm, melting point 260 ° C.) were mixed and dispersed in water at a blending ratio of 60:40, wet paper was formed with a circular net paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. A sheet F having a basis weight of 50 g / m 2 was obtained.

シートEを非塗布面層とし、シートFをX面層として、シートEとシートFを重ねて、加熱金属ロールと弾性ロールの組み合わせのカレンダー装置を用いて、温度226℃、圧力980N/cm、加工速度30m/minの条件で加工した後、一回目に加熱金属ロールに接した面が弾性ロールに接するように加熱金属ロールと弾性ロールの組み合わせのカレンダー装置において、加熱金属ロール温度226℃、圧力980N/cm、加工速度30m/minの条件で熱圧加工し、X面層とY面層の坪量比が5:4で、総坪量90g/mの半透膜支持体を得た。 The sheet E is a non-coated surface layer, the sheet F is an X-plane layer, the sheet E and the sheet F are overlapped, and a calender device of a combination of a heated metal roll and an elastic roll is used. After processing at a processing speed of 30 m / min, in the calender device of the combination of the heated metal roll and the elastic roll so that the first surface in contact with the heated metal roll is in contact with the elastic roll, the heated metal roll temperature is 226 ° C., the pressure The film was hot-pressed under conditions of 980 N / cm and a processing speed of 30 m / min to obtain a semipermeable membrane support having a basis weight ratio of 5: 4 for the X plane layer and the Y plane layer and a total basis weight of 90 g / m 2 . .

(実施例40)
傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。細径繊維(延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、伸び率45%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を55:45の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機でY塗面層の湿紙を形成した。
(Example 40)
Sheets with a two-layer structure were produced using a combination machine of an inclined wire type paper machine and a circular net paper machine. Fine fiber (stretched polyester fiber, fiber diameter 11.6 μm, fiber length 5 mm, elongation 45%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5 mm, melting point 260 ° C.) was mixed and dispersed in water at a blending ratio of 55:45, and a wet paper with a Y-coated surface layer was formed with an inclined wire type paper machine.

太径繊維(延伸ポリエステル系繊維、繊維径20.2μm、繊維長10mm、伸び率45%、引張強さ0.50N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を55:45の配合比率で水に混合分散し、円網抄紙機でX面層の湿紙を形成した後、2つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、X面層とY面層の坪量比が1:1で、総坪量103g/mのシートを得た。 Large fiber (stretched polyester fiber, fiber diameter 20.2 μm, fiber length 10 mm, elongation 45%, tensile strength 0.50 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, A fiber length of 5 mm and a melting point of 260 ° C. is mixed and dispersed in water at a blending ratio of 55:45. After forming a wet paper with an X-plane layer with a circular paper machine, the two wet papers are made together and a surface temperature of 130 is obtained. Drying was carried out with a Yankee dryer at 0 ° C. to obtain a sheet having a basis weight ratio of X-plane layer and Y-plane layer of 1: 1 and a total basis weight of 103 g / m 2 .

得られたシートを、加熱金属ロールとコットンロールの組み合わせのカレンダー装置において、加熱金属ロール温度230℃、圧力785N/cm、加工速度10m/minの条件で加工した後、一回目に加熱金属ロールに接した面がコットンロールに接するように加熱金属ロールとコットンロールの組み合わせのカレンダー装置において、加熱金属ロール温度200℃、圧力785N/cm、加工速度10m/minの条件で熱圧加工し、半透膜支持体を得た。なお、X面層が一回目にコットンロールに接するようにした。   After the obtained sheet was processed under the conditions of a heated metal roll temperature of 230 ° C., a pressure of 785 N / cm, and a processing speed of 10 m / min in a calender device of a combination of a heated metal roll and a cotton roll, In a calender device with a combination of a heated metal roll and a cotton roll so that the surface in contact is in contact with the cotton roll, heat pressing is performed under the conditions of a heated metal roll temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 10 m / min. A membrane support was obtained. The X plane layer was in contact with the cotton roll for the first time.

Figure 0005902886
Figure 0005902886

実施例2と実施例36における半透膜接着性の比較から、ポリエステル系繊維を使用した実施例2の方が、アクリル系繊維を使用した実施例36よりも優れていることが確認できた。   From the comparison of the semipermeable membrane adhesive properties in Example 2 and Example 36, it was confirmed that Example 2 using polyester fiber was superior to Example 36 using acrylic fiber.

実施例37の半透膜支持体は、バインダー合成繊維として、低融点の芯鞘型ポリエステル系繊維を併用しているために、熱圧加工時において、加熱金属ロールと加熱金属ロールのニップから出る際に貼り付きが発生し、半透膜接着性が実用上下限レベルとなった。   Since the semipermeable membrane support of Example 37 uses a low-melting core-sheath type polyester fiber as the binder synthetic fiber, it exits from the nip between the heated metal roll and the heated metal roll during hot pressing. At that time, sticking occurred, and the semipermeable membrane adhesiveness reached a practically lower limit level.

実施例38〜40の半透膜支持体は、2層構造の不織布であるが、主体合成繊維が1種類である層を含み、該層の地合が悪かった。また、実施例40の半透膜支持体は、繊維長10mmの繊維を使用していることから、実施例38及び39の半透膜支持体と比較して、地合がさらに悪かった。バインダー合成繊維の含有率が40質量%である実施例38及び39では、熱圧加工時にロールへの貼り付きが若干見られた。該含有率が45質量%である実施例40では、熱圧加工時のロールへの貼り付きが発生し、半透膜接着性が実用上下限レベルとなった。   The semipermeable membrane supporting materials of Examples 38 to 40 are non-woven fabrics having a two-layer structure, but included a layer having one kind of main synthetic fiber, and the formation of the layer was poor. Moreover, since the semipermeable membrane support of Example 40 uses fibers having a fiber length of 10 mm, the formation was further worse than the semipermeable membrane supports of Examples 38 and 39. In Examples 38 and 39 in which the content of the binder synthetic fiber was 40% by mass, some sticking to the roll was observed during hot pressing. In Example 40 in which the content was 45% by mass, sticking to the roll during hot pressing was caused, and the semipermeable membrane adhesiveness was practically at the lower limit level.

(実施例41)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)を35:30:35の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 41)
Large diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 230 ° C), fine fiber (stretched polyester fiber, fiber diameter 6.4μm, fiber length 5mm, elongation 45%, tensile strength 0.40N / tex) 35:30:35 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度110m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面をX面とした。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 110 m / min using a calendering device of a combination of a heated metal roll and a heated metal roll, and a semipermeable membrane support was obtained. Obtained. In addition, the surface which contacted the Yankee dryer was made into the X surface.

(実施例42)
太径繊維(延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、伸び率45%、引張強さ0.40N/tex)を35:30:35の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 42)
Large diameter fiber (stretched polyester fiber, fiber diameter 14.3 μm, fiber length 5 mm, elongation 45%, tensile strength 0.40 N / tex), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 230 ° C), fine fiber (stretched polyester fiber, fiber diameter 6.4μm, fiber length 5mm, elongation 45%, tensile strength 0.40N / tex) 35:30:35 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力980N/cm、加工速度2m/minの条件で熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面をX面とした。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 980 N / cm, and a processing speed of 2 m / min, using a calender device in which a heated metal roll and a heated metal roll were combined. Obtained. The surface not in contact with the Yankee dryer was designated as the X surface.

Figure 0005902886
Figure 0005902886

実施例2、41及び42の比較から、Y面の主体合成繊維の断面アスペクト比が1.1の実施例41の半透膜支持体は、Y面を半透膜塗布面とした場合の半透膜滲み込みが悪かった。また、Y面の主体合成繊維の断面アスペクト比が3.2の実施例42の半透膜支持体は、X面を半透膜塗布面とした場合の非塗布面接着性が悪かった。   From a comparison of Examples 2, 41 and 42, the semipermeable membrane supporting material of Example 41 having a cross-sectional aspect ratio of 1.1 on the Y-side main synthetic fiber is a semi-permeable membrane in which the Y surface is a semipermeable membrane coated surface. The permeation of the permeable membrane was bad. In addition, the semipermeable membrane support of Example 42 in which the cross-sectional aspect ratio of the main synthetic fiber on the Y plane was 3.2 had poor non-coated surface adhesion when the X plane was a semipermeable membrane coated surface.

(実施例43)
太径繊維(延伸ポリエステル系繊維、伸び率48%、引張強さ0.41N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率48%、引張強さ0.41N/tex、繊維径10.5μm、繊維長5mm)を60:30:10の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 43)
Large diameter fiber (stretched polyester fiber, 48% elongation, tensile strength 0.41 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 230 ° C), fine fiber (stretched polyester fiber, elongation 48%, tensile strength 0.41N / tex, fiber diameter 10.5μm, fiber length 5mm) 60:30:10 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力980N/cm、加工速度25m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように熱圧加工し、抱いた金属ロール面に接した面をX面とし、その反対側の面をY面とする。   One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 980 N / cm, and a processing speed of 25 m / min. A semi-permeable membrane support was obtained by holding the roll and hot pressing so that one surface was heated more. In addition, it heat-presses so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into X surface, and the surface on the opposite side is made into Y surface.

(実施例44)
太径繊維(延伸ポリエステル系繊維、伸び率23%、引張強さ0.75N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率23%、引張強さ0.75N/tex、繊維径8.6μm、繊維長5mm)を60:30:10の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 44)
Large fiber (stretched polyester fiber, 23% elongation, tensile strength 0.75 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 μm, Fiber length 5 mm, melting point 230 ° C.), fine fiber (stretched polyester fiber, elongation 23%, tensile strength 0.75 N / tex, fiber diameter 8.6 μm, fiber length 5 mm) 60:30:10 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力780N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように熱圧加工し、抱いた金属ロール面に接した面をX面とし、その反対側の面をY面とする。   One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 780 N / cm, and a processing speed of 20 m / min. A semi-permeable membrane support was obtained by holding the roll and hot pressing so that one surface was heated more. In addition, it heat-presses so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into X surface, and the surface on the opposite side is made into Y surface.

(実施例45)
太径繊維(延伸ポリエステル系繊維、伸び率80%、引張強さ0.51N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率80%、引張強さ0.51N/tex、繊維径8.6μm、繊維長5mm)を60:30:10の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 45)
Large fiber (stretched polyester fiber, elongation 80%, tensile strength 0.51 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, 60:30:10, fiber length 5 mm, melting point 230 ° C., fine fiber (stretched polyester fiber, elongation 80%, tensile strength 0.51 N / tex, fiber diameter 8.6 μm, fiber length 5 mm) After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力780N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように熱圧加工し、抱いた金属ロール面に接した面をX面とし、その反対側の面をY面とする。   One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 780 N / cm, and a processing speed of 20 m / min. A semi-permeable membrane support was obtained by holding the roll and hot pressing so that one surface was heated more. In addition, it heat-presses so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into X surface, and the surface on the opposite side is made into Y surface.

(実施例46)
太径繊維(延伸ポリエステル系繊維、伸び率60%、引張強さ0.36N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率60%、引張強さ0.36N/tex、繊維径8.6μm、繊維長5mm)を60:30:10の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 46)
Large diameter fiber (stretched polyester fiber, elongation 60%, tensile strength 0.36 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5 mm, melting point 230 ° C.), fine fiber (stretched polyester fiber, elongation 60%, tensile strength 0.36 N / tex, fiber diameter 8.6 μm, fiber length 5 mm) 60:30:10 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力980N/cm、加工速度25m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように熱圧加工し、抱いた金属ロール面に接した面をX面とし、その反対側の面をY面とする。   One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 980 N / cm, and a processing speed of 25 m / min. A semi-permeable membrane support was obtained by holding the roll and hot pressing so that one surface was heated more. In addition, it heat-presses so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into X surface, and the surface on the opposite side is made into Y surface.

(実施例47)
太径繊維(延伸ポリエステル系繊維、伸び率120%、引張強さ0.31N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率120%、引張強さ0.31N/tex、繊維径8.6μm、繊維長5mm)を60:30:10の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 47)
Large fiber (stretched polyester fiber, elongation 120%, tensile strength 0.31 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 μm, Fiber length 5 mm, melting point 230 ° C.), fine fiber (stretched polyester fiber, elongation 120%, tensile strength 0.31 N / tex, fiber diameter 8.6 μm, fiber length 5 mm) 60:30:10 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力780N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように熱圧加工し、抱いた金属ロール面に接した面をX面とし、その反対側の面をY面とする。   One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 780 N / cm, and a processing speed of 20 m / min. A semi-permeable membrane support was obtained by holding the roll and hot pressing so that one surface was heated more. In addition, it heat-presses so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into X surface, and the surface on the opposite side is made into Y surface.

(実施例48)
太径繊維(延伸ポリエステル系繊維、伸び率140%、引張強さ0.26N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率140%、引張強さ0.26N/tex、繊維径8.6μm、繊維長5mm)を60:30:10の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 48)
Large diameter fiber (stretched polyester fiber, elongation 140%, tensile strength 0.26 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 μm, Fiber length 5 mm, melting point 230 ° C.), fine fiber (stretched polyester fiber, elongation 140%, tensile strength 0.26 N / tex, fiber diameter 8.6 μm, fiber length 5 mm) 60:30:10 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力780N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように熱圧加工し、抱いた金属ロール面に接した面をX面とし、その反対側の面をY面とする。   One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 780 N / cm, and a processing speed of 20 m / min. A semi-permeable membrane support was obtained by holding the roll and hot pressing so that one surface was heated more. In addition, it heat-presses so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into X surface, and the surface on the opposite side is made into Y surface.

(実施例49)
太径繊維(延伸ポリエステル系繊維、伸び率30%、引張強さ0.44N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率30%、引張強さ0.44N/tex、繊維径8.6μm、繊維長5mm)を60:30:10の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 49)
Large fiber (stretched polyester fiber, elongation 30%, tensile strength 0.44 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 μm, Fiber length 5mm, melting point 230 ° C), fine fiber (stretched polyester fiber, elongation 30%, tensile strength 0.44N / tex, fiber diameter 8.6μm, fiber length 5mm) 60:30:10 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように熱圧加工し、さらに、ニップしていない120℃の加熱金属ロール2本をS字状に抱かせて巻取りを作製して、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように熱圧加工し、抱いた金属ロール面に接した面をX面とし、その反対側の面をY面とする。   One sheet of heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min. Hold the roll and hot-press it so that one side is heated more, and then wrap the two heated metal rolls at 120 ° C that are not niped in an S shape to make a winding, A permeable membrane support was obtained. In addition, it heat-presses so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into X surface, and the surface on the opposite side is made into Y surface.

(実施例50)
太径繊維(延伸ポリエステル系繊維、伸び率48%、引張強さ0.41N/tex、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
(Example 50)
Large diameter fiber (stretched polyester fiber, elongation 48%, tensile strength 0.41 N / tex, fiber diameter 17.5 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 230 ° C), fine fiber (stretched polyester fiber, elongation 50%, tensile strength 0.51N / tex, fiber diameter 11.6μm, fiber length 5mm) 30:30:40 After mixing and dispersing in water at a ratio and forming wet paper with a circular paper machine, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように熱圧加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように熱圧加工し、抱いた金属ロール面に接した面をX面とし、その反対側の面をY面とする。   One sheet of heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min. A semi-permeable membrane support was obtained by holding the roll and hot pressing so that one surface was heated more. In addition, it heat-presses so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into X surface, and the surface on the opposite side is made into Y surface.

(実施例51)
傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。太径繊維(延伸ポリエステル系繊維、伸び率48%、引張強さ0.41N/tex、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機でY面層の湿紙を形成した。
(Example 51)
Sheets with a two-layer structure were produced using a combination machine of an inclined wire type paper machine and a circular net paper machine. Large diameter fiber (stretched polyester fiber, elongation 48%, tensile strength 0.41 N / tex, fiber diameter 17.5 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 230 ° C), fine fiber (stretched polyester fiber, elongation 50%, tensile strength 0.51N / tex, fiber diameter 11.6μm, fiber length 5mm) 30:30:40 The mixture was dispersed in water at a ratio, and a Y-layer wet paper was formed with an inclined wire type paper machine.

太径繊維(延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、細径繊維(延伸ポリエステル系繊維、伸び率45%、引張強さ0.41N/tex、繊維径8.6μm、繊維長5mm)を40:30:30の配合比率で水に混合分散し、円網抄紙機でX面層の湿紙を形成した後、2つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、Y面層とX面層の坪量比が1:1で、総坪量80g/mのシートを得た。なお、X面がヤンキードライヤーに接するように熱圧乾燥した。 Large diameter fiber (stretched polyester fiber, elongation 50%, tensile strength 0.51 N / tex, fiber diameter 11.6 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5 mm, melting point 230 ° C.), fine fiber (stretched polyester fiber, elongation 45%, tensile strength 0.41 N / tex, fiber diameter 8.6 μm, fiber length 5 mm) 40:30:30 After mixing and dispersing in water at a ratio and forming a wet paper web with an X-face layer with a circular paper machine, the two wet paper sheets are combined, dried with a Yankee dryer with a surface temperature of 130 ° C, and dried with a Y-face layer. A sheet having a basis weight ratio of 1: 1 and X plane layer of 1: 1 and a total basis weight of 80 g / m 2 was obtained. In addition, it heat-dried so that X surface might touch a Yankee dryer.

得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で熱圧加工し、半透膜支持体を得た。   The obtained sheet was hot-pressed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min, using a calender device that is a combination of a heated metal roll and a heated metal roll, and a semipermeable membrane support was obtained. Obtained.

(実施例52)
傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。太径繊維(延伸ポリエステル系繊維、伸び率48%、引張強さ0.41N/tex、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機でY面層の湿紙を形成した。
(Example 52)
Sheets with a two-layer structure were produced using a combination machine of an inclined wire type paper machine and a circular net paper machine. Large diameter fiber (stretched polyester fiber, elongation 48%, tensile strength 0.41 N / tex, fiber diameter 17.5 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 260 ° C), fine fiber (stretched polyester fiber, elongation 50%, tensile strength 0.51N / tex, fiber diameter 11.6μm, fiber length 5mm) 30:30:40 The mixture was dispersed in water at a ratio, and a Y-layer wet paper was formed with an inclined wire type paper machine.

太径繊維(延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、伸び率45%、引張強さ0.41N/tex、繊維径8.6μm、繊維長5mm)を40:30:30の配合比率で水に混合分散し、円網抄紙機でX面層の湿紙を形成した後、2つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、Y面層とX面層の坪量比が1:1で、総坪量80g/mのシートを得た。なお、X面がヤンキードライヤーに接するように熱圧乾燥した。 Large diameter fiber (stretched polyester fiber, elongation 50%, tensile strength 0.51 N / tex, fiber diameter 11.6 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 260 ° C), fine fiber (stretched polyester fiber, elongation 45%, tensile strength 0.41N / tex, fiber diameter 8.6μm, fiber length 5mm) 40:30:30 After mixing and dispersing in water at a ratio and forming a wet paper web with an X-face layer with a circular paper machine, the two wet paper sheets are combined, dried with a Yankee dryer with a surface temperature of 130 ° C, and dried with a Y-face layer. A sheet having a basis weight ratio of 1: 1 and X plane layer of 1: 1 and a total basis weight of 80 g / m 2 was obtained. In addition, it heat-dried so that X surface might touch a Yankee dryer.

得られたシートを、加熱金属ロールと弾性ロール(加熱なし)の組み合わせのカレンダー装置を用いて、温度225℃、圧力980N/cm、加工速度25m/minの条件で熱圧加工(第一の熱圧ロールニップ)し、さらに表裏を逆にして再度同一条件で熱圧加工を行い(第二の熱圧ロールニップ)、半透膜支持体を得た。   The obtained sheet was subjected to hot-pressure processing (first heat treatment) using a calender device combining a heated metal roll and an elastic roll (no heating) at a temperature of 225 ° C., a pressure of 980 N / cm, and a processing speed of 25 m / min. Pressure roll nip), and further hot pressing under the same conditions with the front and back reversed (second hot pressure roll nip), a semipermeable membrane support was obtained.

(実施例53)
傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。太径繊維(延伸ポリエステル系繊維、伸び率48%、引張強さ0.41N/tex、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機でY面層の湿紙を形成した。
(Example 53)
Sheets with a two-layer structure were produced using a combination machine of an inclined wire type paper machine and a circular net paper machine. Large diameter fiber (stretched polyester fiber, elongation 48%, tensile strength 0.41 N / tex, fiber diameter 17.5 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 260 ° C), fine fiber (stretched polyester fiber, elongation 50%, tensile strength 0.51N / tex, fiber diameter 11.6μm, fiber length 5mm) 30:30:40 The mixture was dispersed in water at a ratio, and a Y-layer wet paper was formed with an inclined wire type paper machine.

太径繊維(延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、細径繊維(延伸ポリエステル系繊維、伸び率45%、引張強さ0.41N/tex、繊維径8.6μm、繊維長5mm)を40:30:30の配合比率で水に混合分散し、円網抄紙機でX面層の湿紙を形成した後、2つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、Y面層とX面層の坪量比が1:1で、総坪量80g/mのシートを得た。なお、X面がヤンキードライヤーに接するように熱圧乾燥した。 Large diameter fiber (stretched polyester fiber, elongation 50%, tensile strength 0.51 N / tex, fiber diameter 11.6 μm, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 μm, Fiber length 5mm, melting point 260 ° C), fine fiber (stretched polyester fiber, elongation 45%, tensile strength 0.41N / tex, fiber diameter 8.6μm, fiber length 5mm) 40:30:30 After mixing and dispersing in water at a ratio and forming a wet paper web with an X-face layer with a circular paper machine, the two wet paper sheets are combined, dried with a Yankee dryer with a surface temperature of 130 ° C, and dried with a Y-face layer. A sheet having a basis weight ratio of 1: 1 and X plane layer of 1: 1 and a total basis weight of 80 g / m 2 was obtained. In addition, it heat-dried so that X surface might touch a Yankee dryer.

得られたシートを、加熱金属ロールと弾性ロール(加熱なし)の組み合わせのカレンダー装置を用いて、温度225℃、圧力980N/cm、加工速度25m/minの条件で熱圧加工した後(第一の熱圧ロールニップ)、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度225℃、圧力980N/cm、加工速度25m/minの条件で熱圧加工し(第二の熱圧ロールニップ)、半透膜支持体を得た。   The obtained sheet was subjected to hot-pressure processing under the conditions of a temperature of 225 ° C., a pressure of 980 N / cm, and a processing speed of 25 m / min using a calender device combining a heated metal roll and an elastic roll (no heating) (first) Hot-press roll nip), and using a calender device that combines a heated metal roll and a heated metal roll, the hot-press process is performed at a temperature of 225 ° C., a pressure of 980 N / cm, and a processing speed of 25 m / min (second hot-press roll nip). ), A semipermeable membrane support was obtained.

(実施例54)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率35%、引張強さ0.45N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率35%、引張強さ0.45N/tex、繊維径10.5μm、繊維長5mm)に変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 54)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fibers, 35% elongation, tensile strength 0.45 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fibers (stretched polyester fibers). A semipermeable membrane support was obtained in the same manner as in Example 43 except that the fiber was changed to 35% elongation, tensile strength 0.45 N / tex, fiber diameter 10.5 μm, fiber length 5 mm.

(実施例55)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率100%、引張強さ0.30N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率100%、引張強さ0.30N/tex、繊維径10.5μm、繊維長5mm)に変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 55)
Thick fibers and fine fibers are made of large fiber (stretched polyester fiber, elongation 100%, tensile strength 0.30 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fiber (stretched polyester fiber). A semipermeable membrane support was obtained in the same manner as in Example 43 except that the fibers were changed to 100% elongation, tensile strength 0.30 N / tex, fiber diameter 10.5 μm, fiber length 5 mm.

(実施例56)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率150%、引張強さ0.11N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率150%、引張強さ0.11N/tex、繊維径10.5μm、繊維長5mm)に変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 56)
Thick fibers and fine fibers are made of large fiber (stretched polyester fiber, elongation 150%, tensile strength 0.11 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fiber (stretched polyester fiber). A semipermeable membrane support was obtained in the same manner as in Example 43 except that the fiber, elongation rate 150%, tensile strength 0.11 N / tex, fiber diameter 10.5 μm, fiber length 5 mm) were changed.

(実施例57)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率25%、引張強さ0.70N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率25%、引張強さ0.70N/tex、繊維径10.5μm、繊維長5mm)に変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 57)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fibers, elongation 25%, tensile strength 0.70 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fibers (stretched polyester fibers). A semipermeable membrane support was obtained in the same manner as in Example 43 except that the fiber, elongation rate 25%, tensile strength 0.70 N / tex, fiber diameter 10.5 μm, fiber length 5 mm) were changed.

(実施例58)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率145%、引張強さ0.23N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率145%、引張強さ0.23N/tex、繊維径10.5μm、繊維長5mm)に変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 58)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fibers, elongation 145%, tensile strength 0.23 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fibers (stretched polyester fibers). A semipermeable membrane support was obtained in the same manner as in Example 43 except that the fiber, elongation 145%, tensile strength 0.23 N / tex, fiber diameter 10.5 μm, fiber length 5 mm) were changed.

(実施例59)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率60%、引張強さ0.58N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率60%、引張強さ0.58N/tex、繊維径10.5μm、繊維長5mm)に変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 59)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fiber, elongation 60%, tensile strength 0.58 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fibers (stretched polyester fiber). A semipermeable membrane support was obtained in the same manner as in Example 43, except that the fiber was changed to 60% elongation, tensile strength 0.58 N / tex, fiber diameter 10.5 μm, fiber length 5 mm.

(実施例60)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率165%、引張強さ0.08N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率165%、引張強さ0.08N/tex、繊維径10.5μm、繊維長5mm)とし、熱圧加工速度を30m/minに変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 60)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fibers, elongation 165%, tensile strength 0.08 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fibers (stretched polyester fibers). Fiber, elongation 165%, tensile strength 0.08 N / tex, fiber diameter 10.5 μm, fiber length 5 mm), and the hot pressing speed was changed to 30 m / min. A semipermeable membrane support was obtained.

(実施例61)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率25%、引張強さ0.80N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率25%、引張強さ0.80N/tex、繊維径10.5μm、繊維長5mm)とし、熱圧加工速度を10m/minに変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 61)
A thick fiber and a thin fiber are divided into a thick fiber (stretched polyester fiber, 25% elongation, tensile strength 0.80 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), and thin fiber (stretched polyester fiber). Fiber, elongation rate 25%, tensile strength 0.80 N / tex, fiber diameter 10.5 μm, fiber length 5 mm), and the hot pressing speed was changed to 10 m / min. A semipermeable membrane support was obtained.

(実施例62)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率25%、引張強さ0.75N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率25%、引張強さ0.75N/tex、繊維径10.5μm、繊維長5mm)とし、熱圧加工速度を20m/min、ニップ圧を780N/cmに変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 62)
Thick fibers and fine fibers are made of large fiber (stretched polyester fiber, elongation 25%, tensile strength 0.75 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fiber (stretched polyester fiber). Fiber, elongation 25%, tensile strength 0.75 N / tex, fiber diameter 10.5 μm, fiber length 5 mm), except that the hot pressing speed was changed to 20 m / min and the nip pressure was changed to 780 N / cm. A semipermeable membrane support was obtained in the same manner as in Example 43.

(実施例63)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率150%、引張強さ0.25N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率150%、引張強さ0.25N/tex、繊維径10.5μm、繊維長5mm)に変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 63)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fibers, elongation 150%, tensile strength 0.25 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fibers (stretched polyester fibers). A semipermeable membrane support was obtained in the same manner as in Example 43 except that the fibers were changed to 150% elongation, tensile strength 0.25 N / tex, fiber diameter 10.5 μm, fiber length 5 mm.

(実施例64)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率23%、引張強さ0.90N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率23%、引張強さ0.90N/tex、繊維径10.5μm、繊維長5mm)とし、熱圧加工速度を10m/minに変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 64)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fibers, elongation 23%, tensile strength 0.90 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), fine fibers (stretched polyester fibers). Fiber, elongation 23%, tensile strength 0.90 N / tex, fiber diameter 10.5 μm, fiber length 5 mm), and the hot pressing speed was changed to 10 m / min. A semipermeable membrane support was obtained.

(実施例65)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率170%、引張強さ0.07N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率170%、引張強さ0.07N/tex、繊維径10.5μm、繊維長5mm)とし、熱圧加工速度30m/min、ニップ圧780N/cmに変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Example 65)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fibers, elongation rate 170%, tensile strength 0.07 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fibers (stretched polyester fibers). Example 43, except that the fiber, the elongation rate was 170%, the tensile strength was 0.07 N / tex, the fiber diameter was 10.5 μm, and the fiber length was 5 mm, and the hot pressing speed was 30 m / min and the nip pressure was 780 N / cm. A semipermeable membrane support was obtained in the same manner as above.

(比較例14)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率23%、引張強さ0.90N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率23%、引張強さ0.90N/tex、繊維径10.5μm、繊維長5mm)とした以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Comparative Example 14)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fibers, elongation 23%, tensile strength 0.90 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), fine fibers (stretched polyester fibers). A semipermeable membrane support was obtained in the same manner as in Example 43 except that the fiber, 23% elongation, tensile strength 0.90 N / tex, fiber diameter 10.5 μm, fiber length 5 mm) were used.

(比較例15)
太系繊維及び細径繊維を、太径繊維(延伸ポリエステル系繊維、伸び率170%、引張強さ0.07N/tex、繊維径18.2μm、繊維長5mm)、細径繊維(延伸ポリエステル系繊維、伸び率170%、引張強さ0.07N/tex、繊維径10.5μm、繊維長5mm)とし、熱圧加工速度20m/min、ニップ圧780N/cmに変えた以外は、実施例43と同様の方法で、半透膜支持体を得た。
(Comparative Example 15)
Thick fibers and fine fibers are divided into thick fibers (stretched polyester fibers, elongation rate 170%, tensile strength 0.07 N / tex, fiber diameter 18.2 μm, fiber length 5 mm), thin fibers (stretched polyester fibers). Example 43, except that the fiber, the elongation rate was 170%, the tensile strength was 0.07 N / tex, the fiber diameter was 10.5 μm, and the fiber length was 5 mm, and the hot pressing speed was 20 m / min and the nip pressure was 780 N / cm. A semipermeable membrane support was obtained in the same manner as above.

Figure 0005902886
Figure 0005902886

Figure 0005902886
Figure 0005902886

Figure 0005902886
Figure 0005902886

実施例43〜65の半透膜支持体は、X面、X面のいずれを半透膜塗布面とした場合でも、半透膜の滲み込み、半透膜接着性、非塗布面接着性ともに実用上問題ないレベルであった。実施例44の半透膜支持体は、主体合成繊維の伸び率が23%であったために、熱圧加工の際、稀に断紙が発生した。主体合成繊維の伸び率が120%及び140%の実施例47、及び48の半透膜支持体は、熱圧加工の際に若干の幅収縮が見られたが、実用上問題ないレベルであった。2層構造で、X面、Y面の繊維配合が異なる実施例51の半透膜支持体は、X面を半透膜塗布面とした場合の半透膜滲み込み及び非塗布面接着性、Y面を半透膜塗布面とした場合の半透膜接着性が優れていた。   The semipermeable membrane supports of Examples 43 to 65 have both the penetration of the semipermeable membrane, the semipermeable membrane adhesive property, and the non-coated surface adhesive property regardless of whether the X surface or the X surface is a semipermeable membrane coated surface. It was a level with no problem in practical use. In the semipermeable membrane supporting material of Example 44, since the elongation percentage of the main synthetic fiber was 23%, a paper break rarely occurred during hot pressing. In the semipermeable membrane supports of Examples 47 and 48 in which the elongation rates of the main synthetic fibers were 120% and 140%, a slight width shrinkage was observed during hot pressing, but this was a level that was not a problem for practical use. It was. The semipermeable membrane support of Example 51 having a two-layer structure and different X-plane and Y-plane fiber blends has a semipermeable membrane soaking and non-coated surface adhesiveness when the X-plane is a semipermeable membrane-coated surface. The semipermeable membrane adhesion was excellent when the Y surface was a semipermeable membrane coated surface.

2層構造で、X面、Y面の繊維配合が異なり、熱圧加工において、2回の熱圧ロールニップ加工を行った実施例52及び53の半透膜支持体は、X面を半透膜塗布面とした場合の非塗布面接着性、Y面を半透膜塗布面とした場合の半透膜接着性が優れていた。   In the semi-permeable membrane supports of Examples 52 and 53 in which the two-layer structure, the X-plane and Y-plane fiber blends are different, and the hot-pressing roll nip process was performed twice in the hot-pressing process, the X-plane is the semi-permeable membrane. The non-application surface adhesiveness when the coated surface was used and the semipermeable membrane adhesive property when the Y surface was the semipermeable membrane coated surface were excellent.

主体合成繊維の伸び率が150%及び145%の実施例56、58及び63の半透膜支持体は、熱圧加工の際に幅収縮が見られたが、実用上の限度レベルであった。   The semipermeable membrane supports of Examples 56, 58 and 63 in which the elongation percentages of the main synthetic fibers were 150% and 145% were observed to have a width shrinkage during hot pressing, but were at a practical limit level. .

実施例61及び62の半透膜支持体は、主体合成繊維の伸び率が25%であったために、熱圧加工の際、稀に断紙が発生した。実施例64の半透膜支持体は、主体合成繊維の伸び率が23%であり、主体合成繊維の引張強さが0.90N/texのため、熱圧加工の際、一部断紙が発生したが、実用上の限度レベルであった。主体合成繊維の伸び率が170%の実施例65の半透膜支持体は、熱圧加工の際に幅収縮が見られた。また、加熱寸法変化率が−0.5%であり、実用上やや問題があるレベルであった。   In the semipermeable membrane supports of Examples 61 and 62, the elongation percentage of the main synthetic fiber was 25%, and therefore, rarely a paper break occurred during hot pressing. In the semipermeable membrane support of Example 64, the elongation percentage of the main synthetic fiber is 23%, and the tensile strength of the main synthetic fiber is 0.90 N / tex. Although it occurred, it was a practical limit level. In the semipermeable membrane support of Example 65 in which the elongation percentage of the main synthetic fiber was 170%, width shrinkage was observed during the hot pressing. Moreover, the heating dimensional change rate was −0.5%, which was a level with a slight problem in practical use.

比較例14の半透膜支持体は、X面の主体合成繊維の断面アスペクト比及びY面の主体合成繊維の断面アスペクト比が1.1であり、平均裂断長(5%伸長時)が4.0km以上と高く、繊維の引張強さも0.90N/texと高く、熱圧加工の際に、加熱ロール出口で断紙が発生し、実用に適さなかった。比較例15の半透膜支持体は、X面の主体合成繊維の断面アスペクト比及びY面の主体合成繊維の断面アスペクト比が3.3及び3.2であり、熱圧加工の際に幅収縮が大きかった。また、半透膜塗布時のシワが酷く、実用に適さなかった。   In the semipermeable membrane support of Comparative Example 14, the cross-sectional aspect ratio of the main synthetic fiber on the X plane and the cross-sectional aspect ratio of the main synthetic fiber on the Y plane were 1.1, and the average breaking length (at 5% elongation) was It was as high as 4.0 km or more, and the tensile strength of the fiber was as high as 0.90 N / tex. During hot pressing, a paper break occurred at the exit of the heating roll, which was not suitable for practical use. The semipermeable membrane support of Comparative Example 15 has a cross-sectional aspect ratio of the X-side main synthetic fiber and a Y-side main synthetic fiber of 3.3 and 3.2, and has a width during hot pressing. Shrinkage was great. Moreover, the wrinkle at the time of semi-permeable membrane application was severe, and it was not suitable for practical use.

本発明の半透膜支持体は、海水の淡水化、浄水器、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で利用することができる。   The semipermeable membrane support of the present invention can be used in fields such as seawater desalination, water purifiers, food concentration, wastewater treatment, medical filtration typified by blood filtration, and ultrapure water production for semiconductor cleaning. it can.

Claims (11)

半透膜支持体の製造方法において、
該半透膜支持体が繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維とを少なくとも含有し、半透膜塗布面及び半透膜非塗布面を有する湿式抄造不織布からなり、不織布の断面SEMで観察される厚み方向で、半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)及び半透膜非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.2〜3.0であり、
長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機の群から選ばれる1種の抄紙機によって製造された単層の湿紙又は該群から選ばれる同種若しくは異種の抄紙機を複数組み合わせたコンビネーション抄紙機によって製造された多層構造の湿紙を熱圧乾燥させてシートを作製した後、熱圧加工し、
熱圧乾燥における熱ロールの表面温度が100〜180℃であり、圧力が50〜1000N/cmであり、
熱圧加工における熱ロールの表面温度が150〜260℃であり、ロールのニップ圧力が190〜1800N/cmであり、加工速度が3〜100m/minであることを特徴とする半透膜支持体の製造方法
In the method for producing a semipermeable membrane support,
The semipermeable membrane support comprises at least two or more main synthetic fibers and binder synthetic fibers having different fiber diameters, and comprises a wet papermaking nonwoven fabric having a semipermeable membrane application surface and a semipermeable membrane non-application surface, The cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 in the thickness direction observed by the cross-sectional SEM and the semipermeable membrane non-application surface The cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface to 1/3 is 1.2 to 3.0,
A single-layer wet paper manufactured by one type of paper machine selected from the group of long paper machines, circular paper machines, and inclined wire type paper machines, or a combination of the same or different types of paper machines selected from this group A wet paper with a multilayer structure manufactured by a combination paper machine is hot-pressure dried to produce a sheet, and then hot-pressed .
The surface temperature of the hot roll in hot pressure drying is 100 to 180 ° C., the pressure is 50 to 1000 N / cm,
The semipermeable membrane support, wherein the surface temperature of the hot roll in hot pressing is 150 to 260 ° C., the nip pressure of the roll is 190 to 1800 N / cm, and the processing speed is 3 to 100 m / min. Manufacturing method .
半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.3〜3.0である請求項1記載の半透膜支持体の製造方法2. The semipermeable membrane according to claim 1, wherein the cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 is 1.3 to 3.0. A method for producing a support. 半透膜塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.4〜3.0である請求項1記載の半透膜支持体の製造方法2. The semipermeable membrane according to claim 1, wherein the cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the semipermeable membrane application surface to 1/3 is 1.4 to 3.0. A method for producing a support. 半透膜非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.2〜2.7である請求項1記載の半透膜支持体の製造方法2. The semipermeable membrane according to claim 1, wherein the cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the semi-permeable membrane non-coated surface to 1/3 is 1.2 to 2.7. A method for producing a membrane support. 半透膜非塗布面の表面から1/3までに存在する主体合成繊維の断面アスペクト比(繊維断面長径/繊維断面短径)が1.2〜2.5である請求項1記載の半透膜支持体の製造方法2. The semipermeable membrane according to claim 1, wherein the cross-sectional aspect ratio (fiber cross-section major axis / fiber cross-section minor axis) of the main synthetic fiber existing from the surface of the semi-permeable membrane non-coated surface to 1/3 is 1.2 to 2.5. A method for producing a membrane support. バインダー合成繊維が未延伸合成繊維である請求項1から5のいずれかに記載の半透膜支持体の製造方法The method for producing a semipermeable membrane supporting material according to any one of claims 1 to 5, wherein the binder synthetic fiber is an unstretched synthetic fiber. 主体合成繊維とバインダー合成繊維との合計質量に対するバインダー合成繊維の含有率が20質量%超40質量%以下である請求項1〜6のいずれかに記載の半透膜支持体の製造方法The method for producing a semipermeable membrane support according to any one of claims 1 to 6, wherein the content of the binder synthetic fiber relative to the total mass of the main synthetic fiber and the binder synthetic fiber is more than 20 mass% and 40 mass% or less. 主体合成繊維とバインダー合成繊維との合計質量に対するバインダー合成繊維の含有率が25質量%以上35質量%以下である請求項1〜6のいずれかに記載の半透膜支持体の製造方法The method for producing a semipermeable membrane support according to any one of claims 1 to 6, wherein the content of the binder synthetic fiber relative to the total mass of the main synthetic fiber and the binder synthetic fiber is 25% by mass or more and 35% by mass or less. 不織布の5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km未満であり、かつ、不織布の横方向(CD)の加熱寸法変化率が−0.3〜+1.0%である請求項1〜8のいずれかに記載の半透膜支持体の製造方法The average value of the longitudinal (MD) and transverse (CD) tear lengths at 5% elongation of the nonwoven fabric is less than 4.0 km, and the transverse dimension (CD) heating dimensional change rate of the nonwoven fabric is −0. The method for producing a semipermeable membrane support according to any one of claims 1 to 8, wherein the content is 3 to + 1.0%. 主体合成繊維の伸び率(JIS L1013 2010)が25〜150%であり、主体合成繊維の引張強さが0.08〜0.8N/texである請求項9に記載の半透膜支持体の製造方法The elongation percentage of the main synthetic fiber (JIS L1013 2010) is 25 to 150%, and the tensile strength of the main synthetic fiber is 0.08 to 0.8 N / tex . Manufacturing method . 不織布が多層構造である請求項1〜10のいずれかに記載の半透膜支持体の製造方法The method for producing a semipermeable membrane support according to any one of claims 1 to 10, wherein the nonwoven fabric has a multilayer structure.
JP2011000314A 2010-02-16 2011-01-05 Method for producing semipermeable membrane support Active JP5902886B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011000314A JP5902886B2 (en) 2010-02-16 2011-01-05 Method for producing semipermeable membrane support
KR1020110013190A KR101254423B1 (en) 2010-02-16 2011-02-15 Semi-permeable membrane support and method for producing the same
CN201110039485.1A CN102188910B (en) 2010-02-16 2011-02-15 Semipermeable membrane supporting body and manufacturing method thereof
KR1020120109389A KR101313988B1 (en) 2010-02-16 2012-09-28 Semi-permeable membrane support and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010030868 2010-02-16
JP2010030868 2010-02-16
JP2010165203 2010-07-22
JP2010165203 2010-07-22
JP2011000314A JP5902886B2 (en) 2010-02-16 2011-01-05 Method for producing semipermeable membrane support

Publications (2)

Publication Number Publication Date
JP2012040546A JP2012040546A (en) 2012-03-01
JP5902886B2 true JP5902886B2 (en) 2016-04-13

Family

ID=45897436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000314A Active JP5902886B2 (en) 2010-02-16 2011-01-05 Method for producing semipermeable membrane support

Country Status (1)

Country Link
JP (1) JP5902886B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893971B2 (en) * 2012-03-14 2016-03-23 三菱製紙株式会社 Method for producing semipermeable membrane support
JP5809588B2 (en) * 2012-03-15 2015-11-11 三菱製紙株式会社 Semipermeable membrane support
JP5913070B2 (en) * 2012-11-30 2016-04-27 北越紀州製紙株式会社 Nonwoven fabric for semipermeable membrane support and method for producing the same
WO2015046215A1 (en) * 2013-09-26 2015-04-02 東レ株式会社 Non-woven fabric, separation membrane support, separation membrane, fluid separation element, and method for manufacturing non-woven fabric
JP6492441B2 (en) * 2014-07-25 2019-04-03 東レ株式会社 Nonwoven manufacturing method
JP6625916B2 (en) * 2016-03-22 2019-12-25 三菱製紙株式会社 Semipermeable membrane support
JP7037306B2 (en) * 2016-09-16 2022-03-16 日東電工株式会社 Spiral type membrane element
JP6799514B2 (en) * 2017-09-11 2020-12-16 三菱製紙株式会社 Manufacturing method of non-woven fabric base material for electromagnetic wave shielding material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222506A (en) * 1985-03-29 1986-10-03 Japan Vilene Co Ltd Semipermeable membrane support and its preparation
JP3153487B2 (en) * 1997-02-13 2001-04-09 三木特種製紙株式会社 Semipermeable membrane support
JP2001340734A (en) * 2000-06-01 2001-12-11 Hour Seishi Kk Spacer used for separating membrane supporting body and separating membrane in lamination
JP5135955B2 (en) * 2007-08-31 2013-02-06 東レ株式会社 Pressure-resistant sheet and fluid separation element using the same

Also Published As

Publication number Publication date
JP2012040546A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5789193B2 (en) Semipermeable membrane support, spiral type semipermeable membrane element, and method for producing semipermeable membrane support
JP5902886B2 (en) Method for producing semipermeable membrane support
KR101254423B1 (en) Semi-permeable membrane support and method for producing the same
CN105935556B (en) Semipermeable membrane support and preparation method thereof
JP2013220382A (en) Semipermeable membrane support
JP2012101213A (en) Semi-permeable membrane support
JP7371056B2 (en) semipermeable membrane support
JPH10225630A (en) Semipermeable membrane supporting body
JP2016140785A (en) Semipermeable membrane support
JP6625916B2 (en) Semipermeable membrane support
JP5203515B1 (en) Nonwoven fabric for semipermeable membrane support
JP2014100625A (en) Semipermeable membrane support and method of producing the same
JP2015058411A (en) Semipermeable membrane support
JP5809583B2 (en) Semipermeable membrane support
JP2012250223A (en) Semipermeable membrane support
JP2013139030A (en) Semipermeable membrane support and method of manufacturing the same
JP2019055356A (en) Semipermeable membrane support
JP2015058409A (en) Semipermeable membrane support
JP5893971B2 (en) Method for producing semipermeable membrane support
JP5809588B2 (en) Semipermeable membrane support
JP6018514B2 (en) Method for producing semipermeable membrane support
JP2011167608A (en) Semipermeable membrane support
JP2018130689A (en) Semipermeable membrane support
JP2022156538A (en) Semipermeable membrane supporting body and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160311

R150 Certificate of patent or registration of utility model

Ref document number: 5902886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250