JP6613750B2 - 排気浄化制御装置 - Google Patents

排気浄化制御装置 Download PDF

Info

Publication number
JP6613750B2
JP6613750B2 JP2015182548A JP2015182548A JP6613750B2 JP 6613750 B2 JP6613750 B2 JP 6613750B2 JP 2015182548 A JP2015182548 A JP 2015182548A JP 2015182548 A JP2015182548 A JP 2015182548A JP 6613750 B2 JP6613750 B2 JP 6613750B2
Authority
JP
Japan
Prior art keywords
catalyst
oxygen
enrichment
sensor
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015182548A
Other languages
English (en)
Other versions
JP2017057778A (ja
Inventor
均一 岩知道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015182548A priority Critical patent/JP6613750B2/ja
Publication of JP2017057778A publication Critical patent/JP2017057778A/ja
Application granted granted Critical
Publication of JP6613750B2 publication Critical patent/JP6613750B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、酸素吸蔵材を含む触媒がエンジンの排気系に介装された車両の排気浄化制御装置に関する。
従来、ガソリン車両の排気系に介装される触媒の一つとして、酸素吸蔵材を含む三元触媒が知られている。三元触媒とは、理論空燃比近傍の雰囲気下で窒素酸化物(NOx)の還元反応、炭化水素(HnCm)の酸化反応、一酸化炭素(CO)の酸化反応を同時に促進する触媒である。また、酸素吸蔵材とは、リーン雰囲気下で酸素を吸蔵し、リッチ雰囲気下において、リーン運転中に吸蔵した酸素を脱離させる特性を持った助触媒である。酸素吸蔵材の具体例としては、セリア(CeO2)、セリア・ジルコニア複合材料(CeO2-ZrO2)、アルミナ・セリア・ジルコニア複合材料(Al2O3-CeO2-ZrO2)、これらの材料に第2、第3の元素成分を複合した材料などが挙げられる。これらの酸素吸蔵材を触媒に含ませることで、触媒の活性サイト周囲の酸素濃度が理論空燃比近傍の濃度に維持されやすくなる。これにより、触媒活性が良好となる空燃比が確保され、触媒の排気浄化性能が向上する。なお、酸素吸蔵材に吸蔵された酸素は、炭化水素、一酸化炭素、水素の酸化反応に消費されうる(特許文献1参照)。
ところで、上記の触媒を排気系に備えたエンジンに対して、燃料カットと呼ばれる制御が実施されることがある。燃料カットとは、所定の燃料カット条件が成立したときに、エンジンへの燃料供給を一時的に停止する制御である。この制御は、例えば車両の惰性走行中や減速中に実施されて、無駄な燃料消費を抑制するように機能する。一方、燃料カットの実施中は排気系に外気が流入するため、触媒の酸素吸蔵材に吸蔵される酸素量が過剰となる場合がある。このような過剰な吸蔵酸素は、燃料カットからの復帰時に触媒から脱離して触媒周囲の空燃比を変動させ、触媒の排気浄化性能を低下させうる。
そこで、燃料カットからの復帰時における空燃比をややリッチに制御することで、触媒活性を確保する技術が提案されている。例えば、触媒よりも下流側に配置された酸素濃度センサを用いて燃料カット中に触媒に吸蔵された酸素量を推定し、その酸素量に基づいて、理論空燃比を基準としたリッチ化の度合いを設定する技術が存在する。また、このようなリッチ化の実施期間を、吸蔵酸素量に基づいて設定する技術も知られている(特許文献2、3参照)
特開2008-25490号公報 特開2013-11284号公報 特開2009-162174号公報
エンジンの排気系に配置される触媒が一個であるときは、触媒下流のセンサ値から推定される酸素量に応じて燃料を追加することで、触媒周囲の空燃比をストイキ近傍の空燃比域(活性空燃比域)に維持しうる。しかしながら、複数の触媒が排気系に配置されているときには、各触媒がそれぞれの酸素吸蔵能力に応じた量の酸素を吸蔵、脱離するため、触媒周囲の空燃比が活性空燃比域から外れやすいという課題がある。
例えば、エンジンの排気通路上に直列に配置された前段触媒と後段触媒との下流側に酸素濃度センサが配置されている場合、酸素濃度センサで検出される酸素濃度は、前段触媒及び後段触媒を一体の触媒とみなした場合に検出される酸素濃度に相当する。したがって、燃料カット復帰時における燃料の増加量は、前段触媒の酸素量と後段触媒の酸素量との合計値に応じて設定される。このとき、酸素量の合計値は触媒下流の酸素濃度センサでの検出結果から推定可能であるものの、各々の触媒がどの程度の酸素を吸蔵しているのかを把握することはできない。つまり、たとえ前段触媒の酸素吸蔵量が後段触媒の酸素吸蔵量と比較して極端に少なかったとしても、トータルの酸素吸蔵量に基づいて追加燃料量が設定されることになる。これにより、前段触媒の近傍での空燃比が触媒の活性空燃比域よりも過剰にリッチとなり、前段触媒において良好な排気浄化性能が得られないことがある。このような傾向は、前段触媒に吸蔵される酸素量が少ないほど、あるいは後段触媒に吸蔵される酸素量が多いほど顕著となる。
本件の目的の一つは、上記のような課題に鑑みて創案されたものであり、燃料カット復帰時における触媒の排気浄化性能を向上させることができる排気浄化制御装置を提供することである。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的として位置付けることができる。
(1)ここで開示する排気浄化制御装置は、酸素吸蔵材を含む触媒として、排気系に前段触媒とその下流側の後段触媒とを有するエンジンの排気浄化制御装置である。本排気浄化制御装置は、前記エンジンの燃料カットからの復帰に際し、空燃比を一時的にリッチ化するリッチ化制御部を備える。また、前記前段触媒に吸蔵される酸素重量と、前記前段触媒及び前記後段触媒に吸蔵される合計の酸素重量とを算出する算出部を備える。さらに、前記前段触媒に吸蔵される酸素重量が大きいほど前記リッチ化の度合いを強く設定するとともに、前記合計の酸素重量が大きいほどリッチ化時間を長く設定する設定部を備える。
また、前記設定部は、前記合計の酸素重量が所定の閾値よりも高い場合に、前記前段触媒に吸蔵される酸素重量が大きいほど前記リッチ化の度合いを強く設定し、前記合計の酸素重量が前記閾値以下である場合に、前記合計の酸素重量が大きいほど前記リッチ化の度合いを強く設定する。
(2)前記前段触媒の上流側の酸素濃度を検出する上流センサと、前記後段触媒の下流側の酸素濃度を検出する下流センサとを備えることが好ましい。この場合、前記算出部は、空燃比の変化に対する前記上流センサの応答時刻から前記下流センサの応答時刻までの出力反転時間が短いほど、前記合計の酸素重量が小さいものと判断することが好ましい。
)前記前段触媒と前記後段触媒との間の酸素濃度を検出する中間センサを備えることが好ましい。この場合、前記算出部は、空燃比の変化に対する前記上流センサの応答時刻から前記中間センサの応答時刻までの第二出力反転時間が短いほど、前記前段触媒に吸蔵される酸素重量が小さいものと判断することが好ましい
前段触媒の酸素吸蔵能力に応じてリッチ化の度合いを設定することで、前段触媒周囲の空燃比を活性空燃比域内に制御することができ、前段触媒の排気浄化性能を向上させることができる。また、合計吸蔵能力に応じてリッチ化時間を設定することで、後段触媒の吸蔵酸素が脱離するまでリッチ化を継続することができ、後段触媒の排気浄化性能を向上させることができる。したがって、燃料カット復帰時における触媒のトータルの排気浄化性能を向上させることができる。
排気浄化制御装置が搭載された車両を模式的に示す図である。 三元触媒の浄化率と空燃比との関係を示すグラフである。 (A)は前段吸蔵能力とリッチ化係数との関係を表すグラフ、(B)は合計吸蔵能力とリッチ化時間との関係を表すグラフである。 触媒の酸素吸蔵能力の算出手法を説明するためのグラフであり、(A)は燃料カット復帰時における空燃比変化、(B)、(C)は酸素濃度センサの出力特性を表す。 燃料カットの制御手順を例示するフローチャートである。 リッチ化制御の手順を例示するフローチャートである。 リッチ化係数、リッチ化時間の設定手順を例示するフローチャートである。 排気浄化制御装置による制御の作用、効果を説明するためのタイムチャートであり、(A)は空燃比、(B)はスロットル開度、(C)はNOx排出濃度、(D)はエンジン回転速度、(E)は車速に対応するものである。 リッチ化制御による排気通路内の空燃比分布を示すグラフであり、(A)、(B)は従来のリッチ化制御によるもの、(C)〜(E)は本件のリッチ化制御によるものである。
図面を参照して、実施形態としての排気浄化制御装置について説明する。排気浄化制御装置の最小構成は、以下に説明するエンジン制御装置1のみで実現可能であるが、エンジン制御装置1及び酸素濃度センサ15〜17を含むシステム全体を排気浄化制御装置として実現することも可能である。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。
[1.装置構成]
図1は、車両に搭載されるエンジン10及びこれを制御するエンジン制御装置1を模式的に示す図である。このエンジン10は、吸気ポート8内に設けられたインジェクタ9からの燃料噴射を一時的に停止する燃料カット機能を備えている。また、エンジン10の吸気通路11にはスロットル弁12が介装される。一方、排気通路13には上流側から順に、過給機のタービン14、前段触媒6、後段触媒7が配置される。
前段触媒6、後段触媒7はともに三元触媒であり、理論空燃比近傍の雰囲気下で窒素酸化物、炭化水素、一酸化炭素を浄化する機能を持つ。また、これらの前段触媒6、後段触媒7には、セリア系材料、セリア・ジルコニア系材料、セリア・ジルコニア・アルミナ系複合材料などの酸素吸蔵材が担持される。酸素吸蔵材はリーン雰囲気下で酸素を吸蔵し、リッチ雰囲気下において、リーン運転中に吸蔵した酸素を脱離させる特性を持つ。なお、前段触媒6は後段触媒7よりも触媒に担持する貴金属量が多い。
各触媒6、7における窒素酸化物、炭化水素、一酸化炭素の浄化率と空燃比との関係を、図2に例示する。炭化水素、一酸化炭素の酸化反応はリーン雰囲気化で促進され、リッチ雰囲気下でその反応性が低下する。これに対し、窒素酸化物の還元反応はリッチ雰囲気下で促進され、リーン雰囲気下でその反応性が低下する。したがって、良好な排気浄化性能が得られるのは、ストイキ近傍の空燃比域である。以下、各触媒6、7における浄化対象物質の浄化率が所定値以上となる空燃比域のことを「活性空燃比域」と呼ぶ。
排気通路13上には、排ガス中の酸素濃度を検出する酸素濃度センサ15〜17が介装される。以下、前段触媒6の上流側に配置されたものを、上流センサ15とも呼ぶ。同様に、前段触媒6と後段触媒7との間に配置されたものを中間センサ16とも呼び、後段触媒7の下流側に配置されたものを下流センサ17とも呼ぶ。上流センサ15、中間センサ16、下流センサ17のそれぞれは、理論空燃比相当の酸素濃度を閾値として、センサ出力Vを二値的に変化させるスイッチング出力型のジルコニアO2センサである。ここでは、空燃比がリッチであるときのセンサ出力Vが所定値V0であり、空燃比がリーンであるときのセンサ出力Vがゼロであるものとする。なお、ジルコニアO2センサのセンサ出力Vは温度によって変化するため、センサ出力Vを排気温度に応じて補正する制御構成としてもよい。各酸素濃度センサ15〜17からのセンサ出力Vは、エンジン制御装置1に伝達される。
図1に示すように、エンジン10には、エンジン回転速度N(エンジン回転数)を検出するエンジン回転数センサ18と、エンジン10の冷却水温Wを検出する水温センサ19とが設けられる。また、車両の任意の位置には、車速Sを検出する車速センサ20が設けられる。これらのセンサ18〜20で検出されたエンジン回転速度N、冷却水温W、車速Sの情報は、エンジン制御装置1に伝達される。また、スロットル弁12の開度(スロットル開度)の情報も、エンジン制御装置1に伝達される。
エンジン制御装置1(排気浄化制御装置)は、エンジン10を総合的に制御するコンピュータであり、車載ネットワーク網の通信ラインに接続される。このエンジン制御装置1は、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)などのマイクロプロセッサやROM(Read Only Memory)、RAM(Random Access Memory)、不揮発メモリなどを集積した電子デバイス(ECU、電子制御装置)として形成される。ここでいうプロセッサとは、例えば制御ユニット(制御回路)や演算ユニット(演算回路)、キャッシュメモリ(レジスタ)等を内蔵する処理装置(プロセッサ)である。また、ROM、RAM及び不揮発メモリは、プログラムや作業中のデータが格納されるメモリ装置である。エンジン制御装置1で実施される制御の内容は、ファームウェアやアプリケーションプログラムとしてROM、RAM、不揮発メモリ、リムーバブルメディア内に記録される。また、プログラムの実行時には、プログラムの内容がRAM内のメモリ空間内に展開され、プロセッサによって実行される。
[2.制御構成]
エンジン制御装置1は、エンジン10の燃料カットからの復帰に際し、空燃比を一時的にリッチ化するリッチ化制御を実施する。ここでは、燃料カットの終了条件が成立したときに、通常のストイキ空燃比よりもリッチな空燃比が目標空燃比に設定されて、エンジン10の運転状態が制御される。具体的なリッチ化手法としては、燃料噴射量の増量(例えばアフター噴射量、ポスト噴射量の増量)、燃料噴射時期の変更、点火時期の変更、EGR量の調節などが挙げられる。
リッチ化制御では、各触媒6、7の酸素吸蔵能力に応じて、空燃比をリッチ化する度合い(リッチ化量B)とリッチ化を継続する時間(リッチ化時間C)とが制御される。ここでいう酸素吸蔵能力とは、触媒6、7に吸蔵される酸素重量を表す。酸素吸蔵能力は、触媒6、7が劣化するに連れて低下する特性を有する。例えば、触媒6、7が新品であるときの酸素吸蔵能力は最も高く、触媒6、7の使用時間が長くなるほど酸素吸蔵能力は低下する特性を持つ。
以下、前段触媒6の酸素吸蔵能力のことを「前段吸蔵能力AU」と呼び、前段触媒6及び後段触媒7のトータルの酸素吸蔵能力のことを「合計吸蔵能力A」と呼ぶ。リッチ化時間Cは、合計吸蔵能力Aに応じて設定される。また、リッチ化量Bは、基本的には前段吸蔵能力AUに応じて設定されるが、触媒6、7がある程度劣化した後には合計吸蔵能力Aに応じて設定される。
上記のような制御を実施するための要素として、エンジン制御装置1には燃料カット制御部2、算出部3、設定部4、リッチ化制御部5が設けられる。これらはエンジン制御装置1で実行されるプログラムの一部の機能を示すものであり、ソフトウェアで実現されるものとする。ただし、各機能の一部又は全部をハードウェア(電子制御回路)で実現してもよく、あるいはソフトウェアとハードウェアとを併用して実現してもよい。
[2−1.燃料カット制御部]
燃料カット制御部2は、エンジン10の燃料カットを司るものであり、所定の燃料カット条件の成否に応じて燃料カットを実施するものである。ここでは、燃料カット条件が成立した場合に、エンジン10への燃料供給を遮断する制御が実施される。燃料カット条件は、例えば以下の全ての条件1〜4が成立することである。これらの条件が成立した場合に、燃料カットが開始される。また、燃料カットの実施中にいずれかの条件が不成立になると、燃料カットが終了する。
=燃料カット条件=
1.エンジン回転速度Nが第一速度N1以上、第二速度N2以下である(N1≦N≦N2
2.スロットル開度が全閉状態(所定開度以下)である
3.車速Sが所定車速S1以上、所定車速S2以下である(S1≦S≦S2
4.冷却水温Wが所定水温W1以上である(W1≦W)
[2−2.算出部]
算出部3は、前段触媒6の前段吸蔵能力AUと触媒6、7の合計吸蔵能力Aとを算出するものである。前段吸蔵能力AUは、少なくとも中間センサ16の検出結果に基づいて(好ましくは、上流センサ15が併用されて)算出される。一方、合計吸蔵能力Aは、少なくとも下流センサ17の検出結果に基づいて(好ましくは、同じく上流センサ15が併用されて)算出される。
本実施形態の算出部3は、空燃比を変化させたときに各酸素濃度センサ15〜17が出力するセンサ出力Vに基づいて、これらの酸素吸蔵能力を算出する。すなわち、上流センサ15の応答時刻を基準として、下流センサ17の応答時刻までの時間(出力反転時間)に応じた合計吸蔵能力Aを算出する。算出部3は、上流センサ15の応答時刻から下流センサ17の応答時刻までの時間が短いほど、合計吸蔵能力Aが低いものと判断し、低い値の合計吸蔵能力Aを算出する。また、前段吸蔵能力AUについて、上流センサ15の応答時刻を基準として、中間センサ16の応答時刻までの時間(第二出力反転時間)が短いほど低い値に算出する。
図4(A)〜(C)を用いて、前段吸蔵能力AU、合計吸蔵能力Aの算出手法を詳述する。図4(A)に示すように、燃料カットの実施中には空燃比がリーンである。時刻t0に燃料カットが終了してエンジン10の燃焼が再開すると、空燃比が一時的にリッチ化された後に、ストイキ近傍(例えば弱リッチ程度に相当するフィードバック目標空燃比)に制御される。空燃比の変動は、各酸素濃度センサ15〜17における酸素濃度の変化として検出される。上流センサ15は、他のセンサ16、17と比較してエンジン10に近い位置に設けられていることから、時刻t0の直後である時刻t1に所定値V0を出力する。これに対し、中間センサ16は、前段触媒6から脱離した酸素の影響を受けて、時刻t1よりもやや遅れた時刻t2に所定値V0を出力する。さらに、下流センサ17は、後段触媒7から脱離した酸素の影響も受けて、時刻t2よりもさらに遅れた時刻t3に所定値V0を出力する。各センサ15〜17のセンサ出力Vの変化を図4(B)に示す。
一方、触媒6、7が経時劣化して酸素吸蔵能力が低下すると、各触媒6、7に吸蔵される酸素量が減少することから、各触媒6、7からの脱離酸素量も減少する。これにより、図4(C)に示すように、中間センサ16の応答時刻t4は、劣化前の時刻t2よりも早い時刻となる。同様に、下流センサ17の応答時刻t5も、劣化前の時刻t3より早い時刻となる。したがって、時刻t1を基準として、中間センサ16のセンサ出力Vが変化するまでの時間が短いほど、前段吸蔵能力AUが低下しているものと判断することができる。同様に、下流センサ17のセンサ出力Vが変化するまでの時間が短いほど、合計吸蔵能力Aが低いものと判断することができる。なお、時刻t1が時刻t0とほぼ同時刻であるとみなせる場合には、時刻t0を基準とした出力反転時間に基づいて、酸素吸蔵能力の高低を判断してもよい。
上記の説明では、時刻t0に空燃比をリーンからややリッチの状態まで変化させているが、センサ出力Vの変化は、空燃比をリッチ側からリーン側へと変化させた場合にも検出可能である。したがって、例えば燃料カットの開始直後におけるセンサ出力Vの変化を検出して、合計吸蔵能力A、前段吸蔵能力AUを算出してもよい。また、ストイキ近傍の空燃比における各センサ15〜17のセンサ出力Vは、温度に応じて変化しうる。そこで、図4(B)、(C)中に示すように、所定値V0よりも小さい閾値V1を予め設定しておき、センサ出力Vが閾値V1以上になった時刻を応答時刻とみなしてもよい。
[2−3.設定部]
設定部4は、算出部3で算出された前段吸蔵能力AU、合計吸蔵能力Aに基づき、リッチ化量B(リッチ化の度合い)に対応するリッチ化係数Dを設定するとともに、合計吸蔵能力Aに基づき、リッチ化時間Cを設定するものである。本実施形態のリッチ化量Bは、エンジン10の要求トルクやエンジン回転速度Nに応じて算出される基準燃料噴射量に対し、リッチ化係数Dを乗算することで求められる。
本実施形態の設定部4は、前段吸蔵能力AUとリッチ化係数Dとの関係を数式、マップ、テーブルなどの形式であらかじめ記憶している。前段吸蔵能力AUとリッチ化係数Dとの関係を図3(A)に例示する。リッチ化係数Dは、前段吸蔵能力AUが高いほど大きな値に設定される。つまり、前段吸蔵能力AUが高いほど、リッチ化の度合いが高められる。また、図3(A)のマップに規定されたリッチ化係数Dの値は、リッチ化量Bが加算された後の空燃比が前段触媒6の周囲において活性空燃比域内に収まるように設定されている。すなわち、図3(A)のマップには、前段吸蔵能力AUから推定される前段触媒6の吸蔵酸素量に比例する大きさのリッチ化量Bが設定されている。
ただし、上記のようなリッチ化量Bの設定は、合計吸蔵能力Aが吸蔵能力閾値A0よりも高い場合に実施されるものとする。これは、前段触媒6の酸素吸蔵能力が後段触媒7と比較して低くなった場合に、リッチ化の度合いが不足しうるからである。設定部4は、合計吸蔵能力Aが吸蔵能力閾値A0よりも高いことを条件として、前段吸蔵能力AUに基づいてリッチ化量Bを設定する。また、合計吸蔵能力Aが吸蔵能力閾値A0以下である場合には、合計吸蔵能力Aに基づいてリッチ化量Bを設定する。
また、設定部4には、合計吸蔵能力Aとリッチ化時間Cとの関係を数式、マップ、テーブルなどの形式であらかじめ記憶している。合計吸蔵能力Aとリッチ化時間Cとの関係を図3(B)に例示する。リッチ化時間Cは、合計吸蔵能力Aが高いほど大きな値に設定される。つまり、合計吸蔵能力Aが高いほどリッチ化時間Cが延長される。
上記の通り、本実施形態の合計吸蔵能力Aはリッチ化時間Cの設定に用いられており、すなわち、触媒6、7からの脱離酸素による空燃比変動が落ち着いたことを確認するために用いられる。また、本実施形態の前段吸蔵能力AUは、前段触媒6からの酸素の脱離を促進しつつ、前段触媒6の近傍での良好な酸化・還元反応性を維持するのに要する燃料量を計算するために用いられる。ここで仮に、前段触媒6からの酸素の脱離を促進することのみを目的とするならば、単にリッチ化の度合いをより強めることで事足りる。しかし、リッチ化の度合いを強めることで前段触媒6の近傍における空燃比が活性空燃比域から外れてしまうと、炭化水素や一酸化炭素の酸化反応性が極端に低下し、良好な排気浄化性能が得られなくなる。一方、前段触媒6の近傍における空燃比が活性空燃比域内に収まるようにリッチ化量Bを設定することで、このような懸念は解消される。
[2−4.リッチ化制御部]
リッチ化制御部5は、設定部4で設定されたリッチ化係数D、リッチ化時間Cに基づいて、燃料カットからの復帰時にリッチ化制御を実施するものである。リッチ化係数Dやリッチ化時間Cの値は、リッチ化制御の実施中に更新される可能性があるため、リッチ化制御部5は更新前の(直近の)リッチ化係数D、リッチ化時間Cを用いてリッチ化制御を実施する。なお、リッチ化時間Cは、下流センサ17の出力反転時間が経過した時点で更新される。この時点で触媒6、7からの酸素の脱離がほぼ完了していると見なして、リッチ化制御を終了してもよい。つまり、更新後のリッチ化時間Cに基づいてリッチ化制御の実施期間を制御してもよい。
[3.フローチャート]
[3−1.燃料カット制御]
図5は、燃料カットの制御手順を例示するフローチャートである。このフローは、例えば車両のイグニッションキースイッチ(メインスイッチ)がオンの状態であるときに、所定周期で繰り返し実施される。このフロー中で使用される制御フラグFは、燃料カットの実施状態を表すものであり、燃料カットの実施中にF=1に設定される。
最初に、燃料カット条件の判定に用いられる各種情報が取得され(ステップA1)、リッチ化制御が実施中でないことが確認される(ステップA2)。また、制御フラグFがF=0であることを条件として(ステップA3)、燃料カットの開始条件が成立するか否かが判定される(ステップA4)。ここで、例えば上記の条件1〜4の全てが成立する場合には、燃料カット制御部2にて燃料カットが開始され、エンジン10への燃料供給が遮断される(ステップA5)。また、制御フラグFがF=1に設定され(ステップA6)、その演算周期での制御が終了する。
制御フラグFがF=1となる燃料カットの実施中には、燃料カットの終了条件が成立するか否かが判定される(ステップA7)。ここで、例えば上記の条件1〜4の全てが成立したままであれば、燃料カットが継続される(ステップA11)。一方、条件1〜4のいずれかが不成立になると、燃料カットが終了する(ステップA8)。また、制御フラグFがF=0に設定されるとともに(ステップA9)、図6に示すリッチ化制御フローと、図7に示すリッチ化設定フローとが開始され(ステップA10)、その演算周期での制御が終了する。
[3−2.リッチ化制御]
図6は、リッチ化制御の手順を例示するフローチャートである。フロー中の記号Rは、リッチ化制御の継続時間を表すカウンタ値である。燃料カットが終了すると、エンジン10の基本燃料噴射量にリッチ化係数Dを乗じたリッチ化量Bが算出される(ステップB1)。また、カウンタ値Rに値R+1が代入されて経過時間が計測され(ステップB2)、その経過時間がリッチ化時間C以上であるか否かが判定される(ステップB3)。この判定は、カウンタ値Rが、リッチ化時間Cに相当する所定値R0以上であるか否かを判定することに代えることができる。この条件が成立するまではリッチ化制御が実施され、リッチ化量Bが燃料噴射量に加算される(ステップB4)。リッチ化制御は、リッチ化時間Cが経過したら終了する(ステップB5)。
[3−3.リッチ化のための設定]
図7は、図6のステップB1、B3で使用されるリッチ化係数D、リッチ化時間Cを設定する手順を例示するフローチャートである。フロー中の記号T1、T2は、中間センサ16の第二出力反転時間、下流センサ17の出力反転時間に相当するカウンタ値である。まず、センサ出力Vに関する各種情報が取得される(ステップC1)。続くステップC2では、車両の走行条件やエンジン10の運転条件が、触媒6、7の有する酸素吸蔵能力を精度よく計測できる条件となっているか否かが判定される。ここでは、例えば車両の走行状態やエンジン10の運転状態が安定して連続しているか否かが判定される。また、酸素吸蔵能力の算出精度は触媒温度の影響を強く受けて変化するため、触媒温度が指定温度範囲内(例えば、400℃〜600℃)であるか否かが判定される。これらの条件が成立する場合には、酸素吸蔵能力を精度よく計測できる状態であると判断されて、ステップC3に進む。一方、この条件が不成立の場合には、本フローは終了する。
ステップC3では、上流センサ15のセンサ出力Vが閾値V1以上であるか否かが判定される。ここで、V<V1である場合には、この演算周期での制御が終了し、V≧V1である場合には、ステップC4に進む。ステップC4では、中間センサ16のセンサ出力Vが閾値V1以上であるか否かが判定される。ここで、V<V1である場合にはカウンタ値T1に値T1+1が代入されて、経過時間(第二出力反転時間)が計測される(ステップC5)。また、V≧V1になると、続いて下流センサ17のセンサ出力Vが閾値V1以上であるか否かが判定される(ステップC6)。ここで、V<V1である場合にはカウンタ値T2に値T2+1が代入されて、経過時間(出力反転時間)が計測される(ステップC7)。また、下流センサ17のセンサ出力Vが閾値V1以上になると、カウンタ値T1に基づいて前段触媒6の前段吸蔵能力AUが算出されるとともに、カウンタ値T2に基づいて前段触媒6及び後段触媒7の合計吸蔵能力Aが算出される(ステップC8)。
その後、合計吸蔵能力Aが吸蔵能力閾値A0よりも高いか否かが判定される(ステップC9)。ここで、A>A0である場合には、前段吸蔵能力AUに基づいてリッチ化係数Dが設定され(ステップC10)、A≦A0である場合には、合計吸蔵能力Aに基づいてリッチ化係数Dが設定される(ステップC11)。また何れの場合もリッチ化時間Cは合計吸蔵能力Aに基づいて設定される(ステップC12)。
[4.作用]
上記のエンジン制御装置1を搭載した車両の走行状態について、図8(A)〜(E)を用いて説明する。時刻t10にアクセルペダルが踏み戻され、スロットル開度が全閉になると〔図8(B)〕、エンジン回転速度Nが徐々に低下するとともに〔図8(D)〕、車速Sが減少する〔図8(E)〕。その後、時刻t11にエンジン回転速度Nが第二速度N2以下になると、燃料カットが実施される。また、時刻t12にエンジン回転速度Nが第一速度N1未満になると、燃料カットが終了するとともにリッチ化制御が開始される。
リッチ化制御では、前段吸蔵能力AUに応じてリッチ化量Bが設定されるとともに、合計吸蔵能力Aに応じてリッチ化時間Cが設定される。これにより、触媒6、7からの脱離酸素量に見合った燃料量が追加され、空燃比がストイキ近傍に制御される。このとき、前段触媒6の近傍における空燃比が活性空燃比域内に収まるようにリッチ化量Bが設定されるため、図8(C)に実線で示すように、排気浄化性能が向上する。
リッチ化量Bの設定について、図9(A)〜(E)を用いて詳述する。まず、前段触媒6に吸蔵されている酸素量に対応する燃料量をB1とおき、後段触媒7に吸蔵されている酸素量に対応する燃料量をB2とおく。従来のリッチ化制御では、合計吸蔵能力Aに基づいて算出されるトータルの燃料量BTOTAL(BTOTAL=B1+B2)が空燃比に反映される。ここで、排気通路13上の空燃比は、各触媒6、7から脱離する酸素の影響を受けてリーン化する。しかし、後段触媒7でのリーン化度合いが大きく、前段触媒6でのリーン化の度合いが小さい場合には、図9(A)に示すように、前段触媒6の近傍における空燃比が活性空燃比域外となり、前段触媒6での排気浄化性能が低下する。また、時間経過とともに触媒6、7からの脱離酸素量が減少するにつれて、リーン化の度合いが減少してグラフが平坦となる。そのため、図9(B)に示すように、空燃比が過剰にリッチ化された状態となり、トータルの排気浄化性能が低下する。
これに対し、本件のリッチ化制御では、前段吸蔵能力AUに基づいて算出される燃料量B1が空燃比に反映される。例えば、前段触媒6の出口近傍での空燃比をストイキにしたい場合には、図9(C)示すように、燃料量B1に相当する燃料量がインジェクタ9から追加噴射される。また、前段触媒6の中間部近傍で空燃比をストイキにしたい場合には、図9(D)に示すように、燃料量B1の半分に相当する燃料量がインジェクタ9から追加噴射される。これにより、前段触媒6の近傍における空燃比が活性空燃比域内となり、排気浄化性能が向上する。また、時間経過とともに触媒6、7からの脱離酸素量が減少したとしても、図9(E)に示すように空燃比が活性空燃比域から大きく外れることがなく、排気浄化性能が向上する。
[5.効果]
(1)上記のエンジン制御装置1(排気浄化制御装置)では、合計吸蔵能力Aに応じてリッチ化時間Cを設定することで、前段触媒6、後段触媒7の全体での脱離酸素量に対応する制御期間を求めることができ、排気浄化性能を確保することができる。一方、リッチ化の度合い(リッチ化量B)は前段吸蔵能力AUに応じて設定されるため、前段触媒6の排気浄化能力に見合ったリッチ空燃比を与えることができる。これにより、前段触媒6の近傍における空燃比を活性空燃比域内に収めることができ、排気浄化性能を向上させることができる。また、前段触媒6からの酸素の脱離を促進することができ、相対的に浄化能力の高い前段触媒6を主体的に使用して排気を浄化することができる。
また、設定部4では、前段触媒6の周囲の空燃比が活性空燃比域内に収まるように、リッチ化の度合いが設定される。リッチ化の度合いは、例えば、図9(C)に示すように、前段触媒6の出口近傍でストイキとなるように設定される。あるいは、図9(D)に示すように、前段触媒6の中央部近傍でストイキとなるように設定される。このような設定により、前段触媒6の排気浄化性能を向上させることができる。なお、前段吸蔵能力AUに応じて空燃比を適合させた場合、後段触媒7から脱離する酸素によって後段触媒7の周囲の空燃比がややリーン気味となりうる。しかし、後段触媒7の酸素吸蔵能力は前段触媒6よりも低いため、空燃比が活性空燃比域から大きく外れる可能性は低く、総合的な排気浄化性能は確保される。
(2)前段吸蔵能力AUに応じたリッチ化度合いの設定は、合計吸蔵能力Aが高い場合に限られる。つまり、排気浄化性能に余裕がある状況では積極的に前段触媒6の排気浄化能力を高めることで、リッチ化時間Cの短縮を図ることができる。一方、合計吸蔵能力Aの低下により排気浄化性能の余裕があまりないと考えられる状況では、合計吸蔵能力Aに応じたリッチ化度合いを設定することで、前段触媒6のみに頼ることなく、後段触媒7の働きも考慮して空燃比を設定することができ、排気浄化性能を向上させることができる。
(3)上記のエンジン制御装置1では、前段吸蔵能力AUが高いほどリッチ化の度合いが強められるため、前段触媒6からの酸素の脱離を促進することができ、酸素によって排気浄化性能が阻害されうる期間を短縮することができる。これにより、結果的にリッチ化時間Cも短縮されることになり、排気浄化性能を確保しつつ燃費を改善することができる。また、合計吸蔵能力Aが高いほどリッチ化時間Cを長くすることで、前段触媒6、後段触媒7から脱離する酸素量に見合ったリッチ化時間Cを設定することができ、排気浄化性能を確保することができる。
(4)上記のエンジン制御装置1では、触媒6、7の上流側に配置された上流センサ15と下流側に配置された下流センサ17とを用いて、空燃比の変化に対する応答時刻差に基づいて合計吸蔵能力Aを算出している。ここでいう応答時刻差とは、図4(B)中の時刻t1から時刻t3までの時間(出力反転時間)に相当する。この応答時刻差が短いほど合計吸蔵能力Aが低いものと判断することで、触媒6、7の合計吸蔵能力Aを精度よく把握することができ、適切にリッチ化時間Cを設定することができる。したがって、排気浄化性能を向上させることができる。
(5)上記のエンジン制御装置1では、上流センサ15と中間センサ16とを用いて前段吸蔵能力AUを算出している。すなわち、図4(B)中の時刻t1から時刻t2までの時間(第二出力反転時間)を参照し、この時間が短いほど前段触媒6の前段吸蔵能力AUが低いものと判断することで、前段吸蔵能力AUを精度よく把握することができ、排気浄化性能を向上させることができる。
(6)なお、下流センサ17の出力反転時間が経過した時点でリッチ化制御を終了するような制御構成とした場合には、触媒6、7から脱離した酸素の影響がなくなる時刻を精度よく把握することができ、排気浄化性能を向上させることができる。
[6.変形例]
上述の実施形態では、排気通路13に二つの触媒6、7が介装された排気系を例示したが、具体的な触媒6、7の個数やレイアウトはこれに限定されない。また、触媒6、7の種類に関しても同様であり、三元触媒だけでなく、三元機能を有するNOx吸蔵還元触媒やNOx選択還元触媒などの触媒を対象とすることができる。なお、触媒6、7に含有される酸素吸蔵材の種類についても同様である。
また、上述の実施形態では、前段吸蔵能力AU、合計吸蔵能力Aに応じてリッチ化量B、リッチ化時間Cを設定しているが、他のパラメータを併用してリッチ化量B、リッチ化時間Cを設定することも考えられる。酸素吸蔵材への酸素の吸着しやすさは、触媒温度や排気温度、雰囲気温度(外気温)に依存して変化しうる。そこで、これらの各種温度を考慮してリッチ化量B、リッチ化時間Cを設定してもよい。
上述の実施形態では4つの燃料カット条件を例示したが、具体的な燃料カット条件は任意に設定可能であり、各条件の組み合わせについても任意に設定可能である。また、車両走行中の燃料カットだけでなく、車両停止中の燃料カット(アイドリングストップ制御)に対して、上記の制御を適用することも可能である。
1 エンジン制御装置
2 燃料カット制御部
3 算出部
4 設定部
5 リッチ化制御部
6 前段触媒
7 後段触媒
10 エンジン
15 上流センサ(上流O2センサ)
16 中間センサ(中間O2センサ)
17 下流センサ(下流O2センサ)
18 エンジン回転数センサ
19 水温センサ
20 車速センサ
A 合計吸蔵能力
AU 前段吸蔵能力
A0 吸蔵能力閾値
B リッチ化量
C リッチ化時間
D リッチ化係数

Claims (3)

  1. 酸素吸蔵材を含む触媒として、排気系に前段触媒とその下流側の後段触媒とを有するエンジンの排気浄化制御装置であって、
    前記エンジンの燃料カットからの復帰に際し、空燃比を一時的にリッチ化するリッチ化制御部と、
    前記前段触媒に吸蔵される酸素重量と、前記前段触媒及び前記後段触媒に吸蔵される合計の酸素重量とを算出する算出部と、
    前記前段触媒に吸蔵される酸素重量が大きいほど前記リッチ化の度合いを強く設定するとともに、前記合計の酸素重量が大きいほどリッチ化時間を長く設定する設定部とを備え
    前記設定部は、前記合計の酸素重量が所定の閾値よりも高い場合に、前記前段触媒に吸蔵される酸素重量が大きいほど前記リッチ化の度合いを強く設定し、前記合計の酸素重量が前記閾値以下である場合に、前記合計の酸素重量が大きいほど前記リッチ化の度合いを強く設定する
    ことを特徴とする、排気浄化制御装置。
  2. 前記前段触媒の上流側の酸素濃度を検出する上流センサと、
    前記後段触媒の下流側の酸素濃度を検出する下流センサとを備え、
    前記算出部は、空燃比の変化に対する前記上流センサの応答時刻から前記下流センサの応答時刻までの出力反転時間が短いほど、前記合計の酸素重量が小さいものと判断する
    ことを特徴とする、請求項記載の排気浄化制御装置。
  3. 前記前段触媒と前記後段触媒との間の酸素濃度を検出する中間センサを備え、
    前記算出部は、空燃比の変化に対する前記上流センサの応答時刻から前記中間センサの応答時刻までの第二出力反転時間が短いほど、前記前段触媒に吸蔵される酸素重量が小さいものと判断する
    ことを特徴とする、請求項記載の排気浄化制御装置。
JP2015182548A 2015-09-16 2015-09-16 排気浄化制御装置 Active JP6613750B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015182548A JP6613750B2 (ja) 2015-09-16 2015-09-16 排気浄化制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015182548A JP6613750B2 (ja) 2015-09-16 2015-09-16 排気浄化制御装置

Publications (2)

Publication Number Publication Date
JP2017057778A JP2017057778A (ja) 2017-03-23
JP6613750B2 true JP6613750B2 (ja) 2019-12-04

Family

ID=58389445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015182548A Active JP6613750B2 (ja) 2015-09-16 2015-09-16 排気浄化制御装置

Country Status (1)

Country Link
JP (1) JP6613750B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363131B2 (ja) * 2003-09-05 2009-11-11 トヨタ自動車株式会社 動力出力装置
JP4344953B2 (ja) * 2006-09-15 2009-10-14 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2008121530A (ja) * 2006-11-10 2008-05-29 Nissan Motor Co Ltd エンジンの空燃比制御装置
JP5001183B2 (ja) * 2008-01-11 2012-08-15 日立オートモティブシステムズ株式会社 内燃機関の空燃比制御装置
JP5105008B2 (ja) * 2011-03-28 2012-12-19 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
WO2012144269A1 (ja) * 2011-04-22 2012-10-26 日産自動車株式会社 内燃機関の排気ガス浄化制御装置
US9719449B2 (en) * 2013-06-26 2017-08-01 Toyota Jidosha Kabushiki Kaisha Diagnosis system of internal combustion engine

Also Published As

Publication number Publication date
JP2017057778A (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
US6901744B2 (en) Air-fuel ratio control apparatus of internal combustion engine
EP1793099B1 (en) Method of exhaust gas purification and exhaust gas purification system
JP4264760B2 (ja) 内燃機関の排気浄化装置
US10598063B2 (en) Exhaust purification system of internal combustion engine
JP6256240B2 (ja) 内燃機関の制御装置
GB2380692A (en) A method and system for controlling an internal combustion engine.
JP6597101B2 (ja) 排気浄化制御装置
JP3622661B2 (ja) 内燃機関の空燃比制御装置
JP4636273B2 (ja) 内燃機関の排気浄化装置
JP6260452B2 (ja) 内燃機関の制御装置
JP2001304015A (ja) エンジンの排気浄化装置
JP6613750B2 (ja) 排気浄化制御装置
US6470675B1 (en) System and method controlling engine based on predicated engine operating conditions
JP2015121118A (ja) 内燃機関の排気浄化装置
WO2013149782A1 (en) Lean nox trap desulfation process
JP2005140011A (ja) 内燃機関の燃料噴射制御装置
JP4013774B2 (ja) 内燃機関の排気浄化装置
JP2004232576A (ja) 内燃機関の排気浄化装置
JP2015229995A (ja) 内燃機関の制御装置
JP6156278B2 (ja) 内燃機関の制御装置
JP2002256858A (ja) 内燃機関の排気浄化装置
JP4382581B2 (ja) 内燃機関の排気浄化装置
JP5062069B2 (ja) 内燃機関の排気浄化装置
JP2001234788A (ja) エンジンの排気浄化装置
JP5521290B2 (ja) ディーゼルエンジンの排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R151 Written notification of patent or utility model registration

Ref document number: 6613750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151