JP6608769B2 - イオンビーム装置 - Google Patents

イオンビーム装置 Download PDF

Info

Publication number
JP6608769B2
JP6608769B2 JP2016133700A JP2016133700A JP6608769B2 JP 6608769 B2 JP6608769 B2 JP 6608769B2 JP 2016133700 A JP2016133700 A JP 2016133700A JP 2016133700 A JP2016133700 A JP 2016133700A JP 6608769 B2 JP6608769 B2 JP 6608769B2
Authority
JP
Japan
Prior art keywords
gas
ion beam
emitter tip
heat transfer
beam apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016133700A
Other languages
English (en)
Other versions
JP2018006219A (ja
Inventor
広康 志知
信一 松原
義実 川浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2016133700A priority Critical patent/JP6608769B2/ja
Priority to DE102017005565.3A priority patent/DE102017005565A1/de
Priority to US15/635,500 priority patent/US10163602B2/en
Publication of JP2018006219A publication Critical patent/JP2018006219A/ja
Priority to JP2019193692A priority patent/JP6894486B2/ja
Application granted granted Critical
Publication of JP6608769B2 publication Critical patent/JP6608769B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/002Cooling arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Description

本発明は、ガス電界電離イオン源を搭載したイオンビーム装置に関する。
電子線を走査しながら試料に照射して、試料から放出される二次荷電粒子を検出すれば、試料表面の構造を観察することができる。これは走査電子顕微鏡と呼ばれる。一方、イオンビームを走査しながら試料に照射して、試料から放出される二次電子、二次イオン、反射イオンなどを検出しても、試料表面の構造を観察することができる。これは走査イオン顕微鏡と呼ばれる。
イオンビームは、電子ビームに比べて試料表面の情報に敏感である。これは、二次電子の励起領域が電子ビームに比べて、より試料表面に局在するからである。また、電子ビームでは、電子の波としての性質が無視できないため、回折効果により収差が発生する。一方、イオンビームでは、イオンが電子に比べて重いため、回折効果による収差は電子に比べて極めて小さい。特に、輝度の高いガス電界電離イオン源を用いた場合には、電子ビームに比べて、イオンビームは極微細に集束することが可能となる。
ところで、ガス電界電離イオン源は、先端曲率半径を100nm程度にした金属エミッタティップにヘリウムなどのガスを供給し、エミッタティップに数kV以上の高電圧を印加することにより、ガス分子を電界電離し、これをイオンビームとして引き出すものである。本イオン源の特徴は、イオンのエネルギー幅が狭く、さらにイオン発生源のサイズが小さいため、極微細なイオンビームを生成することができることにある。
また、イオンビーム装置は、極微細イオンビームを試料に照射して、試料から放出される二次電子(又はイオン)、反射電子(又はイオン)、透過電子(又はイオン)などを検出する。これにより、試料表面の構造を超高分解能で観察したり、微細化された半導体試料の表面構造の寸法を高精度に計測したり、あるいは、試料に起因する電子(イオン)のエネルギーや放出された角度を調べて試料の元素分析が可能である。また、極微細イオンビームを薄膜化した試料に照射して、試料を透過したイオンを検出すれば、試料内部の構造を反映した情報を得ることもできる。さらにネオン、アルゴン、クリプトン、キセノン、窒素、酸素、一酸化炭素などをイオンビームとして照射した場合には、スパッタリング現象が顕著になるため、試料の極微細な加工ができる。
特許文献1には、荷電粒子線を放出する荷電粒子線源と、荷電粒子線を集束して試料に照射する荷電粒子線光学系と、チップを冷却する冷却機構とを備え、荷電粒子線源は、チップと高電圧端子との間に、大気側からの熱流入を抑制する断熱構造を有する断熱構造部材を備え、断熱構造部材における高電圧端子側の端部からチップ側の端部への伝熱経路が、断熱構造部材における高電圧端子側の端部からチップ側の端部への直線距離よりも長くなっている荷電粒子線装置が開示されている。
特開2016−27525号公報
高信号/ノイズ比で試料を観察する、あるいは高速で試料を加工するためには、試料上で大きな電流密度のイオンビームを得る必要がある。そのためには、ガス電界電離イオン源のイオン放射角電流密度を大きくする必要がある。イオン放射角電流密度を大きくするためには、エミッタティップ近傍のイオン材料ガス(イオン化ガス)の分子密度を大きくすればよい。エミッタティップに供給されるガスの分子密度は、ガスの温度を下げると増大する。そのため、エミッタティップを極低温に冷却すればよい。また、実用的にはエミッタティップ周辺のイオン化ガスの圧力を、例えば、1×10-2〜10Pa程度にする。
エミッタティップ先端にナノピラミッド構造を持つガス電界電離イオン源では、次のような課題がある。一般に、イオン化ガスとして、水素やヘリウムの代わりにネオン、酸素、窒素、アルゴン、クリプトン、キセノンなどの質量の重いイオンを用いれば、スパッタ作用が大きくなるため、試料を加工するのに好適となる。ところが、ヘリウムやネオンでのイオンビーム装置は実用化されているが、それ以外のガス種については、実験的にはイオン放出は確認されているが、必ずしも実用化レベルにはない。特に、アルゴン(沸点87K)、クリプトン(沸点120K)、キセノン(沸点156K)などの高沸点ガスをイオン源材料とするイオンビーム加工装置は実用化されていなかった。
先に述べたように、ガス電界電離イオン源では、エミッタティップを冷却する。従来のヘリウムにおいては沸点が4Kと低く、エミッタティップをできるだけ低温化することにより電流を大きくすることができた。このためイオン源の冷却機構により可能な限り低温化するように構成した。しかし、このイオン源に、ヘリウムガスの代わりにクリプトンガスを導入しても実用的な動作は困難であった。クリプトンガスは沸点が120Kであるので、エミッタティップの温度を120K程度に冷却してもエミッタティップから放出されるクリプトンイオン電流は、ヘリウムイオン電流に比べて数分の1から1桁程度に低いため、極微細で電流密度の高いイオンビームは形成できなかった。そこでエミッタティップ温度をさらに低温化すると、イオン電流は増大する傾向にあったが電流が不安定となって実用的な加工に利用するのは困難であった。また、エミッタティップの温度を上昇させた場合に、一気に真空度が劣化して排気機構のターボ分子ポンプが停止してしまうという事故が生じることもあった。
特許文献1には、熱シールドにより各構成部品を取り囲むことにより、室温にある部材からチップ、銅網線、吸熱部品及びチップホルダーなど極低温にある部位へ流入する熱輻射量を低減させることが記載されている。さらに、第2の熱交換器が熱交換器を取り囲む形状となっているので、熱交換器への熱輻射も遮蔽できる。これにより、熱負荷が減少しチップの冷却到達温度をより下げられることも期待でき、伝熱及び輻射を併せても約0.5[W]程度に抑えることができる旨記載されている。しかし、この特許文献1の構造によってもアルゴン、クリプトン、キセノンなどの高沸点ガスをイオン化ガスとして大電流のイオンビームを安定して得ることはできなかった。
本発明は、高沸点ガス、すなわちアルゴン、クリプトン、キセノン、窒素、酸素、一酸化炭素などのガスを用いて、これらのガス種イオンビームを形成する場合に、加工に十分な大電流が得られ、かつイオンビーム電流が安定するガス電界電離イオン源を提供する。さらには、このガス電界電離イオン源を搭載して、試料の極微細領域を高精度かつ高速に加工できるイオンビーム装置を提供する。
本発明の一態様によるイオンビーム装置は、真空容器と、真空容器内に設けられたエミッタティップホルダと、エミッタティップホルダに接続されたエミッタティップと、エミッタティップに対向して設けられた引き出し電極と、エミッタティップにガスを供給するガス供給部と、真空容器の内部にてエミッタティップホルダに寒冷を伝達する冷熱伝達部材とを備えるガス電界電離イオン源を有し、冷熱伝達部材はガスの凝縮を妨げるように表面が熱絶縁材で覆われている。
本発明の他の態様によるイオンビーム装置は、上記ガス電界電離イオン源を有し、冷熱伝達部材の表面を覆うように設けられた接着部材と、冷熱伝達部材の表面と接着部材を介して接着し接着部材を覆うように設けられた熱絶縁材と、を有する。
本発明の他の態様によるイオンビーム装置は、上記ガス電界電離イオン源を有し、冷熱伝達部材の表面を覆うように設けられた熱絶縁材と、熱絶縁材の表面を覆うように設けられた金属材料と、金属材料を加熱する加熱機構と、を有する。
本発明によると、ガス電界電離イオン源を搭載して、アルゴン、クリプトン、キセノン、窒素、酸素、一酸化炭素などのイオンビームを試料に照射して、試料の極微細領域を高精度かつ高速に加工できるイオンビーム装置が提供される。
上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
イオンビーム装置の一例の概略構成図。 ガス電界電離イオン源の拡大図。 イオンビーム装置の制御系の一例の概略構成図。 イオンビーム装置のガス電界電離イオン源の一例の概略構成図。 ガス電界電離イオン源とその冷却機構の実施例を示す模式図。 ガス電界電離イオン源とその冷却機構の実施例を示す模式図。 イオンビーム装置の一例の概略構成図。 イオンビーム装置のガス電界電離イオン源の熱交換器周辺の詳細図。
ガス電界電離イオン源では、既に述べたようにエミッタティップを冷却する。発明者らはガス電界電離イオン源を試作してイオン化ガスにクリプトンガスを用いてイオンエミッションさせた。そして、クリプトンのガス圧を3×10-2Paとし、エミッタティップの温度を変化させてエミッション電流を計測した。その結果、温度105Kの場合、イオンビーム電流は8pA、温度90Kの場合、イオンビーム電流は10pAであった。
しかし、90K以下に温度を低下させて実験しようとすると、クリプトンガス圧の大きな低下によりエミッション電流計測が困難になった。ガス流量を2桁程度増大させてエミッション電流計測を試みた結果、温度60Kの場合、イオンビーム電流は50pAと大きくエミッション電流が増大することを確認できた。しかし、一方でガス圧を一定に保つことが困難で長時間に安定させることができないことがわかった。また、クリプトンガス圧を一定にして温度を低下させた場合に、ガス圧が急激に低下する様子を計測できた。装置を調べた結果、エミッタティップ温度90Kでは冷凍機が約56K程度に冷却されていることが分かった。
ガス電界電離イオン源の高輝度動作条件は、前述の通りエミッタティップを可能な限り低温化することである。ここで、従来のガス電界電離イオン源において、エミッタティップを冷凍機の冷熱によって冷却する構造の場合、冷凍機からエミッタティップまでの冷熱伝達経路において、冷凍機が最も温度が低く、エミッタティップが最も温度が高い。例えば、冷凍機の真空中伝達部が25K、銅製の冷熱伝達部材が35K、エミッタホルダが55K、エミッタティップが60Kのようになる。このようにエミッタティップ温度をガス凝縮が生じない最低温度に冷却しようとすると、冷熱伝達経路途中でイオン化ガスが凝縮してしまい、ガス圧制御が困難になる。また、イオン化ガスの凝縮が起きるとイオン源の温度を上昇させた時に液化したガスが一気に蒸発して真空容器に放出されるため、装置排気系に大きな負担をかける。逆にエミッタティップ温度を上昇させるとイオン源輝度が低下してしまう。このため、従来のガス電界電離イオン源においては、本来可能な高輝度条件で動作させることが困難であった。
このように本発明は、エミッタティップを可能な限り低温化するにあたり、エミッタティップより低温になる冷熱伝達経路途中でガスを凝縮させないことが必須であることを見出したことに基づく。この条件はこれまで見過ごされていて本発明者が初めて見出した条件である。従来のガス電界電離イオン源は、冷熱伝達経路途中でのガス凝縮を考慮した設計になっていなかったため、クリプトンイオンビームなどの電流密度を上げることができなかったのである。
本発明は、このような原因究明の下に、エミッタティップに冷熱を伝達する冷熱伝達経路に、内部は比較的低い温度に、表面は比較的高い温度に制御される構造の冷熱伝達部材を使用した。一例としては、冷熱伝達部材の表面をガスの凝縮を妨げるように熱絶縁材で覆う構造とした。なお、本発明の冷熱伝達経路の構造は冷熱伝達経路の全てに適用することが必須ではなく、経路の一部に適用しても効果がある。特に、冷凍機に近く表面温度がガス凝縮温度より低い冷熱伝達部材の部分に適用するのが有効である。
本発明によると、真空容器内部でイオン化ガスが凝縮せず、かつエミッタティップ温度を最低温度としてイオン放出できるため、イオン源輝度が最大化される、あるいはイオン放射角電流密度が最大化される。これにより加工用のイオン種、例えばアルゴン、クリプトン、キセノン、窒素で、極微細で大電流のイオンビームを形成できる。したがって、極微細な加工が従来よりも高速で可能になる。
本発明の詳細な説明に先立ち、各構成とその効果について列挙し説明する。
(1)一例として、真空容器と、真空容器内に設けられたエミッタティップホルダと、エミッタティップホルダに接続されたエミッタティップと、エミッタティップに対向して設けられた引き出し電極と、エミッタティップにガスを供給するガス供給部と、真空容器の内部にてエミッタティップホルダに寒冷を伝達する冷熱伝達部材とを備えるガス電界電離イオン源を有し、冷熱伝達部材はガスの凝縮を妨げるように表面が熱絶縁材で覆われている、イオンビーム装置とする。
このようにすると、イオン化ガスが凝縮しない温度範囲においてエミッタティップを最低の温度に冷却した場合にも、イオン化ガスが冷熱伝達部材の表面で凝縮することが無い。まず、エミッタティップが低温に冷却されているためイオンエミッション電流が大きくなる。これにより、沸点が高いイオン種の放射角電流密度が大きくなる。すなわち、極微細で大電流なイオンビームが形成できる。したがって、極微細な加工が従来よりも高速で可能になる。また、試料表面の観察が高分解能かつ高S/Nで可能になる。また、イオン化ガスが冷熱伝達部材の表面で凝縮することが無いため、エミッタティップに供給されるガス量が安定する。このため、イオンエミッション電流が安定する。したがって、極微細な加工が従来よりも高精度で可能になる。また、試料表面の観察が低ノイズで可能になる。
また従来のように、イオン化ガスが冷熱伝達部材の表面で凝縮した後に、温度が上昇した場合に、凝縮したガスが蒸発して真空容器内の真空度を一気に劣化させることが無い。従来は排気システムが故障する場合もあったが、このようなことが無いために信頼性の高いイオンビーム装置が提供される。
また、従来はエミッタティップをイオン化ガスの沸点以下に冷却すると、イオン電流が不安定になるため、沸点以下に冷却することは不適切と考えられていた。本発明者は、エミッタティップをイオン化ガスの沸点以下に冷却することが問題なのではなく、ガスが冷熱伝達部材の表面で凝縮することが問題であることを突き止めた。
また、従来はイオン化ガスの流量が一定であっても、冷熱伝達部材の表面で凝縮することによってエミッタティップ先端に供給されるガス量が実質的に減少することを突き止めた。従来は、このためエミッタティップを過度に冷却するとイオン電流が減少してしまうという誤った認識をしていたのである。このため、十分なイオン電流が得られず極微細高速加工及び超高分解能観察に好適なガス電界電離イオン源及びイオンビーム装置は提供されていなかったのである。
(2)一例として、(1)に記載したガス電界電離イオン源を有し、冷熱伝達部材の表面を覆うように設けられた接着部材と、冷熱伝達部材の表面と接着部材を介して接着し接着部材を覆うように設けられた熱絶縁材と、を有するイオンビーム装置とする。
このようにすると、(1)で述べたような効果を奏する。さらに、熱絶縁材が冷熱伝達部材の表面と接着部材を介して接着されているために、冷却された場合にも加熱された場合にも熱絶縁材が剥がれたり割れたりすることが無い。また、熱絶縁材と冷熱伝達部材の間にガスが入り込むことによりガスが凝縮することが無い。すなわち、極微細高速加工及び超高分解能観察が高信頼及び高安定で実現するのに好適なガス電界電離イオン源及びイオンビーム装置が提供される。
(3)一例として、(1)に記載したガス電界電離イオン源を有し、冷熱伝達部材の表面を覆うように設けられた熱絶縁材と、熱絶縁材の表面を覆うように設けられた金属材料と、金属材料を加熱する加熱機構と、を有するイオンビーム装置とする。
このようにすると、(1)で述べたような効果を奏する。さらに、熱絶縁材表面を覆うように設けられた金属材料と、金属材料を加熱する加熱機構とを有するために金属表面を均一な温度に制御することが可能になる。すなわち、表面全体を凝縮しない温度に制御できるため、高信頼でガスが凝縮することがなくなる。すなわち、極微細高速加工及び超高分解能観察が高信頼及び高安定で実現するのに好適なガス電界電離イオン源及びイオンビーム装置が提供される。
(4)前記(1)(2)(3)において、冷熱伝達部材を冷却機構の冷熱を真空容器内に伝達する熱交換器とする。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、冷熱伝達部材が冷却機構の冷熱をイオン源真空容器内に伝達する熱交換器であるために、熱交換器でガスが凝縮することがない。熱交換器は最も温度が低下する冷熱伝達部材である。このため、熱交換器表面のみを(1)(2)(3)で述べたように処理した場合でも大きな効果を得ることができる。
(5)前記(4)において、冷却機構は冷凍機で冷却されたヘリウムガスを循環させる冷却機構であり、熱交換器はヘリウムガスで冷却される構成とする。
このようにすると、(4)で述べたような効果を奏する。さらに、本構成によると、冷凍機の機械振動がエミッタティップに伝達されにくくなる。すなわち、エミッタティップが振動しないために、より高精度な加工が実現する。また、より高分解能な観察が実現する。
(6)前記(4)において、冷却機構がヘリウムガス容器のヘリウムガスを冷凍機で冷却する冷却機構であり、熱交換器がヘリウムガス容器である構成とする。
このようにすると、(4)で述べたような効果を奏する。さらに、本構成によると、冷凍機の機械振動がエミッタティップに伝達されにくくなる。すなわち、エミッタティップが振動しないために、より高精度な加工が実現する。また、より高分解能な観察が実現する。
(7)前記(1)(2)(3)において、冷熱伝達部材が金属薄膜であって表面に熱絶縁層が接着されている構成とする。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、本構成によると、冷凍機の機械振動がエミッタティップに伝達されにくくなる。すなわち、エミッタティップが振動しないために、より高精度な加工が実現する。また、より高分解能な観察が実現する。さらに、金属薄膜とすることで中間接合層がない場合にも熱絶縁層との接着度合いが良くなり、金属薄膜表面ではガス凝縮は生じなくなる。さらに、本構成によると、コスト低減を図ることができる。
(8)前記(1)(2)(3)において、冷熱伝達部材を金属とし、熱絶縁層をフッ素樹脂とする。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、本構成によると、コスト低減を図ることができる。
(9)前記(1)(2)(3)において、冷熱伝達部材を金属とし、熱絶縁層をセラミックスとする。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、本構成によると、コスト低減を図ることができる。
(10)前記(1)(2)(3)において、冷熱伝達部材を表面に熱絶縁層がコーティングされている金属網線とする。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、本構成によると、冷凍機の機械振動がエミッタティップに伝達されにくくなる。すなわち、エミッタティップが振動しないために、より高精度な加工、より高分解能な観察が実現する。さらに、金属網線とすることで中間に接着部材がない場合にも熱絶縁層との接着度合いが良くなり、金属網線表面でガス凝縮が生じなくなる。さらに、本構成によると、コスト低減を図ることができる。
(11)前記(1)(2)(3)において、ガス供給部からネオン、アルゴン、クリプトン、キセノンのいずれかを含むガスを供給する。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、本構成によると、試料に対する化学的な反応を少なくして加工や観察が実現する。
(12)前記(1)(2)(3)において、ガス供給部から一酸化炭素、酸素、窒素のいずれかを含むガスを供給する。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、本構成によると、化学的な反応を利用して試料を加工することができる。
(13)前記(1)(2)(3)において、ガス供給部からアルゴンを主たる成分とするガスを供給し、冷熱伝達部材を30K以下に冷却する。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、本構成によると、安定かつ大電流のアルゴンイオンビームを照射して試料の極微細高速加工及び超高分解能観察が可能になる。
(14)前記(1)(2)(3)において、ガス供給部からクリプトンを主たる成分とするガスを供給し、冷熱伝達部材を50K以下に冷却する。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、本構成によると、安定かつ大電流のクリプトンイオンビームを照射して試料の極微細高速加工及び超高分解能観察が可能になる。
(15)前記(1)(2)(3)において、ガス供給部からがネオンを主たる成分とするガスを供給し、冷熱伝達部材を25K以下に冷却する。
このようにすると、(1)(2)(3)で述べたような効果を奏する。さらに、本構成によると、安定かつ大電流のネオンイオンビームを照射して試料の極微細高速加工及び超高分解能観察が可能になる。
(16)前記(1)(2)(3)において、ガス供給部はクリプトンガスを含む少なくとも2種類のガスを切り替えて供給でき、エミッタティップを60K以下の概略同じ温度に保ち2種類のガスを切り替えて供給する構成とする。
(17)前記(1)(2)(3)において、ガス供給部はアルゴンガスとヘリウムガス又は水素ガスを切り替えて供給でき、エミッタティップを45K以下の概略同じ温度に保ちアルゴンとヘリウムを切り替えて供給する構成とする。
[実施例1]
図1は実施例1によるイオンビーム装置の例を示す断面模式図、図2はガス電界電離イオン源1を拡大して示した模式図である。
以下では、イオンビーム装置としてイオンビーム加工装置の例を説明する。本実施例のイオンビーム加工装置は、ガス電界電離イオン源1、イオンビーム照射系カラム2、試料室3、冷却機構4及びガス供給機構26を有する。ここでガス電界電離イオン源1、イオンビーム照射系カラム2及び試料室3は真空容器である。また、ガス供給機構26から供給されるイオン化ガスはアルゴンガスである。
ガス電界電離イオン源1は、針状のエミッタティップ21、エミッタティップに対向して設けられ、イオンが通過する開口部27を有する引き出し電極24、細線状のフィラメント22、円柱状のフィラメントマウント23、電気絶縁柱36、エミッタティップホルダ35、円柱状のエミッタベースマウント37を有する。ガス電界電離イオン源1の真空容器15は、イオン源真空排気用ポンプ12によって真空排気される。真空容器15とイオン源真空排気用ポンプ12の間には真空遮断可能なバルブ29が配置されている。引き出し電極24には加熱用ヒータ30が設置されている。
ガス電界電離イオン源1はエミッタティップ21の傾斜を変える傾斜機構63を有し、これはエミッタベースマウント37に固定されている。傾斜機構63は、エミッタティップ先端の方向をイオンビーム照射軸64に精度良く合わせるために用いられる。この角度軸調整によりイオンビームの歪みが低減される。ベローズ61,62は、エミッタティップ21が傾斜する時に変形する。ベローズ62はエミッタティップ21が傾斜してもエミッタ周辺のアルゴンの圧力をほとんど変えない働きもする。また、加熱用ヒータ30によって引き出し電極24の温度を150℃まで上げると、エミッタティップ周辺の不純物ガスを低減できる。
イオンビーム照射系は、ガス電界電離イオン源1から放出されたイオンを集束する集束レンズ5、集束レンズ5を通過したイオンビーム14を制限する可動な第1アパーチャ6、第1アパーチャ6を通過したイオンビームを走査あるいはアラインメントする第1偏向器32、イオンビームを偏向する第2偏向器7、イオンビームを制限する第2アパーチャ38、イオンビームを試料上に集束する静電型イオンレンズである対物レンズ8を有する。対物レンズ8は3個の電極から構成される。
試料室3内部には、試料9を載置する試料ステージ10、荷電粒子検出器11、及びイオンビームを照射したときの試料のチャージアップを中和するための電子銃16が設けられている。試料室3は試料室真空排気用ポンプ13によって真空排気される。また試料室3には、図示してないが試料近傍にエッチングやデポジションガスを供給するガス銃が設けられている。床20の上に配置された装置架台17の上には、防振機構19を介して、ベースプレート18が配置されている。ガス電界電離イオン源1、イオンビーム照射系カラム2、及び試料室3は、ベースプレート18によって支持されている。
冷却機構4は、ガス電界電離イオン源1の内部にあるエミッタティップ21を冷却する。冷却機構4は、真空容器60の内部に位置する冷凍機31を備える。冷却機構の詳細は後述する。ここでは冷却機構の概略を説明する。冷凍機31で発生した寒冷は、冷熱伝達部材である冷熱伝達棒33に伝えられる。冷熱伝達棒33は、途中で真空隔壁39を通過する。すなわち、図1において、真空隔壁39の左側は冷凍機31を収納する真空容器60に含まれ、真空隔壁39の右側はイオン源真空容器15に含まれる。冷熱伝達棒33の表面はアルゴンガスの凝縮を妨げるように熱絶縁材34で覆われている。冷熱伝達棒33は接続されたエミッタティップホルダ35を冷却する。エミッタティップホルダ35の表面もアルゴンガスの凝縮を妨げるように熱絶縁材34によって覆われている。エミッタティップホルダ35は、電気絶縁柱36を介してフィラメントマウント23に接続されている。電気絶縁柱36の表面もアルゴンガスの凝縮を妨げるように熱絶縁材34によって覆われている。寒冷はフィラメントマウント23に固定されたフィラメント22を通してエミッタティップ21まで伝達され、エミッタティップ21が冷却される。
熱絶縁材34としては、低熱伝導率のセラミックスや樹脂などが好適である。例えば、熱伝導率が5W/m・K以下のステアタイト(マグネシウム及びシリコン酸化物セラミックス)、ジルコニア(酸化ジリコニウム)、コージライト(マグネシウム,アルミニウム及びシリコン酸化物セラミックス)などが好適である。また、樹脂では低温でも使用可能なフッ素樹脂やシリコン樹脂が特に好適である。また一例として、冷熱伝達棒33は無酸素銅、エミッタティップホルダ35は銅又はステンレスなどの金属、電気絶縁柱36はチッ化アルミニウムあるいはアルミナなどのセラミックス、フィラメントマウント23はアルミナ、フィラメント22はタングステンなどで製作される。
なお、冷却機構4に例えばギフォード・マクマホン型(GM型)冷凍機あるいはパルス管冷凍機を用いる場合には、床20にはヘリウムガスを作業ガスとする圧縮機ユニット(コンプレッサ)が設置される。圧縮機ユニットの振動は、床20を経由して装置架台17に伝達される。装置架台17とベースプレート18との間には防振機構19が配置されており、床の高周波数の振動はガス電界電離イオン源1、イオンビーム照射系カラム2、真空試料室3などには伝達しにくくなっている。ここでは、床20の振動の原因として、冷凍機31及びコンプレッサを説明した。しかし、床20の振動の原因はこれに限定されない。また、防振機構19は、防振ゴム、バネ、ダンパ、又はこれらの組合せによって構成されてよい。
ガス電界電離イオン源のエミッタティップ21の特徴は、原子サイズの微小突起構造にある。エミッタティップ21の先端に形成される電界強度を調整することによって、エミッタティップの先端の1個の原子の近傍でイオンを生成させることができる。従って、イオンが放出される領域、即ち、イオン光源は極めて狭い領域であり、ナノメータ以下である。このため、単位面積、単位立体角あたりの電流値が大きくなり、輝度が高い。このイオン光源を同じ倍率で試料に集束するか、縮小率を数分の1程度にして試料上で集束すると例えば0.1nmから1nm程度のビーム径が得られる。すなわち、0.1nmから1nm程度の超高分解能観察あるいは超微細加工が実現する。
エミッタティップ21の原子によるナノメートルオーダの微小突起構造は、典型的には、先端に1個の原子を有し、その下に3個又は6個の原子の層を有する。エミッタティップ21の材質としては、タングステンやモリブデンの細線などを用いる。また、エミッタティップの先端にナノピラミッドを形成する方法として、イリジウム、白金、レニウム、オスミウム、パラジュウム、ロジュウム等を被覆させた後に、フィラメントに通電してエミッタティップを高温加熱する方法や、真空中での電界蒸発、ガスエッチィング、イオンビーム照射、リモデリング方法等がある。このような方法によれば、タングステン線、モリブデン線の先端に原子のナノピラミッドを形成することができる。例えば<111>のタングステン線を用いた場合には、先端が1個又は3個のタングステン原子あるいはイリジウムなどの原子で構成される。また、これとは別に、タングステン、モリブデン、白金、イリジウム、レニウム、オスミウム、パラジュウム、ロジュウムなどに対して、電圧を印加した状態で酸素ガスあるいは窒素ガスを導入して先端をエッチングして先鋭化する。あるいは加熱した状態で電圧をエミッタティップに印加するリモデリングによっても同様に微小突起を形成することができる。
なお、白金、レニウム、オスミウム、イリジウム、パラジュウム、ロジュウム、などを用いて、先端原子1個の微小突起構造が形成された場合には、同様に単位面積・単位立体角から放出される電流すなわちイオン源輝度を大きくすることができ、試料上のビーム径を小さくしたり、電流を増大したりするのに好適となる。ただし、エミッタティップが十分冷却され、かつガス供給が十分な場合には、必ずしも先端を原子1個にする必要はなく、3個、6個、7個、10個などの原子数であっても十分な性能を発揮できる。特に、4個以上10個未満の原子で先端を構成する場合には、イオン源輝度を高くでき、かつ先端原子が蒸発しにくく安定した動作が可能である。なお、この場合にも原子1個近傍から放出されたイオンビームが試料に到達する。
図3は、図1に示したイオンビーム装置の制御装置の例を示す模式図である。この制御装置は、ガス電界電離イオン源1を制御するイオン源制御装置91、冷却機構4を制御する冷却機構制御装置92、集束レンズ5及び対物レンズ8を制御するレンズ制御装置93、可動な第1アパーチャ6を制御する第1アパーチャ制御装置94、第1偏向器32を制御する第1偏向器制御装置195、第2偏向器7を制御する第2偏向器制御装置95、試料ステージ10を制御する試料ステージ制御装置97、試料室真空排気用ポンプ13を制御する真空排気用ポンプ制御装置98、試料ステージ10や荷電粒子検出器11の電極等に電圧を印加する複数の電源及びその制御装置96、及び計算処理能力をもつ本体制御装置99を有する。本体制御装置99は演算処理部、記憶部、画像表示部等を備える。画像表示部は、荷電粒子検出器11の検出信号から生成された画像、及び入力手段によって入力された情報を表示する。
試料ステージ10は、試料9を試料載置面内にて直交する2方向へ直線移動させる機構、試料9を試料載置面に垂直な方向へ直線移動させる機構、及び試料9を試料載置面内にて回転させる機構を有する。試料ステージ10は更に、試料9を傾斜軸周りに回転させることによりイオンビーム14の試料9への照射角度を可変できる傾斜機能を備える。これらの機構の制御は本体制御装置99からの指令により、試料ステージ制御装置97によって実行される。
次に、本実施例のガス電界電離イオン源の動作を説明する。真空排気後、十分な時間が経過した後、冷却機構4を運転する。既に述べたように冷凍機31で発生した寒冷は、冷熱伝達棒33、真空隔壁39、エミッタティップホルダ35、電気絶縁柱36、フィラメントマウント23、フィラメント22、エミッタティップ21の順番に伝達される。これによってエミッタティップ21が冷却される。まず、エミッタティップ21にイオンの加速電圧として、正の高電圧を印加する。また、エミッタティップ21に対して負電位となるように引き出し電極24に高電圧を印加する。すると、エミッタティップ21の先端に強電界が形成される。ガス供給機構26と接続されたイオン化ガスの供給管25からアルゴンガスを供給すると、アルゴンガスは強電界によってエミッタティップ面に引っ張られる。さらにアルゴンガスは最も電界の強いエミッタティップ21の先端近傍に到達する。そこでアルゴンガスが電界電離し、イオンビームが生成される。イオンビームは、引き出し電極24の開口部27を通ってイオンビーム照射系カラム2に導かれる。
次に、イオンビーム照射系の動作を説明する。イオンビーム照射系の動作は、本体制御装置99からの指令により制御される。ガス電界電離イオン源1によって生成されたイオンビーム14は、集束レンズ5、ビームを制限する第1アパーチャ6、第2アパーチャ38を通過して、対物レンズ8によって試料ステージ10上の試料9の上に照射される。イオン光学条件は、イオン光源を試料上に結像する倍率を少なくとも0.5以上として、大電流が得られる条件とした。荷電粒子検出器11からの信号は、輝度変調信号として本体制御装置99に送られる。本体制御装置99は、走査イオン顕微鏡像を生成し、それを画像表示部に表示する。こうして、試料表面の観察が実現される。
本例の冷凍機31では、冷却ステージは約10Kまで冷却される。次に熱伝導率の高い銅製の冷熱伝達棒33は15Kまで冷却される。従来のイオン源では冷熱伝達棒33の表面が露出していた。このため、アルゴンガスが表面で凝縮する現象が生じていた。本イオン源はエミッタティップが引き出し電極24やベローズ62で囲まれる構造であり、アルゴンガスが閉じ込められるイオン化室の外ではアルゴンガス圧力が低い。このため従来は、アルゴンガスが冷熱伝達棒33の表面で凝縮する現象については顧みられなかった。しかし凝縮が起きると、わずかな温度の変化で凝縮されたガスが気化してアルゴンガス圧力変動を引き起こし、イオンビームが不安定になることを発明者は突き止めた。また、冷熱伝達棒33の温度が高くなった時に多量のアルゴンガスが発生して真空排気システムにダメージを与えることもあった。本実施例では、冷熱伝達棒33の表面をガスの凝縮を妨げるように熱絶縁材34によって覆った。この熱絶縁材表面は約40Kになっている。本イオン源で用いるガス圧においては、アルゴンガスは約38Kで凝縮する。一方、熱絶縁材表面は約40Kで保持しているので、熱絶縁材表面ではアルゴンガスが凝縮しない。こうして、アルゴンの沸点は約87Kであるが、このイオン源の動作におけるアルゴンガス圧力では、沸点よりも低い温度においてもアルゴンガスが凝縮することがなかった。ただし、わずかな隙間があって少量のアルゴンガスが凝縮してもイオン源の安定動作に影響が少ない場合には本実施例の範囲内である。
冷熱伝達棒33はエミッタティップホルダ35に接続されている。エミッタティップホルダ35も、表面はアルゴンガスの凝縮を妨げるように熱絶縁材34によって覆われている。この熱絶縁材表面は約50Kになっている。さらにエミッタティップホルダ35には電気絶縁柱36を介してフィラメントマウント23が接続されている。ここでエミッタティップホルダ35は約30Kに、フィラメントマウント23は約40Kになっている。フィラメントマウント先端に接続されているエミッタティップ21の温度は約45Kとなっており、アルゴンガスの沸点87Kに比べて低い温度ではあったがアルゴンイオンビームを安定して得ることができた。
イオン源真空容器内にイオン化ガス以外の不純物ガスが存在するとイオンビームを不安定にする要因となる。このため、真空容器15内はできるだけ清浄に保ち、真空度を良くする。さらに、高真空のためイオン源を150℃程度にベーキングすることもある。このため、従来では冷熱伝達棒としては銅を用いて、表面に金をめっきするのが常であった。また、従来の熱絶縁材はチャンバからの熱輻射を防ぐためのもので、従来の熱絶縁材を冷熱伝達棒の外側に配置する場合にも、冷熱伝達棒と熱絶縁材との間に隙間を設けることが常であった。このように冷熱伝達棒と熱絶縁材との間に隙間がある場合には、隙間にアルゴンガスが容易に入り込み冷熱伝達棒の表面でガス凝縮が生じる。すなわち従来は、本実施例のように、アルゴンガスの凝縮を妨げるように覆われた熱絶縁材を有する冷熱伝達部材を配置することは無かった。
以上のように本実施例では、アルゴンガスが凝縮しない温度の範囲において、エミッタティップを沸点より低い温度に冷却した場合にも、アルゴンガスが冷熱伝達部材の表面で凝縮することが無い。すなわち、銅製の冷熱伝達棒、エミッタティップホルダ、などの表面でアルゴンガスが凝縮することが無い。さらに、エミッタティップが40Kから45Kに冷却されているためアルゴンイオンエミッション電流が大きくなる。これにより、アルゴンイオンビームの放射角電流密度が大きくなる。すなわち、極微細で大電流なイオンビームが形成できる。したがって、本実施例のイオンビーム装置では極微細な加工が従来よりも高速で可能になる。また、試料表面の観察が高分解能かつ高S/Nで可能になる。また、アルゴンガスが冷熱伝達部材の表面で凝縮することが無いためエミッタティップに供給されるアルゴンガス量が安定する。このため、アルゴンイオンエミッション電流が安定する。したがって、本実施例のイオンビーム装置では極微細な加工が従来よりも高精度で可能になる。また、試料表面の観察が低ノイズで可能になる。
また、従来のようにアルゴンガスが冷熱伝達部材の表面で凝縮した後に、温度が上昇した場合に、凝縮したアルゴンガスが蒸発して真空容器内の真空度を一気に劣化させることが無い。従来は、それが原因で排気システムが故障することもあったが、本実施例によると、このようなことが無いために信頼性の高いイオンビーム装置が提供される。
従来はエミッタティップをアルゴンガスの沸点以下に冷却するとイオン電流が不安定になるため、沸点以下に冷却することは不適切と考えられていた。発明者は、アルゴンガスが冷熱伝達部材の表面で凝縮することが問題であることを突き止めた。
また、従来はアルゴンガス流量が一定であっても冷熱伝達部材の表面で凝縮することによってエミッタティップ先端に供給されるガス量が実質的に減少することを、発明者は突き止めた。従来は、このためエミッタティップを過度に冷却するとイオン電流が減少してしまうという誤った認識をしていたのである。このため、十分なイオン電流が得られず、極微細高速加工及び超高分解能観察に好適なガス電界電離イオン源及びイオンビーム装置は提供されていなかったのである。
また、冷熱伝達部材が金属であって熱絶縁層がフッ素樹脂あるいはセラミックスとすると、低コストで極微細高速加工及び超高分解能観察するのに好適なガス電界電離イオン源及びイオンビーム装置が提供される。
また、実施例ではアルゴンガスを用いたが、イオン化ガスは一酸化炭素、酸素、窒素のいずれかを含むガスでも良い。このようにすると、化学的な反応を利用して試料を加工することができるという効果を奏する。イオン化ガスとして一酸化炭素を用いる場合、典型的なガス圧は1×10-3Pa程度であり、凝縮温度は約35Kである。このとき、エミッタティップ温度は一例として約38Kとすることができ、冷熱伝達部材の温度は約20K、熱絶縁材の表面温度は約45Kとすることができる。イオン化ガスとして酸素を用いる場合、典型的なガス圧は1×10-3Pa程度であり、凝縮温度は約38Kである。このとき、エミッタティップ温度は一例として約40Kとすることができ、熱絶縁材の表面温度は約50K、冷熱伝達部材の温度は約25Kとすることができる。イオン化ガスとして窒素を用いる場合、典型的なガス圧は1×10-3Pa程度であり、凝縮温度は約32Kである。このとき、エミッタティップ温度は一例として約35Kとすることができ、熱絶縁材の表面温度は約40K、冷熱伝達部材の温度は約20Kとすることができる。
また、本実施例のガス電界電離イオン源で、アルゴンを主たる成分とするガスを導入した時に、上記に示したように、冷熱伝達部材をアルゴンガスの沸点よりも低い30K以下に冷却する。すると、特にアルゴンを照射して極微細高速加工及び超高分解能観察するのに好適なガス電界電離イオン源及びイオンビーム装置が提供される。
なお、本実施例では、アルゴンガスを用いたが、ネオン、クリプトン、キセノンなど、その他の不活性ガスを含むガスを用いても良い。このようにすると、試料に対する化学的な反応を少なくして加工や観察が実現する。
また、本実施例のガス電界電離イオン源で、アルゴンガスと水素ガスを予め混合した混合ガス、あるいはアルゴンガスとヘリウムガスを予め混合した混合ガスを導入した時に、エミッタティップ温度を各ガスの凝縮温度より高く45K以下の概略同じ温度、例えば40Kに冷却する。このようにすると、アルゴンガス、ヘリウムガスあるいは水素ガスのいずれも凝縮しない。エミッタティップ温度をほとんど変化させることなく2種類のイオンビームを照射することができる。2種類のガスは、エミッタティップに印加する引き出し電圧を切り替えることにより選択することが可能である。この切り替えは電源を制御するプログラムソフトで実行できる。
これにより、少なくともアルゴンガスを含む2種類以上のガス種イオンビームが安定して得られ多様な効果も得られる。すなわち、アルゴンイオンビームを用いれば、高速の加工が可能になる。一方、水素又はヘリウムイオンビームを試料に照射した場合には、試料の低ダメージ観察、計測が可能になる。さらに、水素又はヘリウムイオンビームを照射したときの観察像と、アルゴンイオンビームを照射したときの観察像とを比較する、あるいは演算することにより、試料表面又は試料内部について、より詳細な情報が得られる。なお、2種類のガスを別の供給管でイオン源内に導入しても良い。
[実施例2]
図4は、図1に示したイオンビーム装置のガス電界電離イオン源とその冷却機構の別の実施例を示す模式図である。ここでは、冷却機構を説明する。本実施例では、イオン化ガスとしてネオンガスを用いた。
本実施例ではガス電界電離イオン源1の冷却機構4として、GM型冷凍機40とヘリウムガスポット43を組み合わせた冷却機構を用いる。GM型冷凍機の中心軸線は、イオンビーム装置のエミッタティップ21を通るイオンビーム照射系の光軸に平行に配置されている。これにより、イオンビームの集束性の向上と冷凍機能の向上を両立できる。
GM型冷凍機40は、冷凍機本体41と第1冷却ステージ42Aと第2冷却ステージ42Bを有する。冷凍機本体41は支柱103によって支持されている。第1冷却ステージ42A及び第2冷却ステージ42Bは、冷凍機本体41より吊り下げられた構造を有する。第1冷却ステージ42Aの外径は、第2冷却ステージ42Bの外径より大きい。第1冷却ステージ42Aの冷凍能力は約5Wであり、第2冷却ステージ42Bの冷凍能力は約0.2Wである。
第1冷却ステージ42Aの上端部は、ベローズ69によって囲まれている。第1冷却ステージ42Aの下端部と第2冷却ステージ42Bは、ガス密封型のヘリウムガスポット43によって覆われている。ヘリウムガスポット43は、第1冷却ステージ42Aを囲むように構成された径が大きい部分43Aと、第2冷却ステージ42Bを囲むように構成された径が小さい部分43Bを有し、支柱104によって支持されている。支柱104は図1のベースプレート18に支持されている。ベローズ69及びヘリウムガスポット43は密閉構造を有し、その内部に熱伝導媒体としてヘリウムガス46が充填されている。2つの冷却ステージ42A,42Bはヘリウムガス46に囲まれているが、ヘリウムガスポット43には接触していない。
本例のGM型冷凍機40では、第1冷却ステージ42Aは約50Kまで冷却される。そのため第1冷却ステージ42Aの周囲のヘリウムガス46は、約70Kに冷却される。第2冷却ステージ42Bは、4Kまで冷却される。第2冷却ステージ42Bの周囲のヘリウムガス46は約6Kまで冷却される。こうして、ヘリウムガスポット43の下端は、約6Kまで冷却される。
このヘリウムガスポットはイオン源真空容器15内に配置されており、GM型冷凍機40の寒冷をエミッタティップ21まで伝達する冷熱伝達部材でもある。このヘリウムポット表面にはネオンガスの凝縮を妨げるように覆われた熱絶縁材34を有する。本実施例では熱絶縁材34として5mm以上の厚さを有するフッ素樹脂を用いた。この熱絶縁材表面は約20Kになっている。ネオンガスの圧力は約1×10-3Paとした。ネオンの沸点は約27Kであるが、このイオン源の動作におけるネオンガス圧力では凝縮温度は約10Kであり、沸点よりも低い温度においてもネオンガスが凝縮することがなかった。これは、この条件におけるネオンの凝縮温度が約10Kであり、ヘリウムポット表面を覆いネオンガスと接触する熱絶縁材34の表面温度がネオンガスの凝縮温度より高くなっているからである。ポットの下端は約6Kであるので表面にガスが触れるとネオンガスが凝縮する。ネオンガスの凝縮を妨げるように熱絶縁材34でヘリウムガスポット43を覆っているのでネオンガスがほとんど凝縮しない。ただし、わずかな隙間があって少量のネオンガスが凝縮してもイオン源の安定動作に影響が少ない場合には本実施例の範囲内である。
一方、ヘリウムガスポット43の下端は、熱伝導率の高い銅製の冷熱伝達棒33に接続されている。また、冷熱伝達棒33も冷熱伝達部材であり、表面にはネオンガスの凝縮を妨げるように覆われた熱絶縁材34を有する。熱絶縁材34は、厚さ約10mmのシリコン樹脂である。冷熱伝達棒33は約15Kであるが、熱絶縁材表面は約30Kになっていてネオンガスが凝縮することはない。さらに、冷熱伝達棒33は銅製の網線56と接続されている。網線は太さ約0.05mmの細い線が1000本程度に束になっている。冷熱伝達部材を構成する網線56の個々の細い線は、ネオンガスの凝縮を妨げるように表面が熱絶縁性を有するフッ素樹脂で覆われている。このためネオンガスが網線で凝縮しない。さらに網線56はエミッタティップホルダ35に接続されている。エミッタティップホルダ35には電気絶縁柱36を介してフィラメントマウント23が接続されている。なお、このフィラメントマウント23は自身でエミッタティップの傾斜機構を備えている。ここでエミッタティップホルダ35は約20Kに、フィラメントマウント23は約25Kになっている。
エミッタティップホルダ35及び電気絶縁柱36も冷熱伝達部材を構成し、ネオンガスの凝縮を妨げるように表面を熱絶縁材34である厚さ約5mmのイットリウム混合ジリコニウムセラミックス材で覆われている。エミッタティップホルダ35の熱絶縁材表面は約40Kになっており、電気絶縁柱36に設けられた熱絶縁材34の表面は約45Kになっている。エミッタティップホルダ先端に接続されているエミッタティップ21の温度は約25Kとなっており、ネオンガスの沸点27Kに比べて低いが、ネオンガスの凝縮温度である10Kよりは高く、ネオンイオンビームが安定して得られた。
以上のようにすると、ネオンガスが凝縮しない温度の範囲において、エミッタティップをネオンの沸点に比べて低く冷却した場合にも、ネオンガスが冷熱伝達部材の表面で凝縮することが無い。すなわち、ヘリウムガスポット、銅製の冷熱伝達棒、網線、エミッタティップホルダ、電気絶縁柱及びフィラメントマウントなどの表面でネオンガスが凝縮することが無い。さらに、エミッタティップ21が低温に冷却されているため、ネオンイオンエミッション電流が大きくなる。これにより、ネオンイオンビームの放射角電流密度が大きくなる。すなわち、極微細で大電流なイオンビームが形成できる。したがって、本実施例のイオンビーム装置では極微細な加工が従来よりも高速で可能になる。また、試料表面の観察が高分解能かつ高S/Nで可能になる。また、ネオンガスが冷熱伝達部材の表面で凝縮することが無いためエミッタティップに供給されるネオンガス量が安定する。このため、ネオンイオンエミッション電流が安定する。したがって、本実施例のイオンビーム装置では極微細な加工が従来よりも高精度で可能になる。また、試料表面の観察が低ノイズで可能になる。図4に示した実施例によると、その他、実施例1で説明したのと同様の効果を得ることができる。
本例では、GM型冷凍機40を用いたが、その代わりに、パルス管冷凍機、又はスターリング型冷凍機を用いてもよい。また、本例では、冷凍機は2つの冷却ステージを有するが、単一の冷却ステージを有するものでもよく、冷却ステージの数は特に限定されるものではない。
本実施例の冷却機構は、ヘリウムポット内部のヘリウムガスをGM型冷凍機によって冷却する。冷却されたヘリウムガスはヘリウムポットを冷却する。GM型冷凍機のコールドステージがヘリウムポットとは切り離されているため、GM型冷凍機の機械振動がヘリウムポットを振動させないという特徴を合わせて持つ。
また、本実施例のガス電界電離イオン源で、ネオンを主たる成分とするガスを導入した時に、上記の実施例に示したように、冷熱伝達部材をネオンの沸点よりも低い20K以下に冷却する。すると、特にネオンを照射して極微細高速加工及び超高分解能観察するのに好適なガス電界電離イオン源及びイオンビーム装置が提供される。
上記の例ではエミッタティップの温度は約25Kであったが、例えば約20Kとより低温にすることもできる。このとき、冷熱伝達部材の温度を例えば8K程度とし、熱絶縁材の表面温度を約15K程度にする。
また、本ガス電界電離イオン源で、ネオンと水素の混合ガス又はネオンとヘリウムの混合ガスを導入した時に、エミッタティップを例えば30〜35Kに冷却する。このようにすると、ネオンガス、ヘリウムガス、水素ガスのいずれも凝縮しない。従って、エミッタティップの温度をほとんど変化させることなく2種類のイオンビームを照射することができる。これにより、少なくともネオンガスを含む2種類以上のガス種イオンビームを安定して得られ多様な効果も得られる。すなわち、ネオンイオンビームを用いれば、高速の加工が可能になる。一方、水素又はヘリウムイオンビームを試料に照射した場合には、試料の低ダメージ観察、計測が可能になる。さらに、水素又はヘリウムイオンビームを照射したときの観察像と、ネオンイオンビームを照射したときの観察像とを比較する、あるいは演算することにより、試料表面又は試料内部について、より詳細な情報が得られる。なお、2種類のガスを別の供給管でイオン源内に導入しても良い。
上記ではイオン化ガスとしてネオンを用いたが、ネオンに代えてクリプトンやキセノンを用いることもできる。例えばイオン化ガスとしてクリプトンを用いる場合、典型的なガス圧は1×10-3Pa程度であり、凝縮温度は約56Kである。このとき、エミッタティップ温度は一例として約60Kとすることができ、熱絶縁材の表面温度は約65K、冷熱伝達部材の温度は約45Kとすることができる。
図5は、図1に示したイオンビーム装置のガス電界電離イオン源1と、その冷却機構4の冷熱伝達経路の別の実施例を示す模式図である。
ガス電界電離イオン源1のエミッタティップホルダ35、電気絶縁柱36、フィラメントマウント23、フィラメント22、エミッタティップ21、引き出し電極24はイオン化室75内に配置されている。イオン化室75には、ガス供給機構26から供給管25を通してイオン化ガスとして例えばクリプトンガスが圧力約0.2Paとなるように導入されている。冷凍機31の冷熱は銅製の冷熱伝達棒33によってガス電界電離イオン源のエミッタティップホルダ35に伝達される。冷熱伝達棒33の表面は、中間接着層71を間に挟んで熱絶縁材34で覆われている。中間接着層71は熱絶縁材34を冷熱伝達棒に密着させるためのもので、例えばクロム・アルミニウム・イットリウム合金が用いられる。熱絶縁材34としてはイットリウム混合ジリコニウムセラミックスを用いた。
冷凍機31からエミッタティップ21までの冷熱伝達経路の温度は、冷凍機31の温度を20Kとしたとき、冷熱伝達棒33が約30K、エミッタティップホルダ35が約50K、エミッタティップ21が約60Kであった。イオン化ガスとして用いたクリプトンの凝縮温度は約56Kである。この条件ではクリプトンの凝縮を回避するため、冷熱伝達棒33及びエミッタティップホルダ35の表面を熱絶縁材で覆い、熱絶縁材の表面温度を56Kより高くする必要がある。冷熱伝達棒33の表面を覆った熱絶縁材34の表面温度は約65Kであり、クリプトンガスの凝縮が生じない温度になっていた。エミッタティップホルダ35には抵抗加熱器及び温度センサーなどからなる温度制御部76が設けられ、温度制御部76によりエミッタティップ21の温度を制御することが可能である。
なお、熱絶縁材は必ずしも冷熱伝達経路の全てに施す必要はなく、少なくともイオン化ガスの凝縮温度以下となる冷熱伝達経路の部分に施せばよい。従って、冷熱伝達経路の温度条件及びイオン化ガスの種類等の条件によっては、図5に示したように、冷熱伝達棒33の表面だけを中間接着層71を介して熱絶縁材34で覆い、エミッタティップホルダ35や電気絶縁柱36の表面は熱絶縁材で覆わずに露出させた構成も可能である。図5には冷熱伝達棒33の全長にわたって、その表面を中間接着層71を介して熱絶縁材34で覆った状態を示したが、必ずしも冷熱伝達棒33の全長を熱絶縁材34で覆わなくてもよい。条件によっては、冷凍機31に近く、より低温になる冷熱伝達棒33の表面だけを中間接着層71を介して熱絶縁材34で覆うことでもイオン化ガスの凝縮を回避する効果が得られる。
図6は、図1に示したイオンビーム装置のガス電界電離イオン源1と、その冷却機構4の冷熱伝達経路の別の実施例を示す模式図である。イオン化ガスとしては窒素ガスを用いた。
本実施例と図5に示した実施例との違いは、冷熱伝達棒33の表面を中間接着層71を介して覆う熱絶縁材34の上に更に金属層72として厚さ0.1mmのアルミニウム薄膜を形成し、金属層72に接して抵抗加熱器73を配置した点である。他の構成は図5に示した構成と同様であるため詳細な説明を省略する。
本実施例によると、冷熱伝達棒33によって冷熱が伝達される冷熱伝達経路の表面温度を抵抗加熱器73の出力を制御することにより自由に制御することができる。一例として、冷凍機31の温度を20Kとするとき、冷熱伝達棒33は約30K、エミッタティップホルダ35は約50K、エミッタティップ21は約60Kであり、金属層72の温度は約65Kであった。従って、本実施例の冷熱伝達棒33は、イオン化ガスを凝縮させることなく冷凍機31の冷熱をエミッタティップホルダ35に伝達し、エミッタティップ21を所望温度に冷却することができる。
[実施例3]
図7は、イオンビーム装置の一例を示す概略模式図である。本実施例では、イオンビーム装置の冷却機構の一例について詳細に説明する。
本実施例の冷却機構4は、ヘリウム循環方式を採用している。ガス電界電離イオン源1は、イオン化ガスとしてクリプトンガスを用いた。本実施例では、エミッタティップ周辺が円筒の壁や引き出し電極に囲まれて、供給したガスがエミッタティップ周辺で圧力が高くなる構造を有し、ガス供給配管は、このイオン化室に接続されている。
冷却機構4は、圧縮機ユニット400、パルス管冷凍機401、真空断熱容器416、及びトランスファーチューブ404などを有する。パルス管冷凍機401は、ヘリウムガスを循環させて寒冷を生じさせる。圧縮機ユニット116はパルス管冷凍機に付属しており、トランスファーチューブ111,112はヘリウムガスを通して、ヘリウムガスを循環させる。真空断熱容器416は真空ポンプで排気されており、真空度は約1×10-4Paである。すなわち、容器内を真空に保つことによって容器外との熱伝達を遮断している。真空断熱容器416内には、パルス管冷凍機401の冷却ステージ408,411、熱交換器及びヘリウムガス配管などが配置されている。またヘリウムガスは、圧縮機ユニット400によって配管の中を循環する。
ヘリウムガスは、パルス管冷凍機401及び熱交換器402,409,410,412によって冷却される。圧縮機ユニット400で約0.9MPaに加圧された温度300Kのヘリウムガスは配管419を通じて熱交換器402に流入し、後述する戻りの低温のヘリウムガスと熱交換して温度約60Kに冷却される。冷却されたヘリウムガスは断熱されたトランスファーチューブ404内の配管403を通じて輸送され、ガス電界電離イオン源1近くに配置された熱交換器405に流入する。ここで、熱交換器405に熱的に一体化された熱伝導体54を温度約65Kに冷却し、イオン源内部の輻射シールドを冷却する。なお、輻射シールドは図示を省略した。
そして加温されたヘリウムガスは熱交換器405を流出し配管407を通じて、パルス管冷凍機401の第1冷却ステージ408に熱的に一体化された熱交換器409に流入し、温度約50Kに冷却され、熱交換器410に流入する。後述する戻りの低温のヘリウムガスと熱交換して温度約15Kに冷却され、その後、パルス管冷凍機401の第2冷却ステージ411に熱的に一体化された熱交換器412に流入し、温度約9Kに冷却され、トランスファーチューブ404内の配管413を通じて輸送され、ガス電界電離イオン源1近くに配置された熱交換器414に流入し、熱交換器414で熱的に接続された良熱伝導体の冷熱伝達棒53を約10Kに冷却する。
次に熱交換器414で加温されたヘリウムガスは配管415を通じて熱交換器410,402に順次流入し、前述のヘリウムガスと熱交換してほぼ常温約275Kになって、配管415を通じて圧縮機ユニット400に回収される。なお、前述した低温部は真空断熱容器416内に収納され、トランスファーチューブ404とは、図示していないが断熱的に接続されている。また、真空断熱容器416内において、図示していないが低温部は輻射シールド板や、積層断熱材等により室温部からの輻射熱による熱侵入を防止している。
ここで、輻射シールド板及び積層断熱材と低温部との間には隙間がある。これは、真空による断熱効果があるからである。仮に真空断熱容器416内にクリプトンガスを導入すると低温部表面でガスが凝縮する。従来の断熱材の配置は、低温部への熱侵入を防ぐことに目的があり、高沸点ガス凝縮に関しては全く考慮する必要がない。従って、ガスが凝縮しないように低温部を覆って断熱材を配置することはなかった。また、このような真空断熱容器は超高真空にする必要はなく、真空度向上のために施す150℃を超えるようなベーキングに関しても全く考慮されていなかった。すなわち、断熱材の変質、割れなどを防ぐような考慮はされてなかった。
また、トランスファーチューブ404は床20又は床20に設置された支持体417に強固に固定支持されている。ここで、図示していないが熱伝導率が低い熱絶縁材であるガラス繊維入りのプラスチック製の断熱材でトランスファーチューブ404の内部で固定支持された配管403,407,413,415も床20で固定支持されている。
以上、本実施例の冷却機構は、圧縮機ユニット116で発生させた第1の高圧ガスを膨張させて寒冷を発生する寒冷発生部と、この寒冷発生部の寒冷で冷却され圧縮機ユニット400で循環する第2の移動する冷媒であるヘリウムガスで被冷却体を冷却する冷却機構である。
図8は、熱交換器414の詳細を示す模式図である。熱交換器414はガス電界電離イオン源と同じ真空容器15内に配置されており、熱絶縁材34でクリプトンガスが凝縮するのを防ぐように表面を覆われている。熱交換器は、無酸素銅で作製されており熱伝導率が高い。熱交換器414内部には冷却されたヘリウムガスが通過する経路としての配管413,415が形成されている。すなわち、熱交換器414で冷却されたヘリウムの寒冷が無酸素銅に伝達される。また、熱交換器414と熱絶縁材34の間には接着部材81が配置されている。熱絶縁材34には、例えばクロム・アルミニウム・イットリウム合金が用いられる。また、接着部材81は熱絶縁材34を冷熱伝達部材に密着させるためのものであり、例えばクロム・アルミニウム・イットリウム合金が用いられる。熱絶縁材34はこの接着部材81を覆っており、接着部材表面でガス吸着するのを妨げている。このようにすると、熱交換器が本来の機能を果たすために冷却された場合に、あるいは真空度向上のために施す150℃を超えるようなベーキングなどで熱交換器が加熱された場合にも、熱絶縁材が剥がれたり、あるいは割れたりすることが無い。また、熱絶縁材と冷熱伝達部材の間にクリプトンガスが入り込むことによりガスが凝縮することは無い。
また、熱交換器でクリプトンガスが凝縮することがない。熱交換器は、最も温度が低下する冷熱伝達部材である。このため、熱交換器表面のみを処理した場合でも大きな効果を得ることができる。さらに熱絶縁材表面は無酸素銅薄膜82で覆われており、その一部は加熱機構83と接している。加熱機構83は例えば抵抗加熱器であり、その出力を制御することが可能である。また、無酸素銅薄膜82の表面には温度計84が装着されており、温度計84で計測した温度を温度制御部に入力することにより予め設定した温度に制御できる。本実施例では、この無酸素銅薄膜82の表面は約65Kで一定になるように制御した。一方、熱交換器414は約30Kに保たれている。なお、加熱機構83にはランプ加熱を用いてもよい。
次に、熱交換器414は冷熱伝達薄膜85と接続される。冷熱伝達薄膜85は薄膜からなり、熱交換器414の振動をほとんど伝達しないという特徴を持つ。この薄膜は、図中の円内に拡大断面図を示すように、内部は無酸素銅86からなり、その周囲をマグネシウム・シリコン酸化物セラミックスからなる熱絶縁体薄膜87で覆われ、さらにその上をアルミニウム薄膜88で覆われている。内部無酸素銅は約45K、アルミニウム薄膜表面は約65Kに保たれている。そして図7に示すように、冷熱伝達薄膜85はエミッタティップホルダ35に接続される。エミッタティップホルダ35も、クリプトンガスが凝縮するのを防ぐように熱絶縁材34としてのジルコニウム酸化物でその表面を覆われている。エミッタティップホルダ35は電気絶縁柱36を介してフィラメントマウント23と接続される。そしてエミッタティップ21を約60Kに冷却する。
このガス電界電離イオン源1で使用しているガス圧力1×10-3Paではクリプトンの凝縮温度は約56Kであり、クリプトンは56Kよりも低温になると固体表面で凝縮する。しかし、熱交換器414及び冷熱伝達薄膜85の表面を65Kよりも高温に保ったのでクリプトンガスが凝縮することはなかった。また、エミッタティップ21は60Kに冷却されるためエミッタティップ21先端へのガス供給量が多く、イオンビーム電流が多く得られた。
本実施例によると、熱絶縁材表面を覆うように設けられた金属材料と、金属材料を加熱する加熱機構とを有するために金属表面を均一な温度に制御することが可能になる。すなわち、表面全体を凝縮しない温度に制御できるため、高信頼でガスが凝縮することがなくなる。本実施例によれば、極微細高速加工及び超高分解能観察が高信頼及び高安定で実現されるのに好適なガス電界電離イオン源及びイオンビーム装置が提供される。さらに、アルゴンに比べてクリプトンは原子量が大きく、単位イオン電流当たりの加工速度が速い。また、試料表面の浅い領域に止まるため試料中にガスバブルを作りにくい。
パルス管冷凍機401は床を振動させる原因になるが、ガス電界電離イオン源1、イオンビーム照射系カラム2、真空試料室3などはパルス管冷凍機401とは隔離されて設置されており、さらにガス電界電離イオン源1近傍に設置した熱交換器405,414に連結された配管403,407,413,415は殆ど振動しない床20やベースプレート18に強固に固定支持されて振動せず、さらに床から振動絶縁されているため機械振動の伝達の極めて少ないシステムとなる。
本実施例では、パルス管冷凍機401を用いたが、その代わりに、GM型冷凍機、又はスターリング型冷凍機を用いてもよい。また、本例では、冷凍機は2つの冷却ステージを有するが、単一の冷却ステージを有するものでもよく、冷却ステージの数は特に限定されない。例えば、1段の冷却ステージを持つ小型のスターリング型冷凍機を用いて、最低冷却温度を50Kとしたヘリウム循環冷凍機とすれば、コンパクトで低コストのイオンビーム装置を実現できる。また、この場合には、ヘリウムガスの代わりにネオンガスや水素を用いてもよい。
本実施例のイオンビーム装置によれば、冷却機構からの振動は、エミッタティップに伝達されにくく、エミッタベースマウントの固定機構が備えられているためエミッタティップの振動が防止され高分解能観察が可能となる。更に、発明者は、圧縮機ユニット116,400の音がガス電界電離イオン源1を振動させてその分解能を劣化させることを突き止めた。そのため、本実施例では、圧縮機ユニットとガス電界電離イオン源を空間的に分離する防音カバー418を設けた。これにより、圧縮機ユニットの音に起因した振動の影響を低減することができ、高分解能観察が可能となる。特に、音を防ぐには隙間をなくすことが肝要である。イオン光源の試料に対する光学倍率が大きく、エミッタティップの振動が試料上のビーム振動として現れる。このため、振動防止がイオンビーム装置の性能向上には必須となる。
また、このガス電界電離イオン源で、クリプトンを主たる成分とするイオン化ガスを導入した時に、上記のように、冷熱伝達部材を沸点よりも低い50K以下に冷却する。すると、クリプトンを照射して極微細高速加工及び超高分解能観察するのに好適なガス電界電離イオン源及びイオンビーム装置が提供される。
また、本実施例のガス電界電離イオン源で、クリプトンと水素の混合ガス又はクリプトンとヘリウムの混合ガスを導入した時に、エミッタティップを60K以下でクリプトンの凝縮温度より高い温度に冷却する。クリプトンガスの凝縮温度は約56Kであり、ヘリウムガス、水素ガスの凝縮温度は20K以下であるため、このようにするとクリプトンガス、ヘリウムガス、水素ガスのいずれも凝縮しない。従って、エミッタティップ温度をほとんど変化させることなく2種類のイオンビームを照射することができる。
これにより、少なくともクリプトンガスを含む2種類以上のガス種イオンビームを安定して得られ多様な効果も得られる。すなわち、クリプトンイオンビームを用いれば、高速の加工が可能になる。一方、水素又はヘリウムイオンビームを試料に照射した場合には、試料の低ダメージ観察、計測が可能になる。さらに、水素又はヘリウムイオンビームを照射したときの観察像と、クリプトンイオンビームを照射したときの観察像とを比較する、あるいは演算することにより、試料表面又は試料内部について、より詳細な情報が得られる。なお、2種類のガスを別の供給管でイオン源内に導入しても良い。
[実施例4]
本実施例のイオンビーム装置は、基本的に図1と同様の装置構成を有する。ただし、冷却機構4としてパルス管冷凍機直結方式を採用した。また、イオン化ガスとして窒素ガスを用いた。
本実施例の冷却機構は、冷凍機のコールドヘッドがイオン源と同じ真空容器内に配置されている。そして冷凍機のコールドヘッドがエミッタティップまで接続されてエミッタを冷却する。途中の冷熱伝達部材として無酸素銅の細線束を採用している。この細線は一本毎に表面が熱絶縁被覆されている。この細線束はパルス管冷凍機の機械振動をエミッタに伝達しないという特徴を持つ。また、冷凍機のコールドヘッドは、熱絶縁材でその表面を覆われており、さらに熱絶縁材表面は無酸素銅薄膜で覆われている。また、その一部は抵抗加熱機構と接している。この無酸素銅薄膜表面は約40Kで一定になるように制御した。一方、コールドヘッド内部は約20Kに保たれている。次に、上記の無酸素銅の細線束はエミッタマウントに接続され、エミッタティップを約35Kに冷却する。
このガス電界イオン源で使用しているガス圧力1×10-3Paでは、窒素ガスの凝縮温度は約32Kであり、32Kよりも低温になると窒素ガスは固体表面で凝縮する。しかし、冷凍機のコールドヘッド表面を35K以上に保ったので窒素ガスが凝縮することはなかった。また、エミッタティップは35Kに冷却されるためエミッタ先端へのガス供給量が多く、大イオンビーム電流が得られた。これにより極微細な加工が従来よりも高速で可能になった。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、本発明によると、以下のガス電界電離イオン源、イオンビーム装置が開示される。
真空容器と、真空容器内に設けられたエミッタティップホルダと、エミッタティップホルダに接続されたエミッタティップと、エミッタティップに対向して設けられた引き出し電極と、エミッタティップにガスを供給するガス供給部と、真空容器の内部にてエミッタティップホルダに寒冷を伝達する冷熱伝達部材とを備えるガス電界電離イオン源を有し、
温度センサーとヒータを備える温度制御部を少なくとも2個備え、
ガス供給部はクリプトンガスを供給し、
エミッタティップは60K以下の概略同じ温度に保たれている、イオンビーム装置。
真空容器と、真空容器内に設けられたエミッタティップホルダと、エミッタティップホルダに接続されたエミッタティップと、エミッタティップに対向して設けられた引き出し電極と、エミッタティップにガスを供給するガス供給部と、真空容器の内部にてエミッタティップホルダに寒冷を伝達する冷熱伝達部材とを備えるガス電界電離イオン源を有し、
温度センサーとヒータを備える温度制御部を少なくとも2個備え、
ガス供給部はアルゴンガスを供給し、
エミッタティップは45K以下の概略同じ温度に保たれている、イオンビーム装置。
1…ガス電界電離イオン源、2…イオンビーム照射系カラム、3…試料室、4…冷却機構、5…集束レンズ、8…対物レンズ、9…試料、10…試料ステージ、14…イオンビーム、15…真空容器、21…エミッタティップ、22…フィラメント、23…フィラメントマウント、24…引き出し電極、26…ガス供給機構、31…冷凍機、33…冷熱伝達棒、34…熱絶縁材、35…エミッタティップホルダ、36…電気絶縁柱、37…エミッタベースマウント、40…GM型冷凍機、63…傾斜機構、81…接着部材、82…無酸素銅薄膜、83…加熱機構、84…温度計、85…冷熱伝達薄膜、414…熱交換器

Claims (15)

  1. 真空容器と、前記真空容器内に設けられたエミッタティップホルダと、前記エミッタティップホルダに接続されたエミッタティップと、前記エミッタティップに対向して設けられた引き出し電極と、前記エミッタティップにガスを供給するガス供給部と、前記真空容器の内部にて前記エミッタティップホルダに寒冷を伝達する冷熱伝達部材とを備えるガス電界電離イオン源を有し、
    前記冷熱伝達部材は前記ガスの凝縮を妨げるように表面が熱絶縁材で覆われている、イオンビーム装置。
  2. 請求項1記載のイオンビーム装置において、
    前記冷熱伝達部材は金属薄膜あるいは金属網線であり、表面に熱絶縁層が接着されている、イオンビーム装置。
  3. 請求項1記載のイオンビーム装置において、
    前記冷熱伝達部材は金属であり、前記熱絶縁材はフッ素樹脂あるいはセラミックスである、イオンビーム装置。
  4. 請求項1記載のイオンビーム装置において、
    前記ガスはネオン、アルゴン、クリプトン、キセノンのいずれかを含むガスである、イオンビーム装置。
  5. 請求項1記載のイオンビーム装置において、
    前記ガスは一酸化炭素、酸素、窒素のいずれかを含むガスである、イオンビーム装置。
  6. 請求項1記載のイオンビーム装置において、
    前記ガス供給部はクリプトンガスと他のガスの混合ガスを供給し、あるいはクリプトンガスと前記他のガスを切り替えて供給し、
    前記エミッタティップは前記各ガスの凝縮温度より高く、かつ60K以下の概略同じ温度に保たれている、イオンビーム装置。
  7. 請求項1記載のイオンビーム装置において、
    前記ガス供給部はアルゴンガスとヘリウムガスの混合ガス又はアルゴンガスと水素ガスの混合ガスを供給し、
    前記エミッタティップは前記各ガスの凝縮温度より高く、かつ45K以下の概略同じ温度に保たれている、イオンビーム装置。
  8. 真空容器と、前記真空容器内に設けられたエミッタティップホルダと、前記エミッタティップホルダに接続されたエミッタティップと、前記エミッタティップに対向して設けられた引き出し電極と、前記エミッタティップにガスを供給するガス供給部と、前記真空容器の内部にて前記エミッタティップホルダへ冷熱を伝達する冷熱伝達部材とを備えるガス電界電離イオン源を有し、
    前記冷熱伝達部材の表面を覆うように設けられた接着部材と、前記冷熱伝達部材の表面と前記接着部材を介して接着し前記接着部材を覆うように設けられた熱絶縁材と、を有するイオンビーム装置。
  9. 請求項8記載のイオンビーム装置において、
    前記冷熱伝達部材は金属薄膜あるいは金属網線であり、表面に熱絶縁層が接着されている、イオンビーム装置。
  10. 請求項8記載のイオンビーム装置において、
    前記冷熱伝達部材は金属であり、前記熱絶縁材はフッ素樹脂あるいはセラミックスである、イオンビーム装置。
  11. 請求項8記載のイオンビーム装置において、
    前記ガスはネオン、アルゴン、クリプトン、キセノンのいずれかを含むガスである、イオンビーム装置。
  12. 請求項8記載のイオンビーム装置において、
    前記ガスは一酸化炭素、酸素、窒素のいずれかを含むガスである、イオンビーム装置。
  13. 請求項8記載のイオンビーム装置において、
    前記ガス供給部はクリプトンガスと他のガスの混合ガスを供給し、あるいはクリプトンガスと前記他のガスを切り替えて供給し、
    前記エミッタティップは前記各ガスの凝縮温度より高く、かつ60K以下の概略同じ温度に保たれている、イオンビーム装置。
  14. 請求項8記載のイオンビーム装置において、
    前記ガス供給部はアルゴンガスとヘリウムガスの混合ガス又はアルゴンガスと水素ガスの混合ガスを供給し、
    前記エミッタティップは前記各ガスの凝縮温度より高く、かつ45K以下の概略同じ温度に保たれている、イオンビーム装置。
  15. 真空容器と、前記真空容器内に設けられたエミッタティップホルダと、前記エミッタティップホルダに接続されたエミッタティップと、前記エミッタティップに対向して設けられた引き出し電極と、前記エミッタティップにガスを供給するガス供給部と、前記真空容器の内部にて前記エミッタティップホルダに冷熱を伝達する冷熱伝達部材とを備えるガス電界電離イオン源を有し、
    前記冷熱伝達部材の表面を覆うように設けられた熱絶縁材と、前記熱絶縁材の表面を覆うように設けられた金属材料と、前記金属材料を加熱する加熱機構と、を有するイオンビーム装置。
JP2016133700A 2016-07-05 2016-07-05 イオンビーム装置 Active JP6608769B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016133700A JP6608769B2 (ja) 2016-07-05 2016-07-05 イオンビーム装置
DE102017005565.3A DE102017005565A1 (de) 2016-07-05 2017-06-12 Ionenstrahlsystem
US15/635,500 US10163602B2 (en) 2016-07-05 2017-06-28 Ion beam system
JP2019193692A JP6894486B2 (ja) 2016-07-05 2019-10-24 イオンビーム装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016133700A JP6608769B2 (ja) 2016-07-05 2016-07-05 イオンビーム装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019193692A Division JP6894486B2 (ja) 2016-07-05 2019-10-24 イオンビーム装置

Publications (2)

Publication Number Publication Date
JP2018006219A JP2018006219A (ja) 2018-01-11
JP6608769B2 true JP6608769B2 (ja) 2019-11-20

Family

ID=60676563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016133700A Active JP6608769B2 (ja) 2016-07-05 2016-07-05 イオンビーム装置

Country Status (3)

Country Link
US (1) US10163602B2 (ja)
JP (1) JP6608769B2 (ja)
DE (1) DE102017005565A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10366859B2 (en) * 2016-08-24 2019-07-30 Varian Medical Systems, Inc. Electromagnetic interference containment for accelerator systems
CN113632197B (zh) * 2019-03-22 2024-04-16 艾克塞利斯科技公司 液态金属离子源
JP7179661B2 (ja) * 2019-03-27 2022-11-29 アルバック・ファイ株式会社 ガスクラスターイオンビーム装置、分析装置
JP2021051844A (ja) * 2019-09-24 2021-04-01 株式会社日立ハイテクサイエンス 液体金属イオン源及び集束イオンビーム装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056342A (ja) * 1983-09-08 1985-04-01 Anelva Corp イオンビ−ム発生装置
US9159527B2 (en) * 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
JP4887344B2 (ja) * 2007-12-14 2012-02-29 株式会社日立ハイテクノロジーズ ガス電界電離イオン源,走査荷電粒子顕微鏡,光軸調整方法、及び試料観察方法
JP5086105B2 (ja) * 2008-01-07 2012-11-28 株式会社日立ハイテクノロジーズ ガス電界電離イオン源
US8779380B2 (en) * 2008-06-05 2014-07-15 Hitachi High-Technologies Corporation Ion beam device
US8263943B2 (en) * 2009-01-15 2012-09-11 Hitachi High-Technologies Corporation Ion beam device
US20120132802A1 (en) * 2009-06-30 2012-05-31 Noriaki Arai Gas field ionization ion source apparatus and scanning charged particle microscope equipped with same
DE112011101444T5 (de) * 2010-04-26 2013-04-11 HME Co. Ltd. Temperatursensoreinrichtung und Strahlungsthermometer, der diese Vorrichtung verwendet, Herstellungsverfahren für Temperatursensorvorrichtungen, Mehrlagen-Dünnfilm-Thermosäule, die einen Fotoresistfilm und ein Strahlungsthermometer unter Benutzung dieser Thermosäule verwendet, sowie Herstellungsverfahren einer mehrlagigen Dünnfilm-Thermosäule
JP2016027525A (ja) 2012-10-16 2016-02-18 株式会社日立ハイテクノロジーズ 荷電粒子線源の冷却機構を具備する荷電粒子線装置及び荷電粒子線源
US9530611B2 (en) * 2013-07-08 2016-12-27 Carl Zeiss Microscopy, Llc Charged particle beam system and method of operating a charged particle beam system
JP6266458B2 (ja) * 2013-08-09 2018-01-24 株式会社日立ハイテクサイエンス イリジウムティップ、ガス電界電離イオン源、集束イオンビーム装置、電子源、電子顕微鏡、電子ビーム応用分析装置、イオン電子複合ビーム装置、走査プローブ顕微鏡、およびマスク修正装置
WO2016084162A1 (ja) * 2014-11-26 2016-06-02 株式会社日立ハイテクノロジーズ イオンビーム装置
JP6489841B2 (ja) 2015-01-21 2019-03-27 パイオニア株式会社 ヘッドアップディスプレイ

Also Published As

Publication number Publication date
US20180012726A1 (en) 2018-01-11
US10163602B2 (en) 2018-12-25
DE102017005565A1 (de) 2018-01-11
JP2018006219A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6116631B2 (ja) イオンビーム装置
US9508521B2 (en) Ion beam device
JP5086105B2 (ja) ガス電界電離イオン源
JP6043476B2 (ja) イオン源およびそれを用いたイオンビーム装置
JP5677310B2 (ja) 荷電粒子顕微鏡
JP6608769B2 (ja) イオンビーム装置
US8455841B2 (en) Ion microscope
US10636623B2 (en) Ion beam device
JP6894486B2 (ja) イオンビーム装置
JP6568501B2 (ja) イオンビーム装置
JP5969586B2 (ja) イオンビーム装置
JP2019075390A (ja) イオンビーム装置、及びその作動方法
JP5677365B2 (ja) 荷電粒子顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191024

R150 Certificate of patent or registration of utility model

Ref document number: 6608769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250