JP6602255B2 - Electronic substrate for medical equipment - Google Patents

Electronic substrate for medical equipment Download PDF

Info

Publication number
JP6602255B2
JP6602255B2 JP2016093710A JP2016093710A JP6602255B2 JP 6602255 B2 JP6602255 B2 JP 6602255B2 JP 2016093710 A JP2016093710 A JP 2016093710A JP 2016093710 A JP2016093710 A JP 2016093710A JP 6602255 B2 JP6602255 B2 JP 6602255B2
Authority
JP
Japan
Prior art keywords
sealing material
thermal expansion
electronic
circuit board
suppressing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016093710A
Other languages
Japanese (ja)
Other versions
JP2017204494A (en
Inventor
大介 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2016093710A priority Critical patent/JP6602255B2/en
Publication of JP2017204494A publication Critical patent/JP2017204494A/en
Application granted granted Critical
Publication of JP6602255B2 publication Critical patent/JP6602255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、医療機器用電子基板に関する。   The present invention relates to an electronic substrate for medical equipment.

医療機器は滅菌処理されるため、医療機器用電子基板は、滅菌処理に対応する耐熱性、耐ガス浸透性、耐薬品性などが求められる。
耐環境性を向上した半導体装置に関する技術として、例えば、特許文献1には、電子部品の耐久性を向上するため、半導体チップを樹脂封止した樹脂封止型半導体装置が記載されている。この樹脂封止型半導体装置では、熱硬化性エポキシ樹脂に無機充填剤を配合させた組成物の硬化体によって半導体チップが封止されている。特許文献1には、熱硬化性エポキシ樹脂に充填剤が配合されることによって硬化体の線膨張率が低下するため、封止後の反りが少なくなって実装後の信頼性が向上することが記載されている。
Since medical devices are sterilized, electronic substrates for medical devices are required to have heat resistance, gas permeation resistance, chemical resistance, and the like corresponding to sterilization.
As a technology related to a semiconductor device with improved environmental resistance, for example, Patent Document 1 describes a resin-encapsulated semiconductor device in which a semiconductor chip is encapsulated with resin in order to improve the durability of an electronic component. In this resin-encapsulated semiconductor device, the semiconductor chip is encapsulated with a cured product of a composition in which an inorganic filler is blended with a thermosetting epoxy resin. In Patent Document 1, since the linear expansion coefficient of the cured body is reduced by adding a filler to the thermosetting epoxy resin, warpage after sealing is reduced, and reliability after mounting is improved. Are listed.

特許第3406073号公報Japanese Patent No. 3406703

しかしながら、上記のような従来技術には、以下のような問題がある。
医療機器における滅菌処理として、例えば、オートクレーブ滅菌処理が用いられる。オートクレーブ滅菌処理は、例えば、130℃2気圧程度の高温高圧水蒸気に医療機器を曝す過酷な滅菌処理である。オートクレーブ滅菌処理においては、電子部品が実装された電子基板全体が過酷な熱的ストレスを受けるとともに、高湿環境に曝される。
そこで、例えば、特許文献1のような樹脂封止技術を、医療機器用電子基板上の電子部品全体に適用することも考えられる。この場合、広範囲の温度変化に耐える程度に無機充填剤を増加させると、封止材の粘度が高くなるため封止材の塗布が困難になるという問題がある。封止材が塗布できたとしても、電子部品および電子回路基板と封止材との間に隙間や気泡などが形成されたりして、充分な密着性が得られなくなるおそれがあるという問題がある。封止材が電子部品および電子回路基板と密着しないと、封止材が剥がれたり高温水蒸気が電子部品に触れたりして、医療機器としての信頼性が損なわれるおそれがある。
電子部品および電子回路基板に対する密着性を向上するために充填剤を減らすと、封止材の硬化体の線膨張係数が大きくなる。この場合、滅菌サイクルによって発生する封止材の硬化体の膨張収縮によって、電子部品に応力が掛かるため、電子部品が破損してしまうおそれがあるという問題がある。
However, the conventional techniques as described above have the following problems.
As a sterilization process in a medical device, for example, an autoclave sterilization process is used. The autoclave sterilization process is, for example, a severe sterilization process in which a medical device is exposed to high-temperature and high-pressure steam at about 130 ° C. and 2 atm. In autoclave sterilization, the entire electronic board on which electronic components are mounted is subjected to severe thermal stress and exposed to a high humidity environment.
Therefore, for example, it is conceivable to apply a resin sealing technique such as that of Patent Document 1 to the entire electronic component on the medical device electronic substrate. In this case, if the inorganic filler is increased to the extent that it can withstand a wide range of temperature changes, there is a problem that it becomes difficult to apply the sealing material because the viscosity of the sealing material increases. Even if the sealing material can be applied, there is a problem that gaps or bubbles may be formed between the electronic component and the electronic circuit board and the sealing material, and sufficient adhesion may not be obtained. . If the sealing material is not in close contact with the electronic component and the electronic circuit board, the sealing material may be peeled off or high-temperature water vapor may touch the electronic component, which may impair reliability as a medical device.
When the filler is reduced in order to improve the adhesion to the electronic component and the electronic circuit board, the linear expansion coefficient of the cured material of the sealing material increases. In this case, there is a problem that the electronic component may be damaged because stress is applied to the electronic component due to the expansion and contraction of the cured material of the sealing material generated by the sterilization cycle.

本発明は、上記のような問題に鑑みてなされたものであり、加熱による滅菌処理に対する耐久性を向上することができる医療機器用電子基板を提供することを目的とする。   This invention is made | formed in view of the above problems, and it aims at providing the electronic substrate for medical devices which can improve the durability with respect to the sterilization process by heating.

上記の課題を解決するために、本発明の第1の態様の医療機器用電子基板は、第1の線膨張係数を有する電子回路基板と、前記電子回路基板に実装された複数の電子部品と、前記第1の線膨張係数よりも大きい第2の線膨張係数を有し、前記複数の電子部品を覆った状態で前記電子回路基板および前記複数の電子部品に固着している封止材と、前記第2の線膨張係数よりも小さい第3の線膨張係数を有し、前記電子回路基板との間に前記封止材を挟んで前記複数の電子部品を覆った状態で、前記封止材に固着している熱膨張抑制部材と、を備え、前記熱膨張抑制部材は、前記封止材に固着する表面に複数の凹部および複数の凸部の少なくとも一方を有する。 In order to solve the above problems, an electronic board for medical devices according to a first aspect of the present invention includes an electronic circuit board having a first linear expansion coefficient, and a plurality of electronic components mounted on the electronic circuit board. A sealing material having a second linear expansion coefficient larger than the first linear expansion coefficient and being fixed to the electronic circuit board and the plurality of electronic components in a state of covering the plurality of electronic components; The sealing member having a third linear expansion coefficient smaller than the second linear expansion coefficient and covering the plurality of electronic components with the sealing material sandwiched between the electronic circuit board and the plurality of electronic components. with a thermal expansion inhibiting member which is secured to the timber, the said thermal expansion inhibiting member that have a least one of the plurality of recesses and a plurality of convex portions on the surface to stick to the sealing material.

本発明の第2の態様の医療機器用電子基板は第1の線膨張係数を有する電子回路基板と、前記電子回路基板に実装された複数の電子部品と、前記第1の線膨張係数よりも大きい第2の線膨張係数を有し、前記複数の電子部品を覆った状態で前記電子回路基板および前記複数の電子部品に固着している封止材と、前記第2の線膨張係数よりも小さい第3の線膨張係数を有し、前記電子回路基板との間に前記封止材を挟んで前記複数の電子部品を覆った状態で、前記封止材に固着している熱膨張抑制部材と、を備え、前記熱膨張抑制部材は、前記封止材に固着する表面に開口する複数の貫通孔を有する A second aspect of the medical device for electronic board of the present invention includes an electronic circuit board having a first linear expansion coefficient, and a plurality of electronic components mounted on the electronic circuit board, said first linear expansion coefficient A sealing material that has a larger second linear expansion coefficient than the first electronic circuit board and covers the plurality of electronic components and is fixed to the electronic circuit board and the plurality of electronic components, and the second linear expansion coefficient. A thermal expansion that has a third coefficient of linear expansion smaller than that of the electronic circuit board and that covers the plurality of electronic components with the sealing material interposed therebetween. includes a restraining member, wherein the thermal expansion inhibiting member is have a plurality of through holes opening on the surface to stick to the sealing material.

本発明の第3の態様の医療機器用電子基板は第1の線膨張係数を有する電子回路基板と、前記電子回路基板に実装された複数の電子部品と、前記第1の線膨張係数よりも大きい第2の線膨張係数を有し、前記複数の電子部品を覆った状態で前記電子回路基板および前記複数の電子部品に固着している封止材と、前記第2の線膨張係数よりも小さい第3の線膨張係数を有し、前記電子回路基板との間に前記封止材を挟んで前記複数の電子部品を覆った状態で、前記封止材に固着している熱膨張抑制部材と、を備え、前記熱膨張抑制部材は、少なくとも、前記封止材に固着する表面に段差が形成されており、前記複数の電子部品のうち少なくとも一つの電子部品と前記熱膨張抑制部材との間の前記封止材の層厚は、前記少なくとも一つの電子部品の外周部における未実装領域の前記電子回路基板と前記熱膨張抑制部材との間における前記封止材の層厚以上である
上記各態様の医療機器用電子基板においては、前記熱膨張抑制部材は、前記封止材に固着する表面に、前記封止材との密着性を向上する下地層を有してもよい。
A third aspect of the medical device for electronic board of the present invention includes an electronic circuit board having a first linear expansion coefficient, and a plurality of electronic components mounted on the electronic circuit board, said first linear expansion coefficient A sealing material that has a larger second linear expansion coefficient than the first electronic circuit board and covers the plurality of electronic components and is fixed to the electronic circuit board and the plurality of electronic components, and the second linear expansion coefficient. A thermal expansion that has a third coefficient of linear expansion smaller than that of the electronic circuit board and that covers the plurality of electronic components with the sealing material interposed therebetween. A suppression member, wherein the thermal expansion suppression member has at least a step formed on a surface fixed to the sealing material, and at least one of the plurality of electronic components and the thermal expansion suppression member The layer thickness of the sealing material between the at least one electronic part Wherein at least the layer thickness of the sealing material in between the electronic circuit board of the non-mounting region in the outer peripheral portion and the thermal expansion inhibiting member.
In the electronic substrate for medical devices according to each aspect described above, the thermal expansion suppressing member may have a base layer that improves adhesion to the sealing material on a surface that is fixed to the sealing material.

本発明の医療機器用電子基板によれば、加熱による滅菌処理に対する耐久性を向上することができるという効果を奏する。   According to the electronic substrate for medical equipment of the present invention, there is an effect that durability against sterilization treatment by heating can be improved.

本発明の第1の実施形態の医療機器用電子基板の構成例を示す模式的な平面図である。It is a typical top view which shows the structural example of the electronic substrate for medical devices of the 1st Embodiment of this invention. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 本発明の第2の実施形態の医療機器用電子基板の構成例を示す模式的な平面図である。It is a typical top view which shows the structural example of the electronic substrate for medical devices of the 2nd Embodiment of this invention. 図3におけるB−B断面図である。It is BB sectional drawing in FIG. 本発明の第2の実施形態の変形例(第1変形例)の医療機器用電子基板の構成例を示す模式的な平面図である。It is a typical top view which shows the structural example of the electronic substrate for medical devices of the modification (1st modification) of the 2nd Embodiment of this invention. 図5におけるC−C断面図である。It is CC sectional drawing in FIG. 本発明の第3の実施形態の医療機器用電子基板の構成例を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows the structural example of the electronic substrate for medical devices of the 3rd Embodiment of this invention. 熱膨張抑制部材を平板に代えた場合の作用を説明する模式図である。It is a schematic diagram explaining the effect | action at the time of replacing a thermal expansion suppression member with a flat plate. 本発明の第1の実施形態の変形例(第2変形例〜第5変形例)の医療機器用電子基板に用いる熱膨張抑制部材の模式的な拡大断面図である。It is a typical expanded sectional view of the thermal expansion suppression member used for the electronic substrate for medical devices of the modification (2nd modification-5th modification) of the 1st Embodiment of this invention.

以下では、本発明の実施形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and common description is omitted.

[第1の実施形態]
本発明の第1の実施形態の医療機器用電子基板について説明する。
図1は、本発明の第1の実施形態の医療機器用電子基板の構成例を示す模式的な平面図である。図2は、図1におけるA−A断面図である。
[First Embodiment]
A medical device electronic substrate according to a first embodiment of the present invention will be described.
FIG. 1 is a schematic plan view illustrating a configuration example of an electronic substrate for medical devices according to the first embodiment of the present invention. 2 is a cross-sectional view taken along line AA in FIG.

図1に示す本実施形態の医療機器用電子基板11は、図示略の医療機器に用いられる電子回路を構成する複数の電子部品が実装されている。医療機器用電子基板11が用いられる医療機器は、特に限定されない。医療機器用電子基板11が使用される医療機器の例としては、例えば、内視鏡装置、処置具、超音波メス、レーザーメス、歯科用LED照明、手術用センサー類(パルスオキシメーターなど)などが挙げられる。
医療機器用電子基板11を用いることが特に好適である医療機器としては、例えば、オートクレーブ滅菌処理等の加熱滅菌処理が施される医療機器が挙げられる。
図1、図2に示すように、医療機器用電子基板11は、回路基板1(電子回路基板)、電子部品2A、2B、2C、封止材3(図2参照)、および熱膨張抑制部材4を備える。
1 is mounted with a plurality of electronic components constituting an electronic circuit used in a medical device (not shown). The medical device in which the medical device electronic substrate 11 is used is not particularly limited. Examples of medical devices in which the electronic device 11 for medical devices is used include, for example, an endoscope device, a treatment tool, an ultrasonic knife, a laser knife, a dental LED illumination, surgical sensors (such as a pulse oximeter), and the like. Is mentioned.
Examples of medical devices for which the electronic device 11 for medical devices is particularly suitable include medical devices that are subjected to heat sterilization such as autoclave sterilization.
As shown in FIGS. 1 and 2, the medical device electronic board 11 includes a circuit board 1 (electronic circuit board), electronic components 2A, 2B, and 2C, a sealing material 3 (see FIG. 2), and a thermal expansion suppressing member. 4 is provided.

回路基板1には、後述する電子部品2A、2B、2Cを実装する配線パターン(図示略)が形成されている。
回路基板1の材質としては、後述する封止材3よりも熱膨張しにくい材質が用いられる。回路基板1の線膨張係数α1(第1の線膨張係数)は、後述する封止材3の線膨張係数α2(第2の線膨張係数)よりも小さい。例えば、回路基板1の材質としては、ガラスエポキシ基板(FR−4)、セラミック基板、半導体基板(Si)などが用いられてもよい。
例えば、ガラスエポキシ基板の線膨張係数は、種類にもよるが、13×10−6(K−1)程度である。セラミック基板の線膨張係数は、種類にもよるが、7.3×10−6(K−1)程度である。Si基板の線膨張係数は、種類にもよるが、2.4×10−6(K−1)程度である。
On the circuit board 1, wiring patterns (not shown) for mounting electronic components 2A, 2B, and 2C described later are formed.
As the material of the circuit board 1, a material that is less likely to thermally expand than the sealing material 3 described later is used. The linear expansion coefficient α1 (first linear expansion coefficient) of the circuit board 1 is smaller than the linear expansion coefficient α2 (second linear expansion coefficient) of the sealing material 3 described later. For example, as a material of the circuit board 1, a glass epoxy board (FR-4), a ceramic board, a semiconductor board (Si), or the like may be used.
For example, the linear expansion coefficient of the glass epoxy substrate is about 13 × 10 −6 (K −1 ) although it depends on the type. The linear expansion coefficient of the ceramic substrate is about 7.3 × 10 −6 (K −1 ) although it depends on the type. The linear expansion coefficient of the Si substrate is about 2.4 × 10 −6 (K −1 ) although it depends on the type.

回路基板1の基板構造は特に限定されない。例えば、回路基板1は、片面基板でもよいし、両面基板でもよい。回路基板1は、単層基板でもよいし、多層基板でもよい。
図1には、一例として、回路基板1が平面視矩形状の場合の例が図示されているが、回路基板1の外形は矩形には限定されない。
The board structure of the circuit board 1 is not particularly limited. For example, the circuit board 1 may be a single-sided board or a double-sided board. The circuit board 1 may be a single layer board or a multilayer board.
FIG. 1 illustrates an example in which the circuit board 1 has a rectangular shape in plan view, but the outer shape of the circuit board 1 is not limited to a rectangle.

電子部品2A、2B、2Cは、回路基板1の図示略の配線パターンに実装されている。
電子部品2A、2B、2Cの種類は、図示略の医療機器に用いる電子回路の一部を構成する部品であれば特に限定されない。例えば、電子部品2A、2B、2Cは、IC、コンデンサ、チップ抵抗などであってもよい。
図1には、医療機器用電子基板11の電子部品が電子部品2A、2B、2Cの3個の場合の例が示されているがこれは一例である。医療機器用電子基板11の電子部品の個数は、必要な電子回路に応じて、2個以上の適宜個数が用いられてもよい。
The electronic components 2A, 2B, and 2C are mounted on a wiring pattern (not shown) of the circuit board 1.
The types of electronic components 2A, 2B, and 2C are not particularly limited as long as they are components that constitute a part of an electronic circuit used in a medical device (not shown). For example, the electronic components 2A, 2B, and 2C may be ICs, capacitors, chip resistors, and the like.
FIG. 1 shows an example in which there are three electronic components 2A, 2B, and 2C on the electronic substrate 11 for medical equipment, but this is an example. As the number of electronic components of the electronic substrate 11 for medical equipment, an appropriate number of two or more may be used according to a required electronic circuit.

以下では、一例として、電子部品2A、2B、2Cは、表面実装型のICであるとして説明する。
電子部品2A、2B、2Cは、それぞれのパッケージから延出されたリードを備えている。電子部品2A、2B、2Cは、各リードが、回路基板1上の図示略のランドパターンに半田付けされている。
電子部品2A、2B、2Cは、回路基板1に実装された状態で、それぞれの部品上面2a、2b、2cが回路基板1の基板表面1aと略平行に配置されている。
図2では、一例として、基板表面1aに対する部品上面2a、2b、2cの実装高さが、それぞれh1になっている。
Hereinafter, as an example, the electronic components 2A, 2B, and 2C will be described as surface-mount ICs.
The electronic components 2A, 2B, 2C are provided with leads extending from the respective packages. In the electronic components 2A, 2B, and 2C, each lead is soldered to a land pattern (not shown) on the circuit board 1.
The electronic components 2 </ b> A, 2 </ b> B, and 2 </ b> C are mounted on the circuit board 1, and the component upper surfaces 2 a, 2 b, and 2 c are arranged substantially parallel to the board surface 1 a of the circuit board 1.
In FIG. 2, as an example, the mounting heights of the component upper surfaces 2a, 2b, and 2c with respect to the substrate surface 1a are h1.

封止材3は、回路基板1上の電子部品2A、2B、2Cを封止する部材である。
封止材3は、回路基板1の基板表面1aおよび電子部品2A、2B、2Cの表面(リードの表面を含む)を覆うように配置されている。すなわち、封止材3の下面3bは、回路基板1の基板表面1aに密着しており、封止材3の下面3bから上面3aまでの距離を層厚h2とすると、h2>h1である。本実施形態では、電子部品2A、2B、2Cの部品上面2a、2b、2c上には、厚さがh2−h1の封止材3の層状部が形成されている。
封止材3は、電子部品2A、2B、2Cの下面と基板表面1aとの間にも隙間なく充填されている。
回路基板1の基板表面1aおよび電子部品2A、2B、2Cの表面と当接する封止材3は、回路基板1の基板表面1aおよび電子部品2A、2B、2Cの表面に固着した状態で固化している。
The sealing material 3 is a member that seals the electronic components 2A, 2B, and 2C on the circuit board 1.
The sealing material 3 is disposed so as to cover the substrate surface 1a of the circuit board 1 and the surfaces (including the surfaces of the leads) of the electronic components 2A, 2B, and 2C. That is, the lower surface 3b of the sealing material 3 is in close contact with the substrate surface 1a of the circuit board 1, and when the distance from the lower surface 3b to the upper surface 3a of the sealing material 3 is a layer thickness h2, h2> h1. In the present embodiment, a layered portion of the sealing material 3 having a thickness of h2-h1 is formed on the component upper surfaces 2a, 2b, and 2c of the electronic components 2A, 2B, and 2C.
The sealing material 3 is filled with no gap between the lower surfaces of the electronic components 2A, 2B, and 2C and the substrate surface 1a.
The sealing material 3 that contacts the substrate surface 1a of the circuit board 1 and the surfaces of the electronic components 2A, 2B, and 2C is solidified in a state of being fixed to the substrate surface 1a of the circuit board 1 and the surfaces of the electronic components 2A, 2B, and 2C. ing.

封止材3の材質としては、上述の線膨張係数α2(α2>α1)を有し、電子部品2A、2B、2Cを封止可能であって、滅菌処理などの際に医療機器用電子基板11に加えられる加熱温度に耐える耐熱性と、電気絶縁性とを有する材料が用いられる。
さらに、封止材3の線膨張係数α2は、後述する熱膨張抑制部材4の線膨張係数α3(第3の線膨張係数)よりも大きい。
封止材3は、水分または滅菌処理に使用するガスが浸透しにくい材質であることがより好ましい。
封止材3に用いることができる樹脂材料の例としては、例えば、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂などが挙げられる。封止材3に用いる樹脂材料は、熱硬化性樹脂であってもよい。
封止材3に好適に用いることができるエポキシ樹脂系の材料の例としては、コーティング剤1570−2、1057系、1033系、1020系(商品名;ナミックス(株)製)が挙げられる。
封止材3に好適に用いることができるエポキシ樹脂系の材料の他例としては、耐衝撃(ヒートサイクル)性2液型エポキシ樹脂EX−565/H−565(商品名;サンユレック(株)製)が挙げられる。
これらのエポキシ樹脂は高い耐熱性を有しており、高温の滅菌処理に対して有用である。
The sealing material 3 has the above-described linear expansion coefficient α2 (α2> α1), can seal the electronic components 2A, 2B, and 2C, and can be used for sterilization and the like. A material having heat resistance that can withstand the heating temperature applied to 11 and electrical insulation is used.
Furthermore, the linear expansion coefficient α2 of the sealing material 3 is larger than the linear expansion coefficient α3 (third linear expansion coefficient) of the thermal expansion suppressing member 4 described later.
It is more preferable that the sealing material 3 is made of a material that does not easily penetrate moisture or gas used for sterilization.
Examples of the resin material that can be used for the sealing material 3 include an epoxy resin, a silicone resin, and a urethane resin. The resin material used for the sealing material 3 may be a thermosetting resin.
Examples of the epoxy resin-based material that can be suitably used for the sealing material 3 include coating agents 1570-2, 1057, 1033, and 1020 (trade name; manufactured by NAMICS Co., Ltd.).
Other examples of the epoxy resin-based material that can be suitably used for the sealing material 3 include an impact-resistant (heat cycle) two-pack type epoxy resin EX-565 / H-565 (trade name; manufactured by Sanyu Rec Co., Ltd.) ).
These epoxy resins have high heat resistance and are useful for high temperature sterilization treatment.

封止材3に用いる樹脂材料には、適宜の添加剤が添加されていてもよい。添加剤の例としては、例えば、充填剤、着色剤、カップリング剤、酸化防止剤などが挙げられる。ただし、添加剤を含む場合には、塗布時の作業性を低下させないように、粘度が高くなりすぎない程度の含有量にする。
後述するように、本実施形態では、熱膨張抑制部材4によって封止材3の熱膨張が抑制されるため、線膨張係数を低減する目的の充填剤は、封止材3に添加されなくてもよい。
An appropriate additive may be added to the resin material used for the sealing material 3. Examples of the additive include a filler, a colorant, a coupling agent, and an antioxidant. However, when an additive is included, the content is set such that the viscosity does not become excessively high so as not to lower the workability during coating.
As will be described later, in this embodiment, since the thermal expansion of the sealing material 3 is suppressed by the thermal expansion suppressing member 4, the filler for the purpose of reducing the linear expansion coefficient is not added to the sealing material 3. Also good.

図1、2に示すように、熱膨張抑制部材4は、回路基板1との間に封止材3を挟んで電子部品2A、2B、2Cを覆った状態で、封止材3に固着している。本実施形態では、熱膨張抑制部材4の固着面4bが、封止材3の上面3aに固着している。
図1、2に示すように、本実施形態では、熱膨張抑制部材4の平面視の外形が封止材3の平面視の外形と一致している。ただし、熱膨張抑制部材4は、少なくとも電子部品2A、2B、2Cの全体を覆う一続きの部材であれば封止材3の平面視の外形と異なる形状であってもよい。例えば、封止材3の一部は、熱膨張抑制部材4の外形よりも外側に形成されていてもよい。封止材3の全体は、熱膨張抑制部材4の外形よりも内側に固着していてもよい。
熱膨張抑制部材4の線膨張係数α3は、上述したように、α3<α2の関係にある。熱膨張抑制部材4の線膨張係数α3と、回路基板1の線膨張係数α1とは、同程度であることがより好ましい。ただし、後述する滅菌サイクルによる熱変形によって、電子部品2A、2B、2Cおよび回路基板1の配線パターンの破損などが生じない程度の差は許容できる。
As shown in FIGS. 1 and 2, the thermal expansion suppressing member 4 is fixed to the sealing material 3 while covering the electronic components 2 </ b> A, 2 </ b> B, and 2 </ b> C with the sealing material 3 sandwiched between the circuit board 1. ing. In the present embodiment, the fixing surface 4 b of the thermal expansion suppressing member 4 is fixed to the upper surface 3 a of the sealing material 3.
As shown in FIGS. 1 and 2, in the present embodiment, the outer shape of the thermal expansion suppressing member 4 in plan view matches the outer shape of the sealing material 3 in plan view. However, the thermal expansion suppressing member 4 may have a shape different from the planar view of the sealing material 3 as long as it is a continuous member that covers at least the entirety of the electronic components 2A, 2B, and 2C. For example, a part of the sealing material 3 may be formed outside the outer shape of the thermal expansion suppressing member 4. The entire sealing material 3 may be fixed inside the outer shape of the thermal expansion suppressing member 4.
As described above, the linear expansion coefficient α3 of the thermal expansion suppressing member 4 has a relationship of α3 <α2. It is more preferable that the linear expansion coefficient α3 of the thermal expansion suppressing member 4 and the linear expansion coefficient α1 of the circuit board 1 are approximately the same. However, a difference that does not cause damage to the wiring patterns of the electronic components 2A, 2B, and 2C and the circuit board 1 due to thermal deformation caused by a sterilization cycle to be described later is acceptable.

熱膨張抑制部材4の形状は、封止材3に固着できれば特に限定されない。図2に示す熱膨張抑制部材4は、一例として平板が用いられている。
熱膨張抑制部材4の材質は、上述した線膨張係数α3の条件が満たされていれば、特に限定されない。例えば、熱膨張抑制部材4に好適な材質としては、ステンレス鋼(線膨張係数:17.3×10−6(K−1))、アルミニウム合金(線膨張係数:23.5×10−6(K−1))などの金属、セラミックス、あるいは補強繊維等によって線膨張係数が調整された樹脂などが用いられてもよい。さらに、熱膨張抑制部材4は、これらの材質を適宜組み合わせた複合材料で構成されてもよい。
熱膨張抑制部材4に好適なセラミックスとしては、例えば、SiO、Al、ZrO、TiOなどの酸化物系セラミックスが挙げられる。これらの酸化物系セラミックスは、封止材3との密着性が良好となるため、高い耐久性が得られる。
熱膨張抑制部材4に好適な樹脂材料としては、例えば、ガラスエポキシ基板などが挙げられる。例えば、ガラス繊維あるいは金属繊維などが編まれた布状の補強材は、編まれた構造により変形しやすい方向が決まっているため、熱膨張係数の異方性が生じやすい。さらに、これらの布状の補強材は座屈しやすいため、繊維方向における引っ張りに比べると繊維方向の圧縮に弱い。このため、封止材3が低温下で収縮する場合のように、熱膨張抑制部材4の固着面4bに沿って圧縮応力を受けると、変形しやすくなる。これらの理由によって、布状の補強材を含む樹脂材料は、熱膨張抑制部材4としては好適とは言えない。
しかし、ガラスエポキシ基板のように、繊維方向の異なる複数の布が重ねられた構造を有している場合には、線膨張係数および剛性の違法が低減されるため、熱膨張抑制部材として用いることができる。
熱膨張抑制部材4として、回路基板1と同材質のガラスエポキシ基板を用いる場合には、α1=α3となるため、熱膨張による医療機器用電子基板11の反り変形が抑制される。
The shape of the thermal expansion suppressing member 4 is not particularly limited as long as it can be fixed to the sealing material 3. The thermal expansion suppressing member 4 shown in FIG. 2 uses a flat plate as an example.
The material of the thermal expansion suppressing member 4 is not particularly limited as long as the above-described condition of the linear expansion coefficient α3 is satisfied. For example, suitable materials for the thermal expansion suppressing member 4 include stainless steel (linear expansion coefficient: 17.3 × 10 −6 (K −1 )), aluminum alloy (linear expansion coefficient: 23.5 × 10 −6 ( K- 1 )) and other metals, ceramics, or resins whose linear expansion coefficient is adjusted by reinforcing fibers or the like may be used. Furthermore, the thermal expansion suppressing member 4 may be composed of a composite material obtained by appropriately combining these materials.
Examples of the ceramic suitable for the thermal expansion suppressing member 4 include oxide ceramics such as SiO 2 , Al 2 O 3 , ZrO 2 , and TiO 2 . Since these oxide ceramics have good adhesion to the sealing material 3, high durability is obtained.
Examples of a resin material suitable for the thermal expansion suppressing member 4 include a glass epoxy substrate. For example, a cloth-like reinforcing material knitted with glass fiber, metal fiber, or the like has a direction in which it is easily deformed depending on the knitted structure, and thus anisotropy of the thermal expansion coefficient is likely to occur. Furthermore, since these cloth-like reinforcing materials are easily buckled, they are weaker in compression in the fiber direction than in the fiber direction. For this reason, when the compressing stress is applied along the fixing surface 4b of the thermal expansion suppressing member 4 as in the case where the sealing material 3 contracts at a low temperature, the sealing material 3 is easily deformed. For these reasons, a resin material including a cloth-like reinforcing material is not suitable as the thermal expansion suppressing member 4.
However, when it has a structure in which a plurality of fabrics with different fiber directions are stacked like a glass epoxy substrate, illegal use of the linear expansion coefficient and rigidity is reduced. Can do.
When a glass epoxy substrate made of the same material as the circuit board 1 is used as the thermal expansion suppressing member 4, α1 = α3, and thus warp deformation of the medical device electronic substrate 11 due to thermal expansion is suppressed.

熱膨張抑制部材4の線膨張係数α3と回路基板1の線膨張係数α1との差が大きい場合には、熱膨張抑制部材4の剛性が、回路基板1の剛性よりも高くなるようにすることがより好ましい。熱膨張抑制部材4の剛性は、後述する滅菌サイクルによる医療機器用電子基板11の熱変形が、電子部品2A、2B、2Cおよび回路基板1の配線パターンの破損などが生じない大きさとする。
熱膨張抑制部材4に必要な剛性は、医療機器用電子基板11の熱変形解析を行うなどして、算出することができる。
When the difference between the linear expansion coefficient α3 of the thermal expansion suppressing member 4 and the linear expansion coefficient α1 of the circuit board 1 is large, the rigidity of the thermal expansion suppressing member 4 is made higher than the rigidity of the circuit board 1. Is more preferable. The rigidity of the thermal expansion suppressing member 4 is set such that thermal deformation of the medical device electronic substrate 11 due to a sterilization cycle, which will be described later, does not cause damage to the wiring patterns of the electronic components 2A, 2B, 2C and the circuit board 1.
The rigidity required for the thermal expansion suppressing member 4 can be calculated by performing a thermal deformation analysis of the medical device electronic substrate 11.

熱膨張抑制部材4の材質は、水分または滅菌処理に使用するガスを浸透させない材質であってもよい。この場合、封止材3に固着する領域において、水分または滅菌処理に使用するガスに対する耐浸透性が向上する。
熱膨張抑制部材4の材質は、導電性を有する材質であってもよい。この場合、熱膨張抑制部材4を電磁波シールド用の導体として用いることが可能になるため、良好なEMC特性を実現することが可能になる。
熱膨張抑制部材4の材質としては、水分または滅菌処理に使用するガスを浸透させず、導電性を有し、かつ高剛性が得られる点で、ステンレスを用いることがより好ましい。
The material of the thermal expansion suppressing member 4 may be a material that does not permeate moisture or gas used for sterilization. In this case, the permeation resistance with respect to moisture or gas used for sterilization treatment is improved in the region fixed to the sealing material 3.
The material of the thermal expansion suppressing member 4 may be a conductive material. In this case, since the thermal expansion suppressing member 4 can be used as a conductor for electromagnetic wave shielding, it is possible to realize good EMC characteristics.
As a material of the thermal expansion suppressing member 4, it is more preferable to use stainless steel in that it does not permeate moisture or gas used for sterilization, has conductivity, and provides high rigidity.

このような構成の医療機器用電子基板11は、例えば、以下のようにして製造される。
まず、回路基板1の基板表面1aに、電子部品2A、2B、2Cが半田付けされる。
この後、硬化後に封止材3となる塗液が、基板表面1a上において電子部品2A、2B、2Cを覆う範囲に塗布される。
塗布方法は特に限定されない。例えば、電子部品2A、2B、2Cを囲むように基板表面1a上に塗布用枠を配置してから、ディスペンサによって塗布枠の内側に塗液を吐出する塗布方法が用いられてもよい。この場合、塗液の粘度が低くても電子部品2A、2B、2Cを確実に覆う所定高さに塗液を塗布することができる。本実施形態の場合、塗布用枠の高さは、封止材3の層厚よりも高い。塗布用枠の内周面の平面視形状は、封止材3の形成範囲および熱膨張抑制部材4の外形に等しい。
塗布用枠としては、例えば、封止材3との離型性が良好な樹脂を硬化させて形成された樹脂枠などが用いられてもよい。例えば、封止材3をエポキシ樹脂で構成する場合には、塗布用枠として、シリコーン樹脂枠が用いられてもよい。
The medical device electronic substrate 11 having such a configuration is manufactured, for example, as follows.
First, electronic components 2A, 2B, and 2C are soldered to the substrate surface 1a of the circuit board 1.
Thereafter, a coating liquid that becomes the sealing material 3 after curing is applied to the area covering the electronic components 2A, 2B, and 2C on the substrate surface 1a.
The application method is not particularly limited. For example, a coating method may be used in which a coating frame is disposed on the substrate surface 1a so as to surround the electronic components 2A, 2B, and 2C, and then a coating liquid is discharged inside the coating frame by a dispenser. In this case, even if the viscosity of the coating liquid is low, the coating liquid can be applied to a predetermined height that reliably covers the electronic components 2A, 2B, and 2C. In the case of this embodiment, the height of the coating frame is higher than the layer thickness of the sealing material 3. The plan view shape of the inner peripheral surface of the coating frame is equal to the formation range of the sealing material 3 and the outer shape of the thermal expansion suppressing member 4.
As the coating frame, for example, a resin frame formed by curing a resin having a good releasability from the sealing material 3 may be used. For example, when the sealing material 3 is made of an epoxy resin, a silicone resin frame may be used as the coating frame.

塗液は、塗布用枠の内部で流動できるため、例えば、電子部品2A、2B、2Cと基板表面1aとの間の隙間にも容易に浸透できる。このため、塗液は、電子部品2A、2B、2Cの表面の全体に密着する。   Since the coating liquid can flow inside the coating frame, for example, it can easily penetrate into the gap between the electronic components 2A, 2B, and 2C and the substrate surface 1a. For this reason, a coating liquid adheres to the whole surface of electronic components 2A, 2B, and 2C.

この後、熱膨張抑制部材4が塗液上に載置される。例えば、上述の塗布用枠が用いられる場合、熱膨張抑制部材4は、塗布用枠の内周面に上方から挿入することで、塗布用枠内の塗液の表面全体を覆うように載置される。熱膨張抑制部材4は、自重によって塗液の表面を押圧する。これにより、熱膨張抑制部材4の固着面4bは、塗液の表面と密着する。
熱膨張抑制部材4は、塗布用枠に嵌合した状態で塗液に対して位置決めされる。
熱膨張抑制部材4の平面視の外形が塗布用枠の上側の開口よりも大きい場合には、例えば、塗液を塗布用枠の上端からわずかに盛り上がるように塗布した後、塗布用枠の上端に熱膨張抑制部材4を重ねればよい。
Thereafter, the thermal expansion suppressing member 4 is placed on the coating liquid. For example, when the above-described coating frame is used, the thermal expansion suppressing member 4 is placed so as to cover the entire surface of the coating liquid in the coating frame by being inserted from above into the inner peripheral surface of the coating frame. Is done. The thermal expansion suppressing member 4 presses the surface of the coating liquid by its own weight. Thereby, the adhering surface 4b of the thermal expansion suppressing member 4 is in close contact with the surface of the coating liquid.
The thermal expansion suppressing member 4 is positioned with respect to the coating liquid in a state of being fitted to the coating frame.
If the outer shape of the thermal expansion suppressing member 4 in plan view is larger than the upper opening of the application frame, for example, after applying the coating liquid so as to rise slightly from the upper end of the application frame, the upper end of the application frame The thermal expansion suppressing member 4 may be stacked on the surface.

このように、熱膨張抑制部材4が塗液上に載置されたら、塗液を硬化させる。
塗液の硬化方法は、塗液の材質に応じて適宜の硬化方法が用いられる。例えば、塗液が熱硬化性樹脂の場合には、熱硬化樹脂が硬化する温度まで塗液を加熱する。
塗液が硬化すると封止材3が形成される。封止材3の下面3bは、回路基板1の基板表面1aと固着する。封止材3の上面3aは、熱膨張抑制部材4の固着面4bと固着する。
塗液の硬化が終了したら、塗布用枠を除去する。
このようにして、医療機器用電子基板11が製造される。
Thus, when the thermal expansion suppressing member 4 is placed on the coating liquid, the coating liquid is cured.
As a method for curing the coating liquid, an appropriate curing method is used according to the material of the coating liquid. For example, when the coating liquid is a thermosetting resin, the coating liquid is heated to a temperature at which the thermosetting resin is cured.
When the coating liquid is cured, the sealing material 3 is formed. The lower surface 3 b of the sealing material 3 is fixed to the substrate surface 1 a of the circuit board 1. The upper surface 3 a of the sealing material 3 is fixed to the fixing surface 4 b of the thermal expansion suppressing member 4.
When the curing of the coating liquid is completed, the coating frame is removed.
In this manner, the medical device electronic substrate 11 is manufactured.

医療機器用電子基板11の作用について説明する。
封止材3は、電子部品2A、2B、2Cの表面全体に密着した状態で、回路基板1の基板表面1aと熱膨張抑制部材4の固着面4bとの間で硬化している。この結果、封止材3は、基板表面1a上の電子部品2A、2B、2Cを封止している。封止材3は、加熱による滅菌処理に耐える材質からなるため、滅菌処理の間も、電子部品2A、2B、2Cと封止材3で覆われた基板表面1aとが、封止材3によって保護される。例えば、封止材3がエポキシ樹脂などの耐熱性、耐浸透性を有する材質である場合には、例えば、オートクレーブ滅菌などの高温高湿環境であっても、水蒸気の浸透を防止できる。
The operation of the medical device electronic substrate 11 will be described.
The sealing material 3 is cured between the substrate surface 1a of the circuit board 1 and the fixing surface 4b of the thermal expansion suppressing member 4 in a state of being in close contact with the entire surface of the electronic components 2A, 2B, and 2C. As a result, the sealing material 3 seals the electronic components 2A, 2B, and 2C on the substrate surface 1a. Since the sealing material 3 is made of a material that can withstand sterilization treatment by heating, the electronic components 2A, 2B, and 2C and the substrate surface 1a covered with the sealing material 3 are also sealed by the sealing material 3 during the sterilization processing. Protected. For example, when the sealing material 3 is a material having heat resistance and permeation resistance such as an epoxy resin, it is possible to prevent permeation of water vapor even in a high temperature and high humidity environment such as autoclave sterilization.

加熱による滅菌処理が行われると、医療機器用電子基板11を構成する各部材は熱膨張する。滅菌処理では医療機器用電子基板11の全体が略一定の温度に加熱されるため、各部材は、それぞれの線膨張係数に応じて熱膨張する。
ここで、回路基板1に半田付けされた電子部品2A、2B、2Cは、回路基板1、封止材3、および熱膨張抑制部材4に比べて小さく、封止材3の線膨張係数α2に比べると線膨張係数も小さいため、回路基板1と一体に動くと考えてよい。
When sterilization by heating is performed, each member constituting the medical device electronic substrate 11 is thermally expanded. In the sterilization process, the entire electronic substrate 11 for medical devices is heated to a substantially constant temperature, so that each member thermally expands according to the respective linear expansion coefficient.
Here, the electronic components 2A, 2B, 2C soldered to the circuit board 1 are smaller than the circuit board 1, the sealing material 3, and the thermal expansion suppressing member 4, and have a linear expansion coefficient α2 of the sealing material 3. In comparison, the coefficient of linear expansion is also small, so it may be considered that the circuit board 1 moves together.

回路基板1、封止材3、および熱膨張抑制部材4は、互いに略平行(平行の場合を含む)に積層した状態で層の界面で互いに固着して一体化している。回路基板1、封止材3、および熱膨張抑制部材4は、それぞれの線膨張係数に応じて、板厚方向(層厚方向)に直交する方向(以下、面方向と言う)に伸びようとする。
しかし、回路基板1、封止材3、および熱膨張抑制部材4のうち、最も大きい線膨張係数α2を有する封止材3は、より線膨張係数が小さい回路基板1および熱膨張抑制部材4に固着している。封止材3の面方向の変形は、回路基板1および熱膨張抑制部材4によって拘束される。すなわち、回路基板1および熱膨張抑制部材4にそれぞれ固着している封止材3の下面3bおよび上面3aの面方向の熱膨張量は、それぞれ線膨張係数α1、α3に対応する基板表面1aおよび平面部成形面4bの面方向の熱膨張量に等しい。
The circuit board 1, the sealing material 3, and the thermal expansion suppressing member 4 are fixed and integrated with each other at the interface of the layers in a state of being stacked substantially parallel to each other (including the parallel case). The circuit board 1, the sealing material 3, and the thermal expansion suppressing member 4 try to extend in a direction (hereinafter referred to as a plane direction) orthogonal to the plate thickness direction (layer thickness direction) according to the respective linear expansion coefficients. To do.
However, among the circuit board 1, the sealing material 3, and the thermal expansion suppressing member 4, the sealing material 3 having the largest linear expansion coefficient α 2 is used as the circuit board 1 and the thermal expansion suppressing member 4 having a smaller linear expansion coefficient. It is stuck. The deformation in the surface direction of the sealing material 3 is restrained by the circuit board 1 and the thermal expansion suppressing member 4. That is, the amount of thermal expansion in the surface direction of the lower surface 3b and the upper surface 3a of the sealing material 3 fixed to the circuit board 1 and the thermal expansion suppressing member 4 respectively is the board surface 1a corresponding to the linear expansion coefficients α1 and α3, respectively. It is equal to the amount of thermal expansion in the surface direction of the flat surface forming surface 4b.

例えば、封止材3が熱膨張抑制部材4によって拘束されていない場合、α2>α1であるため、封止材3から回路基板1に、基板表面1aが凸となる反り変形を起こす応力が作用する。このため、基板表面1a上の配線パターンおよび電子部品2A、2B、2Cにも応力が作用する。この応力負荷は、滅菌が終了すると消失する。
このように、熱膨張抑制部材4を有しない場合には、滅菌処理が繰り返されると、基板表面1a上の配線パターンおよび電子部品2A、2B、2Cが、繰り返し応力を受ける。この結果、配線パターンが疲労して断線したり、電子部品2A、2B、2Cが破損したりする可能性がある。
このような繰り返し応力が作用すると、封止材3が回路基板1および電子部品2A、2B、2Cから剥離することによって隙間が発生する可能性もある。この場合、封止材3による封止状態が損なわれて水分および得薬液が封止材3に浸透しやすくなる。配線パターンおよび電子部品2A、2B、2Cは、封止材3に浸透した水分および薬液は、配線パターンおよび電子部品2A、2B、2Cを腐食させるおそれがある。
For example, when the sealing material 3 is not constrained by the thermal expansion suppressing member 4, since α2> α1, a stress that causes warpage deformation in which the substrate surface 1a becomes convex acts on the circuit board 1 from the sealing material 3. To do. For this reason, stress also acts on the wiring pattern on the substrate surface 1a and the electronic components 2A, 2B, and 2C. This stress load disappears when sterilization is completed.
As described above, when the thermal expansion suppressing member 4 is not provided, when the sterilization process is repeated, the wiring pattern on the substrate surface 1a and the electronic components 2A, 2B, and 2C are repeatedly subjected to stress. As a result, the wiring pattern may be fatigued and disconnected, or the electronic components 2A, 2B, and 2C may be damaged.
When such repeated stress acts, the sealing material 3 may be separated from the circuit board 1 and the electronic components 2A, 2B, and 2C to generate a gap. In this case, the sealing state by the sealing material 3 is impaired, and the moisture and the drug solution are likely to penetrate into the sealing material 3. The wiring pattern and the electronic components 2A, 2B, 2C may corrode the wiring pattern and the electronic components 2A, 2B, 2C due to moisture and chemicals that have penetrated into the sealing material 3.

しかし、本実施形態の医療機器用電子基板11では、封止材3の上面3aに熱膨張抑制部材4が固着している。α3<α2であるため、封止材3の上面3aの面方向の熱膨張が抑制される。この結果、回路基板1の反り変形が抑制されて、基板表面1a上の配線パターンおよび電子部品2A、2B、2Cの応力負荷も低減される。
この結果、配線パターンが疲労して断線したり、電子部品2A、2B、2Cが破損したりする可能性が低減される。さらに、滅菌処理が繰り返されても、封止材3による封止状態も良好に保たれるため、配線パターンおよび電子部品2A、2B、2Cの腐食の進行が抑制される。
このようにして、医療機器用電子基板11によれば、加熱による滅菌処理に対する耐久性が向上する。
However, in the medical device electronic substrate 11 of this embodiment, the thermal expansion suppressing member 4 is fixed to the upper surface 3 a of the sealing material 3. Since α3 <α2, thermal expansion in the surface direction of the upper surface 3a of the sealing material 3 is suppressed. As a result, the warp deformation of the circuit board 1 is suppressed, and the stress load on the wiring pattern and the electronic components 2A, 2B, and 2C on the board surface 1a is also reduced.
As a result, the possibility that the wiring pattern is fatigued and disconnected or the electronic components 2A, 2B, and 2C are damaged is reduced. Furthermore, even if the sterilization process is repeated, the sealing state by the sealing material 3 is also kept good, so that the corrosion of the wiring pattern and the electronic components 2A, 2B, 2C is suppressed.
Thus, according to the medical device electronic substrate 11, durability against sterilization treatment by heating is improved.

熱膨張抑制部材4が水分または滅菌処理に使用するガスを浸透させない材質で構成される場合には、封止材3に固着する領域において、水分または滅菌処理に使用するガスに対する耐浸透性が向上する。このため、医療機器用電子基板11の耐久性をさらに向上することができる。
熱膨張抑制部材4が導電性を有する金属を含む場合には、熱膨張抑制部材4を電磁波シールド用の導体として用いることができる。
熱膨張抑制部材4の材質として、ステンレス鋼板など高剛性の材質が用いられる場合には、熱膨張抑制部材4の板厚を低減することができるため、医療機器用電子基板11を軽量化することができる。
When the thermal expansion suppressing member 4 is made of a material that does not allow moisture or gas used for sterilization to penetrate, the permeation resistance to the moisture or gas used for sterilization is improved in the region fixed to the sealing material 3. To do. For this reason, the durability of the electronic substrate 11 for medical devices can be further improved.
When the thermal expansion suppressing member 4 includes a metal having conductivity, the thermal expansion suppressing member 4 can be used as a conductor for electromagnetic wave shielding.
When a highly rigid material such as a stainless steel plate is used as the material of the thermal expansion suppressing member 4, the thickness of the thermal expansion suppressing member 4 can be reduced, and thus the electronic substrate 11 for medical equipment can be reduced in weight. Can do.

[第2の実施形態]
本発明の第2の実施形態の医療機器用電子基板について説明する。
図3は、本発明の第2の実施形態の医療機器用電子基板の構成例を示す模式的な平面図である。図4は、図2におけるB−B断面図である。
[Second Embodiment]
A medical device electronic substrate according to a second embodiment of the present invention will be described.
FIG. 3 is a schematic plan view illustrating a configuration example of an electronic substrate for medical devices according to the second embodiment of the present invention. 4 is a cross-sectional view taken along the line BB in FIG.

図3、図4に示すように、本実施形態の医療機器用電子基板12は、上記第1の実施形態の医療機器用電子基板11の熱膨張抑制部材4、封止材3に代えて、熱膨張抑制部材24、封止材23を備える。
医療機器用電子基板12は、上記第1の実施形態の医療機器用電子基板11が用いられる医療機器において、医療機器用電子基板11に代えて用いることができる。
以下、上記第1の実施形態と異なる点を中心に説明する。
As shown in FIGS. 3 and 4, the medical device electronic substrate 12 of the present embodiment is replaced with the thermal expansion suppressing member 4 and the sealing material 3 of the medical device electronic substrate 11 of the first embodiment, A thermal expansion suppressing member 24 and a sealing material 23 are provided.
The medical device electronic substrate 12 can be used in place of the medical device electronic substrate 11 in the medical device in which the medical device electronic substrate 11 of the first embodiment is used.
Hereinafter, a description will be given centering on differences from the first embodiment.

熱膨張抑制部材24は、上記第1の実施形態における熱膨張抑制部材4において、板厚方向に貫通する複数の貫通孔24cが形成されて構成されている。貫通孔24cは、熱膨張抑制部材24の固着面4bに対する凹部になっている。
上記第1の実施形態と同様、熱膨張抑制部材24の平面視の外形は、後述する封止材23の平面視の外形と同じでもよいし、大きくてもよいし、小さくてもよい。図3、図4には、一例として、熱膨張抑制部材24の平面視の外形が、封止材23の平面視の外形よりも小さい場合の例が示されている。熱膨張抑制部材24がこのような大きさであると、熱膨張抑制部材24の外周部が封止材23の内部に埋もれる。このため、熱膨張抑制部材24の外周部のエッジが封止材23よって被覆される。
The thermal expansion suppressing member 24 is configured by forming a plurality of through holes 24c penetrating in the plate thickness direction in the thermal expansion suppressing member 4 in the first embodiment. The through hole 24 c is a recess with respect to the fixing surface 4 b of the thermal expansion suppressing member 24.
Similar to the first embodiment, the outer shape in plan view of the thermal expansion suppressing member 24 may be the same as, larger or smaller than the outer shape in plan view of the sealing material 23 described later. As an example, FIGS. 3 and 4 show an example in which the outer shape of the thermal expansion suppressing member 24 in plan view is smaller than the outer shape of the sealing material 23 in plan view. When the thermal expansion suppressing member 24 has such a size, the outer peripheral portion of the thermal expansion suppressing member 24 is buried in the sealing material 23. For this reason, the edge of the outer peripheral part of the thermal expansion suppression member 24 is covered with the sealing material 23.

貫通孔24cの孔形状、個数は限定されない。図3に示された貫通孔24cは、一例として、等ピッチの正方格子状に配列された多数の円孔である。貫通孔24cの個数は、多い程、封止材3に対する固着性が高まるため、後述する封止材3の熱膨張を抑制する作用が高まる。ただし、貫通孔24cの個数が多すぎると、熱膨張抑制部材24の剛性が低下する。熱膨張抑制部材24の剛性が低下すると、後述するように封止材3が熱変形する際の医療機器用電子基板12の反り変形を充分に抑制できなくなるおそれがある。このため、貫通孔24cの個数は熱膨張抑制部材24に必要な剛性を考慮して適宜の個数にする。
各貫通孔24c配列ピッチおよび孔径は、電子部品2A、2B、2Cの平面視の外形の短手方向の長さよりも小さい。ただし、各貫通孔24cの孔径は、後述する封止材23を形成する材料が進入可能な大きさである。
熱膨張抑制部材24は、例えば、パンチングメタル、セラミックス成形品、樹脂成形品などが用いられてもよい。
The shape and number of the through holes 24c are not limited. The through holes 24c shown in FIG. 3 are, for example, a large number of circular holes arranged in a square lattice with an equal pitch. As the number of the through holes 24c increases, the adhesion to the sealing material 3 increases, so that the effect of suppressing thermal expansion of the sealing material 3 described later increases. However, if the number of the through holes 24c is too large, the rigidity of the thermal expansion suppressing member 24 is lowered. When the rigidity of the thermal expansion suppressing member 24 is lowered, there is a possibility that the warp deformation of the medical device electronic substrate 12 when the sealing material 3 is thermally deformed as described later cannot be sufficiently suppressed. For this reason, the number of through holes 24c is set to an appropriate number in consideration of the rigidity required for the thermal expansion suppressing member 24.
The arrangement pitch and the hole diameter of the through holes 24c are smaller than the length in the short direction of the outer shape of the electronic components 2A, 2B, and 2C in plan view. However, the hole diameter of each through-hole 24c is a size in which the material which forms the sealing material 23 mentioned later can approach.
As the thermal expansion suppressing member 24, for example, a punching metal, a ceramic molded product, a resin molded product, or the like may be used.

封止材23は、上記第1の実施形態の封止材3と同じ材質で構成される。ただし、上記第1の実施形態における封止材3は、回路基板1と熱膨張抑制部材4との間に挟まれているのに対して、封止材23は、熱膨張抑制部材24の貫通孔24cの内側に入り込んでいる点が上記第1の実施形態と異なる。
図4では、一例として、貫通孔24c内の封止材23の上面23aが、熱膨張抑制部材24の外面4aと同じ高さになっている例が示されている。しかし、貫通孔24c内の封止材23の上面23aは、熱膨張抑制部材24の固着面4bよりも高ければ、外面4aより低くてもよいし、外面4aよりも高くてもよい。貫通孔24c内の封止材23の上面23aが、外面4aよりも高い場合、一部の封止材23は、貫通孔24cの開口の周囲にはみ出していてもよい。
The sealing material 23 is made of the same material as the sealing material 3 of the first embodiment. However, the sealing material 3 in the first embodiment is sandwiched between the circuit board 1 and the thermal expansion suppressing member 4, whereas the sealing material 23 penetrates the thermal expansion suppressing member 24. The difference from the first embodiment is that the hole 24c enters the inside of the hole 24c.
FIG. 4 shows an example in which the upper surface 23a of the sealing material 23 in the through hole 24c is the same height as the outer surface 4a of the thermal expansion suppressing member 24. However, the upper surface 23a of the sealing material 23 in the through hole 24c may be lower than the outer surface 4a or higher than the outer surface 4a as long as it is higher than the fixing surface 4b of the thermal expansion suppressing member 24. When the upper surface 23a of the sealing material 23 in the through hole 24c is higher than the outer surface 4a, a part of the sealing material 23 may protrude around the opening of the through hole 24c.

このような構成の医療機器用電子基板12は、上記第1の実施形態の医療機器用電子基板11と同様にして製造される。   The medical device electronic substrate 12 having such a configuration is manufactured in the same manner as the medical device electronic substrate 11 of the first embodiment.

本実施形態の医療機器用電子基板12において、封止材23は、上記第1の実施形態における封止材3と同様に、電子部品2A、2B、2Cの表面全体に密着した状態で、回路基板1の基板表面1aと熱膨張抑制部材24の固着面4bとの間で硬化している。
このため、封止材23は、上記第1の実施形態における封止材3と同様に、滅菌処理の間も、電子部品2A、2B、2Cと封止材23で覆われた基板表面1aとを保護することができる。
熱膨張抑制部材24は上記第1の実施形態における熱膨張抑制部材4と同一の材質であるため、上記第1の実施形態と同様に、加熱を受けた場合の医療機器用電子基板12の反り変形が抑制される。この結果、回路基板1の反り変形が抑制されて、基板表面1a上の配線パターンおよび電子部品2A、2B、2Cの応力負荷が低減される。さらに、滅菌処理が繰り返されても、封止材23による封止状態も良好に保たれるため、配線パターンおよび電子部品2A、2B、2Cの腐食の進行が抑制される。
このようにして、医療機器用電子基板12によれば、加熱による滅菌処理に対する耐久性が向上する。
In the medical device electronic substrate 12 of the present embodiment, the sealing material 23 is in close contact with the entire surface of the electronic components 2A, 2B, and 2C in the same manner as the sealing material 3 in the first embodiment. The substrate 1 is cured between the substrate surface 1 a of the substrate 1 and the fixing surface 4 b of the thermal expansion suppressing member 24.
For this reason, the sealing material 23 is similar to the sealing material 3 in the first embodiment, and the substrate surface 1a covered with the electronic components 2A, 2B, and 2C and the sealing material 23 during the sterilization process. Can be protected.
Since the thermal expansion suppressing member 24 is made of the same material as that of the thermal expansion suppressing member 4 in the first embodiment, the warp of the medical device electronic board 12 when heated as in the first embodiment. Deformation is suppressed. As a result, the warp deformation of the circuit board 1 is suppressed, and the stress load on the wiring pattern and the electronic components 2A, 2B, and 2C on the board surface 1a is reduced. Furthermore, even if the sterilization process is repeated, the sealing state by the sealing material 23 is also kept good, so that the progress of corrosion of the wiring pattern and the electronic components 2A, 2B, 2C is suppressed.
Thus, according to the medical device electronic substrate 12, durability against sterilization treatment by heating is improved.

[第1変形例]
本発明の第2の実施形態の変形例(第1変形例)の医療機器用電子基板について説明する。
図5は、本発明の第2の実施形態の変形例(第1変形例)の医療機器用電子基板の構成例を示す模式的な平面図である。図6は、図5におけるC−C断面図である。
[First Modification]
A medical device electronic substrate according to a modification (first modification) of the second embodiment of the present invention will be described.
FIG. 5 is a schematic plan view showing a configuration example of an electronic board for medical devices according to a modified example (first modified example) of the second embodiment of the present invention. 6 is a cross-sectional view taken along the line CC in FIG.

図5、図6に示すように、本変形例の医療機器用電子基板13は、上記第1の実施形態の医療機器用電子基板12の封止材23に代えて、封止材33を備える。
医療機器用電子基板13は、上記第1の実施形態の医療機器用電子基板11が用いられる医療機器において、医療機器用電子基板11に代えて用いることができる。
以下、上記第2の実施形態と異なる点を中心に説明する。
As shown in FIGS. 5 and 6, the medical device electronic substrate 13 of the present modification includes a sealing material 33 instead of the sealing material 23 of the medical device electronic substrate 12 of the first embodiment. .
The medical device electronic substrate 13 can be used in place of the medical device electronic substrate 11 in the medical device in which the medical device electronic substrate 11 of the first embodiment is used.
Hereinafter, a description will be given focusing on differences from the second embodiment.

封止材33は、貫通孔24cの内部に貫入するとともに、熱膨張抑制部材24の外面4a全体を覆っている点が、上記第2の実施形態における封止材23と異なる。
本変形例の封止材33は、熱膨張抑制部材24も内部に封止している。
本変形例は、封止材33の上面33aが、熱膨張抑制部材24の外面4aを覆っている場合の例になっている。
The sealing material 33 is different from the sealing material 23 in the second embodiment in that the sealing material 33 penetrates into the through hole 24c and covers the entire outer surface 4a of the thermal expansion suppressing member 24.
The sealing material 33 of this modification also seals the thermal expansion suppressing member 24 inside.
This modification is an example in which the upper surface 33 a of the sealing material 33 covers the outer surface 4 a of the thermal expansion suppressing member 24.

このような構成の医療機器用電子基板13は、封止材33を形成するための塗液を、熱膨張抑制部材24の外面4aを覆うように塗布する点を除いて、上記第2の実施形態の医療機器用電子基板12と同様にして製造される。   The electronic substrate 13 for medical equipment having such a configuration is the second embodiment except that the coating liquid for forming the sealing material 33 is applied so as to cover the outer surface 4a of the thermal expansion suppressing member 24. It is manufactured in the same manner as the electronic substrate 12 for medical devices.

本変形例の医療機器用電子基板13によれば、上記第2の実施形態の医療機器用電子基板12と同様に、加熱による滅菌処理に対する耐久性が向上する。
さらに、本変形例の医療機器用電子基板13によれば、封止材33が熱膨張抑制部材24も封止している。封止材33の材質が滅菌処理に対する耐性を有する材質であれば、滅菌処理の間、封止材33によって、熱膨張抑制部材24が保護される。この場合、熱膨張抑制部材24の材質として、滅菌処理に対する耐性を有しない材質を使用することもできる。
According to the medical device electronic substrate 13 of the present modification, the durability against sterilization treatment by heating is improved in the same manner as the medical device electronic substrate 12 of the second embodiment.
Furthermore, according to the medical device electronic substrate 13 of this modification, the sealing material 33 also seals the thermal expansion suppressing member 24. If the material of the sealing material 33 is a material having resistance to sterilization processing, the thermal expansion suppressing member 24 is protected by the sealing material 33 during the sterilization processing. In this case, as the material of the thermal expansion suppressing member 24, a material that does not have resistance to sterilization processing can be used.

[第3の実施形態]
本発明の第3の実施形態の医療機器用電子基板について説明する。
図7は、本発明の第3の実施形態の医療機器用電子基板の構成例を示す模式的な縦断面図である。
[Third Embodiment]
A medical device electronic substrate according to a third embodiment of the present invention will be described.
FIG. 7 is a schematic longitudinal sectional view showing a configuration example of an electronic substrate for medical equipment according to the third embodiment of the present invention.

図7に示すように、本実施形態の医療機器用電子基板14は、上記第1の実施形態の医療機器用電子基板11の電子部品2B、熱膨張抑制部材4、封止材3に代えて、電子部品42B、熱膨張抑制部材44、封止材43を備える。
医療機器用電子基板14は、上記第1の実施形態の医療機器用電子基板11が用いられる医療機器において、医療機器用電子基板11に代えて用いることができる。
以下、上記第1の実施形態と異なる点を中心に説明する。
As shown in FIG. 7, the medical device electronic substrate 14 of the present embodiment is replaced with the electronic component 2 </ b> B, the thermal expansion suppressing member 4, and the sealing material 3 of the medical device electronic substrate 11 of the first embodiment. The electronic component 42B, the thermal expansion suppressing member 44, and the sealing material 43 are provided.
The medical device electronic substrate 14 can be used in place of the medical device electronic substrate 11 in the medical device in which the medical device electronic substrate 11 of the first embodiment is used.
Hereinafter, a description will be given centering on differences from the first embodiment.

電子部品42Bは、部品上面42bの基板表面1aからの実装高さが、電子部品2A、2Cの部品上面2a、2cの実装高さh1よりも高いh3である点が、上記第1の実施形態における電子部品2Bと異なる。   In the electronic component 42B, the mounting height of the component upper surface 42b from the substrate surface 1a is h3 higher than the mounting height h1 of the component upper surfaces 2a and 2c of the electronic components 2A and 2C. Different from the electronic component 2B in FIG.

熱膨張抑制部材44は、上記第1の実施形態における熱膨張抑制部材4が平板であるのに対して、平板の一部に凹状部44A、44B、44Cが形成されている板部材である点が、熱膨張抑制部材4と異なる。
凹状部44A、44B、44Cは、後述する封止材43と固着する平面である下面44bに対する凹部である。本実施形態では、熱膨張抑制部材44は均一肉厚を有するため、凹状部44A、44B、44Cは、下面44bと反対側の上面44aに対しては凸部である。
凹状部44A、44B、44Cは、それぞれ電子部品2A、42B、2Cと重なる範囲に形成されている。
凹状部44A、44B、44Cの下面44b側の底面44c、44d、44eは、それぞれ電子部品2A、42B、2Cの部品上面2a、42b、2cと対向している。
底面44c、44d、44eをそれぞれ囲む凹状部44A、44B、44Cの内周面は、下面44bおよび底面44c、44d、44eに垂直でもよいし、適宜の傾斜が設けられていてもよい。本実施形態では、一例として、凹状部44A、44B、44Cの内周面は、底面44c、44d、44eから下面44bに向かって外側に拡がる傾斜を有している。
以下では、特に断らない限り、熱膨張抑制部材44の主面である下面44bを構成する平板部の板厚方向および面方向を、それぞれ熱膨張抑制部材44の板厚方向および面方向として説明する。
The thermal expansion suppression member 44 is a plate member in which concave portions 44A, 44B, and 44C are formed in a part of the flat plate, whereas the thermal expansion suppression member 4 in the first embodiment is a flat plate. However, it is different from the thermal expansion suppressing member 4.
The concave portions 44A, 44B, and 44C are concave portions with respect to the lower surface 44b that is a flat surface fixed to a sealing material 43 described later. In this embodiment, since the thermal expansion suppressing member 44 has a uniform thickness, the concave portions 44A, 44B, 44C are convex portions with respect to the upper surface 44a opposite to the lower surface 44b.
The concave portions 44A, 44B, and 44C are formed in ranges that overlap the electronic components 2A, 42B, and 2C, respectively.
The bottom surfaces 44c, 44d, 44e on the lower surface 44b side of the concave portions 44A, 44B, 44C are opposed to the component upper surfaces 2a, 42b, 2c of the electronic components 2A, 42B, 2C, respectively.
The inner peripheral surfaces of the concave portions 44A, 44B, and 44C surrounding the bottom surfaces 44c, 44d, and 44e may be perpendicular to the bottom surface 44b and the bottom surfaces 44c, 44d, and 44e, or may be provided with an appropriate inclination. In the present embodiment, as an example, the inner peripheral surfaces of the concave portions 44A, 44B, and 44C have an inclination that spreads outward from the bottom surfaces 44c, 44d, and 44e toward the lower surface 44b.
Hereinafter, unless otherwise specified, the plate thickness direction and the plane direction of the flat plate portion constituting the lower surface 44b which is the main surface of the thermal expansion suppression member 44 will be described as the plate thickness direction and the plane direction of the thermal expansion suppression member 44, respectively. .

下面44bに対する底面44c、44d、44eの段差の大きさは、電子部品2A、42B、2Cの部品上面2a、42b、2cの基板表面1aからの実装高さ、h1、h3、h1に応じて決められている。
下面44bに対する底面44c、44d、44eの段差の大きさを適宜に設定することで、底面44c、44d、44eと電子部品2A、42B、2Cの部品上面2a、42b、2cとの間に挟まれる後述の封止材43の層厚が変えられる。
本実施形態では、基板表面1aから測った下面44bの高さがh4とされたとき、基板表面1aから測った底面44c、44d、44eの高さは、それぞれ、h1+ta、h3+tb、h1+taとなっている。ただし、ta≧tbである。taは、h4と同じか、またはh4に近い値であることがより好ましい。
The size of the steps of the bottom surfaces 44c, 44d, 44e with respect to the bottom surface 44b is determined according to the mounting heights h1, h3, h1 of the component top surfaces 2a, 42b, 2c of the electronic components 2A, 42B, 2C from the substrate surface 1a. It has been.
By appropriately setting the step size of the bottom surface 44c, 44d, 44e with respect to the bottom surface 44b, the bottom surface 44c, 44d, 44e is sandwiched between the component top surfaces 2a, 42b, 2c of the electronic components 2A, 42B, 2C. The layer thickness of the sealing material 43 described later can be changed.
In the present embodiment, when the height of the lower surface 44b measured from the substrate surface 1a is h4, the heights of the bottom surfaces 44c, 44d, and 44e measured from the substrate surface 1a are h1 + ta, h3 + tb, and h1 + ta, respectively. Yes. However, ta ≧ tb. It is more preferable that ta is the same as h4 or a value close to h4.

封止材43は、回路基板1と熱膨張抑制部材44との間に挟まれて、回路基板1上の電子部品2A、2B、2Cを封止する部材である。封止材43は、上記第1の実施形態の封止材3と同じ材質で構成される。
封止材43の下面3bは、上記第1の実施形態と同様に、基板表面1aと固着している。
封止材43の上面43aは、熱膨張抑制部材44の下面44bと、凹状部44A、44B、44Cの内面とに密着して固着している。
封止材43の層厚は、本実施形態では、基板表面1aと下面44bとの間ではh4、部品上面2aと底面44cとの間ではta、部品上面42bと底面44dとの間ではtb、部品上面2と底面44eとの間ではtaである。
The sealing material 43 is a member that is sandwiched between the circuit board 1 and the thermal expansion suppressing member 44 and seals the electronic components 2A, 2B, and 2C on the circuit board 1. The sealing material 43 is made of the same material as the sealing material 3 of the first embodiment.
The lower surface 3b of the sealing material 43 is fixed to the substrate surface 1a as in the first embodiment.
The upper surface 43a of the sealing material 43 is in close contact with and adhered to the lower surface 44b of the thermal expansion suppressing member 44 and the inner surfaces of the concave portions 44A, 44B, 44C.
In this embodiment, the layer thickness of the sealing material 43 is h4 between the substrate surface 1a and the lower surface 44b, ta between the component upper surface 2a and the bottom surface 44c, tb between the component upper surface 42b and the bottom surface 44d, It is ta between the component upper surface 2c and the bottom surface 44e.

このような構成の医療機器用電子基板14は、必要な変更を適宜行った上で、上記第1の実施形態の医療機器用電子基板11と略同様にして製造される。
例えば、塗液の粘度や電子部品の形状によっては、熱膨張抑制部材44を塗液上に載置しただけでは、凹状部44A、44B、44Cの内部に封止材43となる塗液が充填されにくい場合がある。この場合、例えば、上記第1の実施形態と上下を逆さにして塗液の塗布が行われてもよい。例えば、塗布用枠に下面44bが上を向くように熱膨張抑制部材44が配置されて、熱膨張抑制部材44の下面44bおよび凹状部44A、44B、44Cの内部に塗液が塗布される。その後、電子部品2A、42B、2Cが実装された回路基板1の実装面が塗液上に載置される。回路基板1の載置後、硬化を開始する前に、必要に応じて脱泡処理が行われてもよい。
The medical device electronic substrate 14 having such a configuration is manufactured in substantially the same manner as the medical device electronic substrate 11 of the first embodiment, with appropriate modifications.
For example, depending on the viscosity of the coating liquid and the shape of the electronic component, simply placing the thermal expansion suppressing member 44 on the coating liquid fills the concave portions 44A, 44B, and 44C with the coating liquid that becomes the sealing material 43. It may be difficult to be done. In this case, for example, the coating liquid may be applied upside down with respect to the first embodiment. For example, the thermal expansion suppression member 44 is disposed on the coating frame so that the lower surface 44b faces upward, and the coating liquid is applied to the lower surface 44b of the thermal expansion suppression member 44 and the concave portions 44A, 44B, 44C. Thereafter, the mounting surface of the circuit board 1 on which the electronic components 2A, 42B, and 2C are mounted is placed on the coating liquid. After the circuit board 1 is placed, before the curing is started, a defoaming process may be performed as necessary.

本実施形態の医療機器用電子基板14の作用について説明する。
図8は、熱膨張抑制部材を平板に代えた場合の作用を説明する模式図である。
The operation of the medical device electronic substrate 14 of the present embodiment will be described.
FIG. 8 is a schematic diagram for explaining the operation when the thermal expansion suppressing member is replaced with a flat plate.

医療機器用電子基板14において、封止材43の封止に関する作用と、熱膨張抑制部材44が面方向における熱膨張を抑制する作用とは、上記第1の実施形態における封止材3、熱膨張抑制部材4の作用と同様である。このため、医療機器用電子基板14によれば、上記第1の実施形態と同様にして、加熱による滅菌処理に対する耐久性が向上する。
以下では、第1の実施形態と異なる熱膨張抑制部材44の板厚方向における作用を中心に説明する。
In the medical device electronic substrate 14, the action related to sealing of the sealing material 43 and the action of the thermal expansion suppressing member 44 suppressing thermal expansion in the surface direction are the sealing material 3 and heat in the first embodiment. The operation is the same as that of the expansion suppressing member 4. For this reason, according to the electronic substrate 14 for medical devices, durability with respect to the sterilization process by a heating improves like the said 1st Embodiment.
Below, it demonstrates centering around the effect | action in the plate | board thickness direction of the thermal expansion suppression member 44 different from 1st Embodiment.

図8に示す医療機器用電子基板15は、上記第1の実施形態において、電子部品2Bを電子部品42Bに置換した構成例である。ここで、封止材3は、電子部品42Bを封止するため、h2>h3の関係にある。
電子部品42Bの部品上面42bの基板表面1aからの高さh3が、封止材3の層厚h2に近いと、電子部品42Bの外周における基板表面1aと固着面4bとの間の封止材3Aの層厚h2と、部品上面42bと固着面4bとの間の封止材3Bの層厚(h2−h3)との差が大きくなる。このため、医療機器用電子基板15が加熱されると、層厚方向において、封止材3Aの膨張量が封止材3Bの膨張量に比べて格段に大きくなる。
一方、電子部品42Bは、封止材3よりも線膨張係数が小さくかつ、回路基板1上に半田付けされているため、電子部品42Bの部品上面42bの高さの変化は無視できる。
この結果、電子部品42Bの外周部では、封止材3Aの熱膨張によって、回路基板1および熱膨張抑制部材4が、層厚方向において互い離間する方向に押圧される。しかし、封止材3Bの熱膨張量は封止材3Aの熱膨張量に比べて小さいため、封止材3Bは、部品上面42bおよび熱膨張抑制部材4から層厚方向に引っ張られる。
このため、層厚h2と層厚(h2−h3)との差が大きくなりすぎると、部品上面42bと封止材3Bとの間、あるいは固着面4bと封止材3Bとの間が剥離しやすくなる。
The electronic substrate 15 for medical equipment shown in FIG. 8 is a configuration example in which the electronic component 2B is replaced with the electronic component 42B in the first embodiment. Here, the sealing material 3 has a relationship of h2> h3 in order to seal the electronic component 42B.
When the height h3 of the component upper surface 42b of the electronic component 42B from the substrate surface 1a is close to the layer thickness h2 of the sealing material 3, the sealing material between the substrate surface 1a and the fixing surface 4b on the outer periphery of the electronic component 42B. The difference between the layer thickness h2 of 3A and the layer thickness (h2-h3) of the sealing material 3B between the component upper surface 42b and the fixing surface 4b increases. For this reason, when the medical device electronic substrate 15 is heated, the expansion amount of the sealing material 3A is significantly larger than the expansion amount of the sealing material 3B in the layer thickness direction.
On the other hand, since the electronic component 42B has a smaller linear expansion coefficient than the sealing material 3 and is soldered onto the circuit board 1, changes in the height of the component upper surface 42b of the electronic component 42B can be ignored.
As a result, at the outer peripheral portion of the electronic component 42B, the circuit board 1 and the thermal expansion suppressing member 4 are pressed in directions away from each other in the layer thickness direction due to the thermal expansion of the sealing material 3A. However, since the thermal expansion amount of the sealing material 3B is smaller than the thermal expansion amount of the sealing material 3A, the sealing material 3B is pulled from the component upper surface 42b and the thermal expansion suppressing member 4 in the layer thickness direction.
For this reason, if the difference between the layer thickness h2 and the layer thickness (h2-h3) becomes too large, the part upper surface 42b and the sealing material 3B or the fixing surface 4b and the sealing material 3B are separated. It becomes easy.

このように、電子部品の実装高さにばらつきがある場合でも、各電子部品の部品上面と熱膨張抑制部材4との間の封止材3の層厚を厚くすれば、層厚方向における熱膨張量の相対的な差が低減される。
しかし、電子部品のいずれかの実装高さが突出して高い場合、封止材3の使用量が増大し、かつ封止材3の硬化時間も増大するおそれがあるため、部品コスト、製造コストが増大するおそれがある。
As described above, even when the mounting height of the electronic component varies, if the layer thickness of the sealing material 3 between the component upper surface of each electronic component and the thermal expansion suppressing member 4 is increased, the heat in the layer thickness direction is increased. The relative difference in the amount of expansion is reduced.
However, when the mounting height of any of the electronic components is prominent and high, the amount of the sealing material 3 used increases, and the curing time of the sealing material 3 may increase. May increase.

本実施形態の医療機器用電子基板14においては、熱膨張抑制部材44が電子部品2A、42B、2Cを覆う範囲に、凹状部44A、44B、44Cを備えるため、部品上面2a、42b、2cと熱膨張抑制部材44との間の封止材43の層厚を、それぞれ独立に代えることができる。
例えば、h4=ta=tbとすることによって、封止材43の熱膨張によって、層厚方向に作用する押圧力を、実質的に均一にすることができる。
ただし、上述のような各部位における封止材43の層厚差によって生じる熱応力が封止材43の剥がれ強度以下になっていれば、h4とta(tb)とは互いに異なる値でもよい。h4、ta、およびtbの値は、例えば、有限要素法等の数値解析ソフトによって熱応力解析を行うなどして、適正に決めることができる。
In the medical device electronic substrate 14 of the present embodiment, since the thermal expansion suppressing member 44 includes the concave portions 44A, 44B, and 44C in a range covering the electronic components 2A, 42B, and 2C, the component upper surfaces 2a, 42b, and 2c The layer thickness of the sealing material 43 between the thermal expansion suppressing member 44 can be changed independently.
For example, by setting h4 = ta = tb, the pressing force acting in the layer thickness direction can be made substantially uniform due to the thermal expansion of the sealing material 43.
However, h4 and ta (tb) may be different from each other as long as the thermal stress generated by the difference in the layer thickness of the sealing material 43 in each part as described above is equal to or less than the peeling strength of the sealing material 43. The values of h4, ta, and tb can be appropriately determined by performing thermal stress analysis using numerical analysis software such as a finite element method.

例えば、実装高さが高い電子部品は、大型の電子部品であることが多いため、回路基板1側により確実に押圧されていることが好ましい。例えば、電子部品42Bが押圧されることが好ましい電子部品であるとする。
この場合、tb>h4とすると、加熱時に電子部品42Bが常に回路基板1側に押圧されるため、電子部品42Bにおける封止材43の剥離をより確実に防止できる。
このとき、電子部品42Bの周囲のより実装高さの低い電子部品2A、2Cにおいても、ta>h4としてもよい。しかし、電子部品の数が多いと、押圧力の合力も大きくなってくるため、実装高さに応じて、tb>ta、あるいは、tb>ta=h4としてもよい。
For example, since an electronic component with a high mounting height is often a large electronic component, it is preferable that the electronic component is reliably pressed by the circuit board 1 side. For example, it is assumed that the electronic component 42B is an electronic component that is preferably pressed.
In this case, if tb> h4, the electronic component 42B is always pressed to the circuit board 1 side during heating, and thus the peeling of the sealing material 43 in the electronic component 42B can be more reliably prevented.
At this time, ta> h4 may be satisfied in the electronic components 2A and 2C having a lower mounting height around the electronic component 42B. However, since the resultant force of the pressing force increases as the number of electronic components increases, tb> ta or tb> ta = h4 may be set according to the mounting height.

[第2変形例〜第5変形例]
本発明の第1の実施形態の変形例(第2変形例〜第5変形例)の医療機器用電子基板について説明する。
図9(a)は、本発明の第1の実施形態の変形例(第2変形例、第3変形例)の医療機器用電子基板に用いる熱膨張抑制部材の模式的な拡大断面図である。図9(b)、(c)は、本発明の第1の実施形態の変形例(第4変形例、第5変形例)の医療機器用電子基板に用いる熱膨張抑制部材の模式的な拡大断面図である。
[Second Modification to Fifth Modification]
A medical device electronic substrate according to a modification (second modification to fifth modification) of the first embodiment of the present invention will be described.
Fig.9 (a) is a typical expanded sectional view of the thermal expansion suppression member used for the electronic substrate for medical devices of the modification (2nd modification, 3rd modification) of the 1st Embodiment of this invention. . FIGS. 9B and 9C are schematic enlargements of the thermal expansion suppressing member used for the medical device electronic substrate of the modified example (fourth modified example, fifth modified example) of the first embodiment of the present invention. It is sectional drawing.

図1、図2に示す本発明の第1の実施形態の第2変形例〜第5変形例の医療機器用電子基板16、17、18、19は、いずれも熱膨張抑制部材の表面に複数の凹部および複数の凸部の少なくとも一方(図示略)が形成されている点のみが、上記第1の実施形態と異なる。
以下、各変形例について、上記第1の実施形態と異なる点を中心に説明する。
1 and 2, the medical device electronic substrates 16, 17, 18, 19 of the second to fifth modifications of the first embodiment of the present invention are all provided on the surface of the thermal expansion suppressing member. The only difference from the first embodiment is that at least one (not shown) of the concave portions and the plurality of convex portions is formed.
Hereinafter, each modified example will be described focusing on differences from the first embodiment.

第2変形例の医療機器用電子基板16は、上記第1の実施形態の医療機器用電子基板11の熱膨張抑制部材4に代えて、熱膨張抑制部材54を備える。
図9(a)に示すように、熱膨張抑制部材54は、固着面4bに、複数の凸部54cが形成されている。凸部54cの反対側には、凹部がなくてもよいが、本変形例では、一例として、凹部54dが形成されている。このような凸部54c、凹部54dは、金属板の場合には半抜き加工などによって、セラミックス板および樹脂板の場合には成形などによって形成される。
凸部54cの形状、大きさ、配列パターン、個数などは、平板状の固着面4bに比べて、面方向における封止材3の拘束力を高めることができれば限定されない。
例えば、凸部54cの平面視の形状、大きさ、配列パターン、個数は、上記第2の実施形態の熱膨張抑制部材24の貫通孔24cの平面視の形状、大きさ、配列パターン、個数と同じでもよい。
例えば、凸部54cの形状は、図示例とは異なり、円錐状、角錐状、角柱状、半球状などであってもよい。
The medical device electronic substrate 16 of the second modification includes a thermal expansion suppression member 54 instead of the thermal expansion suppression member 4 of the medical device electronic substrate 11 of the first embodiment.
As shown in FIG. 9A, the thermal expansion suppressing member 54 has a plurality of convex portions 54c formed on the fixing surface 4b. On the opposite side of the convex portion 54c, there may be no concave portion, but in this modified example, a concave portion 54d is formed as an example. Such convex portions 54c and concave portions 54d are formed by half-cutting processing in the case of a metal plate or by molding in the case of a ceramic plate and a resin plate.
The shape, size, arrangement pattern, number, and the like of the protrusions 54c are not limited as long as the restraining force of the sealing material 3 in the surface direction can be increased as compared with the flat fixing surface 4b.
For example, the shape, size, arrangement pattern, and number of the projections 54c in plan view are the shape, size, arrangement pattern, number of the through holes 24c of the thermal expansion suppressing member 24 of the second embodiment described above. It may be the same.
For example, the shape of the convex portion 54c may be conical, pyramidal, prismatic, hemispherical, etc., unlike the illustrated example.

本変形例の医療機器用電子基板16は、熱膨張抑制部材54の固着面4bに複数の凸部54cが形成されているため、封止材3の内部に複数の凸部54cが食い込む。熱膨張抑制部材54は、凸部54cが形成されていない場合に比べて、封止材3に対する面方向における拘束力が向上する。このため、医療機器用電子基板16が加熱された場合に、熱膨張抑制部材54は、固着面4bおよび凸部54cに固着している封止材3をより確実に面方向に拘束することができる。   In the electronic device board 16 for medical device according to this modification, a plurality of convex portions 54 c are formed on the fixing surface 4 b of the thermal expansion suppressing member 54, so that the plurality of convex portions 54 c bite into the sealing material 3. In the thermal expansion suppressing member 54, the restraining force in the surface direction with respect to the sealing material 3 is improved as compared with the case where the convex portion 54c is not formed. For this reason, when the electronic substrate 16 for medical devices is heated, the thermal expansion suppressing member 54 can more reliably restrain the sealing material 3 fixed to the fixing surface 4b and the convex portion 54c in the surface direction. it can.

図1、図2に示すように、第3変形例の医療機器用電子基板17は、上記第1の実施形態の医療機器用電子基板11の熱膨張抑制部材4に代えて、熱膨張抑制部材64を備える。
図9(a)に示すように、熱膨張抑制部材64は、固着面4bに、複数の凹部64cが形成されている。凹部64cの反対側には、凸部がなくてもよいが、本変形例では、一例として、凸部64dが形成されている。このような凹部64c、凸部64dは、例えば、凹部64cは、金属板の場合には半抜き加工などによって、セラミックス板および樹脂板の場合には成形などによって形成される。
凹部64cの形状、大きさ、配列パターン、個数などは、平板状の固着面4bに比べて、面方向における封止材3の拘束力を高めることができれば限定されない。
例えば、凹部64cの平面視の形状、大きさ、配列パターン、個数は、上記第2の実施形態の熱膨張抑制部材24の貫通孔24cの平面視の形状、大きさ、配列パターン、個数と同じでもよい。
例えば、凹部64cの形状は、図示例とは異なり、円錐穴状、角錐穴状、角穴状、半球穴状などであってもよい。
As shown in FIGS. 1 and 2, a medical device electronic substrate 17 of the third modified example is replaced with a thermal expansion suppressing member 4 instead of the thermal expansion suppressing member 4 of the medical device electronic substrate 11 of the first embodiment. 64.
As shown in FIG. 9A, the thermal expansion suppressing member 64 has a plurality of recesses 64c formed on the fixing surface 4b. On the opposite side of the concave portion 64c, there may be no convex portion, but in this modified example, a convex portion 64d is formed as an example. Such concave portions 64c and convex portions 64d are formed, for example, by half-cutting in the case of a metal plate or by molding in the case of a ceramic plate and a resin plate.
The shape, size, arrangement pattern, number, and the like of the recesses 64c are not limited as long as the restraining force of the sealing material 3 in the surface direction can be increased as compared with the flat fixing surface 4b.
For example, the shape, size, arrangement pattern, and number of the recesses 64c in plan view are the same as the shape, size, arrangement pattern, number of through holes 24c of the thermal expansion suppressing member 24 of the second embodiment. But you can.
For example, unlike the illustrated example, the shape of the recess 64c may be a conical hole shape, a pyramidal hole shape, a square hole shape, a hemispherical hole shape, or the like.

本変形例の医療機器用電子基板17は、熱膨張抑制部材64の固着面4bに複数の凹部64cが形成されているため、封止材3の一部が複数の凹部64cが入り込む。熱膨張抑制部材64は、凹部64cが形成されていない場合に比べて、封止材3に対する面方向における拘束力が向上する。このため、医療機器用電子基板17が加熱された場合に、熱膨張抑制部材64は、固着面4bおよび凹部64cに固着している封止材3をより確実に面方向に拘束することができる。   In the medical device electronic substrate 17 of the present modification, a plurality of recesses 64c are formed on the fixing surface 4b of the thermal expansion suppressing member 64, and therefore a part of the sealing material 3 is inserted into the plurality of recesses 64c. In the thermal expansion suppressing member 64, the restraining force in the surface direction with respect to the sealing material 3 is improved as compared with the case where the concave portion 64c is not formed. For this reason, when the electronic substrate 17 for medical devices is heated, the thermal expansion suppressing member 64 can more reliably restrain the sealing material 3 fixed to the fixing surface 4b and the recess 64c in the surface direction. .

図1、図2に示すように、第4変形例の医療機器用電子基板18は、上記第1の実施形態の医療機器用電子基板11の熱膨張抑制部材4に代えて、熱膨張抑制部材74を備える。
図9(b)に示すように、熱膨張抑制部材74は、平面状の固着面4bに代えて、粗面からなる固着面74bが形成されている。例えば、固着面74bは、平板の表面をブラスト加工、エッチング処理などの粗面加工によって、粗面化することによって形成される。
固着面74bの表面粗さは、熱膨張抑制部材74に必要な拘束力に応じて適宜に決めることができる。例えば、固着面74bの表面粗さは、算術平均粗さRaで、100μm以上、500μm以下とされてもよい。
As shown in FIGS. 1 and 2, a medical device electronic board 18 of the fourth modified example is replaced with a thermal expansion suppressing member 4 instead of the thermal expansion suppressing member 4 of the medical device electronic board 11 of the first embodiment. 74.
As shown in FIG. 9B, the thermal expansion suppressing member 74 is formed with a rough fixing surface 74b instead of the flat fixing surface 4b. For example, the fixing surface 74b is formed by roughening the surface of a flat plate by roughening such as blasting or etching.
The surface roughness of the fixing surface 74b can be appropriately determined according to the restraining force required for the thermal expansion suppressing member 74. For example, the surface roughness of the fixing surface 74b may be an arithmetic average roughness Ra of 100 μm or more and 500 μm or less.

本変形例の医療機器用電子基板18は、固着面74bが粗面であるため、平滑面に比べて、封止材3に対する固着力が高まる。この結果、固着面が平滑面である場合に比べて、封止材3に対する面方向における拘束力が向上する。このため、医療機器用電子基板18が加熱された場合に、熱膨張抑制部材74は、固着面74bに固着している封止材3をより確実に面方向に拘束することができる。   Since the fixing surface 74b is a rough surface, the electronic substrate 18 for medical devices according to this modification has a higher fixing force with respect to the sealing material 3 than a smooth surface. As a result, the restraining force in the surface direction with respect to the sealing material 3 is improved as compared with the case where the fixing surface is a smooth surface. For this reason, when the electronic substrate 18 for medical devices is heated, the thermal expansion suppression member 74 can more reliably restrain the sealing material 3 fixed to the fixing surface 74b in the surface direction.

図1、図2に示すように、第5変形例の医療機器用電子基板19は、上記第1の実施形の医療機器用電子基板11の熱膨張抑制部材4に代えて、熱膨張抑制部材84を備える。
図9()に示すように、熱膨張抑制部材84は、熱膨張抑制部材4と同様の平板における外面4aと反対側の表面84bに、下地層84cが形成されている。
下地層84cは、適宜の化学的な表面処理によって形成された、封止材3との密着性を向上する層状部である。
下地層84cを形成する表面処理の例としては、例えば、シランカップリング処理が挙げられる。
As shown in FIGS. 1 and 2, a medical device electronic substrate 19 according to a fifth modified example is replaced with a thermal expansion suppressing member 4 instead of the thermal expansion suppressing member 4 of the medical device electronic substrate 11 of the first embodiment. 84.
As shown in FIG. 9 ( c ), the thermal expansion suppression member 84 has a base layer 84 c formed on a surface 84 b opposite to the outer surface 4 a in the same flat plate as the thermal expansion suppression member 4.
The underlayer 84c is a layered portion that is formed by an appropriate chemical surface treatment and improves the adhesion to the sealing material 3.
As an example of the surface treatment for forming the base layer 84c, for example, a silane coupling treatment can be given.

本変形例の医療機器用電子基板19は、熱膨張抑制部材84の表面に下地層84cが形成されているため、封止材3に対する密着性および固着力が高まる。この結果、下地層84cが形成されていない場合に比べて、封止材3に対する面方向における拘束力が向上する。このため、医療機器用電子基板19が加熱された場合に、熱膨張抑制部材84は、下地層84cを介して熱膨張抑制部材84に固着している封止材3をより確実に面方向に拘束することができる。   Since the base layer 84c is formed on the surface of the thermal expansion suppressing member 84, the medical device electronic substrate 19 of the present modification has improved adhesion to the sealing material 3 and adhesion. As a result, the restraining force in the surface direction with respect to the sealing material 3 is improved as compared with the case where the base layer 84c is not formed. For this reason, when the electronic substrate 19 for medical devices is heated, the thermal expansion suppression member 84 ensures that the sealing material 3 fixed to the thermal expansion suppression member 84 via the base layer 84c is more reliably in the surface direction. Can be restrained.

なお、上記第1、第2の実施形態および各変形例では、熱膨張抑制部材の形状が平板状の場合の例で説明した。しかし、熱膨張抑制部材の形状は、平板状には限定されない。例えば、熱膨張抑制部材は、湾曲板、波板、チャンネル材、平板の外周に側壁を設けられた部材、皿状部材などであってもよい。
これらの平板状以外の形状の熱膨張抑制部材において、表面に複数の凹部および複数の凸部の少なくとも一方が形成されていてもよい。複数の凹部が形成される場合、複数の凹部は貫通孔で形成されていてもよい。
In addition, in the said 1st, 2nd embodiment and each modification, it demonstrated by the example in case the shape of a thermal expansion suppression member is flat form. However, the shape of the thermal expansion suppressing member is not limited to a flat plate shape. For example, the thermal expansion suppressing member may be a curved plate, a corrugated plate, a channel material, a member provided with a side wall on the outer periphery of a flat plate, a dish-like member, or the like.
In the thermal expansion suppressing member having a shape other than the flat plate shape, at least one of a plurality of concave portions and a plurality of convex portions may be formed on the surface. When a plurality of recesses are formed, the plurality of recesses may be formed by through holes.

上記第3の実施形態の説明では、電子部品の実装高さが異なる場合に、各電子部品に対向する凹状部が形成された場合の例で説明した。しかし、例えば、第1の実施形態のように、電子部品の実装高さが異なる場合に、各電子部品に対向する凹状部が形成されてもよい。   In the description of the third embodiment, the description has been given of the case where the concave portion facing each electronic component is formed when the mounting height of the electronic component is different. However, for example, when the mounting heights of the electronic components are different as in the first embodiment, a concave portion facing each electronic component may be formed.

上記第3の実施形態の説明では、電子部品と熱膨張抑制部材との間の封止材の層厚と、電子部品の外周部における未実装領域の電子回路基板と熱膨張抑制部材との間の層厚とを適宜の寸法に調整するため、熱膨張抑制部材に電子部品に対向する凹状部が形成された例で説明した。しかし、例えば、封止材の層厚を適宜寸法にするための形状は、熱膨張抑制部材に段差が形成されていればよい。例えば、熱膨張抑制部材には、平板部に対する凸状部が含まれていてもよい。   In the description of the third embodiment, the layer thickness of the sealing material between the electronic component and the thermal expansion suppressing member, and the gap between the electronic circuit board and the thermal expansion suppressing member in the unmounted region in the outer peripheral portion of the electronic component. In order to adjust the layer thickness to an appropriate dimension, the example in which the concave portion facing the electronic component is formed on the thermal expansion suppressing member has been described. However, for example, the shape for appropriately setting the layer thickness of the sealing material may be such that a step is formed on the thermal expansion suppressing member. For example, the thermal expansion suppressing member may include a convex portion with respect to the flat plate portion.

上記各実施形態、各変形例の説明では、医療機器用電子基板の熱変形に関して、常温時と、滅菌時の加熱による熱膨張時との間の膨張収縮の例で説明した。しかし、医療機器用電子基板の熱変形の抑制作用は、常温時と、低温時との間の膨張収縮の際にも同様に機能する。このため、上記各実施形態、各変形例の医療機器用電子基板は、例えば、寒冷地など低温で保存されることが多い場合にも、耐久性を向上することができる。   In the above description of each embodiment and each modification, the thermal deformation of the medical device electronic substrate has been described with an example of expansion and contraction between normal temperature and thermal expansion due to heating during sterilization. However, the effect of suppressing the thermal deformation of the electronic substrate for medical equipment functions in the same way during expansion and contraction between the normal temperature and the low temperature. For this reason, the electronic device substrate for medical devices according to each of the embodiments and the modified examples can improve durability even when it is often stored at a low temperature such as a cold district.

次に、上述した第1の実施形態の第5変形例、第1変形例、および第3の実施形態に対応する医療機器用電子基板の実施例1〜3について、比較例1、2とともに説明する。下記[表1]に、各実施例、比較例の概略構成および評価結果を示す。   Next, Examples 1 to 3 of the electronic device substrate for medical devices corresponding to the fifth modification, the first modification, and the third embodiment of the first embodiment described above are described together with Comparative Examples 1 and 2. To do. Table 1 below shows the schematic configuration and evaluation results of each example and comparative example.

Figure 0006602255
Figure 0006602255

[実施例1]
実施例1は、上記第1の実施形態の第5変形例の医療機器用電子基板19の実施例である。
本実施例の回路基板1としては、FR−4規格のガラスエポキシ基板が用いられた。回路基板1の外形は30mm×50mm、板厚は1mmとされた。回路基板1の線膨張係数は、α1=13×10−6(K−1)である。
本実施例の電子部品としては、コンデンサ、チップ抵抗、IC部品が用いられた。これらの電子部品は、回路基板1の中央付近の20mm×30mmの矩形状範囲の内側に表面実装された。それぞれの実装高さは、0.5mm、1.0mm、1.5mmであった。
[表1]に示すように、封止材3([表1]では符号は省略されている。以下、他の部材の符号も同じ)は、エポキシ樹脂系のコーティング剤1570−2(商品名;ナミックス(株)製)が用いられた。1570−2の硬化後の線膨張係数は、α2=32×10−6(K−1)である。
封止材3の回路基板1と後述する熱膨張抑制部材84との間の層厚は、4.0mmとされた。このため、各電子部品の部品上面と固着面4bとの間の封止材3の層厚は、それぞれ、3.5mm、3.0mm、2.5mmであった。
熱膨張抑制部材84は、外形が20mm×30mm、板厚1mmのステンレス鋼板が用いられた。熱膨張抑制部材84の具体的な材質は、SUS304が用いられた。SUS304の線膨張係数は、α3=13×10−6(K−1)である。
熱膨張抑制部材84の下地層84cは、シランカップリング剤KBM−403(商品名;信越化学工業(株)製)を用いたシランカップリング処理によって形成された。
[Example 1]
Example 1 is an example of the medical device electronic substrate 19 of the fifth modified example of the first embodiment.
As the circuit board 1 of the present embodiment, a FR-4 standard glass epoxy board was used. The outer shape of the circuit board 1 was 30 mm × 50 mm, and the plate thickness was 1 mm. The linear expansion coefficient of the circuit board 1 is α1 = 13 × 10 −6 (K −1 ).
As the electronic component of this example, a capacitor, a chip resistor, and an IC component were used. These electronic components were surface-mounted inside a 20 mm × 30 mm rectangular area near the center of the circuit board 1. The respective mounting heights were 0.5 mm, 1.0 mm, and 1.5 mm.
As shown in [Table 1], the sealing material 3 (the reference numerals are omitted in [Table 1]. The same applies to the other members), the epoxy resin coating agent 1570-2 (trade name). NAMICS Co., Ltd.) was used. The linear expansion coefficient after curing of 1570-2 is α2 = 32 × 10 −6 (K −1 ).
The layer thickness between the circuit board 1 of the sealing material 3 and a thermal expansion suppressing member 84 described later was 4.0 mm. For this reason, the layer thickness of the sealing material 3 between the component upper surface of each electronic component and the fixing surface 4b was 3.5 mm, 3.0 mm, and 2.5 mm, respectively.
As the thermal expansion suppressing member 84, a stainless steel plate having an outer shape of 20 mm × 30 mm and a plate thickness of 1 mm was used. As a specific material of the thermal expansion suppressing member 84, SUS304 was used. The linear expansion coefficient of SUS304 is α3 = 13 × 10 −6 (K −1 ).
The underlayer 84c of the thermal expansion suppressing member 84 was formed by a silane coupling process using a silane coupling agent KBM-403 (trade name; manufactured by Shin-Etsu Chemical Co., Ltd.).

本実施例の医療機器用電子基板19は、以下のようにして製造された。
電子部品が表面実装された回路基板1において、塗布用枠として、電子部品が搭載されたエリアを囲うように高さ5mmシリコーン樹脂枠が配置された。このシリコーン樹脂枠は、両面テープによって回路基板1の基板表面1a上に固定された。
ディスペンサを用いて、シリコーン樹脂枠の内部に、硬化後にコーティング剤1570−2が塗布された。塗布量は、硬化後に基板表面1aからの高さが4mmとなる量とされた。これにより、各電子部品はコーティング剤1570−2によって覆われた。
この後、下地層84cが形成されている熱膨張抑制部材84が、下地層84cが塗布されたコーティング剤1570−2に向いた姿勢で、コーティング剤1570−2上に載置された。
この状態で、例えば、加熱炉などを用いて、220℃で30分間の加熱が行われた。これにより、コーティング剤1570−2が硬化し、封止材3が形成された。冷却後に、シリコーン樹脂枠が除去され、実施例1の医療機器用電子基板19が製造された。
The medical device electronic substrate 19 of this example was manufactured as follows.
On the circuit board 1 on which the electronic components are surface-mounted, a silicone resin frame having a height of 5 mm is disposed as a coating frame so as to surround an area where the electronic components are mounted. The silicone resin frame was fixed on the substrate surface 1a of the circuit board 1 with a double-sided tape.
Using a dispenser, coating agent 1570-2 was applied to the inside of the silicone resin frame after curing. The coating amount was such that the height from the substrate surface 1a after curing was 4 mm. Thereby, each electronic component was covered with the coating agent 1570-2.
Thereafter, the thermal expansion suppressing member 84 on which the base layer 84c is formed is placed on the coating agent 1570-2 in a posture facing the coating agent 1570-2 to which the base layer 84c is applied.
In this state, for example, heating was performed at 220 ° C. for 30 minutes using a heating furnace or the like. Thereby, coating agent 1570-2 was hardened and sealing material 3 was formed. After cooling, the silicone resin frame was removed, and the medical device electronic substrate 19 of Example 1 was manufactured.

[実施例2]
実施例2は、上記第1の実施形態の第1変形例の医療機器用電子基板12の実施例である。
実施例2は、上記実施例1の熱膨張抑制部材84に代えて、熱膨張抑制部材24が用いられた点が上記実施例1と異なる。
熱膨張抑制部材24は、外形が20mm×30mm、板厚0.5mmのSUS304に、貫通孔24cとして直径1mmの円孔が板厚方向に貫通されたパンチングメタル材である。貫通孔24cの配列ピッチは、3mmとされた。
[Example 2]
Example 2 is an example of the medical device electronic substrate 12 of the first modified example of the first embodiment.
The second embodiment is different from the first embodiment in that the thermal expansion suppression member 24 is used instead of the thermal expansion suppression member 84 of the first embodiment.
The thermal expansion suppressing member 24 is a punching metal material in which a circular hole having a diameter of 1 mm is penetrated in the thickness direction as a through hole 24c in SUS304 having an outer shape of 20 mm × 30 mm and a thickness of 0.5 mm. The arrangement pitch of the through holes 24c was 3 mm.

[実施例3]
実施例3は、上記第3の実施形態の医療機器用電子基板14の下面44bと凹状部44A、44B、44Cの内面に、上記第5変形例と同様の下地層84cを形成した実施例である。
医療機器用電子基板14は、板厚1mmのSUS304を絞り加工することによって形成された。凹状部44A、44B、44Cの底面44c、44d、44eは、下面44bをh4=3.0(mm)の高さに配置したとき、各電子部品上の封止材3の層厚が、各電子部品の実装高さに等しくなるように形成された。
下地層84cは、上記実施例1と同様にして形成された。
本実施例の熱膨張抑制部材84は、上記実施例1の熱膨張抑制部材4に比べると凹状部44A、44B、44Cを有するため曲げ剛性が大きくなっているため、熱膨張抑制部材84に対して、回路基板1の曲げ剛性が相対的に低下してしまう。そこで、本実施例では、回路基板1の板厚は、2mmとされた。
[Example 3]
Example 3 is an example in which a base layer 84c similar to that of the fifth modification is formed on the lower surface 44b of the electronic substrate 14 for medical devices and the inner surfaces of the concave portions 44A, 44B, and 44C of the third embodiment. is there.
The medical device electronic substrate 14 was formed by drawing SUS304 having a thickness of 1 mm. The bottom surfaces 44c, 44d, and 44e of the concave portions 44A, 44B, and 44C are such that when the lower surface 44b is disposed at a height of h4 = 3.0 (mm), the layer thickness of the sealing material 3 on each electronic component is It was formed to be equal to the mounting height of the electronic component.
The underlayer 84c was formed in the same manner as in Example 1 above.
Since the thermal expansion suppressing member 84 of the present embodiment has the concave portions 44A, 44B, and 44C as compared with the thermal expansion suppressing member 4 of the first embodiment, the bending rigidity is increased. Thus, the bending rigidity of the circuit board 1 is relatively lowered. Therefore, in this embodiment, the thickness of the circuit board 1 is 2 mm.

本実施例の医療機器用電子基板は、上記第3の実施形態において説明したように、熱膨張抑制部材44の下面44bを上に向けて、コーティング剤1570−2が塗布されてから、部品実装面を下に向けた回路基板1がコーティング剤1570−2上に載置されて製造された。
熱膨張抑制部材44の載置位置は、下面44bと基板表面1aとの間における硬化後の封止材43の層厚がh4=3.0(mm)となる位置とされた。これにより、各電子部品の部品上面と各凹状部の底面との間の硬化後の封止材43の層厚は、各電子部品の実装高さに等しい層厚であった。
As described in the third embodiment, the electronic substrate for medical equipment of this example is mounted with a component after the coating agent 1570-2 is applied with the lower surface 44b of the thermal expansion suppressing member 44 facing upward. The circuit board 1 with the surface facing down was manufactured by being placed on the coating agent 1570-2.
The mounting position of the thermal expansion suppressing member 44 was set to a position where the layer thickness of the cured sealing material 43 between the lower surface 44b and the substrate surface 1a was h4 = 3.0 (mm). Thereby, the layer thickness of the sealing material 43 after hardening between the component upper surface of each electronic component and the bottom surface of each concave-shaped part was a layer thickness equal to the mounting height of each electronic component.

[比較例1、2]
[表1]に示すように、比較例1の医療機器用電子基板は、回路基板1上の各電子部品を上記実施例1と同様の層厚の封止材3が覆う構成とされた。比較例1は、上記実施例1の熱膨張抑制部材4が削除されたのと同様の構成である。
比較例2は、上記比較例1において、封止材3の材質を、シリコーン樹脂系のシール材であるダウ コーニング(登録商標)SE 9186(商品名;東レダウコーニング(株)製)に代えた点が比較例1と異なる。SE 9186の硬化体の線膨張係数は、α2=250×10−6(K−1)である。
[Comparative Examples 1 and 2]
As shown in [Table 1], the electronic substrate for medical devices of Comparative Example 1 was configured to cover each electronic component on the circuit board 1 with a sealing material 3 having the same layer thickness as in Example 1 above. Comparative Example 1 has the same configuration as that in which the thermal expansion suppressing member 4 of Example 1 is deleted.
In Comparative Example 2, the material of the sealing material 3 in the above Comparative Example 1 was changed to Dow Corning (registered trademark) SE 9186 (trade name; manufactured by Toray Dow Corning Co., Ltd.), which is a silicone resin-based sealing material. This is different from Comparative Example 1. The linear expansion coefficient of the cured product of SE 9186 is α2 = 250 × 10 −6 (K −1 ).

[評価方法]
これら実施例1〜3、比較例1、2の医療機器用電子基板を供試サンプルとして、オートクレーブ滅菌処理に対する耐久性の評価が行われた。
オートクレーブ滅菌は、130℃、2気圧の水蒸気ガスに供試サンプルを30分曝す処理を1例(1回)とした。各実施例、各比較例の供試サンプルは、それぞれ5個を一組として、10例、100例、300例のオートクレーブ滅菌処理が実施された。オートクレーブ滅菌処理の各例の間は、供試サンプルは、25℃60%RHの環境に60分間放置された。
それぞれのオートクレーブ滅菌処理のすべて終了した後、各供試サンプルの通電試験が行われた。通電試験の結果、5個の供試サンプルすべての電気特性に異常がない場合には、良([表1]には、○(good)と記載)と評価し、1個以上の供試サンプルの電気特性が不良になった場合には、不良([表1]には、×(no good)と記載)と評価した。[表1]には、良品の個数をn(n=0,…,5)、評価個数をN(=5)として、(n/N)のように試験結果が示されている。
[Evaluation methods]
The durability against autoclave sterilization was evaluated using the medical device electronic substrates of Examples 1 to 3 and Comparative Examples 1 and 2 as test samples.
In the autoclave sterilization, the treatment of exposing the test sample to a steam gas at 130 ° C. and 2 atm for 30 minutes was taken as one example (one time). The test samples of each example and each comparative example were subjected to autoclave sterilization treatment of 10 cases, 100 cases, and 300 cases, each consisting of 5 samples. During each example of autoclave sterilization, the test sample was left in an environment of 25 ° C. and 60% RH for 60 minutes.
After all of the autoclave sterilization treatments were completed, an energization test of each sample was performed. If there is no abnormality in the electrical characteristics of all five test samples as a result of the current test, it is evaluated as good (indicated in Table 1 as “good”) and one or more test samples. When the electrical characteristics of the film became defective, it was evaluated as defective (in Table 1, it was described as x (no good)). [Table 1] shows the test results as (n / N) where n is the number of good products (n = 0,..., 5) and N is the evaluation number (= 5).

[評価結果]
[表1]に示すように、実施例1〜3は、いずれも、10例、100例、300例のオートクレーブ滅菌処理が行われても供試サンプルの全数の電気特性に異常が現れることが無かった。
これに対して、比較例1の供試サンプルは、10例で良品が1つ存在したのみで、100例、300例では、全数の電気特性が不良になった。
比較例2の供試サンプルは、10例の場合、良と評価されたが、100例、300例では、それぞれ、2個、4個の電気特性が不良になったため、不良と評価された。
比較例1、2の不良は、電子部品のハンダ実装部にクラックが生じていることで発生した電気特性の不良であった。これらの不良は、滅菌処理サイクルによって熱膨張が繰り返されることによって、生じたと考えられる。
また、比較例2の不良は、ガラスエポキシ基板上の配線が腐食することで導通不良を起したことによる不良であった。この不良は、封止樹脂を水蒸気が透過して内部に侵入してしまったために生じたと考えられる。
これに対して、実施例1〜3は、いずれも、熱膨張抑制部材によって、封止材の熱膨張に起因する熱応力、あるいは回路基板の繰り返しの反り変形に起因する応力負荷が低減されたため、耐久性が向上したと考えられる。また、水蒸気透過性が低いが弾性率の高い封止樹脂を採用できるため、水蒸気の透過を効果的に防ぐことが出来たと考えられる。
[Evaluation results]
As shown in [Table 1], in all of Examples 1 to 3, even when the autoclave sterilization treatment of 10 cases, 100 cases, and 300 cases is performed, abnormality may appear in the electrical characteristics of the total number of test samples. There was no.
On the other hand, in the test sample of Comparative Example 1, only one good product was present in 10 cases, and in 100 cases and 300 cases, the total number of electrical characteristics was poor.
The sample samples of Comparative Example 2 were evaluated as good in 10 cases, but in 100 cases and 300 cases, 2 and 4 electrical characteristics were evaluated as poor, respectively.
The failure in Comparative Examples 1 and 2 was a failure in electrical characteristics caused by a crack in the solder mounting portion of the electronic component. These defects are thought to have been caused by repeated thermal expansion by the sterilization cycle.
Moreover, the defect of the comparative example 2 was a defect by having caused the conduction defect by the corrosion on the wiring on a glass epoxy board | substrate. This defect is considered to have occurred because water vapor permeated through the sealing resin and entered the sealing resin.
In contrast, in all of Examples 1 to 3, the thermal expansion suppressing member reduced the thermal stress due to the thermal expansion of the sealing material or the stress load due to repeated warping deformation of the circuit board. It is thought that durability was improved. Moreover, it is considered that water vapor permeation could be effectively prevented because a sealing resin having low water vapor permeability but high elastic modulus can be employed.

以上、本発明の好ましい各実施形態、各変形例を、各実施例とともに説明したが、本発明はこれらの各実施形態、各変形例、各実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
また、本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
As mentioned above, although each preferable embodiment and each modification of this invention were described with each Example, this invention is not limited to each of these embodiment, each modification, and each Example. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention.
Further, the present invention is not limited by the above description, and is limited only by the appended claims.

1 回路基板(電子回路基板)
1a 基板表面
2a、2b、2c、42b 部品上面
2A、2B、2C、42B 電子部品
3、3A、3B、23、33、43 封止材
3a、23a、33a、43a 上面
3b 下面
4、24、44、54、64、74、84 熱膨張抑制部材
4b、74b 固着面
11、12、13、14、15、16、17、18、19 医療機器用電子基板
24c 貫通孔
44A、44B、44C 凹状部
44b 下面
44c、44d、44e 底面
54c 凸部
64c 凹部
84b 表面
84c 下地層
1 Circuit board (electronic circuit board)
1a Substrate surface 2a, 2b, 2c, 42b Component upper surface 2A, 2B, 2C, 42B Electronic component 3, 3A, 3B, 23, 33, 43 Sealant 3a, 23a, 33a, 43a Upper surface 3b Lower surface 4, 24, 44 , 54, 64, 74, 84 Thermal expansion suppressing member 4b, 74b Adhering surface 11, 12, 13, 14, 15, 16, 17, 18, 19 Medical device electronic board 24c Through hole 44A, 44B, 44C Concave portion 44b Lower surface 44c, 44d, 44e Bottom surface 54c Convex part 64c Concave part 84b Surface 84c Underlayer

Claims (4)

第1の線膨張係数を有する電子回路基板と、
前記電子回路基板に実装された複数の電子部品と、
前記第1の線膨張係数よりも大きい第2の線膨張係数を有し、前記複数の電子部品を覆った状態で前記電子回路基板および前記複数の電子部品に固着している封止材と、
前記第2の線膨張係数よりも小さい第3の線膨張係数を有し、前記電子回路基板との間に前記封止材を挟んで前記複数の電子部品を覆った状態で、前記封止材に固着している熱膨張抑制部材と、
を備え、
前記熱膨張抑制部材は、前記封止材に固着する表面に複数の凹部および複数の凸部の少なくとも一方を有する、
医療機器用電子基板。
An electronic circuit board having a first linear expansion coefficient;
A plurality of electronic components mounted on the electronic circuit board;
A sealing material that has a second linear expansion coefficient larger than the first linear expansion coefficient and is fixed to the electronic circuit board and the plurality of electronic components in a state of covering the plurality of electronic components;
The sealing material having a third linear expansion coefficient smaller than the second linear expansion coefficient and covering the plurality of electronic components with the sealing material sandwiched between the electronic circuit board and the electronic component. A thermal expansion suppressing member fixed to the
With
The thermal expansion suppressing member has at least one of a plurality of concave portions and a plurality of convex portions on a surface fixed to the sealing material.
Electronic board for medical equipment.
第1の線膨張係数を有する電子回路基板と、
前記電子回路基板に実装された複数の電子部品と、
前記第1の線膨張係数よりも大きい第2の線膨張係数を有し、前記複数の電子部品を覆った状態で前記電子回路基板および前記複数の電子部品に固着している封止材と、
前記第2の線膨張係数よりも小さい第3の線膨張係数を有し、前記電子回路基板との間に前記封止材を挟んで前記複数の電子部品を覆った状態で、前記封止材に固着している熱膨張抑制部材と、
を備え、
前記熱膨張抑制部材は、前記封止材に固着する表面に開口する複数の貫通孔を有する
療機器用電子基板。
An electronic circuit board having a first linear expansion coefficient;
A plurality of electronic components mounted on the electronic circuit board;
A sealing material that has a second linear expansion coefficient larger than the first linear expansion coefficient and is fixed to the electronic circuit board and the plurality of electronic components in a state of covering the plurality of electronic components;
The sealing material having a third linear expansion coefficient smaller than the second linear expansion coefficient and covering the plurality of electronic components with the sealing material sandwiched between the electronic circuit board and the electronic component. A thermal expansion suppressing member fixed to the
With
The thermal expansion suppression member has a plurality of through-holes that open to the surface that adheres to the sealing material .
Medical療機dexterity electronic substrate.
第1の線膨張係数を有する電子回路基板と、
前記電子回路基板に実装された複数の電子部品と、
前記第1の線膨張係数よりも大きい第2の線膨張係数を有し、前記複数の電子部品を覆った状態で前記電子回路基板および前記複数の電子部品に固着している封止材と、
前記第2の線膨張係数よりも小さい第3の線膨張係数を有し、前記電子回路基板との間に前記封止材を挟んで前記複数の電子部品を覆った状態で、前記封止材に固着している熱膨張抑制部材と、
を備え、
前記熱膨張抑制部材は、少なくとも、前記封止材に固着する表面に段差が形成されており、
前記複数の電子部品のうち少なくとも一つの電子部品と前記熱膨張抑制部材との間の前記封止材の層厚は、前記少なくとも一つの電子部品の外周部における未実装領域の前記電子回路基板と前記熱膨張抑制部材との間における前記封止材の層厚以上である
療機器用電子基板。
An electronic circuit board having a first linear expansion coefficient;
A plurality of electronic components mounted on the electronic circuit board;
A sealing material that has a second linear expansion coefficient larger than the first linear expansion coefficient and is fixed to the electronic circuit board and the plurality of electronic components in a state of covering the plurality of electronic components;
The sealing material having a third linear expansion coefficient smaller than the second linear expansion coefficient and covering the plurality of electronic components with the sealing material sandwiched between the electronic circuit board and the electronic component. A thermal expansion suppressing member fixed to the
With
The thermal expansion suppressing member has at least a step formed on the surface that is fixed to the sealing material,
The layer thickness of the sealing material between at least one electronic component of the plurality of electronic components and the thermal expansion suppressing member is such that the electronic circuit board in an unmounted region in the outer peripheral portion of the at least one electronic component More than the layer thickness of the sealing material between the thermal expansion suppression member ,
Medical療機dexterity electronic substrate.
前記熱膨張抑制部材は、
前記封止材に固着する表面に、前記封止材との密着性を向上する下地層を有する、
請求項1〜3のいずれか1項に記載の医療機器用電子基板。
The thermal expansion suppressing member is
On the surface that adheres to the sealing material, it has a base layer that improves adhesion with the sealing material,
The electronic substrate for medical devices according to any one of claims 1 to 3 .
JP2016093710A 2016-05-09 2016-05-09 Electronic substrate for medical equipment Active JP6602255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016093710A JP6602255B2 (en) 2016-05-09 2016-05-09 Electronic substrate for medical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016093710A JP6602255B2 (en) 2016-05-09 2016-05-09 Electronic substrate for medical equipment

Publications (2)

Publication Number Publication Date
JP2017204494A JP2017204494A (en) 2017-11-16
JP6602255B2 true JP6602255B2 (en) 2019-11-06

Family

ID=60322884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093710A Active JP6602255B2 (en) 2016-05-09 2016-05-09 Electronic substrate for medical equipment

Country Status (1)

Country Link
JP (1) JP6602255B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710951A (en) * 1980-06-25 1982-01-20 Rohm Co Ltd Semiconductor device
JPS62101053A (en) * 1985-10-28 1987-05-11 Toshiba Corp Thin type electronic circuit unit
JPS62213267A (en) * 1986-03-14 1987-09-19 Olympus Optical Co Ltd Solid-state image sensing device
JP2679806B2 (en) * 1988-05-10 1997-11-19 シチズン時計株式会社 Resin-sealed pin grid array
JPH0214193A (en) * 1988-06-30 1990-01-18 Nissha Printing Co Ltd Ic card and manufacture thereof
JPH0778921A (en) * 1993-09-09 1995-03-20 Shinko Electric Ind Co Ltd Semiconductor device
JP3689180B2 (en) * 1996-06-17 2005-08-31 松下電器産業株式会社 Solid-state imaging device
JP2000124363A (en) * 1998-10-12 2000-04-28 Citizen Electronics Co Ltd Semiconductor package
JP2008159718A (en) * 2006-12-21 2008-07-10 Sharp Corp Multichip module and its manufacturing method, and mounting structure of multichip module and its manufacturing method
JP2012182274A (en) * 2011-03-01 2012-09-20 Nec Casio Mobile Communications Ltd Module component, manufacturing method of the module component, semiconductor package where the module component is mounted, electronic module, and electronic apparatus

Also Published As

Publication number Publication date
JP2017204494A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6427817B2 (en) Printed circuit board and manufacturing method thereof
KR100377088B1 (en) Module with built-in circuit parts and manufacturing method thereof
JP5325736B2 (en) Semiconductor device and manufacturing method thereof
JP4873005B2 (en) Composite substrate and method for manufacturing composite substrate
JP4510020B2 (en) Manufacturing method of electronic module
US8358514B2 (en) Electronic control device
JP5147677B2 (en) Manufacturing method of resin-sealed package
JPWO2007116544A1 (en) Composite substrate and method for manufacturing composite substrate
KR101522780B1 (en) A printed circuit board comprising embeded electronic component within and a method for manufacturing
US10455703B2 (en) Method for producing a printed circuit board with an embedded sensor chip, and printed circuit board
JP4340578B2 (en) Component mounting board and component mounting structure
KR101197189B1 (en) Chip package and method of manufacturing the same
JP6602255B2 (en) Electronic substrate for medical equipment
JPH04363032A (en) Semiconductor device
JP2012015484A (en) Method for manufacturing embedded substrate
JP4591362B2 (en) Manufacturing method of electronic device
JP2011187830A (en) Substrate with built-in electronic component, and method of manufacturing the same
JP2004179647A (en) Wiring board, semiconductor package, and method for producing base insulating film and wiring board
WO2018225511A1 (en) Cover member, method for producing electronic device, and electronic device
JP5691794B2 (en) Electronic control unit
JP2009188392A (en) Semiconductor device and method of manufacturing semiconductor device
JP6370379B2 (en) Semiconductor device, method for manufacturing the semiconductor device, and sensor using the semiconductor device
JP7118298B1 (en) STRESS RELIEF STRUCTURE AND METHOD OF MANUFACTURING STRESS RELIEF STRUCTURE
JP2010199516A (en) Electronic device
TWI290759B (en) Semiconductor package and its fabricating process

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R151 Written notification of patent or utility model registration

Ref document number: 6602255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250