WO2018225511A1 - Cover member, method for producing electronic device, and electronic device - Google Patents
Cover member, method for producing electronic device, and electronic device Download PDFInfo
- Publication number
- WO2018225511A1 WO2018225511A1 PCT/JP2018/019804 JP2018019804W WO2018225511A1 WO 2018225511 A1 WO2018225511 A1 WO 2018225511A1 JP 2018019804 W JP2018019804 W JP 2018019804W WO 2018225511 A1 WO2018225511 A1 WO 2018225511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lid
- adhesive layer
- sealing
- thickness
- sealing portion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/10—Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
Definitions
- the present invention relates to a lid, an electronic device manufacturing method, and an electronic device.
- an electronic component storage package includes a heat sink plate, a ceramic frame provided on the upper surface of the heat sink plate, and an external provided on the upper surface of the ceramic frame. And a connection lead terminal.
- the upper surface of the heat sink plate and the inner peripheral side wall surface of the ceramic frame form a cavity portion.
- An electronic component is mounted in the cavity.
- the electronic component and the external connection lead terminal are electrically connected via a bonding wire.
- Patent Document 2 a resin composition for sealing an electronic component is formed in a semi-cured state on a lid. In the sealing step, the resin composition is completely cured by heating while applying a load to the lid.
- a load is applied to the lid during heating in the sealing step.
- a load is applied between the package and the lid on the resin composition for sealing an electronic component (resin adhesive) softened by heating.
- the load is insufficient, the probability that a blow hole is formed in the resin adhesive in the sealing process is increased.
- Blow holes are holes that occur in the adhesive due to the expansion of air in the cavity. Products with blowholes have insufficient airtightness and are therefore usually removed by screening. For this reason, in order to ensure a sufficient yield of the sealing process, it is necessary to increase the load to some extent.
- the resin adhesive softened by heating is compressed between the package and the lid in the sealing process. Therefore, the greater the load, the smaller the thickness of the cured resin adhesive.
- the smaller the thickness of the cured resin adhesive the smaller the effect of relaxing the stress such as thermal stress applied to the joint between the package and the lid by the deformation of the resin adhesive as an elastic-plastic material. .
- the resin adhesive easily peels due to the stress. If the resin adhesive is peeled off, the airtightness between the package and the lid is lost. Therefore, if the load is excessively high, the hermetic reliability of the sealing portion is lowered.
- the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a lid that can improve the hermetic reliability of the sealing portion while ensuring a sufficient yield in the sealing process.
- An electronic device manufacturing method and an electronic device are provided.
- the lid of the present invention has a base portion and a sealing portion.
- the sealing part is provided on the base part and is made of a thermosetting adhesive mainly composed of a thermosetting resin.
- the sealing portion includes a base layer that is disposed on the base portion and is in a cured state, and an adhesive layer that is provided on the base layer and is in a semi-cured state.
- the method for manufacturing an electronic device of the present invention includes the following steps.
- a lid is prepared. Electronic components are mounted in the package.
- the electronic component is sealed by bonding the lid to the package.
- the adhesive layer of the sealing part of the lid is heated while being pressed onto the package, so that the adhesive layer of the sealing part of the lid is changed from a semi-cured state to a cured state. .
- the electronic device of the present invention includes a package, an electronic component, and a lid.
- Electronic components are mounted in the package.
- the lid body seals the electronic component together with the package, and includes a base portion and a sealing portion.
- the sealing part is provided on the base part and is made of a thermosetting adhesive in a cured state.
- the sealing portion includes a base layer and an adhesive layer.
- the underlayer is disposed on the base portion.
- the adhesive layer is provided on the base layer, forms an interface with the base layer, and is bonded to the package.
- the lid has a base layer and an adhesive layer.
- the adhesive layer is cured after being softened by being heated. Therefore, the sealing step, which is a step of joining the lid to the package, can be performed by heating the adhesive layer while bringing the lid and the package into contact with each other under a predetermined load.
- the base layer is already cured before the sealing step, it does not soften even when heated in the sealing step. For this reason, even if it is a case where a big load is applied in a sealing process for the yield improvement, the thickness of the sealing part after a sealing process does not fall below the thickness of a base layer.
- the thickness of the sealing portion is sufficiently increased regardless of the magnitude of the load.
- the airtight reliability of the sealing portion is sufficiently ensured. From the above, it is possible to improve the hermetic reliability of the sealing portion while ensuring a sufficient yield in the sealing step.
- the lid body has a base layer and an adhesive layer.
- the adhesive layer is cured after being softened by being heated. Therefore, the sealing step, which is a step of joining the lid to the package, can be performed by heating the adhesive layer while bringing the lid and the package into contact with each other under a predetermined load.
- the base layer is already cured before the sealing step, it does not soften even when heated in the sealing step. For this reason, even if it is a case where a big load is applied in a sealing process for the yield improvement, the thickness of the sealing part after a sealing process does not fall below the thickness of a base layer.
- the thickness of the sealing portion is sufficiently increased regardless of the magnitude of the load.
- the airtight reliability of the sealing portion is sufficiently ensured. From the above, it is possible to improve the hermetic reliability of the sealing portion while ensuring a sufficient yield in the sealing step.
- the sealing portion of the lid includes the adhesive layer and the base layer.
- the thickness of a sealing part can be made larger than the thickness of a base layer irrespective of the thickness of an adhesive layer.
- a sufficient thickness of the sealing portion can be ensured regardless of the thickness of the adhesive layer.
- the hermetic reliability of the sealing portion is sufficiently ensured, so that the conditions of the sealing process can be optimized with emphasis on yield improvement. Therefore, the airtight reliability of the sealing portion can be improved while ensuring a sufficient yield in the sealing step.
- FIG. 2 is a schematic cross-sectional view taken along line II-II of the electronic device of FIG.
- FIG. 5 is a diagram showing a configuration of a lid in an embodiment of the present invention, and is a schematic cross-sectional view taken along line III-III in FIG.
- FIG. 11 is an electron micrograph with a broken line that emphasizes a position where an interface between an adhesive layer and a base layer is observed while enlarging a part of FIG. 10. It is an electron micrograph which shows the partial cross section of the electronic device in a comparative example. It is the electron micrograph which expanded a part of FIG.
- FIG. 1 is a schematic perspective view showing a configuration of an electronic device 90 according to the present embodiment with a part thereof omitted.
- FIG. 2 is a schematic cross-sectional view taken along line II-II of the electronic device 90 of FIG.
- the line II-II (FIG. 1) is parallel to the short side direction of the rectangular shape of the lid 80c.
- the electronic device 90 includes an electronic component 8, a wiring portion 9, an electronic component storage package 10, and a lid 80c.
- the electronic component 8 is mounted in an electronic component storage package 10.
- the electronic component 8 is a semiconductor element, for example.
- the electronic component 8 is electrically connected to the electronic component storage package 10 by the wiring portion 9.
- the lid 80 c seals the electronic component 8 together with the electronic component storage package 10.
- the lid 80c has a base part 81 and a sealing part 70c.
- the base portion 81 is made of at least one of ceramics and resin.
- the base part 81 may be made of ceramics or resin, or may be made of a material containing each of ceramics and resin.
- the ceramic is, for example, alumina.
- the resin is, for example, a liquid crystal polymer.
- lid 81 is made of ceramics or made of a resin to which ceramic particles such as silica are added. By adding ceramic particles to the resin, strength and durability can be increased.
- the sealing part 70c is provided on the base part 81 (on the lower surface of the base part 81 in FIG. 2).
- the sealing portion 70c is made of a thermosetting adhesive in a cured state.
- This thermosetting adhesive mainly contains an epoxy resin, a phenol resin, a silicone resin, or the like.
- the thermosetting adhesive is preferably composed mainly of the epoxy resin.
- the content of the epoxy resin as a main component is preferably 20 to 40 wt% (weight%), and the remainder is a curing agent or the like. It may consist of subcomponents.
- this subcomponent includes, for example, 1 to 10 wt% curing agent, 50 to 70 wt% inorganic filler, 0.5 to 2 wt% coupling agent, and 0.5 to 2 wt%. It may be a catalyst and a 0.1-5 wt% low stress agent. A phenoxy resin compound may be used as the curing agent. Silica may be used as the inorganic filler. As the catalyst, organic phosphorus or boron salt may be used. Silicone may be used as the low stress agent.
- the sealing portion 70c has a thickness T0 (FIG. 2) between the base portion 81 and the electronic component storage package 10. The thickness T0 is preferably 100 ⁇ m or more and 360 ⁇ m or less.
- the sealing portion 70c has a base layer 71 and an adhesive layer 72c.
- the underlayer 71 is disposed on the base portion 81 (on the lower surface of the base portion 81 in FIG. 2).
- the underlayer 71 has a bending elastic modulus smaller than that of the base portion 81.
- the adhesive layer 72 c also has a bending elastic modulus smaller than the bending elastic modulus of the base portion 81.
- the adhesive layer 72 c is bonded to the electronic component storage package 10.
- the adhesive layer 72c is provided on the base layer 71 (on the lower surface of the base layer 71 in FIG. 2).
- the adhesive layer 72c forms an interface with the base layer 71. This interface preferably has a semi-elliptical shape in cross-sectional view (FIG. 2).
- the interface is semi-elliptical, for example, when the interface 80 is heated while bringing the lid 80c and the electronic component storage package 10 into contact with each other under a predetermined load in a sealing process, compared to the case where the interface is rectangular.
- the softened adhesive layer 72c tends to flow both in the direction toward the inside (cavity) of the package 10 and the direction toward the outside. That is, the flowing direction is not easily biased to either one.
- the bonding area between the adhesive layer 72c and the package 10 is increased. Therefore, it becomes difficult to generate a through hole that causes a leakage defect in the sealing portion 70c after the sealing step.
- the meniscus shape of the adhesive layer 72c is formed in both the inner direction and the outer direction of the package 10 with the base layer 71 as the center, the bonding strength of the lid 80c to the package 10 is increased.
- the electronic component storage package 10 includes a heat dissipation substrate 13, a frame body 14, and at least one metal terminal 15. These members are bonded to each other using a bonding material (not shown).
- the bonding material is, for example, a thermosetting adhesive such as silver solder or an epoxy resin adhesive.
- the frame 14 is made of ceramic such as alumina.
- a metal layer made of tungsten, molybdenum, or the like is provided on the surface of the frame body 14 that is bonded to the heat dissipation substrate 13 and the metal terminal 15.
- the heat dissipation substrate 13 is made of metal or ceramics.
- the heat dissipation substrate 13 has a mounting surface 13m that faces the base portion 81 of the lid 80c.
- An electronic component 8 is mounted on the mounting surface 13m.
- the frame body 14 is bonded onto the heat dissipation substrate 13.
- the frame 14 is made of a resin such as ceramics or a liquid crystal polymer.
- the bending elastic modulus of the frame body 14 is usually larger than the bending elastic modulus of the foundation layer 71.
- the metal terminal 15 is joined on the frame body 14.
- the metal terminal 15 is made of metal.
- the metal terminal 15 constitutes an electrical path that connects the inside and the outside of the space (cavity) sealed by the package 10 and the lid 80c.
- the wiring part 9 is, for example, a bonding wire.
- the sealing portion 70 c is provided on the electronic component storage package 10 so as to surround the cavity. With reference to FIG. 1, the sealing portion 70 c has a portion on the metal terminal 15 and a portion on the frame body 14.
- the outer surface (the lower surface in FIGS. 1 and 2) of the heat dissipation substrate 13 is attached to a support member (not shown).
- the support member is, for example, a mounting board or a heat sink.
- the heat dissipation board 13 may have a through portion (for example, a notch 13h in FIG. 1) through which a fixing tool (for example, a screw) for attachment to the support member passes.
- the base portion 81 has an inner surface 81i facing the cavity and an opposite outer surface 81o.
- a frame portion 81p that is a protrusion having a frame shape corresponding to the frame shape of the frame body 14 is provided on the inner surface 81i.
- the foundation layer 71 is provided on the frame portion 81p.
- the frame portion 81p is not necessarily provided, and the shape of the base portion may be, for example, a flat plate shape.
- FIG. 3 is a diagram showing the configuration of the lid 80t in the present embodiment, and is a schematic cross-sectional view taken along line III-III parallel to the short side direction of the rectangular lid 80t in FIG.
- FIG. 4 is a schematic perspective view of the lid body 80t of FIG. 3 and 4 are drawn upside down.
- the lid 80t is a member that changes to the lid 80c (FIGS. 1 and 2) when the lid 80t is joined to the electronic component storage package 10 in the manufacture of the electronic device 90 (FIGS. 1 and 2). It is.
- the lid 80t has the base portion 81 and the sealing portion 70t described above.
- the sealing portion 70t is a member that changes to the sealing portion 70c (FIGS.
- the sealing part 70t is provided on the base part 81 and is made of a thermosetting adhesive.
- the sealing portion 70t is disposed on the outer peripheral portion of the base portion 81.
- the sealing portion 70t includes the base layer 71 described above and an adhesive layer 72t provided on the base layer 71 and in a semi-cured state.
- the adhesive layer 72t is a member that changes to the adhesive layer 72c (FIGS. 1 and 2) in a cured state when bonded to the electronic component storage package 10 (FIGS. 1 and 2).
- the “semi-cured state” is a so-called “B stage” state of the thermosetting adhesive. That is, the “semi-cured state” is a state where the curing reaction of the thermosetting adhesive has progressed to some extent but can be further cured by heating. Also, temporary softening occurs prior to this further curing.
- the “cured state” is a state in which the curing reaction of the thermosetting adhesive material is substantially complete and does not further harden or soften even when heated. That is.
- At least the adhesive layer 72t of the base layer 71 and the adhesive layer 72t contains an epoxy resin. More preferably, each of the base layer 71 and the adhesive layer 72t contains an epoxy resin.
- the foundation layer 71 has a thickness T1, and the adhesive layer 72t has a thickness T2.
- the thickness T1 indicates the thickness at the thickest portion in the width direction of the base layer 71 (line III-III in FIG. 4). The same applies to the thickness T2.
- the thickness T3 of the sealing portion 70t that is, the sum of the thickness T1 and the thickness T2, is preferably 310 ⁇ m or more and 710 ⁇ m or less.
- the thickness T1 of the underlayer 71 is preferably 60 ⁇ m or more and 300 ⁇ m or less.
- the base portion 81 is prepared.
- a liquid thermosetting adhesive on the base portion 81, an uncured base layer is formed.
- the underlayer is heated to be cured.
- the base layer 71 in a cured state is formed.
- the base layer is first changed from a liquid state to a semi-cured state before being set to a cured state, and is further changed from a semi-cured state to a softened state by further heating. That is, the viscosity of the underlayer once decreases. For this reason, the cross-sectional shape of the underlayer becomes a semi-elliptical shape due to surface tension in the softened state. While the semi-elliptical shape is maintained, the underlayer is changed from a softened state to a hardened state by further heating.
- thermosetting adhesive is applied on the base layer 71 to form an uncured adhesive layer.
- the adhesive layer is heated to be semi-cured.
- the adhesive layer 72t in a semi-cured state is formed.
- the thermosetting adhesive applied to form the foundation layer 71 and the thermosetting adhesive applied to form the adhesive layer 72t may be the same material. In this case, the heating temperature for obtaining the semi-cured state of the adhesive layer 72 t is lower than the heating temperature for obtaining the cured state of the underlayer 71.
- a paste containing an epoxy resin adhesive and a solvent is applied to the base portion 81 using a screen printing method or a dispenser method.
- heating to obtain a cured state for example, heating at a curing temperature of 170 ° C. to 200 ° C.
- the solvent is volatilized and the epoxy resin adhesive is cured.
- the same paste is applied again by the same method as described above.
- heating for example, heating at a semi-curing temperature of 100 ° C. to 120 ° C. lower than the curing temperature
- the solvent is volatilized from the overcoated layer, and the epoxy resin adhesive of this layer is semi-cured.
- the cross-sectional shape of the underlayer 71 after heating becomes a semi-elliptical shape as described above
- the cross-sectional shape before heating differs depending on the coating conditions.
- the cross-sectional shape is typically a substantially rectangular shape.
- this cross-sectional shape typically has a semi-elliptical shape already after application and before heating.
- FIGS. 5 to 7 are schematic cross-sectional views showing the first to third steps of the method for manufacturing the electronic device 90 (FIG. 2).
- the electronic component storage package 10 described above is prepared.
- electronic component 8 is mounted on mounting surface 13 m of heat dissipation board 13 of electronic component storage package 10.
- the electronic component 8 is soldered on the mounting surface 13m.
- the electronic component 8 is electrically connected to the metal terminal 15 by the wiring portion 9.
- a lid 80t (FIG. 3) is prepared.
- the lid 80 t is placed on the electronic component storage package 10. Specifically, the adhesive layer 72 t of the sealing portion 70 t of the lid 80 t is brought into contact with the electronic component storage package 10 around the electronic component 8. At this time, the adhesive layer 72t is in a semi-cured state.
- the adhesive layer 72t is pressed around the electronic component 8 onto the electronic component storage package 10 with a predetermined load LD.
- the appropriate load LD depends on the dimensional design of the electronic component storage package 10, but is, for example, about 500 g to 1 kg.
- the adhesive layer 72t is heated while being pressed with the load LD.
- the heated adhesive layer 72t first changes to a softened state.
- the viscosity of the adhesive layer 72t decreases.
- the adhesive layer 72t spreads wet on the electronic component storage package 10. That is, the adhesive layer 72t changes from a state (FIG. 7) extending downward from the lid 80t in a downward direction in FIG. 7 to a state extending in a reverse taper shape.
- the adhesive layer 72t changes to a cured state (FIG. 2).
- the adhesive layer 72t is changed from the semi-cured state to the cured state through the softened state.
- the adhesive layer 72t in the semi-cured state is changed to the adhesive layer 72c (FIG. 2) in the cured state.
- the lid 80 c is joined to the electronic component storage package 10. Thereby, the electronic component 8 is sealed.
- FIG. 8 is a cross-sectional view showing the configuration of the lid 89t in the comparative example.
- the cross section of FIG. 8 is parallel to the short side direction of the rectangular shape which the cover body 89t has.
- the lid body 89t has an adhesive layer 79t in a semi-cured state.
- the lid body 89t does not have the base layer 71. Therefore, the adhesive layer 79t is provided directly on the base portion 81.
- FIG. 9 is a cross-sectional view showing the configuration of the electronic device 99 in the comparative example.
- the electronic device 99 is manufactured using the lid 89t (FIG. 8). Specifically, the adhesive layer 79 t of the lid 89 t is brought into contact with the electronic component storage package 10 around the electronic component 8. Next, the adhesive layer 79 t is heated while being pressed around the electronic component 8 onto the electronic component storage package 10 with a predetermined load. Thereby, the adhesive layer 79t is changed from the semi-cured state to the cured state. In other words, the adhesive layer 79t in the semi-cured state is changed to the adhesive layer 79c in the cured state. Thereby, the lid 89c is joined to the electronic component storage package 10, and as a result, the electronic component 8 is sealed. As described above, the electronic device 99 is obtained.
- the adhesive layer 79t (FIG. 8) is first softened by being heated.
- the thickness of the adhesive layer 79t between the base portion 81 and the electronic component storage package 10 can be greatly reduced according to the load received by the adhesive layer 79t in the softened state.
- the larger this load the more the adhesive layer 79t in the softened state is compressed between the electronic component storage package 10 and the base portion 81. Therefore, the greater the load, the smaller the thickness T9c (FIG. 9) of the adhesive layer 79c after curing between the electronic component housing package 10 and the base portion 81.
- lid 80t has base layer 71 and adhesive layer 72t.
- the adhesive layer 72t is cured after being softened by being heated. Therefore, the lid 80t is heated to the electronic component storage package 10 while the lid 80t and the electronic component storage package 10 are brought into contact with each other under a predetermined load LD (FIG. 7), thereby joining the lid 80t to the electronic component storage package 10.
- the sealing process which is a process can be implemented.
- the base layer 71 has already been cured before the sealing step, it does not soften even when heated in the sealing step. For this reason, even when a large load LD is applied in the sealing process to improve the yield, the thickness of the sealing portion 70c (FIG.
- the base portion 81 is made of ceramics or a resin to which ceramic particles are added. Thereby, the base portion 81 can obtain sufficient mechanical strength, and can be firmly bonded to the sealing portion 70c made of a thermosetting adhesive.
- the base portion 81 may be made of resin, and even in that case, the base portion 81 can be firmly bonded to the sealing portion 70c made of a thermosetting adhesive.
- the base layer 71 of the sealing portion 70 t has a bending elastic modulus smaller than that of the base portion 81. Thereby, the stress applied to the sealing portion 70 c can be effectively reduced by the base layer 71.
- the adhesive layer 72t contains an epoxy resin.
- the adhesive layer 72t has a good balance of heat resistance, mechanical strength, and chemical resistance.
- each of the base layer 71 and the adhesive layer 72t contains an epoxy resin.
- the raw material of the base layer 71 and the adhesive layer 72t can be shared.
- lid 80t (FIG. 3) has base layer 71 and adhesive layer 72t.
- the adhesive layer 72t is cured after being softened by being heated. Therefore, the lid 80t is heated to the electronic component storage package 10 while the lid 80t and the electronic component storage package 10 are brought into contact with each other under a predetermined load LD (FIG. 7), thereby joining the lid 80t to the electronic component storage package 10.
- the sealing process which is a process can be implemented.
- the base layer 71 since the base layer 71 has already been cured before the sealing step, it does not soften even when heated in the sealing step.
- the thickness of the sealing portion 70c (FIG. 2) after the sealing process is less than the thickness of the base layer 71. There is no. Therefore, by sufficiently increasing the thickness of the base layer 71, the thickness of the sealing portion 70c becomes sufficiently large regardless of the magnitude of the load LD. As a result, the airtight reliability of the sealing portion 70c is sufficiently ensured. From the above, it is possible to improve the hermetic reliability of the sealing portion 70c while ensuring a sufficient yield in the sealing process.
- the sealing portion 70c of the lid 80c includes the adhesive layer 72c and the base layer 71.
- the thickness of the sealing part 70c can be made larger than the thickness of the foundation
- the airtight reliability of the sealing portion 70c is sufficiently ensured, so that the conditions for the sealing process can be optimized with emphasis on yield improvement. Therefore, the airtight reliability of the sealing portion 70c can be improved while ensuring a sufficient yield in the sealing process.
- the interface between the base layer 71 and the adhesive layer 72c has a semi-elliptical shape in a cross-sectional view in the width direction of the sealing portion 70c (FIG. 2).
- the adhesive layer 72c can have a large thickness with a small volume.
- the interface is semi-elliptical, for example, when the interface 80 is heated while bringing the lid 80c and the electronic component storage package 10 into contact with each other under a predetermined load in a sealing process, compared to the case where the interface is rectangular.
- the softened adhesive layer 72c tends to flow both in the direction toward the inside (cavity) of the package 10 and in the direction toward the outside. That is, the flowing direction is not easily biased to either one.
- the bonding area between the adhesive layer 72c and the package 10 is increased. Therefore, it becomes difficult to generate a through hole that causes a leakage defect in the sealing portion 70c after the sealing step.
- the meniscus shape of the adhesive layer 72c is formed in both the inner direction and the outer direction of the package 10 with the base layer 71 as the center, the bonding strength of the lid 80c to the package 10 is increased.
- the thickness of the underlayer was measured before providing the adhesive layer.
- the lid was placed on the surface plate with the underlayer facing upward (corresponding to FIG. 4).
- the measuring needle of the dial gauge was brought into contact with the measurement location of the underlayer.
- the thickness of the base layer was obtained by subtracting the thickness of the base portion from the distance between the surface of the platen and the measuring needle.
- the thickness at the thickest position in the width direction of the underlayer was defined as the thickness of the underlayer (corresponding to the thickness T1 in FIG. 3). Ten measurements were made in this way. Note that the thickness of the underlayer does not change before and after sealing.
- Measurement of the thickness of the sealing part before sealing was performed in the same manner as described above after the semi-cured adhesive layer was provided on the base layer. Furthermore, the thickness of the adhesive layer was obtained by calculating the difference between the thickness of the base layer obtained by the above method and the thickness of the sealing portion (corresponding to the thickness T2 in FIG. 3).
- the thickness of the sealed portion after sealing was measured after the lid body was peeled off from the electronic device.
- the thickness of the resin was measured using a dial gauge in the same manner as described above at the location where the resin was peeled off at the interface with the lid or the electronic component storage package. Thereby, the thickness of the sealing portion was obtained (corresponding to the thickness T0 in FIG. 2).
- the thickness of the adhesive layer after sealing will be described in detail later, it was measured by observing a cross section near the sealing portion using an electron microscope. The thickness at the thinnest position in the position in the width direction of the sealing portion was defined as the thickness of the adhesive layer. Ten measurements were made in this way.
- a lid 89t (FIG. 8) was produced.
- the adhesive layer 79t having a semi-cured state was formed from an epoxy resin adhesive.
- the thickness T9t of the adhesive layer 79t was in the range of 240 ⁇ m to 370 ⁇ m.
- a sealing process was performed using the lid 89t and the electronic component storage package 10 (FIG. 5) including the heat dissipation substrate 13 having a size of 30 mm ⁇ 10 mm.
- the load applied to the lid 89t in the sealing process was 500 g. This load corresponds to a pressure of 0.08 MPa when converted to a force per facing area between the base body portion 81 of the lid 89t and the electronic component storage package 10 through the sealing portion.
- the thickness of the sealed portion after sealing was the thickness T9c of the adhesive layer 79c, which was 40 to 60 ⁇ m.
- an electronic device of a comparative example was manufactured.
- Example 1 first, a lid 80t (FIG. 3) was produced. Specifically, the base layer 71 having a cured state was formed from an epoxy resin adhesive. The thickness T1 of the underlayer 71 was 80 ⁇ m to 180 ⁇ m. Next, an adhesive layer 72t having a semi-cured state was formed from an epoxy resin adhesive. The thickness of the adhesive layer 72t was in the range of 240 ⁇ m to 370 ⁇ m. Next, a sealing process was performed using the lid 80t and the electronic component storage package 10 similar to that of the comparative example. The load in the sealing process was the same as that of the comparative example. The thickness T0 of the sealed portion 70c (FIG. 2) after sealing having a cured state was 120 ⁇ m to 240 ⁇ m. As described above, the electronic device 90 of Example 1 was manufactured.
- Example 2 in which the thickness of the resin was made thinner than in Example 1, first, a lid 80t (FIG. 3) was produced. Specifically, the base layer 71 having a cured state was formed from an epoxy resin adhesive. The thickness T1 of the underlayer 71 was 60 ⁇ m to 100 ⁇ m. Next, an adhesive layer 72t having a semi-cured state was formed from an epoxy resin adhesive. The thickness of the adhesive layer 72t was in the range of 250 ⁇ m to 410 ⁇ m. Next, a sealing process was performed using the lid 80t and the electronic component storage package 10 similar to that of the comparative example. The load in the sealing process was the same as that of the comparative example. The thickness T0 of the sealed portion 70c (FIG. 2) after sealing having a cured state was 100 ⁇ m to 160 ⁇ m. As described above, the electronic device 90 of Example 2 was manufactured.
- Example 3 in which the resin was thicker than Example 1, first, a lid 80t (FIG. 3) was produced. Specifically, the base layer 71 having a cured state was formed from an epoxy resin adhesive. The thickness T1 of the underlayer 71 was 130 ⁇ m to 300 ⁇ m. Next, an adhesive layer 72t having a semi-cured state was formed from an epoxy resin adhesive. The thickness of the adhesive layer 72t was in the range of 250 ⁇ m to 410 ⁇ m. Next, a sealing process was performed using the lid 80t and the electronic component storage package 10 similar to that of the comparative example. The load in the sealing process was the same as that of the comparative example. The thickness T0 of the sealed portion 70c (FIG. 2) after sealing having a cured state was 170 ⁇ m to 360 ⁇ m. As described above, the electronic device 90 of Example 3 was manufactured.
- a reliability evaluation test was performed in accordance with JEDEC (Joint Electron Engineering Engineering) standard MSL3.
- JEDEC Joint Electron Engineering Engineering
- MSL3 Joint Electron Engineering Engineering standard MSL3.
- This reliability evaluation test is a harsh one that is particularly suitable when it is intended to ensure high reliability. Specifically, first, holding is performed for 24 hours while being heated to a temperature of 125 ° C. Subsequently, holding for 192 hours is performed at a constant temperature and humidity of 30 ° C. and 60% humidity. Further, three passes through a 260 ° C. reflow furnace are performed. Thereafter, a gross leak inspection is performed. Specifically, the sample (electronic device 90) is immersed in a heated high boiling point liquid.
- the air inside the electronic component storage package 10 is expanded. If the inside of the electronic component storage package 10 is not sufficiently sealed, air leaks into the high boiling point liquid. The presence or absence of a leak is inspected by whether or not bubbles are generated due to the leakage.
- Example 3 As a result of this test, leaks were observed in all three samples in the comparative example, no leaks were observed in any of the ten samples in Example 1, and leaks were observed in any of the three samples in Example 2. In Example 3, no leakage was observed in any of the three samples. That is, the defect rates of Examples 1 to 3 were lower than the defect rate of the comparative example. The reason for this is considered that, in Examples 1 to 3, the thickness of the epoxy adhesive as the sealing portion was relatively large at 100 ⁇ m or more, so that the sealing portion was hardly peeled off.
- the thickness T1 (FIG. 3) of the underlayer 71 was 60 ⁇ m to 100 ⁇ m in Example 2, and 130 ⁇ m to 300 ⁇ m in Example 3. In view of this, it is considered that the range of 60 ⁇ m or more and 300 ⁇ m or less is included in the preferred range as the thickness of the base layer 71.
- the thickness T2 (FIG. 3) of the adhesive layer 72t was 240 ⁇ m to 370 ⁇ m in Example 1, and 250 ⁇ m to 410 ⁇ m in Examples 2 and 3. In view of this, it is considered that the range of 240 ⁇ m or more and 410 ⁇ m or less is included in the preferred range as the thickness of the adhesive layer 72t.
- the thickness T3 (FIG. 3) of the sealing portion 70t before sealing is the sum of 60 ⁇ m to 100 ⁇ m of the thickness T1 of the base layer 71 and 250 ⁇ m to 410 ⁇ m of the thickness T2 of the adhesive layer 72t in Example 2. That is, 310 ⁇ m to 510 ⁇ m.
- the range of 310 ⁇ m or more and 710 ⁇ m or less is included in the preferred range as the thickness T3 of the sealing portion 70t before sealing.
- the thickness T0 (FIG. 2) of the sealed portion 70c after sealing was 100 ⁇ m to 160 ⁇ m in Example 2, and 170 ⁇ m to 360 ⁇ m in Example 3. In view of this, it is considered that the range of 100 ⁇ m or more and 360 ⁇ m or less is included in the preferred range as the thickness T0 of the sealed portion 70c after sealing.
- FIG. 10 is an electron micrograph showing a partial cross section of the electronic device 90 in Example 3.
- FIG. 11 is an electron micrograph with an arrow indicating a position where an interface between the adhesive layer and the base layer in the sealing portion 70c is observed while enlarging a part of FIG.
- FIG. 12 is an electron micrograph with a broken line that emphasizes the position where the interface between the adhesive layer 72c and the base layer 71 is observed in the sealing portion 70c while enlarging a part of FIG.
- the presence of an interface formed by the base layer 71 in the cured state and the adhesive layer 72c in the cured state was observed in the sealing portion 70c of the electronic device. This interface had a semi-elliptical shape in the cross section in the width direction of the sealing portion 70c.
- FIG. 13 is an electron micrograph showing a partial cross section of the electronic device 99 in the comparative example
- FIG. 14 is an enlarged view of a part thereof.
- the base portion 81 and the metal terminal 15 of the electronic component storage package were joined to each other only by the adhesive layer 79c.
- the adhesive layer 79c was observed as a homogeneous region in the electron micrograph, and a shape similar to the interface in Example 3 was not observed.
- the thickness of the adhesive layer after sealing measured with an electron microscope was 40 ⁇ m to 60 ⁇ m in both the comparative example and Examples 1 to 3.
- the amount that is more than half of the thermosetting adhesive (that is, the sealing portion 70c) is directly below the base portion 81 and the base portion 81 immediately below the base portion 81. It was located between the electronic component storage package (the metal terminal 15 in FIG. 10).
- an amount less than half of the thermosetting adhesive (that is, the adhesive 79c) is directly below the base portion 81 and the base portion 81 immediately below the base portion 81. It was located between the electronic component storage package (the metal terminal 15 in FIG. 10).
- Example 3 a large proportion of the thermosetting adhesive provided on the base portion 81 of the lid 80t (FIG. 3) before sealing contributes to stress relaxation of the sealing portion.
- the comparative example it is considered that only a small portion of the thermosetting adhesive as described above can contribute to stress relaxation of the sealing portion.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
This cover member (80t) comprises a substrate part (81) and a sealing part (70t). The sealing part (70t) is provided on the substrate part (81), and is formed from a thermosetting bonding material. The sealing part (70t) comprises: a base layer (71) that is provided on the substrate part (81) and is in a cured state; and a bonding layer (72t) that is provided on the base layer (71) and is in a semi-cured state.
Description
本発明は、蓋体、電子装置の製造方法および電子装置に関するものである。
The present invention relates to a lid, an electronic device manufacturing method, and an electronic device.
特開2014-3134号公報(特許文献1)によれば、電子部品収納用パッケージは、ヒートシンク板と、ヒートシンク板の上面に設けられたセラミック枠体と、セラミック枠体の上面に設けられた外部接続リード端子とを有している。ヒートシンク板の上面とセラミック枠体の内周側壁面とはキャビティ部を構成している。このキャビティ部内に電子部品が搭載される。電子部品と外部接続リード端子との間がボンディングワイヤを介して電気的に接続される。樹脂接着材を用いて蓋体を接合することによって、キャビティ部に搭載された電子部品が封止される。
According to Japanese Patent Laying-Open No. 2014-3134 (Patent Document 1), an electronic component storage package includes a heat sink plate, a ceramic frame provided on the upper surface of the heat sink plate, and an external provided on the upper surface of the ceramic frame. And a connection lead terminal. The upper surface of the heat sink plate and the inner peripheral side wall surface of the ceramic frame form a cavity portion. An electronic component is mounted in the cavity. The electronic component and the external connection lead terminal are electrically connected via a bonding wire. By joining the lid using a resin adhesive, the electronic component mounted in the cavity is sealed.
特開2011-184639号公報(特許文献2)によれば、蓋体に電子部品封止用樹脂組成物が半硬化状態で形成される。封止工程においては、蓋体に荷重をかけながら加熱を行うことによって、樹脂組成物が完全に硬化させられる。
According to Japanese Patent Application Laid-Open No. 2011-184639 (Patent Document 2), a resin composition for sealing an electronic component is formed in a semi-cured state on a lid. In the sealing step, the resin composition is completely cured by heating while applying a load to the lid.
上述したように封止工程において、加熱時に蓋体に荷重がかけられる。これにより、加熱によって軟化された電子部品封止用樹脂組成物(樹脂接着材)に対して、パッケージと蓋体との間で荷重が加えられる。荷重が不十分であると、封止工程において樹脂接着材にブローホールが形成される確率が高くなる。ブローホールは、キャビティ内の空気が膨張することに起因して接着材中に生じる穴である。ブローホールが発生した製品は不十分な気密性しか有しておらず、よって、通常、スクリーニングによって除去される。このため、封止工程の歩留まりを十分に確保するためには、ある程度荷重を高める必要がある。
As described above, a load is applied to the lid during heating in the sealing step. Thereby, a load is applied between the package and the lid on the resin composition for sealing an electronic component (resin adhesive) softened by heating. If the load is insufficient, the probability that a blow hole is formed in the resin adhesive in the sealing process is increased. Blow holes are holes that occur in the adhesive due to the expansion of air in the cavity. Products with blowholes have insufficient airtightness and are therefore usually removed by screening. For this reason, in order to ensure a sufficient yield of the sealing process, it is necessary to increase the load to some extent.
一方で、上記荷重が大きいほど、封止工程において、加熱によって軟化された樹脂接着材がパッケージと蓋体との間で圧縮される。よって荷重が大きいほど、硬化後の樹脂接着材の厚みも小さくなる。硬化後の樹脂接着材の厚みが小さいほど、パッケージと蓋体との接合部に加わる、熱応力などの応力を、弾塑性体としての樹脂接着材が変形することにより緩和する効果が、小さくなる。このため、過酷な条件下での使用においては、上記応力に起因して樹脂接着材が剥離しやすくなる。樹脂接着材が剥離すれば、パッケージと蓋体との間の気密性が失われる。よって、上記荷重が過度に高いと、封止部の気密信頼性が低下してしまう。
On the other hand, as the load increases, the resin adhesive softened by heating is compressed between the package and the lid in the sealing process. Therefore, the greater the load, the smaller the thickness of the cured resin adhesive. The smaller the thickness of the cured resin adhesive, the smaller the effect of relaxing the stress such as thermal stress applied to the joint between the package and the lid by the deformation of the resin adhesive as an elastic-plastic material. . For this reason, in use under severe conditions, the resin adhesive easily peels due to the stress. If the resin adhesive is peeled off, the airtightness between the package and the lid is lost. Therefore, if the load is excessively high, the hermetic reliability of the sealing portion is lowered.
以上のように、上記従来の技術によれば、封止工程の歩留まりと、封止部の気密信頼性との間にトレードオフが存在している。
As described above, according to the conventional technique, there is a trade-off between the yield of the sealing process and the hermetic reliability of the sealing portion.
本発明は以上のような課題を解決するためになされたものであり、その目的は、封止工程の十分な歩留まりを確保しつつ、封止部の気密信頼性を向上させることができる蓋体、電子装置の製造方法、および電子装置を提供することである。
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a lid that can improve the hermetic reliability of the sealing portion while ensuring a sufficient yield in the sealing process. An electronic device manufacturing method and an electronic device are provided.
本発明の蓋体は、基体部および封止部を有している。封止部は、基体部上に設けられており、熱硬化性樹脂を主成分とする熱硬化性接着材からなる。封止部は、基体部上に配置され硬化状態にある下地層と、下地層上に設けられ半硬化状態にある接着層とを含む。
The lid of the present invention has a base portion and a sealing portion. The sealing part is provided on the base part and is made of a thermosetting adhesive mainly composed of a thermosetting resin. The sealing portion includes a base layer that is disposed on the base portion and is in a cured state, and an adhesive layer that is provided on the base layer and is in a semi-cured state.
本発明の電子装置の製造方法は、以下の工程を有している。蓋体が準備される。パッケージ内に電子部品が搭載される。パッケージに蓋体を接合することによって電子部品が封止される。電子部品が封止される際に、蓋体の封止部の接着層をパッケージ上に押し付けつつ加熱することによって、蓋体の封止部の接着層が半硬化状態から硬化状態に変化させられる。
The method for manufacturing an electronic device of the present invention includes the following steps. A lid is prepared. Electronic components are mounted in the package. The electronic component is sealed by bonding the lid to the package. When the electronic component is sealed, the adhesive layer of the sealing part of the lid is heated while being pressed onto the package, so that the adhesive layer of the sealing part of the lid is changed from a semi-cured state to a cured state. .
本発明の電子装置は、パッケージと、電子部品と、蓋体とを有している。電子部品はパッケージ内に搭載されている。蓋体は、パッケージとともに電子部品を封止しており、基体部および封止部を含む。封止部は、基体部上に設けられており、硬化状態にある熱硬化性接着材からなる。封止部は下地層および接着層を含む。下地層は基体部上に配置されている。接着層は、下地層上に設けられており、下地層と界面を形成しており、パッケージに接合されている。
The electronic device of the present invention includes a package, an electronic component, and a lid. Electronic components are mounted in the package. The lid body seals the electronic component together with the package, and includes a base portion and a sealing portion. The sealing part is provided on the base part and is made of a thermosetting adhesive in a cured state. The sealing portion includes a base layer and an adhesive layer. The underlayer is disposed on the base portion. The adhesive layer is provided on the base layer, forms an interface with the base layer, and is bonded to the package.
本発明の蓋体によれば、蓋体は下地層および接着層を有している。接着層は、加熱されることによって軟化した後に硬化する。よって、蓋体とパッケージとを所定の荷重下で互いに接触させつつ接着層を加熱することによって、蓋体をパッケージに接合する工程である封止工程を実施することができる。一方、下地層は封止工程前に既に硬化されているので、封止工程において加熱されても軟化しない。このため、歩留まり向上のために封止工程において大きな荷重が適用された場合であっても、封止工程後の封止部の厚みは、下地層の厚みを下回ることがない。よって、下地層の厚みを十分に大きくしておくことによって、荷重の大きさにかかわらず、封止部の厚みも十分に大きくなる。その結果、封止部の気密信頼性が十分に確保される。以上から、封止工程の十分な歩留まりを確保しつつ、封止部の気密信頼性を向上させることができる。
According to the lid of the present invention, the lid has a base layer and an adhesive layer. The adhesive layer is cured after being softened by being heated. Therefore, the sealing step, which is a step of joining the lid to the package, can be performed by heating the adhesive layer while bringing the lid and the package into contact with each other under a predetermined load. On the other hand, since the base layer is already cured before the sealing step, it does not soften even when heated in the sealing step. For this reason, even if it is a case where a big load is applied in a sealing process for the yield improvement, the thickness of the sealing part after a sealing process does not fall below the thickness of a base layer. Therefore, by sufficiently increasing the thickness of the base layer, the thickness of the sealing portion is sufficiently increased regardless of the magnitude of the load. As a result, the airtight reliability of the sealing portion is sufficiently ensured. From the above, it is possible to improve the hermetic reliability of the sealing portion while ensuring a sufficient yield in the sealing step.
本発明の電子装置の製造方法によれば、蓋体は下地層および接着層を有している。接着層は、加熱されることによって軟化した後に硬化する。よって、蓋体とパッケージとを所定の荷重下で互いに接触させつつ接着層を加熱することによって、蓋体をパッケージに接合する工程である封止工程を実施することができる。一方、下地層は封止工程前に既に硬化されているので、封止工程において加熱されても軟化しない。このため、歩留まり向上のために封止工程において大きな荷重が適用された場合であっても、封止工程後の封止部の厚みは、下地層の厚みを下回ることがない。よって、下地層の厚みを十分に大きくしておくことによって、荷重の大きさにかかわらず、封止部の厚みも十分に大きくなる。その結果、封止部の気密信頼性が十分に確保される。以上から、封止工程の十分な歩留まりを確保しつつ、封止部の気密信頼性を向上させることができる。
According to the method for manufacturing an electronic device of the present invention, the lid body has a base layer and an adhesive layer. The adhesive layer is cured after being softened by being heated. Therefore, the sealing step, which is a step of joining the lid to the package, can be performed by heating the adhesive layer while bringing the lid and the package into contact with each other under a predetermined load. On the other hand, since the base layer is already cured before the sealing step, it does not soften even when heated in the sealing step. For this reason, even if it is a case where a big load is applied in a sealing process for the yield improvement, the thickness of the sealing part after a sealing process does not fall below the thickness of a base layer. Therefore, by sufficiently increasing the thickness of the base layer, the thickness of the sealing portion is sufficiently increased regardless of the magnitude of the load. As a result, the airtight reliability of the sealing portion is sufficiently ensured. From the above, it is possible to improve the hermetic reliability of the sealing portion while ensuring a sufficient yield in the sealing step.
本発明の電子装置によれば、蓋体の封止部は接着層および下地層を含む。これにより、封止部の厚みを、接着層の厚みにかかわらず、下地層の厚みよりも大きくすることができる。よって、接着層の厚みにかかわらず、封止部の十分な厚みを確保することができる。その結果、封止部の気密信頼性は十分に確保されるので、封止工程の条件は、歩留まり向上に重きをおいて最適化することができる。よって、封止工程の十分な歩留まりを確保しつつ、封止部の気密信頼性を向上させることができる。
According to the electronic device of the present invention, the sealing portion of the lid includes the adhesive layer and the base layer. Thereby, the thickness of a sealing part can be made larger than the thickness of a base layer irrespective of the thickness of an adhesive layer. Thus, a sufficient thickness of the sealing portion can be ensured regardless of the thickness of the adhesive layer. As a result, the hermetic reliability of the sealing portion is sufficiently ensured, so that the conditions of the sealing process can be optimized with emphasis on yield improvement. Therefore, the airtight reliability of the sealing portion can be improved while ensuring a sufficient yield in the sealing step.
以下、図面に基づいて本発明の一実施の形態について説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(電子装置の構成)
図1は、本実施の形態における電子装置90の構成を、その一部の図示を省略して示す概略斜視図である。図2は、図1の電子装置90の線II-IIに沿う概略断面図である。なお線II-II(図1)は、蓋体80cが有する矩形形状の短辺方向に平行である。 (Configuration of electronic device)
FIG. 1 is a schematic perspective view showing a configuration of anelectronic device 90 according to the present embodiment with a part thereof omitted. FIG. 2 is a schematic cross-sectional view taken along line II-II of the electronic device 90 of FIG. The line II-II (FIG. 1) is parallel to the short side direction of the rectangular shape of the lid 80c.
図1は、本実施の形態における電子装置90の構成を、その一部の図示を省略して示す概略斜視図である。図2は、図1の電子装置90の線II-IIに沿う概略断面図である。なお線II-II(図1)は、蓋体80cが有する矩形形状の短辺方向に平行である。 (Configuration of electronic device)
FIG. 1 is a schematic perspective view showing a configuration of an
電子装置90は、電子部品8と、配線部9と、電子部品収納用パッケージ10と、蓋体80cとを有している。電子部品8は、電子部品収納用パッケージ10内に搭載されている。電子部品8は、例えば半導体素子である。電子部品8は、配線部9によって電子部品収納用パッケージ10に電気的に接続されている。蓋体80cは、電子部品収納用パッケージ10とともに電子部品8を封止している。蓋体80cは基体部81および封止部70cを有している。
The electronic device 90 includes an electronic component 8, a wiring portion 9, an electronic component storage package 10, and a lid 80c. The electronic component 8 is mounted in an electronic component storage package 10. The electronic component 8 is a semiconductor element, for example. The electronic component 8 is electrically connected to the electronic component storage package 10 by the wiring portion 9. The lid 80 c seals the electronic component 8 together with the electronic component storage package 10. The lid 80c has a base part 81 and a sealing part 70c.
基体部81は、セラミックスおよび樹脂の少なくともいずれかから作られている。言い換えれば、基体部81は、セラミックスまたは樹脂から作られていてよく、あるいは、セラミックスおよび樹脂の各々を含む材料から作られていてよい。セラミックスは、例えば、アルミナである。樹脂は、例えば、液晶ポリマーである。好ましくは、蓋体部81は、セラミックスから作られているか、あるいは、シリカなどのセラミックス粒子が添加された樹脂から作られている。樹脂にセラミックス粒子が添加されることによって、強度および耐久性を高めることができる。
The base portion 81 is made of at least one of ceramics and resin. In other words, the base part 81 may be made of ceramics or resin, or may be made of a material containing each of ceramics and resin. The ceramic is, for example, alumina. The resin is, for example, a liquid crystal polymer. Preferably, lid 81 is made of ceramics or made of a resin to which ceramic particles such as silica are added. By adding ceramic particles to the resin, strength and durability can be increased.
封止部70cは基体部81上(図2においては基体部81の下面上)に設けられている。封止部70cは、硬化状態にある熱硬化性接着材からなる。この熱硬化性接着材は、エポキシ樹脂、フェノール樹脂、シリコーン樹脂などを主成分とする。特にエポキシ樹脂は、耐熱性、機械的強度および耐薬品性をバランス良く備えているので、好ましくは、熱硬化性接着材はエポキシ樹脂を主成分とする。硬化状態にある熱硬化性接着剤が上記の特性を好適に有するためには、主成分としてのエポキシ樹脂の含有量が20~40wt%(重量%)であることが好ましく、残部は硬化剤などの副成分からなってよい。具体的には、この副成分は、例えば、1~10wt%の硬化剤と、50~70wt%の無機充填剤と、0.5~2wt%のカップリング剤と、0.5~2wt%の触媒と、0.1~5wt%の低応力剤とであってよい。硬化剤としてはフェノキシ樹脂化合物が用いられてよい。無機充填剤としてはシリカが用いられてよい。触媒としては有機リンまたはホウ素塩が用いられてよい。低応力剤としてはシリコーン(silicone)が用いられてよい。封止部70cは、基体部81と電子部品収納用パッケージ10との間で厚みT0(図2)を有している。厚みT0は、100μm以上360μm以下が好ましい。
The sealing part 70c is provided on the base part 81 (on the lower surface of the base part 81 in FIG. 2). The sealing portion 70c is made of a thermosetting adhesive in a cured state. This thermosetting adhesive mainly contains an epoxy resin, a phenol resin, a silicone resin, or the like. In particular, since the epoxy resin has a good balance of heat resistance, mechanical strength, and chemical resistance, the thermosetting adhesive is preferably composed mainly of the epoxy resin. In order for the thermosetting adhesive in a cured state to suitably have the above characteristics, the content of the epoxy resin as a main component is preferably 20 to 40 wt% (weight%), and the remainder is a curing agent or the like. It may consist of subcomponents. Specifically, this subcomponent includes, for example, 1 to 10 wt% curing agent, 50 to 70 wt% inorganic filler, 0.5 to 2 wt% coupling agent, and 0.5 to 2 wt%. It may be a catalyst and a 0.1-5 wt% low stress agent. A phenoxy resin compound may be used as the curing agent. Silica may be used as the inorganic filler. As the catalyst, organic phosphorus or boron salt may be used. Silicone may be used as the low stress agent. The sealing portion 70c has a thickness T0 (FIG. 2) between the base portion 81 and the electronic component storage package 10. The thickness T0 is preferably 100 μm or more and 360 μm or less.
封止部70cは下地層71および接着層72cを有している。下地層71は基体部81上(図2においては基体部81の下面上)に配置されている。下地層71は、基体部81の曲げ弾性率よりも小さな曲げ弾性率を有している。好ましくは、接着層72cも、基体部81の曲げ弾性率よりも小さな曲げ弾性率を有している。接着層72cは電子部品収納用パッケージ10に接合されている。接着層72cは、下地層71上(図2においては下地層71の下面上)に設けられている。接着層72cは、下地層71と界面を形成している。この界面は、断面視(図2)において半楕円形状を有していることが好ましい。
The sealing portion 70c has a base layer 71 and an adhesive layer 72c. The underlayer 71 is disposed on the base portion 81 (on the lower surface of the base portion 81 in FIG. 2). The underlayer 71 has a bending elastic modulus smaller than that of the base portion 81. Preferably, the adhesive layer 72 c also has a bending elastic modulus smaller than the bending elastic modulus of the base portion 81. The adhesive layer 72 c is bonded to the electronic component storage package 10. The adhesive layer 72c is provided on the base layer 71 (on the lower surface of the base layer 71 in FIG. 2). The adhesive layer 72c forms an interface with the base layer 71. This interface preferably has a semi-elliptical shape in cross-sectional view (FIG. 2).
界面が半楕円形状であると、例えば界面が矩形形状である場合に比べ、封止工程で蓋体80cと電子部品収納用パッケージ10とを所定の荷重下で互いに接触させつつ加熱した際に、軟化した接着層72cがパッケージ10の内部(キャビティ)への向きと外部への向きとの両方へ流れやすくなる。つまり、流れる向きがどちらか一方に偏りにくい。この結果、接着層72cとパッケージ10との接着面積が広くなる。よって、封止工程後の封止部70cに、リーク不良を生じさせる貫通孔が発生しにくくなる。さらに、下地層71を中央としてパッケージ10の内部への向きと外部への向きとの両方に接着層72cのメニスカス形状が形成された場合は、パッケージ10に対する蓋体80cの接着強度が高まる。
When the interface is semi-elliptical, for example, when the interface 80 is heated while bringing the lid 80c and the electronic component storage package 10 into contact with each other under a predetermined load in a sealing process, compared to the case where the interface is rectangular. The softened adhesive layer 72c tends to flow both in the direction toward the inside (cavity) of the package 10 and the direction toward the outside. That is, the flowing direction is not easily biased to either one. As a result, the bonding area between the adhesive layer 72c and the package 10 is increased. Therefore, it becomes difficult to generate a through hole that causes a leakage defect in the sealing portion 70c after the sealing step. Furthermore, when the meniscus shape of the adhesive layer 72c is formed in both the inner direction and the outer direction of the package 10 with the base layer 71 as the center, the bonding strength of the lid 80c to the package 10 is increased.
電子部品収納用パッケージ10は、放熱基板13と、枠体14と、少なくとも1つの金属端子15とを有している。これらの部材は、接合材(図示せず)を用いて互いに接合されている。接合材は、例えば、銀ろう、または、エポキシ樹脂接着材などの熱硬化性接着材である。銀ろうを用いる場合、枠体14はアルミナなどのセラミックからなる。セラミックと金属との銀ろうによる接合を可能にするため、枠体14の、放熱基板13および金属端子15に接合される面には、タングステンまたはモリブデンなどからなる金属層が設けられる。
The electronic component storage package 10 includes a heat dissipation substrate 13, a frame body 14, and at least one metal terminal 15. These members are bonded to each other using a bonding material (not shown). The bonding material is, for example, a thermosetting adhesive such as silver solder or an epoxy resin adhesive. When using silver solder, the frame 14 is made of ceramic such as alumina. In order to enable bonding of ceramic and metal by silver brazing, a metal layer made of tungsten, molybdenum, or the like is provided on the surface of the frame body 14 that is bonded to the heat dissipation substrate 13 and the metal terminal 15.
放熱基板13は金属またはセラミックスからなる。放熱基板13は、蓋体80cの基体部81に面する搭載面13mを有している。搭載面13m上には電子部品8が搭載されている。枠体14は放熱基板13上に接合されている。枠体14は、セラミックス、または、液晶ポリマーなどの樹脂からなる。枠体14の曲げ弾性率は、通常、下地層71の曲げ弾性率よりも大きい。金属端子15は枠体14上に接合されている。金属端子15は金属からなる。金属端子15は、パッケージ10および蓋体80cによって封止された空間(キャビティ)の内部と外部とをつなぐ電気的経路を構成している。このキャビティの内部において金属端子15に電子部品8が配線部9によって電気的に接続されている。配線部9は、例えば、ボンディングワイヤである。封止部70cは、電子部品収納用パッケージ10上において、キャビティを囲むように設けられている。図1を参照して、封止部70cは、金属端子15上の部分と、枠体14上の部分とを有している。
The heat dissipation substrate 13 is made of metal or ceramics. The heat dissipation substrate 13 has a mounting surface 13m that faces the base portion 81 of the lid 80c. An electronic component 8 is mounted on the mounting surface 13m. The frame body 14 is bonded onto the heat dissipation substrate 13. The frame 14 is made of a resin such as ceramics or a liquid crystal polymer. The bending elastic modulus of the frame body 14 is usually larger than the bending elastic modulus of the foundation layer 71. The metal terminal 15 is joined on the frame body 14. The metal terminal 15 is made of metal. The metal terminal 15 constitutes an electrical path that connects the inside and the outside of the space (cavity) sealed by the package 10 and the lid 80c. Inside this cavity, the electronic component 8 is electrically connected to the metal terminal 15 by the wiring portion 9. The wiring part 9 is, for example, a bonding wire. The sealing portion 70 c is provided on the electronic component storage package 10 so as to surround the cavity. With reference to FIG. 1, the sealing portion 70 c has a portion on the metal terminal 15 and a portion on the frame body 14.
放熱基板13の外面(図1および図2における下面)は、支持部材(図示せず)に取り付けられることになる。支持部材は、例えば、実装ボードまたはヒートシンクである。放熱基板13は、支持部材への取り付けのための固定具(例えば、ねじ)が通る貫通部(例えば、図1における切欠き13h)を有していてもよい。
The outer surface (the lower surface in FIGS. 1 and 2) of the heat dissipation substrate 13 is attached to a support member (not shown). The support member is, for example, a mounting board or a heat sink. The heat dissipation board 13 may have a through portion (for example, a notch 13h in FIG. 1) through which a fixing tool (for example, a screw) for attachment to the support member passes.
基体部81は、キャビティに面する内面81iと、その反対の外面81oとを有している。好ましくは、内面81i上には、枠体14の枠形状に対応した枠形状を有する突起である枠部81pが設けられている。この場合、下地層71は、枠部81p上に設けられている。なお、枠部81pは必ずしも設けられていなくてもよく、基体部の形状は、例えば平板状であってもよい。
The base portion 81 has an inner surface 81i facing the cavity and an opposite outer surface 81o. Preferably, a frame portion 81p that is a protrusion having a frame shape corresponding to the frame shape of the frame body 14 is provided on the inner surface 81i. In this case, the foundation layer 71 is provided on the frame portion 81p. The frame portion 81p is not necessarily provided, and the shape of the base portion may be, for example, a flat plate shape.
(蓋体の構成)
図3は、本実施の形態における蓋体80tの構成を示す図であり、図4の、矩形状の蓋体80tの短辺方向に平行な線III-IIIに沿う概略断面図である。図4は、図3の蓋体80tの概略斜視図である。なお図3と図4とでは上下が逆に描かれている。ここで、蓋体80tは、電子装置90(図1および図2)の製造において電子部品収納用パッケージ10に接合される際に蓋体80c(図1および図2)に変化することになる部材である。蓋体80tは、前述した基体部81と、封止部70tとを有している。封止部70tは、電子部品収納用パッケージ10(図1および図2)に接合される際に封止部70c(図1および図2)に変化することになる部材である。封止部70tは、基体部81上に設けられており、熱硬化性接着材からなる。封止部70tは基体部81の外周部に配置されている。封止部70tは、前述した下地層71と、下地層71上に設けられ半硬化状態にある接着層72tとを含む。接着層72tは、電子部品収納用パッケージ10(図1および図2)に接合される際に、硬化状態にある接着層72c(図1および図2)に変化することになる部材である。 (Structure of the lid)
FIG. 3 is a diagram showing the configuration of thelid 80t in the present embodiment, and is a schematic cross-sectional view taken along line III-III parallel to the short side direction of the rectangular lid 80t in FIG. FIG. 4 is a schematic perspective view of the lid body 80t of FIG. 3 and 4 are drawn upside down. Here, the lid 80t is a member that changes to the lid 80c (FIGS. 1 and 2) when the lid 80t is joined to the electronic component storage package 10 in the manufacture of the electronic device 90 (FIGS. 1 and 2). It is. The lid 80t has the base portion 81 and the sealing portion 70t described above. The sealing portion 70t is a member that changes to the sealing portion 70c (FIGS. 1 and 2) when bonded to the electronic component storage package 10 (FIGS. 1 and 2). The sealing part 70t is provided on the base part 81 and is made of a thermosetting adhesive. The sealing portion 70t is disposed on the outer peripheral portion of the base portion 81. The sealing portion 70t includes the base layer 71 described above and an adhesive layer 72t provided on the base layer 71 and in a semi-cured state. The adhesive layer 72t is a member that changes to the adhesive layer 72c (FIGS. 1 and 2) in a cured state when bonded to the electronic component storage package 10 (FIGS. 1 and 2).
図3は、本実施の形態における蓋体80tの構成を示す図であり、図4の、矩形状の蓋体80tの短辺方向に平行な線III-IIIに沿う概略断面図である。図4は、図3の蓋体80tの概略斜視図である。なお図3と図4とでは上下が逆に描かれている。ここで、蓋体80tは、電子装置90(図1および図2)の製造において電子部品収納用パッケージ10に接合される際に蓋体80c(図1および図2)に変化することになる部材である。蓋体80tは、前述した基体部81と、封止部70tとを有している。封止部70tは、電子部品収納用パッケージ10(図1および図2)に接合される際に封止部70c(図1および図2)に変化することになる部材である。封止部70tは、基体部81上に設けられており、熱硬化性接着材からなる。封止部70tは基体部81の外周部に配置されている。封止部70tは、前述した下地層71と、下地層71上に設けられ半硬化状態にある接着層72tとを含む。接着層72tは、電子部品収納用パッケージ10(図1および図2)に接合される際に、硬化状態にある接着層72c(図1および図2)に変化することになる部材である。 (Structure of the lid)
FIG. 3 is a diagram showing the configuration of the
ここで「半硬化状態」とは、熱硬化性接着材の、いわゆる「Bステージ」の状態のことである。すなわち、「半硬化状態」とは、熱硬化性接着材の硬化反応がある程度は進行しているものの、加熱されることによってさらに硬化することができる状態のことである。また、このさらなる硬化に先立って、一時的な軟化が生じる。これに対して「硬化状態」とは、実質的に、熱硬化性接着材の硬化反応が完全に進行しており、加熱されても、さらに硬化することがなく、また軟化することもない状態のことである。
Here, the “semi-cured state” is a so-called “B stage” state of the thermosetting adhesive. That is, the “semi-cured state” is a state where the curing reaction of the thermosetting adhesive has progressed to some extent but can be further cured by heating. Also, temporary softening occurs prior to this further curing. On the other hand, the “cured state” is a state in which the curing reaction of the thermosetting adhesive material is substantially complete and does not further harden or soften even when heated. That is.
好ましくは、下地層71および接着層72tのうち少なくとも接着層72tは、エポキシ樹脂を含有している。より好ましくは、下地層71および接着層72tの各々がエポキシ樹脂を含有している。
Preferably, at least the adhesive layer 72t of the base layer 71 and the adhesive layer 72t contains an epoxy resin. More preferably, each of the base layer 71 and the adhesive layer 72t contains an epoxy resin.
下地層71は厚みT1を有しており、接着層72tは厚みT2を有している。なお厚みT1は、下地層71の幅方向(図4の線III-III)における、最も厚い箇所での厚みを示している。厚みT2についても同様である。封止部70tの厚みT3、すなわち厚みT1と厚みT2との和、は、310μm以上710μm以下であることが好ましい。下地層71の厚みT1は、60μm以上300μm以下であることが好ましい。
The foundation layer 71 has a thickness T1, and the adhesive layer 72t has a thickness T2. The thickness T1 indicates the thickness at the thickest portion in the width direction of the base layer 71 (line III-III in FIG. 4). The same applies to the thickness T2. The thickness T3 of the sealing portion 70t, that is, the sum of the thickness T1 and the thickness T2, is preferably 310 μm or more and 710 μm or less. The thickness T1 of the underlayer 71 is preferably 60 μm or more and 300 μm or less.
(蓋体の製造方法)
以下、蓋体80t(図3)の製造方法の概要について説明する。 (Method for manufacturing lid)
Hereinafter, the outline of the manufacturing method of thelid 80t (FIG. 3) will be described.
以下、蓋体80t(図3)の製造方法の概要について説明する。 (Method for manufacturing lid)
Hereinafter, the outline of the manufacturing method of the
まず、基体部81が準備される。基体部81上に液状の熱硬化性接着材が塗布されることによって、未硬化状態にある下地層が形成される。この下地層が加熱されることによって硬化状態とされる。これにより、硬化状態にある下地層71が形成される。加熱の際に下地層は、硬化状態となる前に、最初に液状状態から半硬化状態となり、さらなる加熱によって半硬化状態からいったん軟化状態となる。すなわち、下地層の粘度がいったん低下する。このため、下地層の断面形状は、軟化状態において表面張力によって半楕円形状となる。この半楕円形状が維持されたまま、さらなる加熱によって下地層は軟化状態から硬化状態となる。
First, the base portion 81 is prepared. By applying a liquid thermosetting adhesive on the base portion 81, an uncured base layer is formed. The underlayer is heated to be cured. Thereby, the base layer 71 in a cured state is formed. During the heating, the base layer is first changed from a liquid state to a semi-cured state before being set to a cured state, and is further changed from a semi-cured state to a softened state by further heating. That is, the viscosity of the underlayer once decreases. For this reason, the cross-sectional shape of the underlayer becomes a semi-elliptical shape due to surface tension in the softened state. While the semi-elliptical shape is maintained, the underlayer is changed from a softened state to a hardened state by further heating.
次に、下地層71上に液状の熱硬化性接着材が塗布されることによって、未硬化状態にある接着層が形成される。この接着層が加熱されることによって半硬化状態とされる。これにより、半硬化状態にある接着層72tが形成される。下地層71を形成するために塗布される熱硬化性接着材と、接着層72tを形成するために塗布される熱硬化性接着材とは、同様の材料であってよい。この場合、接着層72tの半硬化状態を得るための加熱の温度は、下地層71の硬化状態を得るための加熱の温度よりも低い。
Next, a liquid thermosetting adhesive is applied on the base layer 71 to form an uncured adhesive layer. The adhesive layer is heated to be semi-cured. Thereby, the adhesive layer 72t in a semi-cured state is formed. The thermosetting adhesive applied to form the foundation layer 71 and the thermosetting adhesive applied to form the adhesive layer 72t may be the same material. In this case, the heating temperature for obtaining the semi-cured state of the adhesive layer 72 t is lower than the heating temperature for obtaining the cured state of the underlayer 71.
次に、蓋体80tの製造方法の具体例について、以下に説明する。
Next, a specific example of a method for manufacturing the lid 80t will be described below.
下地層71を形成するために、基体部81に、エポキシ樹脂接着材および溶剤を含むペーストが、スクリーン印刷方式またはディスペンサ方式を用いて塗布される。次に、硬化状態を得るための加熱(例えば170℃~200℃の硬化温度での加熱)が行われる。これにより、溶剤が揮発され、さらにエポキシ樹脂接着材が硬化される。その後、接着層72tを形成するために、上記と同様の方法で同様のペーストが再度塗布される。それによって形成された上塗り層の半硬化状態を得るために、加熱(例えば、上記硬化温度よりも低い100℃~120℃の半硬化温度での加熱)が行われる。これにより、上塗りされた層から溶剤が揮発され、さらに、この層のエポキシ樹脂接着材が半硬化される。
In order to form the foundation layer 71, a paste containing an epoxy resin adhesive and a solvent is applied to the base portion 81 using a screen printing method or a dispenser method. Next, heating to obtain a cured state (for example, heating at a curing temperature of 170 ° C. to 200 ° C.) is performed. As a result, the solvent is volatilized and the epoxy resin adhesive is cured. Thereafter, in order to form the adhesive layer 72t, the same paste is applied again by the same method as described above. In order to obtain a semi-cured state of the overcoat layer formed thereby, heating (for example, heating at a semi-curing temperature of 100 ° C. to 120 ° C. lower than the curing temperature) is performed. As a result, the solvent is volatilized from the overcoated layer, and the epoxy resin adhesive of this layer is semi-cured.
なお、加熱後の下地層71の断面形状は上述したように半楕円形状となるが、加熱前の断面形状は、塗布条件によって異なる。例えば、スクリーン印刷方式が適用された場合は、この断面形状は、典型的には略長方形状である。一方、ディスペンサ方式が適用された場合は、この断面形状は、典型的には、塗布後かつ加熱前の時点で既に半楕円形状を有している。
In addition, although the cross-sectional shape of the underlayer 71 after heating becomes a semi-elliptical shape as described above, the cross-sectional shape before heating differs depending on the coating conditions. For example, when a screen printing method is applied, the cross-sectional shape is typically a substantially rectangular shape. On the other hand, when the dispenser method is applied, this cross-sectional shape typically has a semi-elliptical shape already after application and before heating.
(電子装置の製造方法)
図5~図7のそれぞれは、電子装置90(図2)の製造方法の第1~3の工程を示す概略断面図である。 (Electronic device manufacturing method)
Each of FIGS. 5 to 7 is a schematic cross-sectional view showing the first to third steps of the method for manufacturing the electronic device 90 (FIG. 2).
図5~図7のそれぞれは、電子装置90(図2)の製造方法の第1~3の工程を示す概略断面図である。 (Electronic device manufacturing method)
Each of FIGS. 5 to 7 is a schematic cross-sectional view showing the first to third steps of the method for manufacturing the electronic device 90 (FIG. 2).
図5を参照して、前述した電子部品収納用パッケージ10が準備される。図6を参照して、電子部品収納用パッケージ10の放熱基板13の搭載面13m上に電子部品8が搭載される。例えば、搭載面13m上に電子部品8がはんだ付けされる。次に、電子部品8が金属端子15に配線部9によって電気的に接続される。また一方で、蓋体80t(図3)が準備される。
Referring to FIG. 5, the electronic component storage package 10 described above is prepared. Referring to FIG. 6, electronic component 8 is mounted on mounting surface 13 m of heat dissipation board 13 of electronic component storage package 10. For example, the electronic component 8 is soldered on the mounting surface 13m. Next, the electronic component 8 is electrically connected to the metal terminal 15 by the wiring portion 9. On the other hand, a lid 80t (FIG. 3) is prepared.
図7を参照して、蓋体80tが電子部品収納用パッケージ10上に載置される。具体的には、蓋体80tの封止部70tの接着層72tが、電子部品8の周りにおいて電子部品収納用パッケージ10に接触させられる。この時点では、接着層72tは半硬化状態にある。
Referring to FIG. 7, the lid 80 t is placed on the electronic component storage package 10. Specifically, the adhesive layer 72 t of the sealing portion 70 t of the lid 80 t is brought into contact with the electronic component storage package 10 around the electronic component 8. At this time, the adhesive layer 72t is in a semi-cured state.
次に、接着層72tが、電子部品8の周りにおいて電子部品収納用パッケージ10上に所定の荷重LDで押し付けられる。適切な荷重LDは、電子部品収納用パッケージ10の寸法設計に依存するが、例えば500g以上1kg以下程度である。荷重LDでの押し付けが行われながら、接着層72tが加熱される。加熱された接着層72tは、まず軟化状態へと変化する。これにより接着層72tの粘度が低下する。その結果、接着層72tは電子部品収納用パッケージ10上で濡れ広がる。すなわち、接着層72tは、図7における下方に向かって蓋体80tからテーパ状に延びている状態(図7)から、逆テーパ状に延びている状態へと変化する。その後、加熱による硬化反応の進行にともなって、接着層72tは硬化状態(図2)へと変化する。このように接着層72tは、半硬化状態から軟化状態を経て硬化状態に変化させられる。その結果、半硬化状態にある接着層72tが、硬化状態にある接着層72c(図2)に変化する。その結果、電子部品収納用パッケージ10に蓋体80cが接合される。これにより、電子部品8が封止される。
Next, the adhesive layer 72t is pressed around the electronic component 8 onto the electronic component storage package 10 with a predetermined load LD. The appropriate load LD depends on the dimensional design of the electronic component storage package 10, but is, for example, about 500 g to 1 kg. The adhesive layer 72t is heated while being pressed with the load LD. The heated adhesive layer 72t first changes to a softened state. As a result, the viscosity of the adhesive layer 72t decreases. As a result, the adhesive layer 72t spreads wet on the electronic component storage package 10. That is, the adhesive layer 72t changes from a state (FIG. 7) extending downward from the lid 80t in a downward direction in FIG. 7 to a state extending in a reverse taper shape. Thereafter, with the progress of the curing reaction by heating, the adhesive layer 72t changes to a cured state (FIG. 2). Thus, the adhesive layer 72t is changed from the semi-cured state to the cured state through the softened state. As a result, the adhesive layer 72t in the semi-cured state is changed to the adhesive layer 72c (FIG. 2) in the cured state. As a result, the lid 80 c is joined to the electronic component storage package 10. Thereby, the electronic component 8 is sealed.
以上により、電子装置90(図2)が得られる。
Thus, the electronic device 90 (FIG. 2) is obtained.
(比較例)
図8は、比較例における蓋体89tの構成を示す断面図である。なお図8の断面は、蓋体89tが有する矩形形状の短辺方向に平行である。蓋体89tは、半硬化状態にある接着層79tを有している。蓋体89tは、蓋体80t(図3)と異なり、下地層71を有していない。よって接着層79tは基体部81上に直接設けられている。 (Comparative example)
FIG. 8 is a cross-sectional view showing the configuration of thelid 89t in the comparative example. In addition, the cross section of FIG. 8 is parallel to the short side direction of the rectangular shape which the cover body 89t has. The lid body 89t has an adhesive layer 79t in a semi-cured state. Unlike the lid body 80t (FIG. 3), the lid body 89t does not have the base layer 71. Therefore, the adhesive layer 79t is provided directly on the base portion 81.
図8は、比較例における蓋体89tの構成を示す断面図である。なお図8の断面は、蓋体89tが有する矩形形状の短辺方向に平行である。蓋体89tは、半硬化状態にある接着層79tを有している。蓋体89tは、蓋体80t(図3)と異なり、下地層71を有していない。よって接着層79tは基体部81上に直接設けられている。 (Comparative example)
FIG. 8 is a cross-sectional view showing the configuration of the
図9は、比較例における電子装置99の構成を示す断面図である。電子装置99は、蓋体89t(図8)を用いて製造される。具体的には、蓋体89tの接着層79tが、電子部品8の周りにおいて電子部品収納用パッケージ10に接触させられる。次に、接着層79tが、電子部品8の周りにおいて電子部品収納用パッケージ10上に所定の荷重で押し付けられながら加熱される。これにより、接着層79tが半硬化状態から硬化状態に変化させられる。言い換えれば、半硬化状態にある接着層79tが、硬化状態にある接着層79cに変化する。これにより、電子部品収納用パッケージ10に蓋体89cが接合され、その結果、電子部品8が封止される。以上により、電子装置99が得られる。
FIG. 9 is a cross-sectional view showing the configuration of the electronic device 99 in the comparative example. The electronic device 99 is manufactured using the lid 89t (FIG. 8). Specifically, the adhesive layer 79 t of the lid 89 t is brought into contact with the electronic component storage package 10 around the electronic component 8. Next, the adhesive layer 79 t is heated while being pressed around the electronic component 8 onto the electronic component storage package 10 with a predetermined load. Thereby, the adhesive layer 79t is changed from the semi-cured state to the cured state. In other words, the adhesive layer 79t in the semi-cured state is changed to the adhesive layer 79c in the cured state. Thereby, the lid 89c is joined to the electronic component storage package 10, and as a result, the electronic component 8 is sealed. As described above, the electronic device 99 is obtained.
上記封止工程において、接着層79t(図8)は、加熱されることによって、まず軟化状態とされる。基体部81と電子部品収納用パッケージ10との間における接着層79tの厚みは、軟化状態にある接着層79tが受ける荷重に応じて、大きく減少し得る。前述したように、歩留まり低下につながるブローホールが接着層79cに形成されることを避けるためには、上記荷重をある程度大きくする必要がある。この荷重が大きいほど、電子部品収納用パッケージ10と基体部81との間で、軟化状態にある接着層79tがより圧縮される。よって荷重が大きいほど、電子部品収納用パッケージ10と基体部81との間における硬化後の接着層79cの厚みT9c(図9)も小さくなる。厚みT9cが小さいほど、電子部品収納用パッケージ10と蓋体89cとの接合部に加わる応力を、弾塑性体としての接着層79cが変形することにより緩和する効果が小さくなる。このため、過酷な条件下での使用においては、上記応力に起因して接着層79cが基体部81または電子部品収納用パッケージ10から剥離しやすくなる。接着層79cが剥離すれば、蓋体89cと電子部品収納用パッケージ10との間の気密性が失われる。よって比較例においては、封止工程の歩留まりと、封止部の気密信頼性との間にトレードオフが存在している。
In the sealing step, the adhesive layer 79t (FIG. 8) is first softened by being heated. The thickness of the adhesive layer 79t between the base portion 81 and the electronic component storage package 10 can be greatly reduced according to the load received by the adhesive layer 79t in the softened state. As described above, it is necessary to increase the load to some extent in order to avoid the formation of blow holes in the adhesive layer 79c that lead to a decrease in yield. The larger this load, the more the adhesive layer 79t in the softened state is compressed between the electronic component storage package 10 and the base portion 81. Therefore, the greater the load, the smaller the thickness T9c (FIG. 9) of the adhesive layer 79c after curing between the electronic component housing package 10 and the base portion 81. The smaller the thickness T9c, the smaller the effect of relaxing the stress applied to the joint between the electronic component housing package 10 and the lid 89c by the deformation of the adhesive layer 79c as an elastic-plastic body. For this reason, when used under severe conditions, the adhesive layer 79c is easily peeled off from the base portion 81 or the electronic component storage package 10 due to the stress. If the adhesive layer 79c is peeled off, the airtightness between the lid 89c and the electronic component storage package 10 is lost. Therefore, in the comparative example, there is a trade-off between the yield of the sealing process and the hermetic reliability of the sealing portion.
(効果)
本実施の形態における蓋体80t(図3)によれば、蓋体80tは下地層71および接着層72tを有している。接着層72tは、加熱されることによって軟化した後に硬化する。よって、蓋体80tと電子部品収納用パッケージ10とを所定の荷重LD(図7)下で互いに接触させつつ接着層72tを加熱することによって、蓋体80tを電子部品収納用パッケージ10に接合する工程である封止工程を実施することができる。一方、下地層71は封止工程前に既に硬化されているので、封止工程において加熱されても軟化しない。このため、歩留まり向上のために封止工程において大きな荷重LDが適用された場合であっても、封止工程後の封止部70c(図2)の厚みは、下地層71の厚みを下回ることがない。よって、下地層71の厚みを十分に大きくしておくことによって、荷重LDの大きさにかかわらず、封止部70cの厚みも十分に大きくなる。このため電子部品収納用パッケージ10と蓋体80tとの接合部に加わる、熱応力などの応力を、弾塑性体としての樹脂接着材(封止部70c)が変形することにより緩和する効果が、大きくなる。その結果、封止部70cの気密信頼性が十分に確保される。以上から、封止工程の十分な歩留まりを確保しつつ、封止部70cの気密信頼性を向上させることができる。 (effect)
According tolid 80t (FIG. 3) in the present embodiment, lid 80t has base layer 71 and adhesive layer 72t. The adhesive layer 72t is cured after being softened by being heated. Therefore, the lid 80t is heated to the electronic component storage package 10 while the lid 80t and the electronic component storage package 10 are brought into contact with each other under a predetermined load LD (FIG. 7), thereby joining the lid 80t to the electronic component storage package 10. The sealing process which is a process can be implemented. On the other hand, since the base layer 71 has already been cured before the sealing step, it does not soften even when heated in the sealing step. For this reason, even when a large load LD is applied in the sealing process to improve the yield, the thickness of the sealing portion 70c (FIG. 2) after the sealing process is less than the thickness of the base layer 71. There is no. Therefore, by sufficiently increasing the thickness of the base layer 71, the thickness of the sealing portion 70c becomes sufficiently large regardless of the magnitude of the load LD. For this reason, the effect of relaxing the stress such as thermal stress applied to the joint between the electronic component storage package 10 and the lid 80t by the deformation of the resin adhesive (sealing portion 70c) as an elastic-plastic body, growing. As a result, the airtight reliability of the sealing portion 70c is sufficiently ensured. From the above, it is possible to improve the hermetic reliability of the sealing portion 70c while ensuring a sufficient yield in the sealing process.
本実施の形態における蓋体80t(図3)によれば、蓋体80tは下地層71および接着層72tを有している。接着層72tは、加熱されることによって軟化した後に硬化する。よって、蓋体80tと電子部品収納用パッケージ10とを所定の荷重LD(図7)下で互いに接触させつつ接着層72tを加熱することによって、蓋体80tを電子部品収納用パッケージ10に接合する工程である封止工程を実施することができる。一方、下地層71は封止工程前に既に硬化されているので、封止工程において加熱されても軟化しない。このため、歩留まり向上のために封止工程において大きな荷重LDが適用された場合であっても、封止工程後の封止部70c(図2)の厚みは、下地層71の厚みを下回ることがない。よって、下地層71の厚みを十分に大きくしておくことによって、荷重LDの大きさにかかわらず、封止部70cの厚みも十分に大きくなる。このため電子部品収納用パッケージ10と蓋体80tとの接合部に加わる、熱応力などの応力を、弾塑性体としての樹脂接着材(封止部70c)が変形することにより緩和する効果が、大きくなる。その結果、封止部70cの気密信頼性が十分に確保される。以上から、封止工程の十分な歩留まりを確保しつつ、封止部70cの気密信頼性を向上させることができる。 (effect)
According to
好ましくは、基体部81は、セラミックス、または、セラミックス粒子が添加された樹脂から作られている。これにより基体部81は、十分な機械的な強度を得ることができ、さらに、熱硬化性接着材からなる封止部70cと強固に接着され得る。なお、基体部81は樹脂から作られていてもよく、その場合であっても基体部81は、熱硬化性接着材からなる封止部70cと強固に接着され得る。
Preferably, the base portion 81 is made of ceramics or a resin to which ceramic particles are added. Thereby, the base portion 81 can obtain sufficient mechanical strength, and can be firmly bonded to the sealing portion 70c made of a thermosetting adhesive. The base portion 81 may be made of resin, and even in that case, the base portion 81 can be firmly bonded to the sealing portion 70c made of a thermosetting adhesive.
好ましくは、封止部70tの下地層71は、基体部81の曲げ弾性率よりも小さな曲げ弾性率を有している。これにより、封止部70cにかかる応力を下地層71によって効果的に緩和することができる。
Preferably, the base layer 71 of the sealing portion 70 t has a bending elastic modulus smaller than that of the base portion 81. Thereby, the stress applied to the sealing portion 70 c can be effectively reduced by the base layer 71.
好ましくは、接着層72tはエポキシ樹脂を含有している。これにより接着層72tは、耐熱性、機械的強度および耐薬品性をバランス良く備える。
Preferably, the adhesive layer 72t contains an epoxy resin. Thereby, the adhesive layer 72t has a good balance of heat resistance, mechanical strength, and chemical resistance.
好ましくは、下地層71および接着層72tの各々はエポキシ樹脂を含有している。これにより、下地層71および接着層72tの原料が共通化され得る。
Preferably, each of the base layer 71 and the adhesive layer 72t contains an epoxy resin. Thereby, the raw material of the base layer 71 and the adhesive layer 72t can be shared.
本実施の形態における電子装置90の製造方法によれば、蓋体80t(図3)は、下地層71および接着層72tを有している。接着層72tは、加熱されることによって軟化した後に硬化する。よって、蓋体80tと電子部品収納用パッケージ10とを所定の荷重LD(図7)下で互いに接触させつつ接着層72tを加熱することによって、蓋体80tを電子部品収納用パッケージ10に接合する工程である封止工程を実施することができる。一方、下地層71は封止工程前に既に硬化されているので、封止工程において加熱されても軟化しない。このため、歩留まり向上のために封止工程において大きな荷重LDが適用された場合であっても、封止工程後の封止部70c(図2)の厚みは、下地層71の厚みを下回ることがない。よって、下地層71の厚みを十分に大きくしておくことによって、荷重LDの大きさにかかわらず、封止部70cの厚みも十分に大きくなる。その結果、封止部70cの気密信頼性が十分に確保される。以上から、封止工程の十分な歩留まりを確保しつつ、封止部70cの気密信頼性を向上させることができる。
According to the manufacturing method of electronic device 90 in the present embodiment, lid 80t (FIG. 3) has base layer 71 and adhesive layer 72t. The adhesive layer 72t is cured after being softened by being heated. Therefore, the lid 80t is heated to the electronic component storage package 10 while the lid 80t and the electronic component storage package 10 are brought into contact with each other under a predetermined load LD (FIG. 7), thereby joining the lid 80t to the electronic component storage package 10. The sealing process which is a process can be implemented. On the other hand, since the base layer 71 has already been cured before the sealing step, it does not soften even when heated in the sealing step. For this reason, even when a large load LD is applied in the sealing process to improve the yield, the thickness of the sealing portion 70c (FIG. 2) after the sealing process is less than the thickness of the base layer 71. There is no. Therefore, by sufficiently increasing the thickness of the base layer 71, the thickness of the sealing portion 70c becomes sufficiently large regardless of the magnitude of the load LD. As a result, the airtight reliability of the sealing portion 70c is sufficiently ensured. From the above, it is possible to improve the hermetic reliability of the sealing portion 70c while ensuring a sufficient yield in the sealing process.
本実施の形態における電子装置90(図2)によれば、蓋体80cの封止部70cは、接着層72cおよび下地層71を含む。これにより、封止部70cの厚みを、接着層72cの厚みにかかわらず、下地層71の厚みよりも大きくすることができる。よって、接着層72cの厚みにかかわらず、封止部70cの十分な厚みを確保することができる。その結果、封止部70cの気密信頼性は十分に確保されるので、封止工程の条件は、歩留まり向上に重きをおいて最適化することができる。よって、封止工程の十分な歩留まりを確保しつつ、封止部70cの気密信頼性を向上させることができる。
According to the electronic device 90 (FIG. 2) in the present embodiment, the sealing portion 70c of the lid 80c includes the adhesive layer 72c and the base layer 71. Thereby, the thickness of the sealing part 70c can be made larger than the thickness of the foundation | substrate layer 71 irrespective of the thickness of the contact bonding layer 72c. Therefore, a sufficient thickness of the sealing portion 70c can be ensured regardless of the thickness of the adhesive layer 72c. As a result, the airtight reliability of the sealing portion 70c is sufficiently ensured, so that the conditions for the sealing process can be optimized with emphasis on yield improvement. Therefore, the airtight reliability of the sealing portion 70c can be improved while ensuring a sufficient yield in the sealing process.
好ましくは、下地層71と接着層72cとの界面は、封止部70cの幅方向の断面視(図2)において半楕円形状を有している。これにより接着層72cは、少ない体積で大きな厚みを有することができる。
Preferably, the interface between the base layer 71 and the adhesive layer 72c has a semi-elliptical shape in a cross-sectional view in the width direction of the sealing portion 70c (FIG. 2). Thereby, the adhesive layer 72c can have a large thickness with a small volume.
界面が半楕円形状であると、例えば界面が矩形形状である場合に比べ、封止工程で蓋体80cと電子部品収納用パッケージ10とを所定の荷重下で互いに接触させつつ加熱した際に、軟化した接着層72cがパッケージ10の内部(キャビティ)への向きと外部への向きとの両方に流れやすくなる。つまり、流れる向きがどちらか一方に偏りにくい。この結果、接着層72cとパッケージ10との接着面積が広くなる。よって、封止工程後の封止部70cに、リーク不良を生じさせる貫通孔が発生しにくくなる。さらに、下地層71を中央としてパッケージ10の内部への向きと外部への向きとの両方に接着層72cのメニスカス形状が形成された場合は、パッケージ10に対する蓋体80cの接着強度が高まる。
When the interface is semi-elliptical, for example, when the interface 80 is heated while bringing the lid 80c and the electronic component storage package 10 into contact with each other under a predetermined load in a sealing process, compared to the case where the interface is rectangular. The softened adhesive layer 72c tends to flow both in the direction toward the inside (cavity) of the package 10 and in the direction toward the outside. That is, the flowing direction is not easily biased to either one. As a result, the bonding area between the adhesive layer 72c and the package 10 is increased. Therefore, it becomes difficult to generate a through hole that causes a leakage defect in the sealing portion 70c after the sealing step. Furthermore, when the meniscus shape of the adhesive layer 72c is formed in both the inner direction and the outer direction of the package 10 with the base layer 71 as the center, the bonding strength of the lid 80c to the package 10 is increased.
(厚みの測定について)
後述する実験において、封止部、下地層および接着層の各々の厚みは、以下のようにして測定した。 (About measurement of thickness)
In the experiment described later, the thickness of each of the sealing portion, the base layer, and the adhesive layer was measured as follows.
後述する実験において、封止部、下地層および接着層の各々の厚みは、以下のようにして測定した。 (About measurement of thickness)
In the experiment described later, the thickness of each of the sealing portion, the base layer, and the adhesive layer was measured as follows.
下地層の厚みの測定は、接着層を設ける前に行われた。まず、下地層が上方を向いた状態(図4に相当)で蓋体が定盤の上に載置された。そして測定として、ダイアルゲージの測定針が、下地層の測定箇所に当接された。定盤表面と測定針との間の距離から基体部の厚みを差し引くことによって、下地層の厚みを得た。この際、下地層の幅方向における位置において最も厚い位置での厚みを、下地層の厚みとした(図3の厚みT1に相当)。10個の測定がこのように行われた。なお、下地層の厚みは、封止の前後で変わらない。
The thickness of the underlayer was measured before providing the adhesive layer. First, the lid was placed on the surface plate with the underlayer facing upward (corresponding to FIG. 4). And as a measurement, the measuring needle of the dial gauge was brought into contact with the measurement location of the underlayer. The thickness of the base layer was obtained by subtracting the thickness of the base portion from the distance between the surface of the platen and the measuring needle. At this time, the thickness at the thickest position in the width direction of the underlayer was defined as the thickness of the underlayer (corresponding to the thickness T1 in FIG. 3). Ten measurements were made in this way. Note that the thickness of the underlayer does not change before and after sealing.
封止前の封止部の厚み(図3の厚みT3に相当)の測定は、半硬化状態にある接着層が下地層上に設けられた後に、上記と同様の方法で行われた。さらに、上記の方法によって得られた下地層の厚みと封止部の厚みとの差分を計算することによって、接着層の厚みを得た(図3の厚みT2に相当)。
Measurement of the thickness of the sealing part before sealing (corresponding to the thickness T3 in FIG. 3) was performed in the same manner as described above after the semi-cured adhesive layer was provided on the base layer. Furthermore, the thickness of the adhesive layer was obtained by calculating the difference between the thickness of the base layer obtained by the above method and the thickness of the sealing portion (corresponding to the thickness T2 in FIG. 3).
封止後の封止部の厚みの測定は、電子装置から蓋体が引きはがされた後に行われた。樹脂が蓋体または電子部品収納用パッケージとの界面で剥がれている箇所で、上記と同様にダイアルゲージを用いて樹脂の厚みが測定された。これにより封止部の厚みを得た(図2の厚みT0に相当)。
The thickness of the sealed portion after sealing was measured after the lid body was peeled off from the electronic device. The thickness of the resin was measured using a dial gauge in the same manner as described above at the location where the resin was peeled off at the interface with the lid or the electronic component storage package. Thereby, the thickness of the sealing portion was obtained (corresponding to the thickness T0 in FIG. 2).
封止後の接着層の厚みは、詳しくは後述するが、封止部近傍の断面を電子顕微鏡を用いて観察することによって測定された。封止部の幅方向における位置において最も薄い位置での厚みを、接着層の厚みとした。10個の測定がこのように行われた。
Although the thickness of the adhesive layer after sealing will be described in detail later, it was measured by observing a cross section near the sealing portion using an electron microscope. The thickness at the thinnest position in the position in the width direction of the sealing portion was defined as the thickness of the adhesive layer. Ten measurements were made in this way.
(実験)
比較例および実施例1~3について、以下の表1を参照して説明する。 (Experiment)
Comparative examples and Examples 1 to 3 will be described with reference to Table 1 below.
比較例および実施例1~3について、以下の表1を参照して説明する。 (Experiment)
Comparative examples and Examples 1 to 3 will be described with reference to Table 1 below.
はじめに、本実験における電子装置の製造方法について、以下に説明する。
First, the manufacturing method of the electronic device in this experiment will be described below.
比較例においては、まず蓋体89t(図8)が作製された。半硬化状態を有する接着層79tは、エポキシ樹脂接着材から形成された。接着層79tの厚みT9tは、240μm~370μmの範囲内であった。次に、この蓋体89tと、30mm×10mmのサイズを有する放熱基板13を含む電子部品収納用パッケージ10(図5)とを用いて、封止工程が行われた。封止工程において蓋体89tに印加される荷重は500gとされた。この荷重は、封止部を介しての蓋体89tの基体部81と電子部品収納用パッケージ10との対向面積当たりの力に換算されれば、圧力0.08MPaに対応する。比較例における封止後の封止部の厚みは、接着層79cの厚みT9cであり、40~60μmであった。以上のように比較例の電子装置が作製された。
In the comparative example, first, a lid 89t (FIG. 8) was produced. The adhesive layer 79t having a semi-cured state was formed from an epoxy resin adhesive. The thickness T9t of the adhesive layer 79t was in the range of 240 μm to 370 μm. Next, a sealing process was performed using the lid 89t and the electronic component storage package 10 (FIG. 5) including the heat dissipation substrate 13 having a size of 30 mm × 10 mm. The load applied to the lid 89t in the sealing process was 500 g. This load corresponds to a pressure of 0.08 MPa when converted to a force per facing area between the base body portion 81 of the lid 89t and the electronic component storage package 10 through the sealing portion. In the comparative example, the thickness of the sealed portion after sealing was the thickness T9c of the adhesive layer 79c, which was 40 to 60 μm. As described above, an electronic device of a comparative example was manufactured.
実施例1においては、まず蓋体80t(図3)が作製された。具体的には、硬化状態を有する下地層71がエポキシ樹脂接着材から形成された。下地層71の厚みT1は80μm~180μmであった。次に、半硬化状態を有する接着層72tがエポキシ樹脂接着材から形成された。接着層72tの厚みは、240μm~370μmの範囲内であった。次に、この蓋体80tと、比較例のものと同様の電子部品収納用パッケージ10とを用いて、封止工程が行われた。封止工程における荷重は比較例のものと同様とされた。硬化状態を有する封止後の封止部70c(図2)の厚みT0は120μm~240μmであった。以上のように実施例1の電子装置90が作製された。
In Example 1, first, a lid 80t (FIG. 3) was produced. Specifically, the base layer 71 having a cured state was formed from an epoxy resin adhesive. The thickness T1 of the underlayer 71 was 80 μm to 180 μm. Next, an adhesive layer 72t having a semi-cured state was formed from an epoxy resin adhesive. The thickness of the adhesive layer 72t was in the range of 240 μm to 370 μm. Next, a sealing process was performed using the lid 80t and the electronic component storage package 10 similar to that of the comparative example. The load in the sealing process was the same as that of the comparative example. The thickness T0 of the sealed portion 70c (FIG. 2) after sealing having a cured state was 120 μm to 240 μm. As described above, the electronic device 90 of Example 1 was manufactured.
実施例1よりも樹脂の厚みを薄めにした実施例2においては、まず蓋体80t(図3)が作製された。具体的には、硬化状態を有する下地層71がエポキシ樹脂接着材から形成された。下地層71の厚みT1は60μm~100μmであった。次に、半硬化状態を有する接着層72tがエポキシ樹脂接着材から形成された。接着層72tの厚みは、250μm~410μmの範囲内であった。次に、この蓋体80tと、比較例のものと同様の電子部品収納用パッケージ10とを用いて、封止工程が行われた。封止工程における荷重は比較例のものと同様とされた。硬化状態を有する封止後の封止部70c(図2)の厚みT0は100μm~160μmであった。以上のように実施例2の電子装置90が作製された。
In Example 2 in which the thickness of the resin was made thinner than in Example 1, first, a lid 80t (FIG. 3) was produced. Specifically, the base layer 71 having a cured state was formed from an epoxy resin adhesive. The thickness T1 of the underlayer 71 was 60 μm to 100 μm. Next, an adhesive layer 72t having a semi-cured state was formed from an epoxy resin adhesive. The thickness of the adhesive layer 72t was in the range of 250 μm to 410 μm. Next, a sealing process was performed using the lid 80t and the electronic component storage package 10 similar to that of the comparative example. The load in the sealing process was the same as that of the comparative example. The thickness T0 of the sealed portion 70c (FIG. 2) after sealing having a cured state was 100 μm to 160 μm. As described above, the electronic device 90 of Example 2 was manufactured.
実施例1よりも樹脂の厚みを厚めにした実施例3においては、まず蓋体80t(図3)が作製された。具体的には、硬化状態を有する下地層71がエポキシ樹脂接着材から形成された。下地層71の厚みT1は130μm~300μmであった。次に、半硬化状態を有する接着層72tがエポキシ樹脂接着材から形成された。接着層72tの厚みは、250μm~410μmの範囲内であった。次に、この蓋体80tと、比較例のものと同様の電子部品収納用パッケージ10とを用いて、封止工程が行われた。封止工程における荷重は比較例のものと同様とされた。硬化状態を有する封止後の封止部70c(図2)の厚みT0は170μm~360μmであった。以上のように実施例3の電子装置90が作製された。
In Example 3 in which the resin was thicker than Example 1, first, a lid 80t (FIG. 3) was produced. Specifically, the base layer 71 having a cured state was formed from an epoxy resin adhesive. The thickness T1 of the underlayer 71 was 130 μm to 300 μm. Next, an adhesive layer 72t having a semi-cured state was formed from an epoxy resin adhesive. The thickness of the adhesive layer 72t was in the range of 250 μm to 410 μm. Next, a sealing process was performed using the lid 80t and the electronic component storage package 10 similar to that of the comparative example. The load in the sealing process was the same as that of the comparative example. The thickness T0 of the sealed portion 70c (FIG. 2) after sealing having a cured state was 170 μm to 360 μm. As described above, the electronic device 90 of Example 3 was manufactured.
比較例および実施例1~3の各々について、ブローホールの有無が、光学顕微鏡による外観観察により検査された。この検査によれば、いずれの場合も不良率が低かった。この理由は、封止工程における荷重が十分に高かったためと考えられる。
For each of the comparative example and Examples 1 to 3, the presence or absence of blowholes was inspected by appearance observation with an optical microscope. According to this inspection, the defect rate was low in all cases. The reason is considered that the load in the sealing process was sufficiently high.
ブローホール検査によってスクリーニングされた試料、すなわちブローホールのない試料、を用いて、JEDEC(Joint Electron Device Engineering Council)の規格MSL3に準拠した信頼性評価試験が行われた。この信頼性評価試験は、特に高い信頼性を確保することを意図した場合に適する、過酷なものである。具体的には、まず温度125℃に加熱された状態で24時間の保持が行われる。続けて、温度30℃かつ湿度60%の恒温恒湿で、192時間の保持が行われる。さらに、260℃のリフロー炉の3回の通過が行われる。その後に、グロスリーク検査が行われる。具体的には、加熱された高沸点液体に試料(電子装置90)が浸漬される。これにより、電子部品収納用パッケージ10の内部の空気が膨張させられる。電子部品収納用パッケージ10の内部が十分に封止されていなければ、高沸点液体中へ空気が漏出する。この漏出に起因した泡が発生するかどうかで、リークの有無が検査される。
Using a sample screened by blowhole inspection, that is, a sample without blowhole, a reliability evaluation test was performed in accordance with JEDEC (Joint Electron Engineering Engineering) standard MSL3. This reliability evaluation test is a harsh one that is particularly suitable when it is intended to ensure high reliability. Specifically, first, holding is performed for 24 hours while being heated to a temperature of 125 ° C. Subsequently, holding for 192 hours is performed at a constant temperature and humidity of 30 ° C. and 60% humidity. Further, three passes through a 260 ° C. reflow furnace are performed. Thereafter, a gross leak inspection is performed. Specifically, the sample (electronic device 90) is immersed in a heated high boiling point liquid. Thereby, the air inside the electronic component storage package 10 is expanded. If the inside of the electronic component storage package 10 is not sufficiently sealed, air leaks into the high boiling point liquid. The presence or absence of a leak is inspected by whether or not bubbles are generated due to the leakage.
この試験の結果、比較例においては3試料のすべてにリークが認められ、実施例1においては10試料のいずれにもリークが認められず、実施例2においては3試料のいずれにもリークが認められず、実施例3においては3試料のいずれにもリークが認められなかった。つまり比較例の不良率に比して、実施例1~3の不良率が低かった。この理由は、実施例1~3においては封止部としてのエポキシ接着材の厚みが100μm以上と比較的大きいために、封止部の剥離が生じにくかったためと考えられる。
As a result of this test, leaks were observed in all three samples in the comparative example, no leaks were observed in any of the ten samples in Example 1, and leaks were observed in any of the three samples in Example 2. In Example 3, no leakage was observed in any of the three samples. That is, the defect rates of Examples 1 to 3 were lower than the defect rate of the comparative example. The reason for this is considered that, in Examples 1 to 3, the thickness of the epoxy adhesive as the sealing portion was relatively large at 100 μm or more, so that the sealing portion was hardly peeled off.
上述したように、下地層71の厚みT1(図3)は、実施例2において60μm~100μmであり、実施例3において130μm~300μmであった。これに鑑みれば、下地層71の厚みとして、60μm以上300μm以下の範囲は好適な範囲に含まれると考えられる。また、接着層72tの厚みT2(図3)は、実施例1において240μm~370μmであり、実施例2、3において250μm~410μmであった。これに鑑みれば、接着層72tの厚みとして、240μm以上410μm以下の範囲は好適な範囲に含まれると考えられる。
As described above, the thickness T1 (FIG. 3) of the underlayer 71 was 60 μm to 100 μm in Example 2, and 130 μm to 300 μm in Example 3. In view of this, it is considered that the range of 60 μm or more and 300 μm or less is included in the preferred range as the thickness of the base layer 71. The thickness T2 (FIG. 3) of the adhesive layer 72t was 240 μm to 370 μm in Example 1, and 250 μm to 410 μm in Examples 2 and 3. In view of this, it is considered that the range of 240 μm or more and 410 μm or less is included in the preferred range as the thickness of the adhesive layer 72t.
また、封止前の封止部70tの厚みT3(図3)は、実施例2においては、下地層71の厚みT1の60μm~100μmと、接着層72tの厚みT2の250μm~410μmとの和、すなわち310μm~510μmであり、実施例3においては、下地層71の厚みT1の130μm~300μmと、接着層72tの厚みT2の250μm~410μmとの和、すなわち380μm~710μmであった。これに鑑みれば、封止前の封止部70tの厚みT3として、310μm以上710μm以下の範囲は好適な範囲に含まれると考えられる。
Further, the thickness T3 (FIG. 3) of the sealing portion 70t before sealing is the sum of 60 μm to 100 μm of the thickness T1 of the base layer 71 and 250 μm to 410 μm of the thickness T2 of the adhesive layer 72t in Example 2. That is, 310 μm to 510 μm. In Example 3, the sum of the thickness T1 of the base layer 71 of 130 μm to 300 μm and the thickness T2 of the adhesive layer 72t of 250 μm to 410 μm, ie, 380 μm to 710 μm. In view of this, it is considered that the range of 310 μm or more and 710 μm or less is included in the preferred range as the thickness T3 of the sealing portion 70t before sealing.
また、封止後の封止部70cの厚みT0(図2)は、実施例2においては100μm~160μmであり、実施例3においては170μm~360μmであった。これに鑑みれば、封止後の封止部70cの厚みT0として、100μm以上360μm以下の範囲は好適な範囲に含まれると考えられる。
Further, the thickness T0 (FIG. 2) of the sealed portion 70c after sealing was 100 μm to 160 μm in Example 2, and 170 μm to 360 μm in Example 3. In view of this, it is considered that the range of 100 μm or more and 360 μm or less is included in the preferred range as the thickness T0 of the sealed portion 70c after sealing.
(電子顕微鏡による観察)
以下において、上記比較例の電子装置99(図9)と、実施例3の電子装置90(図2)との各々における封止部近傍の断面を電子顕微鏡によって観察した結果について説明する。 (Observation with electron microscope)
Hereinafter, a description will be given of the result of observing a cross section in the vicinity of the sealing portion in each of the electronic device 99 (FIG. 9) of the comparative example and the electronic device 90 (FIG. 2) of Example 3 with an electron microscope.
以下において、上記比較例の電子装置99(図9)と、実施例3の電子装置90(図2)との各々における封止部近傍の断面を電子顕微鏡によって観察した結果について説明する。 (Observation with electron microscope)
Hereinafter, a description will be given of the result of observing a cross section in the vicinity of the sealing portion in each of the electronic device 99 (FIG. 9) of the comparative example and the electronic device 90 (FIG. 2) of Example 3 with an electron microscope.
図10は、実施例3における電子装置90の部分断面を示す電子顕微鏡写真である。図11は、図10の一部を拡大しつつ、封止部70cにおける接着層と下地層との界面が観察された位置を指す矢印を付した電子顕微鏡写真である。図12は、図10の一部を拡大しつつ、封止部70cにおける接着層72cと下地層71との界面が観察された位置を強調する破線を付した電子顕微鏡写真である。この顕微鏡写真によれば、電子装置の封止部70cにおいて、硬化状態にある下地層71と、硬化状態にある接着層72cとが形成する界面の存在が観察された。この界面は、封止部70cの幅方向の断面において半楕円形状を有していた。
FIG. 10 is an electron micrograph showing a partial cross section of the electronic device 90 in Example 3. FIG. 11 is an electron micrograph with an arrow indicating a position where an interface between the adhesive layer and the base layer in the sealing portion 70c is observed while enlarging a part of FIG. FIG. 12 is an electron micrograph with a broken line that emphasizes the position where the interface between the adhesive layer 72c and the base layer 71 is observed in the sealing portion 70c while enlarging a part of FIG. According to the micrograph, the presence of an interface formed by the base layer 71 in the cured state and the adhesive layer 72c in the cured state was observed in the sealing portion 70c of the electronic device. This interface had a semi-elliptical shape in the cross section in the width direction of the sealing portion 70c.
図13は、比較例における電子装置99の部分断面を示す電子顕微鏡写真であり、図14はその一部を拡大したものである。比較例においては、接着層79cのみによって、基体部81と、電子部品収納用パッケージの金属端子15とが互いに接合された。接着層79cは電子顕微鏡写真において均質な領域として観察され、実施例3における界面に類する形状は観察されなかった。なお、電子顕微鏡によって測定された封止後の接着層の厚みは、比較例および実施例1~3のいずれにおいても、40μm~60μmであった。
FIG. 13 is an electron micrograph showing a partial cross section of the electronic device 99 in the comparative example, and FIG. 14 is an enlarged view of a part thereof. In the comparative example, the base portion 81 and the metal terminal 15 of the electronic component storage package were joined to each other only by the adhesive layer 79c. The adhesive layer 79c was observed as a homogeneous region in the electron micrograph, and a shape similar to the interface in Example 3 was not observed. The thickness of the adhesive layer after sealing measured with an electron microscope was 40 μm to 60 μm in both the comparative example and Examples 1 to 3.
実施例3の断面視(図10)においては、基体部81の直下において、熱硬化性接着材(すなわち封止部70c)の半分よりも多い量が、基体部81の直下で基体部81と電子部品収納用パッケージ(図10においては金属端子15)との間に位置していた。一方、比較例の断面視(図13)においては、基体部81の直下において、熱硬化性接着材(すなわち接着材79c)の半分よりも少ない量が、基体部81の直下で基体部81と電子部品収納用パッケージ(図10においては金属端子15)との間に位置していた。このことから、実施例3においては、封止前に蓋体80t(図3)の基体部81上に設けられた熱硬化性接着材の多くの割合が封止部の応力緩和に寄与することができるのに対して、比較例においては、上記のような熱硬化性接着材のわずかな部分しか封止部の応力緩和に寄与することができないと考えられる。
In the cross-sectional view of the third embodiment (FIG. 10), the amount that is more than half of the thermosetting adhesive (that is, the sealing portion 70c) is directly below the base portion 81 and the base portion 81 immediately below the base portion 81. It was located between the electronic component storage package (the metal terminal 15 in FIG. 10). On the other hand, in the cross-sectional view of the comparative example (FIG. 13), an amount less than half of the thermosetting adhesive (that is, the adhesive 79c) is directly below the base portion 81 and the base portion 81 immediately below the base portion 81. It was located between the electronic component storage package (the metal terminal 15 in FIG. 10). From this, in Example 3, a large proportion of the thermosetting adhesive provided on the base portion 81 of the lid 80t (FIG. 3) before sealing contributes to stress relaxation of the sealing portion. In contrast, in the comparative example, it is considered that only a small portion of the thermosetting adhesive as described above can contribute to stress relaxation of the sealing portion.
8 電子部品
9 配線部
10 電子部品収納用パッケージ
13 放熱基板
14 枠体
15 金属端子
70c,70t 封止部
71 下地層
72c,72t 接着層
80c,80t 蓋体
81 基体部
90 電子装置 DESCRIPTION OFSYMBOLS 8 Electronic component 9 Wiring part 10 Package for electronic component storage 13 Heat dissipation board 14 Frame 15 Metal terminal 70c, 70t Sealing part 71 Underlayer 72c, 72t Adhesive layer 80c, 80t Cover 81 Base part 90 Electronic device
9 配線部
10 電子部品収納用パッケージ
13 放熱基板
14 枠体
15 金属端子
70c,70t 封止部
71 下地層
72c,72t 接着層
80c,80t 蓋体
81 基体部
90 電子装置 DESCRIPTION OF
Claims (12)
- 基体部(81)と、
前記基体部上に設けられ熱硬化性接着材からなる封止部(70t)と
を備え、前記封止部は、前記基体部上に配置され硬化状態にある下地層(71)と、前記下地層上に設けられ半硬化状態にある接着層(72t)とを含む、蓋体(80t)。 A base portion (81);
A sealing portion (70t) made of a thermosetting adhesive provided on the base portion, the sealing portion being disposed on the base portion and being in a cured state; and the lower layer (71) A lid (80t) including an adhesive layer (72t) provided on the ground layer and in a semi-cured state. - 前記基体部はセラミックスおよび樹脂の少なくともいずれかから作られている、請求項1に記載の蓋体。 The lid according to claim 1, wherein the base portion is made of at least one of ceramics and resin.
- 前記封止部の前記下地層は、前記基体部の曲げ弾性率よりも小さな曲げ弾性率を有している、請求項1または2に記載の蓋体。 The lid according to claim 1 or 2, wherein the base layer of the sealing portion has a bending elastic modulus smaller than that of the base portion.
- 前記下地層と前記接着層との界面は、断面視において半楕円形状を有している、請求項1から3のいずれか1項に記載の蓋体。 The lid according to any one of claims 1 to 3, wherein an interface between the base layer and the adhesive layer has a semi-elliptical shape in a cross-sectional view.
- 前記封止部の前記下地層および前記接着層のうち少なくとも前記接着層はエポキシ樹脂を含有している、請求項1から4のいずれか1項に記載の蓋体。 The lid according to any one of claims 1 to 4, wherein at least the adhesive layer of the base layer and the adhesive layer of the sealing portion contains an epoxy resin.
- 前記封止部の前記下地層および前記接着層の各々はエポキシ樹脂を含有している、請求項1から4のいずれか1項に記載の蓋体。 The lid according to any one of claims 1 to 4, wherein each of the base layer and the adhesive layer of the sealing portion contains an epoxy resin.
- 前記封止部の前記下地層は60μm以上300μm以下の厚みを有している、請求項1から6のいずれか1項に記載の蓋体。 The lid according to any one of claims 1 to 6, wherein the base layer of the sealing portion has a thickness of 60 µm to 300 µm.
- 前記封止部の前記接着層は240μm以上410μm以下の厚みを有している、請求項1から7のいずれか1項に記載の蓋体。 The lid according to any one of claims 1 to 7, wherein the adhesive layer of the sealing portion has a thickness of 240 µm or more and 410 µm or less.
- 請求項1から8のいずれか1項に記載の蓋体(80t)を準備する工程と、
パッケージ(10)内に電子部品(8)を搭載する工程と、
前記パッケージに前記蓋体を接合することによって前記電子部品を封止する工程と、
を備え、
前記電子部品を封止する工程は、前記蓋体の前記封止部の前記接着層を前記パッケージ上に押し付けつつ加熱することによって、前記蓋体の前記封止部の前記接着層を半硬化状態から硬化状態に変化させる工程を含む、電子装置(90)の製造方法。 Preparing the lid (80t) according to any one of claims 1 to 8,
Mounting the electronic component (8) in the package (10);
Sealing the electronic component by joining the lid to the package;
With
In the step of sealing the electronic component, the adhesive layer of the sealing portion of the lid is heated while pressing the adhesive layer of the sealing portion of the lid on the package, so that the adhesive layer of the sealing portion of the lid is semi-cured The manufacturing method of an electronic device (90) including the process of changing to a hardening state from. - 前記蓋体の前記封止部の前記接着層を半硬化状態から硬化状態に変化させる工程の後において、前記蓋体(80c)の前記封止部(70c)は100μm以上360μm以下の厚みを有している、請求項9に記載の電子装置の製造方法。 After the step of changing the adhesive layer of the sealing portion of the lid from a semi-cured state to a cured state, the sealing portion (70c) of the lid (80c) has a thickness of 100 μm or more and 360 μm or less. A method for manufacturing an electronic device according to claim 9.
- パッケージ(10)と、
前記パッケージ内に搭載された電子部品(8)と、
前記パッケージとともに前記電子部品を封止し、基体部(81)と、前記基体部上に設けられ硬化状態にある熱硬化性接着材からなる封止部(70c)と、を含む蓋体(80c)と
を備え、
前記蓋体の前記封止部は、前記基体部上に配置された下地層(71)と、前記下地層上に設けられ前記下地層と界面を形成しており前記パッケージに接合されている接着層(72c)と、を含む、電子装置(90)。 A package (10);
An electronic component (8) mounted in the package;
The electronic component is sealed together with the package, and a lid (80c) including a base portion (81) and a sealing portion (70c) made of a thermosetting adhesive provided on the base portion and in a cured state. )
The sealing portion of the lid body has an underlayer (71) disposed on the base portion, and an adhesive that is provided on the underlayer and forms an interface with the underlayer and is bonded to the package An electronic device (90) comprising a layer (72c). - 前記下地層と前記接着層との界面は断面視において半楕円形状を有している、請求項11に記載の電子装置。 12. The electronic device according to claim 11, wherein an interface between the base layer and the adhesive layer has a semi-elliptical shape in a cross-sectional view.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113178 | 2017-06-08 | ||
JP2017-113178 | 2017-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018225511A1 true WO2018225511A1 (en) | 2018-12-13 |
Family
ID=64566573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019804 WO2018225511A1 (en) | 2017-06-08 | 2018-05-23 | Cover member, method for producing electronic device, and electronic device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018225511A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020261730A1 (en) * | 2019-06-25 | 2020-12-30 | Ngkエレクトロデバイス株式会社 | Package, and method for manufacturing power semiconductor module |
US20220020651A1 (en) * | 2019-05-16 | 2022-01-20 | NGK Electronics Devices, Inc. | Power semiconductor module and manufacturing method for power semiconductor module |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61276239A (en) * | 1985-05-30 | 1986-12-06 | Kyocera Corp | Sealing member for electronic parts |
JPH03135051A (en) * | 1989-10-20 | 1991-06-10 | Fujitsu Ltd | Sealing of semiconductor device |
JP2004015604A (en) * | 2002-06-10 | 2004-01-15 | Murata Mfg Co Ltd | Method of manufacturing piezoelectric component |
JP2014053512A (en) * | 2012-09-07 | 2014-03-20 | Nikon Corp | Solid state image pickup device and manufacturing method of the same |
-
2018
- 2018-05-23 WO PCT/JP2018/019804 patent/WO2018225511A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61276239A (en) * | 1985-05-30 | 1986-12-06 | Kyocera Corp | Sealing member for electronic parts |
JPH03135051A (en) * | 1989-10-20 | 1991-06-10 | Fujitsu Ltd | Sealing of semiconductor device |
JP2004015604A (en) * | 2002-06-10 | 2004-01-15 | Murata Mfg Co Ltd | Method of manufacturing piezoelectric component |
JP2014053512A (en) * | 2012-09-07 | 2014-03-20 | Nikon Corp | Solid state image pickup device and manufacturing method of the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220020651A1 (en) * | 2019-05-16 | 2022-01-20 | NGK Electronics Devices, Inc. | Power semiconductor module and manufacturing method for power semiconductor module |
WO2020261730A1 (en) * | 2019-06-25 | 2020-12-30 | Ngkエレクトロデバイス株式会社 | Package, and method for manufacturing power semiconductor module |
JPWO2020261730A1 (en) * | 2019-06-25 | 2020-12-30 | ||
JP7290723B2 (en) | 2019-06-25 | 2023-06-13 | Ngkエレクトロデバイス株式会社 | Package and method for manufacturing power semiconductor module |
US11901268B2 (en) | 2019-06-25 | 2024-02-13 | NGK Electronics Devices, Inc. | Package with an electrode-attached frame supported by a heat sink, and method for manufacturing power semiconductor module provided therewith |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4108643B2 (en) | Wiring board and semiconductor package using the same | |
US8643127B2 (en) | Sensor device packaging | |
JP5570476B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP2004260138A (en) | Semiconductor device and manufacturing method therefor | |
JPH11204552A (en) | Semiconductor-device packaging method and semiconductor device | |
WO2018225511A1 (en) | Cover member, method for producing electronic device, and electronic device | |
JP2004119465A (en) | Electronic circuit device and method for manufacturing the same | |
JP2010129810A (en) | Semiconductor device mounting board and semiconductor device | |
JP2004274035A (en) | Module having built-in electronic parts and method of manufacturing same | |
JP5098239B2 (en) | Mold package and manufacturing method thereof | |
WO2020261730A1 (en) | Package, and method for manufacturing power semiconductor module | |
JP4381630B2 (en) | Resin-sealed module device for automobile control | |
US11978682B2 (en) | Package, and method for manufacturing power semiconductor module | |
JP6437162B1 (en) | Semiconductor element assembly, semiconductor device, and method of manufacturing semiconductor element assembly | |
JP3303162B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2009188392A (en) | Semiconductor device and method of manufacturing semiconductor device | |
JP5230578B2 (en) | Electronic component mounting board | |
WO2015060120A1 (en) | Crystal oscillation device | |
JPS60147140A (en) | Mounting process of semiconductor element chip | |
JP7528502B2 (en) | Metal Base Board | |
JP7444814B2 (en) | package | |
TWI770553B (en) | Semiconductor device and method of manufacturing the same | |
JP2003068970A (en) | Electronic circuit device for vehicle | |
JP5309472B2 (en) | Manufacturing method of semiconductor device | |
JP5230580B2 (en) | Semiconductor device and mounting method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18813045 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18813045 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |