JP6589683B2 - 検査方法及び検査装置 - Google Patents

検査方法及び検査装置 Download PDF

Info

Publication number
JP6589683B2
JP6589683B2 JP2016030304A JP2016030304A JP6589683B2 JP 6589683 B2 JP6589683 B2 JP 6589683B2 JP 2016030304 A JP2016030304 A JP 2016030304A JP 2016030304 A JP2016030304 A JP 2016030304A JP 6589683 B2 JP6589683 B2 JP 6589683B2
Authority
JP
Japan
Prior art keywords
power supply
value
current
inspection
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016030304A
Other languages
English (en)
Other versions
JP2017146280A (ja
Inventor
裕太 宇於崎
裕太 宇於崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016030304A priority Critical patent/JP6589683B2/ja
Publication of JP2017146280A publication Critical patent/JP2017146280A/ja
Application granted granted Critical
Publication of JP6589683B2 publication Critical patent/JP6589683B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、検査方法及び検査装置に関する。
従来、モータの性能を検査する装置として、特許文献1に記載の装置がある。この検査装置では、検査対象のモータに電力を供給した際にモータから出力されるトルクが正常値であるか否かを判定している。そして、出力トルクが正常値であると判定された場合には、モータは良品であると判断し、出力トルクが異常値であると判定された場合には、モータは不良品であると判断している。
特開2004−325157号公報
ところで、特許文献1に記載の検査装置では、モータに電力を供給するために、電源装置とモータとを電気的に接続する必要がある。これは、電源装置の配線の先端に設けられるチャック部を、モータの電源端子に接続することにより行われる。この場合、配線のチャック部とモータの電源端子との接続部分には接触抵抗が発生する。この接触抵抗は、配線のチャック部とモータの電源端子との接続状態に応じて変化する。このような接触抵抗が大きくなると、モータに印加される電圧が低下するため、モータの出力トルクが低下する。これに起因してモータの出力トルクが異常値であると判定してしまうと、良品のモータを不良品と誤って判断するおそれがある。
なお、このような課題は、モータの性能を検査する装置に限らず、電力の供給に基づいて所要の検査対象を検査する検査装置に共通する課題である。
本発明は、こうした実情に鑑みてなされたものであり、その目的は、より精度良く検査対象を検査することの可能な検査方法及び検査装置を提供することにある。
上記課題を解決するために、検査方法は、配線抵抗検出ステップと、異常検出ステップとを備える。配線抵抗検出ステップでは、電源装置(100)の配線(101,102)に設けられるチャック部(101a,102a)と検査対象(20)の電源端子(21a,21b)との接触部分の抵抗値である接触抵抗値、及び配線そのものの抵抗値を含む配線抵抗値を検出する。異常検出ステップでは、配線抵抗値が所定の抵抗閾値以上であるか否かに基づいて異常を検出する。配線抵抗検出ステップは、第1電圧検出ステップと、第2電圧検出ステップと、電流検出ステップと、抵抗演算ステップと、を含む。第1電圧検出ステップでは、電源装置のチャック部と検査対象の電源端子とが接続された状態であって、且つ検査対象に電流が流れていない状態で検査対象の電源端子に印加されている第1印加電圧値を検出する。第2電圧検出ステップでは、電源装置のチャック部と検査対象の電源端子とが接続された状態であって、且つ検査対象に電流が流れている状態で検査対象の電源端子に印加されている第2印加電圧値を検出する。電流検出ステップでは、検査対象に流れている電流値を検出する。抵抗演算ステップでは、第1印加電圧値から第2印加電圧値を減算した減算値を電流値で除算することにより配線抵抗値を演算する。
また、上記課題を解決するために、検査装置は、抵抗検出部(131)と、異常検出部(132)とを備える。抵抗検出部は、電源装置(100)の配線(101,102)に設けられるチャック部(101a,102aと検査対象(20)の電源端子(21a,21b)との接続部分の抵抗値である接触抵抗値、及び配線そのものの抵抗値を含む配線抵抗値を検出する。異常検出部は、配線抵抗値が所定の抵抗閾値以上であるか否かに基づいて異常を検出する。抵抗検出部は、電源装置のチャック部と検査対象の電源端子とが接続された状態であって、且つ検査対象に電流が流れていない状態で検査対象の電源端子に印加されている第1印加電圧値を検出し、電源装置のチャック部と検査対象の電源端子とが接続された状態であって、且つ検査対象に電流が流れている状態で検査対象の電源端子に印加されている第2印加電圧値を検出し、検査対象に流れている電流値を検出し、第1印加電圧値から第2印加電圧値を減算した減算値を電流値で除算することにより配線抵抗値を演算する。
これらの方法及び構成によれば、接触抵抗値の増加により配線抵抗値が抵抗閾値以上になると、異常が検出される。この異常を検査員が認知することにより、電源装置と検査対象との接続部分の接触抵抗が大きい状態のまま、検査対象の検査を開始することを回避できるため、より精度良く検査対象を検査することが可能となる。
なお、上記手段、及び特許請求の範囲に記載の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
本発明によれば、より精度良く検査対象を検査することができる。
第1実施形態の検査システムの概略構成を示すブロック図である。 第1実施形態の検査対象の電気的な構成を示すブロック図である。 第1実施形態の検査装置により実行される異常検出処理の手順を示すフローチャートである。 第1実施形態の検査装置により実行される配線抵抗検出処理の手順を示すフローチャートである。 第1実施形態の検査対象における電流の流れ方の一例を示すブロック図である。 第1実施形態の検査対象における電流の流れ方の一例を示すブロック図である。 第2実施形態の検査対象の電気的な構成を示すブロック図である。 第2実施形態の検査装置により実行される異常検出処理の手順を示すフローチャートである。
<第1実施形態>
以下、検査装置及び検査方法の第1実施形態について説明する。はじめに、検査方法及び検査装置が用いられる検査システムの概要について説明する。
図1に示されるように、本実施形態の検査システム10は、検査対象20の出力特性を検査する装置である。検査システム10は、電源装置100と、出力測定装置110と、電流検出部120と、検査装置130とを備えている。
電源装置100は、高電位側配線101と、低電位側配線102とを有している。
高電位側配線101の先端部には、高電位側チャック部101aが設けられている。高電位側チャック部101aは、検査対象20の高電位側電源端子21aを挟み込むことの可能な形状を有している。高電位側チャック部101aは、高電位側電源端子21aの挟み込み及びその解除により、高電位側電源端子21aへの取り付け、及び取り外しが可能となっている。
低電位側配線102の先端部には、低電位側チャック部102aが設けられている。低電位側チャック部102aは、検査対象20の低電位側電源端子21bを挟み込むことの可能な形状を有している。低電位側チャック部102aは、低電位側電源端子21bの挟み込み及びその解除により、低電位側電源端子21bへの取り付け、及び取り外しが可能となっている。
高電位側チャック部101a及び低電位側チャック部102aが検査対象20の高電位側電源端子21a及び低電位側電源端子21bにそれぞれ取り付けられることにより、電源装置100と検査対象20とが電気的に接続される。これにより、電源装置100は、高電位側配線101及び低電位側配線102を介して検査対象20へ直流電力を供給することが可能となる。また、電源装置100は、検査装置130からの指令信号に基づいて検査対象20への電力の供給及び停止を行う。
検査対象20は、例えばモータ22を動力源とする装置である。具体的には、図2に示されるように、検査対象20は、モータ22と、インバータ回路23と、電流検出部24と、回転角検出部25と、電圧検出部26と、マイクロコンピュータ27とを備えている。以下では、マイクロコンピュータ27を「マイコン27」と略記する。また、検査対象20は、高電位側電源端子21aに電気的に接続される高電位側配線28aと、低電位側電源端子21bに電気的に接続される低電位側配線28bとを備えている。
インバータ回路23は、スイッチング素子230及びスイッチング素子231の直列回路、スイッチング素子232及びスイッチング素子233の直列回路、並びにスイッチング素子234及びスイッチング素子235の直列回路を有している。インバータ回路23は、これらの直列回路が並列に接続された構成からなる。これらの直列回路は、高電位側配線28aと、低電位側配線28bとの間に設けられている。スイッチング素子230〜235は、例えばIGBT(Insulated Gate Bipolar Transistor)からなる。なお、スイッチング素子230〜235のそれぞれに並列に接続されるダイオードは、環流ダイオードを示している。インバータ回路23は、各スイッチング素子230〜235のオン/オフにより、高電位側配線28a及び低電位側配線28bを介して供給される直流電力を三相交流電力に変換する。この三相交流電力は、各相の給電線Wu,Wv,Wwを介してモータ22に供給される。
電流検出部24は、各相の給電線Wu,Wv,Wwに流れる各相電流、すなわちモータ22に供給される電流を検出するとともに、検出された各相電流Iに応じた信号をマイコン27に出力する。
回転角検出部25は、モータ22の回転角θを検出するとともに、検出された回転角に応じた信号をマイコン27に出力する。
電圧検出部26は、分圧抵抗260,261と、A/D(アナログ/デジタル)変換器262とを有している。分圧抵抗260,261は、直列に接続されており、高電位側配線28aと低電位側配線28bとの間に設けられている。A/D変換器262には、高電位側配線28aと低電位側配線28bとの間に印加されている電圧が分圧抵抗260,261により分圧されて入力される。A/D変換器262は、この分圧された電圧値をアナログ信号からデジタル信号に変換してマイコン27に出力する。
マイコン27は、CPUや記憶装置等により構成されている。マイコン27は、電流検出部24及び回転角検出部25のそれぞれの出力信号に基づいてモータ22の各相電流値及び回転角の情報を取得する。マイコン27は、取得したモータ22の各相電流値及び回転角に基づいてインバータ回路23の各スイッチング素子230〜235をオン/オフさせることにより、モータ22の駆動を制御する。
マイコン27は、電圧検出部26のA/D変換器262の出力信号に基づいて、分圧抵抗260,261により分圧された電圧値の情報を取得するとともに、取得した電圧値の情報に基づいて、高電位側配線28aと低電位側配線28bとの間に印加されている電圧値Vmの情報を取得する。以下では、便宜上、この電圧値Vmを「印加電圧値Vm」とも称する。マイコン27は、印加電圧値Vmが所定の範囲内であるか否かを監視しており、印加電圧値Vmが所定の範囲から外れた場合には、モータ22を停止させる等のフェイルセーフ制御を実行する。
マイコン27は、検査装置130と通信可能に接続されている。マイコン27は、検査対象20の各種情報を検査装置130に送信する。例えば、マイコン27は、印加電圧値Vmの情報を検査装置130に送信する。また、マイコン27は、検査装置130から送信される指令信号に基づいてスイッチング素子230〜235をオン/オフさせる。
図1に示されるように、出力測定装置110は、電源装置100から検査対象20への電力の供給によりモータ22が駆動した際のモータ22の出力を測定する。出力測定装置110により測定される値は、例えばモータ22の出力トルクである。出力測定装置110により測定されるモータ22の出力特性に基づいて、モータ22が良品であるか否かの検査が行われる。
電流検出部120は、シャント抵抗121と、電圧センサ122とを有している。シャント抵抗121は、高電位側配線101に配置されている。電圧センサ122は、シャント抵抗121の両端間の電圧Vrを検出するとともに、検出した電圧に応じた信号を出力する。電圧センサ122の出力信号は、検査装置130に取り込まれている。
検査装置130は、CPUや記憶装置等を有するマイクロコンピュータを中心に構成されている。検査装置130は、抵抗検出部131と、異常検出部132とを有している。
抵抗検出部131は、配線抵抗値Rwを検出する。本実施形態の配線抵抗値Rwは、電源装置100の配線101,102そのものの抵抗値だけでなく、接触抵抗値を含む値である。接触抵抗値は、配線101,102のそれぞれのチャック部101a,102aと検査対象20の電源端子21a,21bとの接触部分の抵抗値である。
具体的には、抵抗検出部131は、電流検出部120の電圧センサ122から出力される信号に基づいてシャント抵抗121の両端間の電圧値Vrの情報を取得するとともに、この電圧値Vrをシャント抵抗121の抵抗値Rsで除算することにより、シャント抵抗121に流れている電流値Imを検出する。この電流値Imは、検査対象20に流れている電流値に相当する。抵抗検出部131は、この電流値Imと、検査対象20から送信される印加電圧値Vmとに基づいて配線抵抗値Rwを演算する。異常検出部132は、演算された配線抵抗値Rwが所定の抵抗閾値Rth以上であるか否かを判定し、配線抵抗値Rwが抵抗閾値Rth以上である場合には、異常を検出する。
次に、検査装置130による異常検出処理の手順について具体的に説明する。
まず、検査員が電源装置100のチャック部101a,102aを検査対象20の電源端子21a,21bに取り付けることにより、電源装置100と検査対象20とを電気的に接続する。その後、検査員が検査装置130を操作することにより、検査装置130が図3に示される異常検出処理を開始する。
図3に示されるように、検査装置130では、まず、ステップS10の処理として、抵抗検出部131により配線抵抗検出処理が実行される。配線抵抗検出処理の具体的な手順は、図4に示される通りである。
すなわち、抵抗検出部131は、まず、ステップS100の処理として、検査対象20に指令信号を送信することにより、全てのスイッチング素子230〜235をオフさせる。
抵抗検出部131は、ステップS100の処理に続くステップS101の処理として、電源装置100に指令信号を送信することにより、電源装置100から検査対象20に定電圧V1を印加させる。この際、検査対象20には、図5に一点鎖線で示されるような電流経路R1が形成される。すなわち、全てのスイッチング素子230〜235がオフされているため、電圧検出部26のみを流れる電流経路R1が形成される。このとき、電圧検出部26の分圧抵抗260,261のそれぞれの抵抗値は、配線抵抗値Rwと比較して十分に大きいため、電流経路R1を流れる電流値は、「略0[A]」となる。すなわち、検査対象20に電流が流れていない状態となる。そのため、配線抵抗値Rwによる電圧降下の影響を受けていない第1印加電圧値Vm1が電圧検出部26の両端間に印加されている状態となる。
図4に示されるように、抵抗検出部131は、ステップS101の処理に続くステップS102の処理として、検査対象20の電圧検出部26のA/D変換器262を通じて検出される第1印加電圧値Vm1の情報をマイコン27から取得する。本実施形態では、このステップS100〜S102の処理が、検査対象20のA/D変換器262の出力信号に基づいて第1印加電圧値Vm1を検出する第1電圧検出ステップに相当する。
抵抗検出部131は、ステップS102の処理に続くステップS103の処理として、検査対象20に指令信号を送信することにより、検査対象20に電流が流れるようにスイッチング素子230〜235のうちの特定のスイッチング素子をオンさせる。特定のスイッチング素子としては、例えばスイッチング素子230及びスイッチング素子233が選択される。スイッチング素子230及びスイッチング素子233がオン状態になることにより、検査対象20には、図6に一点鎖線で示されるような電流経路R2が形成される。このとき、電流経路R2には、「0[A]」よりも大きい電流が流れる。すなわち、検査対象20に電流が流れている状態となる。この状態では、配線抵抗値Rwによる電圧降下の影響を受けた第2印加電圧値Vm2が電圧検出部26の両端間に印加されている状態となる。
図4に示されるように、抵抗検出部131は、ステップS103の処理に続くステップS104の処理として、検査対象20の電圧検出部26のA/D変換器262を通じて検出される第2印加電圧値Vm2の情報をマイコン27から取得する。本実施形態では、このステップS103及びS104の処理が、検査対象20のA/D変換器262の出力信号に基づいて第2印加電圧値Vm2を検出する第2電圧検出ステップに相当する。
抵抗検出部131は、ステップS104の処理に続くステップS105の処理として、電流検出部120により、シャント抵抗121に流れている電流値、換言すれば検査対象20に流れている電流値Imの情報を取得する。本実施形態では、このステップS105の処理が電流検出ステップに相当する。
抵抗検出部131は、ステップS105の処理に続くステップS106の処理として、配線抵抗値Rwを演算する。具体的には、抵抗検出部131は、第1印加電圧値Vm1、第2印加電圧値Vm2、及び電流値Imから以下の式f1に基づいて配線抵抗値Rwを演算する。本実施形態では、このステップS106の処理が、抵抗演算ステップに相当する。
Rw=(Vm1−Vm2)/Im (f1)
抵抗検出部131は、配線抵抗値Rwを演算すると、図4に示される配線抵抗検出処理を終了する。本実施形態では、図4に示される配線抵抗検出処理のステップS100〜S106までの処理が、配線抵抗検出ステップに相当する。
検査装置130は、抵抗検出部131が図4に示される配線抵抗検出処理を終了すると、図3に示される異常検出処理に戻る。
図3に示されるように、検査装置130では、ステップS10の処理に続くステップS11〜S13の処理が異常検出部132により実行される。すなわち、異常検出部132は、ステップS11の処理として、配線抵抗値Rwが所定の抵抗閾値Rth以上であるか否かを判断する。異常検出部132は、ステップS11の処理で否定判断した場合には、すなわち配線抵抗値Rwが抵抗閾値Rth未満である場合には、ステップS12の処理として、正常であると判定する。一方、異常検出部132は、ステップS11の処理で肯定判断した場合には、すなわち配線抵抗値Rwが抵抗閾値Rth以上である場合には、ステップS13の処理として、異常であると判定する。異常検出部132は、異常が検出された場合には、例えば異常を検査員に報知することにより、電源装置100のチャック部101a,102aと検査対象20の電源端子21a,21bとの接続状態を確認するように促す。検査員に異常を報知する方法としては、例えば警報を鳴らすといった方法や、警告灯を点灯させるといった方法等を採用することができる。本実施形態では、ステップS11及びステップS13の処理が異常検出ステップに相当する。
以上説明した本実施形態の検査装置130及び検査方法によれば、以下の(1)〜(3)に示される作用及び効果を得ることができる。
(1)抵抗検出部131は、配線抵抗検出ステップとして、電源装置100のチャック部101a,102aと検査対象20の電源端子21a,21bとの接触部分の抵抗値である接触抵抗値、及び配線101,102そのものの抵抗値を含む配線抵抗値Rwを検出する。また、異常検出部132は、異常検出ステップとして、配線抵抗値Rwが所定の抵抗閾値Rth以上であるか否かに基づいて異常を検出する。これにより、接触抵抗値の増加により配線抵抗値Rwが抵抗閾値Rth以上になると、異常が検出される。この異常を検査員が認知することにより、電源装置100と検査対象20との接続部分の接触抵抗が大きい状態のまま、検査対象20のモータ22の出力特性の検査を開始することを回避できるため、より精度良くモータ22の出力特性を検査することができる。
(2)抵抗検出部131は、第1電圧検出ステップとして、電源装置100のチャック部101a,102aと検査対象20の電源端子21a,21bとが接続された状態であって、且つ検査対象20に電流が流れていない状態で検査対象20の電源端子21a,21bに印加されている第1印加電圧値Vm1を検出する。また、抵抗検出部131は、第2電圧検出ステップとして、電源装置100のチャック部101a,102aと検査対象20の電源端子21a,21bとが接続された状態であって、且つ検査対象20に電流が流れている状態で検査対象20の電源端子21a,21bに印加されている第2印加電圧値Vm2を検出する。さらに、抵抗検出部131は、電流検出ステップとして、検査対象20に流れている電流値Imを電流検出部120により検出する。そして、抵抗検出部131は、抵抗演算ステップとして、上記の式f1に基づいて、第1印加電圧値Vm1から第2印加電圧値Vm2を減算した減算値を電流値Imで除算することにより配線抵抗値Rwを演算する。これにより、分圧抵抗260,261の抵抗値の誤差と、A/D(アナログ/デジタル)変換器262のオフセット誤差による影響を受けなくなるため、配線抵抗値Rwの演算精度を向上させることができる。
(3)抵抗検出部131は、検査対象20のA/D変換器262の出力信号に基づいて第1印加電圧値Vm1及び第2印加電圧値Vm2を検出する。これにより、第1印加電圧値Vm1及び第2印加電圧値Vm2を検出するための電圧センサを別途設ける場合と比較すると、第1印加電圧値Vm1及び第2印加電圧値Vm2を容易に検出することが可能となる。
<第2実施形態>
次に、検査装置130及び検査方法の第2実施形態について説明する。以下、第1実施形態との相違点を中心に説明する。
電源装置100のチャック部101a,102aを検査対象20の電源端子21a,21bに接続した後、検査対象20に瞬間的に大電流を流すと、それらの接続部分に熱が発生し、接触抵抗が低下することが発明者らによって確認されている。これを利用し、本実施形態では、電源装置100から検査対象20に大電流を流して接触抵抗を低下させた後に、配線抵抗値Rwを検出するといった方法を採用している。
具体的には、図7に示されるように、本実施形態の検査装置130は、電流供給指令部133を有している。電流供給指令部133は、図8に示されるように、ステップS10の配線抵抗検出処理が実行される前に、すなわち配線抵抗値Rwを検出するよりも前に、ステップS20の処理を実行する。詳しくは、電流供給指令部133は、ステップS20の処理として、指令信号を電源装置100に送信することにより、検査対象20に所定の電流を流すように電源装置100に指示する。所定の電流は、例えば検査対象20に流すことの可能な最大電流である。本実施形態では、このステップS20の処理が通電ステップに相当する。
電流供給指令部133によりステップS20の処理が実行された後、抵抗検出部131は、検査対象20に流れている電流値を所定の電流値まで低下させた後に、ステップS10の配線抵抗検出処理を実行する。
以上説明した本実施形態の検査装置130及び検査方法によれば、以下の(4)及び(5)に示される作用及び効果を更に得ることができる。
(4)電流供給指令部133は、ステップS10の配線抵抗検出処理が実行される前に、通電ステップとして、電源装置100のチャック部101a,102aと検査対象20の電源端子21a,21bとが接続された状態で電源装置100から検査対象20に所定の電流を流す。これにより、配線抵抗値Rwを低下させることができるため、異常の検出頻度を低減することができる。
(5)電源装置100から検査対象20に流される所定の電流は、検査対象20に流すことの可能な最大電流に設定されている。これにより、より確実に配線抵抗値Rwを低下させることが可能となる。
<他の実施形態>
なお、上記実施形態は、以下の形態にて実施することもできる。
・検査対象20は、モータ22を有するものに限らない。検査対象20としては、電源装置100から供給される電力に基づいて駆動する任意の装置を用いることができる。
・検査装置130が提供する手段及び/又は機能は、実体的な記憶装置に記憶されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組み合わせにより提供することができる。例えば検査装置130がハードウェアである電子回路により提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路により提供することができる。
・本発明は上記の具体例に限定されるものではない。すなわち、上記の具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素及びその配置や条件等は、例示したものに限定されるわけではなく適宜変更することができる。また、前述した実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
20:検査対象
21a,21b:電源端子
100:電源装置
101,102:配線
101a,102a:チャック部
131:抵抗検出部
132:異常検出部
133:電流供給指令部
130:検査装置
262:A/D変換器

Claims (8)

  1. 電源装置(100)の配線(101,102)に設けられるチャック部(101a,102a)と検査対象(20)の電源端子(21a,21b)との接触部分の抵抗値である接触抵抗値、及び前記配線そのものの抵抗値を含む配線抵抗値を検出する配線抵抗検出ステップと、
    前記配線抵抗値が所定の抵抗閾値以上であるか否かに基づいて異常を検出する異常検出ステップと、を備え、
    前記配線抵抗検出ステップは、
    前記電源装置の前記チャック部と前記検査対象の前記電源端子とが接続された状態であって、且つ前記検査対象に電流が流れていない状態で前記検査対象の前記電源端子に印加されている第1印加電圧値を検出する第1電圧検出ステップと、
    前記電源装置の前記チャック部と前記検査対象の前記電源端子とが接続された状態であって、且つ前記検査対象に電流が流れている状態で前記検査対象の前記電源端子に印加されている第2印加電圧値を検出する第2電圧検出ステップと、
    前記検査対象に流れている電流値を検出する電流検出ステップと、
    前記第1印加電圧値から前記第2印加電圧値を減算した減算値を前記電流値で除算することにより前記配線抵抗値を演算する抵抗演算ステップと、を含む
    検査方法。
  2. 前記配線抵抗検出ステップよりも前に実行され、前記電源装置の前記チャック部と前記検査対象の前記電源端子とが接続された状態で前記電源装置から前記検査対象に所定の電流を流す通電ステップを更に備える
    請求項1に記載の検査方法。
  3. 前記所定の電流として、前記検査対象に流すことの可能な最大電流を用いる
    請求項2に記載の検査方法。
  4. 前記検査対象は、
    前記電源端子に印加されている電圧値に応じたアナログ信号をデジタル信号に変換して出力するA/D変換器(262)を有するものであり、
    前記第1電圧検出ステップでは、
    前記A/D変換器の出力信号に基づいて前記第1印加電圧値を検出し、
    前記第2電圧検出ステップでは、
    前記A/D変換器の出力信号に基づいて前記第2印加電圧値を検出する
    請求項1〜3のいずれか一項に記載の検査方法。
  5. 電源装置(100)の配線(101,102)に設けられるチャック部(101a,102aと検査対象(20)の電源端子(21a,21b)との接続部分の抵抗値である接触抵抗値、及び前記配線そのものの抵抗値を含む配線抵抗値を検出する抵抗検出部(131)と、
    前記配線抵抗値が所定の抵抗閾値以上であるか否かに基づいて異常を検出する異常検出部(132)と、を備え、
    前記抵抗検出部は、
    前記電源装置のチャック部と前記検査対象の前記電源端子とが接続された状態であって、且つ前記検査対象に電流が流れていない状態で前記検査対象の前記電源端子に印加されている第1印加電圧値を検出し、
    前記電源装置のチャック部と前記検査対象の前記電源端子とが接続された状態であって、且つ前記検査対象に電流が流れている状態で前記検査対象の前記電源端子に印加されている第2印加電圧値を検出し、
    前記検査対象に流れている電流値を検出し、
    前記第1印加電圧値から前記第2印加電圧値を減算した減算値を前記電流値で除算することにより前記配線抵抗値を演算する
    検査装置。
  6. 前記抵抗検出部により前記配線抵抗値を検出するよりも前に、前記検査対象に所定の電流を流すように前記電源装置に対する指令を行う電流供給指令部(133)を更に備える
    請求項に記載の検査装置。
  7. 前記所定の電流は、前記検査対象に流すことの可能な最大電流に設定されている
    請求項に記載の検査装置。
  8. 前記検査対象は、
    前記電源端子に印加されている電圧に応じたアナログ信号をデジタル信号に変換して出力するA/D変換器(262)を有するものであり、
    前記抵抗検出部は、
    前記A/D変換器の出力信号に基づいて、前記第1印加電圧値、及び前記第2印加電圧値を検出する
    請求項5〜7のいずれか一項に記載の検査装置。
JP2016030304A 2016-02-19 2016-02-19 検査方法及び検査装置 Expired - Fee Related JP6589683B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016030304A JP6589683B2 (ja) 2016-02-19 2016-02-19 検査方法及び検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016030304A JP6589683B2 (ja) 2016-02-19 2016-02-19 検査方法及び検査装置

Publications (2)

Publication Number Publication Date
JP2017146280A JP2017146280A (ja) 2017-08-24
JP6589683B2 true JP6589683B2 (ja) 2019-10-16

Family

ID=59682137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016030304A Expired - Fee Related JP6589683B2 (ja) 2016-02-19 2016-02-19 検査方法及び検査装置

Country Status (1)

Country Link
JP (1) JP6589683B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333674A (ja) * 2006-06-19 2007-12-27 Ricoh Co Ltd ケーブル接続診断装置および診断システム
JP2008298524A (ja) * 2007-05-30 2008-12-11 Denso Corp 回路試験装置及びその運用方法
JPWO2010100754A1 (ja) * 2009-03-06 2012-09-06 ボッシュ株式会社 検出システム及び電気システム
JP2011069720A (ja) * 2009-09-25 2011-04-07 Sanyo Electric Co Ltd 車両用の電源装置及びこの電源装置を搭載する車両
JP5745946B2 (ja) * 2011-06-10 2015-07-08 オリンパス株式会社 断線検出装置
JP2015223008A (ja) * 2012-09-18 2015-12-10 三洋電機株式会社 電源装置及びこの電源装置を備える電動車両並びに蓄電装置
JP6236775B2 (ja) * 2012-12-05 2017-11-29 日産自動車株式会社 検知装置

Also Published As

Publication number Publication date
JP2017146280A (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
US10281528B2 (en) Enhanced protection, diagnosis, and control of power distribution and control units
US9520830B2 (en) Crystal oscillator
JP6046404B2 (ja) 表示装置
US10333311B2 (en) Electric motor control device
US9899954B2 (en) Motor drive apparatus having function of detecting failure of electric shunt
US20170019098A1 (en) Driving circuit of switching device for electric power control
CN115699490A (zh) 开路故障的自诊断方法、计算机化调查系统和模块化逆变器
KR102150872B1 (ko) 모터 전류 센서의 고장 감지 장치 및 방법
JP6589683B2 (ja) 検査方法及び検査装置
JP2007192615A (ja) 電圧センサの異常検出方法、異常検出装置および電圧センサ
US9574925B2 (en) Fluid measurement device having a circuit for precise flow measurement
US10514307B2 (en) Fault detection apparatus
US10992208B2 (en) Converter device for an electrical machine, motor vehicle, and method for operating a converter device
JP2009301418A (ja) プログラマブルコントローラ及びプログラマブルコントローラを用いた異常検出方法
JP2015055596A (ja) 検査装置及び検査方法
JP2007155640A (ja) 集積回路の検査方法と検査装置
JP5369818B2 (ja) インバータ装置の故障検出方法
WO2013145587A1 (ja) 温度検出装置
KR20160039247A (ko) 전자 정류식 전기 모터에서 결함 결정 방법
US9841798B2 (en) Battery, battery controller, and method for the secured digital transmission of current measurement values
US11050362B2 (en) Power conversion device and abnormality detection method
US11002786B2 (en) Device and method for diagnosing the detection of a multi-phase electric current
JP2009229327A (ja) 回路素子測定装置
JP2015114149A (ja) ボンディングワイヤ劣化検出装置及びボンディングワイヤ劣化検出方法
JP6027509B2 (ja) 過電流検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R151 Written notification of patent or utility model registration

Ref document number: 6589683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees