JP6586152B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6586152B2
JP6586152B2 JP2017246212A JP2017246212A JP6586152B2 JP 6586152 B2 JP6586152 B2 JP 6586152B2 JP 2017246212 A JP2017246212 A JP 2017246212A JP 2017246212 A JP2017246212 A JP 2017246212A JP 6586152 B2 JP6586152 B2 JP 6586152B2
Authority
JP
Japan
Prior art keywords
stress
insulating film
resistance
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017246212A
Other languages
Japanese (ja)
Other versions
JP2018067734A (en
Inventor
原田 博文
博文 原田
勝 秋野
勝 秋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Priority to JP2017246212A priority Critical patent/JP6586152B2/en
Publication of JP2018067734A publication Critical patent/JP2018067734A/en
Application granted granted Critical
Publication of JP6586152B2 publication Critical patent/JP6586152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体装置に関する。特に、半導体装置に用いられる抵抗回路に関する。   The present invention relates to a semiconductor device. In particular, the present invention relates to a resistance circuit used in a semiconductor device.

半導体装置あるいは半導体集積回路において用いられる抵抗には、単結晶シリコン半導体基板に半導体基板と逆導電型の不純物を注入した拡散抵抗や、不純物を注入した多結晶シリコンからなる多結晶シリコン抵抗などがある。   Resistors used in a semiconductor device or a semiconductor integrated circuit include a diffused resistor in which an impurity having a conductivity type opposite to that of a semiconductor substrate is implanted into a single crystal silicon semiconductor substrate, and a polycrystalline silicon resistor made of polycrystalline silicon in which an impurity is implanted. .

図2(a)は、従来の多結晶シリコンからなる抵抗素子を平面的に並べた抵抗回路の平面図、図2(b)は図2(a)のA−A‘に沿った断面図を表している。
抵抗素子を構成する多結晶シリコン膜には高濃度不純物領域6及び低濃度不純物領域7を形成する。抵抗素子の抵抗値は高抵抗となる低濃度不純物領域7の不純物濃度で決まる抵抗率及びその長さ・幅で決定し、高濃度不純物領域6は金属配線とのオーミック接続を取るために用いる。
2A is a plan view of a resistance circuit in which resistance elements made of conventional polycrystalline silicon are arranged in a plane, and FIG. 2B is a cross-sectional view taken along the line AA ′ in FIG. Represents.
A high concentration impurity region 6 and a low concentration impurity region 7 are formed in the polycrystalline silicon film constituting the resistance element. The resistance value of the resistance element is determined by the resistivity determined by the impurity concentration of the low-concentration impurity region 7 that has a high resistance, and its length and width, and the high-concentration impurity region 6 is used for establishing an ohmic connection with the metal wiring.

抵抗素子上には中間絶縁膜8を形成し、コンタクトホール9を介して金属配線10によりそれぞれの抵抗素子の電気的な接続が行われる。そして半導体集積回路に用いる抵抗回路は、図2の抵抗素子を金属配線を介して複数直列または並列接続して例えば図3のように同一基板表面に形成する。   An intermediate insulating film 8 is formed on the resistance element, and each resistance element is electrically connected by a metal wiring 10 through a contact hole 9. The resistor circuit used in the semiconductor integrated circuit is formed on the same substrate surface as shown in FIG. 3, for example, by connecting a plurality of resistor elements shown in FIG. 2 in series or in parallel via metal wiring.

抵抗素子上に形成する中間絶縁膜8は、ボロンまたはリンを含み、850℃以上の熱処理を経ることで平坦化され、半導体集積回路内の膜パターンによる高低段差を軽減させる。さらに、金属配線を形成した後には、その上に保護膜としてシリコン窒化膜などの膜11が設けられる。   The intermediate insulating film 8 formed on the resistance element contains boron or phosphorus and is flattened through a heat treatment at 850 ° C. or higher, thereby reducing the height difference due to the film pattern in the semiconductor integrated circuit. Further, after the metal wiring is formed, a film 11 such as a silicon nitride film is provided thereon as a protective film.

この抵抗回路を構成する抵抗素子は、幅や長さなどの平面的な形状を全て同一にレイアウトさせる。そうすることで形状を決定するエッチング加工プロセス時の形状ばらつきをそれぞれの抵抗素子が等しく受ける事になり、抵抗素子同士の抵抗比率を一定に保つ事が出来る。   The resistive elements constituting the resistive circuit are all laid out in the same planar shape such as width and length. By doing so, each resistance element is equally subjected to the shape variation during the etching process for determining the shape, and the resistance ratio between the resistance elements can be kept constant.

その際、抵抗素子の抵抗値及び、抵抗素子間の比率を、抵抗回路の要求に応じて変えるには、図3のように同一形状の抵抗素子を並列または直列に結線する事で実現させる。ここで図3の4R, 2R, 1R, 1/2R(Rは1本の抵抗素子の抵抗値)の抵抗値をもった抵抗回路を実現させるためにそれぞれ、抵抗素子4本の直列接続、抵抗素子2本の直列接続、抵抗素子1本、抵抗素子2本の並列接続、と結線し、複数の抵抗素子からなる抵抗群201〜204を以って抵抗値を調整し抵抗回路を構成する事で、所望の抵抗比率及びその抵抗比率の高精度化を両立させている。   At this time, in order to change the resistance value of the resistance element and the ratio between the resistance elements according to the requirement of the resistance circuit, the resistance elements having the same shape are connected in parallel or in series as shown in FIG. Here, in order to realize a resistance circuit having resistance values of 4R, 2R, 1R, and 1 / 2R (R is the resistance value of one resistance element) in FIG. Connecting two elements in series, one resistance element, and two resistance elements in parallel are connected to each other, and a resistance circuit is formed by adjusting resistance values by using resistance groups 201 to 204 including a plurality of resistance elements. Thus, both a desired resistance ratio and high accuracy of the resistance ratio are achieved.

また抵抗値の高精度化のためには、加工形状の均一化の他に、周囲電圧の影響の低減とその安定化を図ることが必要である。何故なら多結晶シリコン薄膜は半導体であるので、周囲の電位により空乏・蓄積現象を起こし抵抗値が変化するためである。その解決手段も図2には盛り込まれている。   In addition, in order to increase the accuracy of the resistance value, it is necessary to reduce and stabilize the influence of the ambient voltage in addition to making the machining shape uniform. This is because the polycrystalline silicon thin film is a semiconductor, and the resistance value changes due to the depletion / accumulation phenomenon caused by the surrounding potential. The solution is also included in FIG.

まず図2(a)では、抵抗回路の各抵抗群の上に金属配線を形成し、一定の電圧を印加する事で、抵抗素子の周囲の電圧を安定させ、抵抗素子の空乏・蓄積の程度を一定値に固定化させている。また図2(b)に見られるように抵抗素子上の金属配線が中間絶縁膜8を介して抵抗素子を覆うようにそれぞれの抵抗素子群上に形成している。   First, in FIG. 2A, a metal wiring is formed on each resistance group of the resistance circuit, and a constant voltage is applied to stabilize the voltage around the resistance element, and the degree of depletion / accumulation of the resistance element. Is fixed to a constant value. Further, as shown in FIG. 2B, the metal wiring on the resistance element is formed on each resistance element group so as to cover the resistance element via the intermediate insulating film 8.

次にその抵抗素子上の金属配線の電位は各抵抗群の一端子からの電位を与える事で、その抵抗群がもつ電位と近い電位を印加し周囲電圧の影響を最小化し空乏・蓄積の程度を最小化している。   Next, by applying a potential from one terminal of each resistance group to the potential of the metal wiring on the resistance element, a potential close to that of the resistance group is applied to minimize the influence of the ambient voltage and the degree of depletion / accumulation Is minimized.

一方、この図では抵抗素子群の下側、半導体基板内には特別な措置を行なっていないが、ここに抵抗群毎に下側にWell領域や多結晶シリコン電極を形成しその電位を各抵抗素子群の一端子から与えると言う手法もとられることがある。この手法は抵抗回路に印加する電圧が大きいほど精度維持効果が高い。(例えば、特許文献1参照)   On the other hand, in this figure, no special measures are taken on the lower side of the resistance element group and in the semiconductor substrate, but a well region or a polycrystalline silicon electrode is formed on the lower side for each resistance group, and the potential is set to each resistance. There is a case where a method of giving from one terminal of the element group is used. This technique has a higher accuracy maintaining effect as the voltage applied to the resistance circuit is larger. (For example, see Patent Document 1)

特開平09−321229号公報JP 09-32229 A

従来の半導体装置における抵抗素子の作成については以下のような課題があった。
多結晶シリコンからなる抵抗素子上に形成した金属配線は、固有の線膨張係数と形成温度から決まる膜応力を有している。そのため、抵抗素子群毎に金属配線を形成した場合にその面積に応じた応力が下の抵抗素子群にかかりピエゾ抵抗効果で多結晶シリコン抵抗値が変化し、結果としてそれぞれの抵抗素子群の抵抗値が所望の設計値からずれてしまい、抵抗回路の抵抗比のバランスが損なわれてしまう。
The creation of the resistance element in the conventional semiconductor device has the following problems.
A metal wiring formed on a resistance element made of polycrystalline silicon has a film stress determined by a specific linear expansion coefficient and a forming temperature . Therefore, when a metal wiring is formed for each resistance element group, the stress corresponding to the area is applied to the lower resistance element group, and the polycrystalline silicon resistance value changes due to the piezoresistance effect. As a result, the resistance of each resistance element group The value deviates from a desired design value, and the balance of the resistance ratio of the resistor circuit is lost.

この応力は金属の種類によっても変わり、高融点金属のような熱により収縮しやすい膜を採用すると上記影響が顕著となる。
そのため、抵抗群毎に異なった金属膜を形成する従来の抵抗回路は抵抗比の高精度化が困難であるという問題点を有している。
This stress varies depending on the type of metal, and the above-described effect becomes remarkable when a film that is easily shrunk by heat such as a refractory metal is employed.
Therefore, the conventional resistance circuit in which different metal films are formed for each resistance group has a problem that it is difficult to increase the accuracy of the resistance ratio.

本発明は上記課題を解決するために、以下のようにした。すなわち、
半導体基板と、前記半導体基板上に形成したシリコン酸化膜からなる第1の絶縁膜と、前記第1の絶縁膜上に形成した多結晶シリコン薄膜で構成される、低濃度不純物領域と高濃度不純物領域を有する複数の抵抗素子と、前記複数の抵抗素子の表面に接して覆う高応力絶縁膜と、前記高応力絶縁膜の周囲を覆う第2の絶縁膜と、前記複数の抵抗素子の低濃度不純物領域を覆うように形成し、その一端を前記複数の抵抗素子の一端と電気的に接続した複数の金属配線と、を有し、前記高応力絶縁膜は、前記複数の抵抗素子が配置された領域において、前記複数の金属配線よりも広い領域に形成されており、前記複数の金属配線より高い圧縮もしくは引っ張り応力を有する事を特徴とする半導体装置とした。
In order to solve the above-described problems, the present invention has the following configuration. That is,
A low-concentration impurity region and a high-concentration impurity comprising a semiconductor substrate, a first insulating film made of a silicon oxide film formed on the semiconductor substrate, and a polycrystalline silicon thin film formed on the first insulating film A plurality of resistive elements having regions, a high-stress insulating film covering and contacting the surfaces of the plurality of resistive elements, a second insulating film covering the periphery of the high-stress insulating film, and a low concentration of the plurality of resistive elements And a plurality of metal wirings, one end of which is electrically connected to one end of the plurality of resistance elements, and the high-stress insulating film includes the plurality of resistance elements. The semiconductor device is characterized in that it is formed in a wider area than the plurality of metal wirings and has a higher compressive or tensile stress than the plurality of metal wirings.

また、500MPa以上の圧縮もしくは引っ張り応力を有する前記高応力絶縁膜を有する事を特徴とする半導体装置とした。
また、前記高応力絶縁膜が、SiC、SiON、SiCNのいずれひとつからなる一層膜、あるいは、異なる膜を組み合わせた多層膜からなる事を特徴とする半導体装置とした。
Further, the semiconductor device is characterized by having the high-stress insulating film having a compressive or tensile stress of 500 MPa or more.
Further, the semiconductor device is characterized in that the high-stress insulating film is formed of a single layer film made of any one of SiC, SiON, and SiCN, or a multilayer film formed by combining different films.

また、前記高応力絶縁膜が減圧CVD法により作成されたシリコン窒化膜である事を特徴とする半導体装置とした。
また、前記高応力絶縁膜の厚さが0.15um以上である事を特徴とする半導体装置とした。
Further, the semiconductor device is characterized in that the high-stress insulating film is a silicon nitride film formed by a low pressure CVD method.
Further, the semiconductor device is characterized in that the thickness of the high stress insulating film is 0.15 μm or more.

本発明によれば、金属配線の応力による影響を受けない、高精度の抵抗素子を内蔵した半導体集積回路を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor integrated circuit which incorporated the highly accurate resistive element which is not influenced by the stress of metal wiring can be provided.

本発明の第1の実施例の抵抗回路を示す模式平面図及び模式断面図である。FIG. 2 is a schematic plan view and a schematic cross-sectional view showing a resistance circuit according to a first embodiment of the present invention. 従来の抵抗回路を示す模式平面図及び模式断面図である。It is the model top view and schematic cross section which show the conventional resistance circuit. 抵抗回路の回路図の一例である。It is an example of the circuit diagram of a resistance circuit. 本発明の第2の実施例の抵抗回路を示す模式平面図及び模式断面図である。It is the model top view and schematic cross section which show the resistance circuit of the 2nd Example of this invention. 本発明の第1の実施例の抵抗回路を作成するための工程フロー断面図である。It is process flow sectional drawing for creating the resistance circuit of the 1st Example of this invention. 図5に続く、本発明の第1の実施例の抵抗回路を作成するための工程フロー断面図である。FIG. 6 is a process flow cross-sectional view for creating the resistance circuit according to the first embodiment of the present invention, following FIG. 5; 本発明の第2の実施例の抵抗回路を作成するための工程フロー断面図である。It is process flow sectional drawing for creating the resistance circuit of the 2nd Example of this invention. 図7に続く、本発明の第2の実施例の抵抗回路を作成するための工程フロー断面図である。FIG. 8 is a process flow cross-sectional view for creating a resistance circuit according to a second embodiment of the present invention, following FIG. 7.

以下に、この発明の実施の形態を図面に基づいて説明する。図1(a)は、本発明の多結晶シリコンからなる半導体装置となる抵抗素子を平面的に並べた抵抗回路の平面図、図1(b)は図1(a)のB−B‘に沿った断面図を表している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a plan view of a resistor circuit in which resistor elements that are semiconductor devices made of polycrystalline silicon according to the present invention are arranged in a plane, and FIG. 1B is a cross-sectional view taken along line BB ′ in FIG. FIG.

この抵抗回路を構成する抵抗素子の電気的結線は図3の回路図に示す通りである。例えば、端子101と端子102の間には抵抗素子が4本直列に接続されている。
この抵抗回路を構成する抵抗素子は、図1(b)に示すように半導体基板1上の、平坦な厚い酸化膜2の上に堆積した多結晶シリコン膜で形成しているが、その上にさらに高応力絶縁膜12を抵抗素子の上面及び側面を充分に覆うように堆積している。
The electrical connection of the resistance elements constituting this resistance circuit is as shown in the circuit diagram of FIG. For example, four resistance elements are connected in series between the terminal 101 and the terminal 102.
As shown in FIG. 1 (b), the resistance element constituting this resistance circuit is formed of a polycrystalline silicon film deposited on a flat thick oxide film 2 on a semiconductor substrate 1. Further, a high stress insulating film 12 is deposited so as to sufficiently cover the upper surface and side surfaces of the resistance element.

抵抗素子を構成する多結晶シリコンには高濃度不純物領域6及び低濃度不純物領域7を形成しており、抵抗素子の抵抗値を高抵抗となる低濃度不純物領域7の不純物濃度及びその長さ・幅のサイズで決定し、高濃度不純物領域6は金属配線10とのオーミック接続を取るために用いる事は従来と同様である。   The polycrystalline silicon constituting the resistance element is formed with a high concentration impurity region 6 and a low concentration impurity region 7, and the resistance value of the resistance element is set to the impurity concentration of the low concentration impurity region 7 and the length thereof. It is determined by the size of the width, and the high-concentration impurity region 6 is used for ohmic connection with the metal wiring 10 as in the conventional case.

抵抗素子及び絶縁膜12上には中間絶縁膜8を形成し、コンタクトホール9を介して金属配線10により電気的な接続が行われる。このときこのコンタクトホールは図示しないが、中間絶縁膜8及び抵抗素子上の高応力絶縁膜12の両方を貫通し、抵抗素子を構成する多結晶シリコンに達し、電気的接続を得ている。   An intermediate insulating film 8 is formed on the resistance element and the insulating film 12, and electrical connection is performed by the metal wiring 10 through the contact hole 9. At this time, although not shown, this contact hole penetrates both the intermediate insulating film 8 and the high stress insulating film 12 on the resistance element, reaches the polycrystalline silicon constituting the resistance element, and obtains electrical connection.

金属配線10の一部は、複数の抵抗素子からなる複数の抵抗群201〜204に対し、抵抗素子の抵抗値を決める低濃度不純物領域7上を覆うように別々に形成され、抵抗群の近傍の端子と接続する事により抵抗素子周囲の電圧を安定化させ、抵抗素子の抵抗比を高精度化している事も従来と同様である。   A part of the metal wiring 10 is separately formed so as to cover the low-concentration impurity region 7 that determines the resistance value of the resistance element with respect to the plurality of resistance groups 201 to 204 including a plurality of resistance elements, and in the vicinity of the resistance group. As in the prior art, the voltage around the resistance element is stabilized by connecting to the terminal of the resistor, and the resistance ratio of the resistance element is increased in accuracy.

ところで、この金属配線を構成する膜はSiを含有するAl−Siの場合、形成方法にもよるが、形成温度と線膨張係数などに由来する膜応力を有し、その値は一般に100MPa程度である。高応力絶縁膜12がない場合、この応力は中間絶縁膜8を介して、下の抵抗素子群に影響を及ぼし、ピエゾ抵抗効果による抵抗値変動を引き起こす。そのため上述のように抵抗群毎に金属配線を異なる面積で形成しているためその面積によって応力値が変わり、抵抗群の抵抗比が所定の設計値からずれ、抵抗回路精度の悪化を招いていた。 By the way, when the film constituting the metal wiring is Al-Si containing Si, although it depends on the forming method, it has a film stress derived from the forming temperature and the linear expansion coefficient, and the value is generally about 100 MPa. is there. In the absence of the high-stress insulating film 12, this stress affects the lower resistance element group via the intermediate insulating film 8 and causes resistance value fluctuations due to the piezoresistance effect. Therefore, since the metal wiring is formed in different areas for each resistance group as described above, the stress value varies depending on the area, and the resistance ratio of the resistance group deviates from a predetermined design value, leading to deterioration of resistance circuit accuracy. .

さらに、微細プロセスになると一般的にAl系配線の下地にバリア効果をもつ例えばTi系などの高融点金属膜を積層するが、この高融点金属はその後の熱処理により収縮し、条件にもよるが200〜500MPa程度の膜応力をもつことになる。その場合先のピエゾ抵抗効果がより強くかかり、それぞれの抵抗群の抵抗比のずれをより大きくするよう作用し、抵抗回路精度のさらなる悪化を引き起こしていた。   Furthermore, in the case of a fine process, a refractory metal film such as a Ti-based material having a barrier effect is generally laminated on the base of an Al-based wiring. It has a film stress of about 200 to 500 MPa. In that case, the piezoresistive effect is more intense and acts to increase the deviation of the resistance ratio of each resistance group, causing further deterioration of the resistance circuit accuracy.

その解決のために本発明では、金属配線よりも膜応力値の高い高応力絶縁膜12を全ての抵抗素子を覆うように形成する事で、面積の異なった金属配線の異なる膜応力の影響を排除しながら、抵抗素子の周囲電圧の安定化を両立させ、高精度な抵抗回路を実現している。   In order to solve the problem, in the present invention, the high stress insulating film 12 having a film stress value higher than that of the metal wiring is formed so as to cover all the resistance elements. While eliminating this, both the stabilization of the ambient voltage of the resistance element is achieved and a highly accurate resistance circuit is realized.

高応力絶縁膜12としては数100MPa以上の膜応力を有する事が望ましく、例えばSi34やSiC、SiON、SiCNなどの材質の膜が挙げられる。これらの膜をひとつ用いた一層膜でも良いし、複数の膜からなる多層膜としても良い。特に減圧CVD法で作製したSi34は緻密度が高く、0.15um堆積すると1000MPa程度の膜応力を実現でき、形成の容易性や半導体プロセスへの親和性からも本発明にとって好ましい。熱窒化膜はより緻密に形成できるが、高い応力を得るための厚い膜厚形成に限界があるので本発明にとっては好ましくない。 The high-stress insulating film 12 preferably has a film stress of several hundred MPa or more, and examples thereof include films made of materials such as Si 3 N 4 , SiC, SiON, and SiCN. A single layer film using one of these films may be used, or a multilayer film including a plurality of films may be used. In particular, Si 3 N 4 produced by the low pressure CVD method has a high density, and when it is deposited to 0.15 μm, a film stress of about 1000 MPa can be realized, which is preferable for the present invention from the viewpoint of ease of formation and affinity for semiconductor processes. Although the thermal nitride film can be formed more densely, it is not preferable for the present invention because there is a limit to the formation of a thick film for obtaining a high stress.

次に、図5(a)から図6(f)を用いて、本発明による図1の抵抗回路の構造の製造方法を説明する。
最初に、半導体基板1を用意し、LOCOS酸化による熱酸化膜などの絶縁膜2を半導体基板1上に形成する(図5(a))。
Next, a method for manufacturing the structure of the resistor circuit of FIG. 1 according to the present invention will be described with reference to FIGS.
First, a semiconductor substrate 1 is prepared, and an insulating film 2 such as a thermal oxide film by LOCOS oxidation is formed on the semiconductor substrate 1 (FIG. 5A).

次に、抵抗素子を構成する多結晶シリコン薄膜を堆積し、抵抗素子の抵抗率を設定するための不純物注入を半導体基板上の多結晶シリコン膜内に全面に行う。抵抗素子の抵抗率はこの不純物注入量により調整される。不純物はN型であるリンやヒ素、P型であるボロンやBF2などを用い、その不純物注入量は所望の抵抗率によるが1×1015から5×1019atoms/cm3に設定する。 Next, a polycrystalline silicon thin film constituting the resistance element is deposited, and impurity implantation for setting the resistivity of the resistance element is performed on the entire surface of the polycrystalline silicon film on the semiconductor substrate. The resistivity of the resistance element is adjusted by this impurity implantation amount. Impurities are N-type phosphorus or arsenic, P-type boron or BF 2 , and the impurity implantation amount is set to 1 × 10 15 to 5 × 10 19 atoms / cm 3 depending on the desired resistivity.

次に、多結晶シリコン薄膜をドライエッチング法などで加工し、抵抗素子7の形状を決定させる。このとき各抵抗素子は同じ形状・同じ間隔に設定しておく事で、フォトパターニングのばらつきやエッチング時のプラズマ条件に変動があっても、各抵抗素子が同様の影響を受け、抵抗比の変動を抑制できる(図5(b))。   Next, the polycrystalline silicon thin film is processed by a dry etching method or the like to determine the shape of the resistance element 7. At this time, by setting each resistive element to the same shape and the same interval, even if there are variations in photo patterning and fluctuations in plasma conditions during etching, each resistive element is affected in the same way and the resistance ratio varies. Can be suppressed (FIG. 5B).

次に、本発明特有の、金属膜に比べて高い応力をもつ薄膜、例えばSi34やSiC、SiON、SiCNなどからなる高応力絶縁膜12を、LPCVDやスパッタなど、任意の方法で抵抗素子を含めた半導体基板上に一層の膜あるいは多層の膜として堆積し、抵抗素子以外の部分をエッチング除去する(図5(c))。この方法により、抵抗素子の半導体基板側を除く上面及び側面に高応力絶縁膜12を密着させている。 Next, a thin film having a high stress compared with the metal film, for example, a high stress insulating film 12 made of Si 3 N 4 , SiC, SiON, SiCN, or the like, which is unique to the present invention, is resisted by an arbitrary method such as LPCVD or sputtering. A single layer film or a multilayer film is deposited on the semiconductor substrate including the element, and portions other than the resistance element are removed by etching (FIG. 5C). By this method, the high-stress insulating film 12 is brought into close contact with the upper surface and the side surface excluding the semiconductor substrate side of the resistance element.

次に、図示はしないが、別のフォトマスク工程を経て多結晶シリコン内の一部に高濃度不純物領域6をイオン注入法により形成する。
次に、半導体基板上に中間絶縁膜8を形成する(図6(a))。形成方法は、リンまたはボロンを含む酸化膜を堆積した後、850℃以上の熱処理で平坦化するリフロー法を始め、エッチバック法やCMP法などを用いて堆積した絶縁膜を平坦化する。
Next, although not shown, a high-concentration impurity region 6 is formed in part of the polycrystalline silicon by ion implantation through another photomask process.
Next, an intermediate insulating film 8 is formed on the semiconductor substrate (FIG. 6A). As a formation method, after depositing an oxide film containing phosphorus or boron, the insulating film deposited using an etch back method, a CMP method, or the like is planarized, including a reflow method in which planarization is performed by heat treatment at 850 ° C. or higher.

次に、図示はしないが、フォトマスク工程を経てコンタクトホールを、抵抗素子の端子部分に先の高応力薄膜を貫通し抵抗素子に達するまでドライエッチングにて形成する。
次に、金属膜の堆積を行う。金属膜はAlを主体としてSiを含有するAlSiや、Cuを含有するAlCu、AlSiCuなどを必要に応じて選ぶ。さらにその金属薄膜の下地に必要に応じてTi系などの高融点金属薄膜を形成する。その後フォトマスク工程を経て、金属配線10の形成を行う(図6(b))。
Next, although not shown, a contact hole is formed by dry etching through the high stress thin film through the terminal portion of the resistance element until reaching the resistance element through a photomask process.
Next, a metal film is deposited. As the metal film, AlSi containing Al as a main component, Si containing Al, Cu containing AlCu, AlSiCu, or the like is selected as necessary. Further, a Ti-based refractory metal thin film is formed on the base of the metal thin film as necessary. Thereafter, a metal wiring 10 is formed through a photomask process (FIG. 6B).

最後に、最終保護膜であるパッシベーション膜11の堆積及びパターン形成により、本発明の抵抗素子を含む抵抗回路が完成する(図6(c))。
また、図4(a)は、本発明の別の実施例の、多結晶シリコンからなる抵抗素子を平面的に並べた抵抗回路の平面図、図4(b)は図4(a)のC−C‘に沿った断面図を表している。
この抵抗回路を構成する抵抗素子の電気的結線は図3の通りである。
Finally, a resistance circuit including the resistance element of the present invention is completed by depositing and patterning a passivation film 11 as a final protective film (FIG. 6C).
4A is a plan view of a resistor circuit in which resistor elements made of polycrystalline silicon are arranged in a plane according to another embodiment of the present invention, and FIG. 4B is a diagram of C in FIG. 4A. It represents a cross-sectional view along -C ′.
The electrical connections of the resistance elements constituting this resistance circuit are as shown in FIG.

図4の実施例では、半導体基板1上の平坦な厚い酸化膜2と、抵抗素子を形成する多結晶シリコン膜との間に、金属配線よりも膜応力値の高い絶縁膜12をそれぞれの抵抗素子と同一形状で配置している。さらにその抵抗素子の上に、先と同様の金属配線よりも膜応力値の高い絶縁膜12を全ての抵抗素子を覆うように形成させている。そうする事で、それぞれの抵抗素子の上下左右全ての方向を包むように高応力絶縁膜を配置することとなり、抵抗素子の全ての面の膜と膜の間の応力状態を一律・安定化させることが出来る。こうすることで、金属薄膜だけでなくそれ以外の外部からの応力印加の影響を抑制でき、ピエゾ抵抗効果による抵抗変動を低減している。   In the embodiment of FIG. 4, an insulating film 12 having a higher film stress value than the metal wiring is provided between the flat thick oxide film 2 on the semiconductor substrate 1 and the polycrystalline silicon film forming the resistance element. Arranged in the same shape as the element. Further, an insulating film 12 having a higher film stress value than the metal wiring similar to the above is formed on the resistance element so as to cover all the resistance elements. By doing so, a high-stress insulating film is arranged so as to wrap all the top, bottom, left and right directions of each resistance element, and the stress state between the films on all surfaces of the resistance element is uniformly and stabilized. I can do it. By doing so, it is possible to suppress not only the metal thin film but also the influence of external stress application other than that, and the resistance fluctuation due to the piezoresistance effect is reduced.

さらに、図1に比べ、温度変動による抵抗素子上下の応力変化を抑制でき、抵抗素子の上面と底面の応力差による剥れやクラックなどの物理的な変動に対する信頼性を高めている。   Furthermore, compared with FIG. 1, the change in stress above and below the resistance element due to temperature fluctuations can be suppressed, and the reliability against physical fluctuations such as peeling and cracking due to the stress difference between the upper surface and the bottom surface of the resistance element is enhanced.

次に、図7(a)から図8(e)を用いて、本発明による図4の抵抗回路の構造の製造方法を説明する。
図1と同じように最初に半導体基板1を用意し、LOCOS酸化による熱酸化膜などの絶縁膜2を半導体基板1上に形成する(図7(a))。
Next, a method for manufacturing the structure of the resistor circuit of FIG. 4 according to the present invention will be described with reference to FIGS. 7A to 8E.
As in FIG. 1, a semiconductor substrate 1 is first prepared, and an insulating film 2 such as a thermal oxide film by LOCOS oxidation is formed on the semiconductor substrate 1 (FIG. 7A).

次に、本発明特有の、金属膜に比べて高い応力をもつ薄膜、例えばSi34やSiC、SiON、SiCNなどからなる薄膜12を任意の方法で堆積し、次いで、後に抵抗素子となる多結晶シリコン膜14を堆積し、その後抵抗素子の抵抗率を設定するための不純物注入を半導体基板上の多結晶シリコン膜内に全面に行う。抵抗素子の抵抗率はこの不純物注入量により調整される。注入不純物の種類や注入量は図5(b)で説明したのと同様、必要に応じて任意に設定する(図7(b))。 Next, a thin film having a higher stress than the metal film, for example, a thin film 12 made of Si 3 N 4 , SiC, SiON, SiCN, etc., is deposited by an arbitrary method, and then becomes a resistance element later. A polycrystalline silicon film 14 is deposited, and then impurity implantation for setting the resistivity of the resistance element is performed on the entire surface of the polycrystalline silicon film on the semiconductor substrate. The resistivity of the resistance element is adjusted by this impurity implantation amount. The type and amount of implanted impurities are arbitrarily set as necessary (FIG. 7B), as described with reference to FIG. 5B.

次に、抵抗素子7の形状をドライエッチング法などで加工・形成するが、このとき抵抗素子下の高応力絶縁膜も同時にセルフアライン的にエッチング加工する(図7(c))。
次に、本発明特有の、金属膜に比べて高い応力をもつ薄膜、例えばSi34やSiC、SiON、SiCNなどからなる堆積薄膜12を、任意の方法で抵抗素子を含めた半導体基板に堆積し、抵抗素子以外の部分をエッチング除去する(図8(a))。
Next, the shape of the resistance element 7 is processed and formed by a dry etching method or the like. At this time, the high-stress insulating film under the resistance element is simultaneously etched in a self-aligned manner (FIG. 7C).
Next, a thin film having a stress higher than that of the metal film, for example, a deposited thin film 12 made of Si 3 N 4 , SiC, SiON, SiCN, or the like peculiar to the present invention is applied to a semiconductor substrate including a resistance element by an arbitrary method. Then, the portion other than the resistance element is deposited by etching (FIG. 8A).

次に、図示はしないが、別のフォトマスク工程を経て多結晶シリコン内に高濃度不純物領域6をイオン注入法により形成する。
次に、詳細は省くが、一般の半導体の製造と同様に、中間絶縁膜8、コンタクトホール、金属配線10形成を経て、最終保護膜であるパッシベーション膜11の堆積及びパターン形成により、本発明の抵抗素子を含む抵抗回路が完成する(図8(b))。
Next, although not shown, a high concentration impurity region 6 is formed in the polycrystalline silicon by ion implantation through another photomask process.
Next, although not described in detail, the intermediate insulating film 8, the contact holes, and the metal wiring 10 are formed, and the passivation film 11 that is the final protective film is deposited and patterned in the same manner as in general semiconductor manufacturing. A resistance circuit including the resistance element is completed (FIG. 8B).

なお、また本発明における抵抗素子を構成する膜については多結晶シリコン膜に限定されるものではなく、他の半導体系薄膜や薄膜金属抵抗などにも応用できる事はいうまでもない。   In addition, the film constituting the resistance element in the present invention is not limited to the polycrystalline silicon film, and it is needless to say that the film can be applied to other semiconductor thin films and thin film metal resistors.

1 半導体基板
2 酸化膜
3 ゲート絶縁膜
4 ソース・ドレイン領域
5 ゲート電極
6 多結晶シリコン高濃度不純物領域
7 多結晶シリコン低濃度不純物領域
8 中間絶縁膜
9 コンタクトホール
10 金属配線
11 パッシベーション膜
12 高応力絶縁膜
13 ビアホール
14 多結晶シリコン薄膜
15 層間絶縁膜
101〜105 抵抗回路より任意の電位を引き出す各々の端子
201〜204 抵抗素子からなる抵抗群
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Oxide film 3 Gate insulating film 4 Source / drain region 5 Gate electrode 6 Polycrystalline silicon high concentration impurity region 7 Polycrystalline silicon low concentration impurity region 8 Intermediate insulating film 9 Contact hole 10 Metal wiring 11 Passivation film 12 High stress Insulating film 13 Via hole 14 Polycrystalline silicon thin film 15 Interlayer insulating films 101 to 105 Each terminal 201 to 204 that draws an arbitrary potential from a resistor circuit

Claims (5)

半導体基板と、
前記半導体基板上に形成したシリコン酸化膜からなる第1の絶縁膜と、
前記第1の絶縁膜上に形成した多結晶シリコン薄膜で構成される、低濃度不純物領域と高濃度不純物領域を有する複数の抵抗素子と、
前記複数の抵抗素子の上面および側面に接して覆う高応力絶縁膜と、
前記高応力絶縁膜の上面に接して覆う第2の絶縁膜と、
前記複数の抵抗素子の低濃度不純物領域の上面を覆うように形成し、その一端を前記複数の抵抗素子の一端と電気的に接続した面積の異なる複数の金属配線と、
を有し、
前記高応力絶縁膜は、前記複数の抵抗素子が配置された領域において、前記面積の異なる複数の金属配線よりも広い領域に形成されており、前記面積の異なる複数の金属配線の圧縮応力の絶対値もしくは引っ張り応力の絶対値より絶対値が大きい圧縮応力、もしくは前記面積の異なる複数の金属配線の圧縮応力の絶対値もしくは引っ張り応力の絶対値より絶対値が大きい引っ張り応力を有する事を特徴とする半導体装置。
A semiconductor substrate;
A first insulating film made of a silicon oxide film formed on the semiconductor substrate;
A plurality of resistance elements having a low concentration impurity region and a high concentration impurity region, each of which is formed of a polycrystalline silicon thin film formed on the first insulating film;
A high-stress insulating film that covers and covers the top and side surfaces of the plurality of resistance elements;
A second insulating film covering and covering the upper surface of the high-stress insulating film;
A plurality of metal wirings having different areas in which one end thereof is electrically connected to one end of the plurality of resistance elements;
Have
The high-stress insulating film is formed in a region wider than the plurality of metal wirings having different areas in the region where the plurality of resistance elements are disposed, and the absolute stress of the compressive stress of the plurality of metal wirings having different areas is determined. characterized in that it has a value or tensile absolute value larger compressive stress is an absolute value or absolute value or tensile absolute value is greater tensile stress than the absolute values of the stress of the compressive stress of the plurality of metal wires having the different areas, the stress Semiconductor device.
500MPa以上の圧縮応力もしくは500MPa以上の引っ張り応力を有する前記高応力絶縁膜を有する事を特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, comprising the high-stress insulating film having a compressive stress of 500 MPa or more or a tensile stress of 500 MPa or more. 前記高応力絶縁膜が、SiC、SiON、SiCNのいずれひとつからなる一層膜、あるいは、異なる膜を組み合わせた多層膜からなる事を特徴とする請求項2記載の半導体装置。   3. The semiconductor device according to claim 2, wherein the high-stress insulating film is formed of a single layer film made of any one of SiC, SiON, and SiCN, or a multilayer film formed by combining different films. 前記高応力絶縁膜が減圧CVD法により作成されたシリコン窒化膜である事を特徴とする請求項2記載の半導体装置。   3. The semiconductor device according to claim 2, wherein the high-stress insulating film is a silicon nitride film formed by a low pressure CVD method. 前記高応力絶縁膜の厚さが0.15um以上である事を特徴とする請求項4記載の半導体装置。   The semiconductor device according to claim 4, wherein the high-stress insulating film has a thickness of 0.15 μm or more.
JP2017246212A 2017-12-22 2017-12-22 Semiconductor device Active JP6586152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246212A JP6586152B2 (en) 2017-12-22 2017-12-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246212A JP6586152B2 (en) 2017-12-22 2017-12-22 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014025808A Division JP6267987B2 (en) 2014-02-13 2014-02-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2018067734A JP2018067734A (en) 2018-04-26
JP6586152B2 true JP6586152B2 (en) 2019-10-02

Family

ID=62087279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246212A Active JP6586152B2 (en) 2017-12-22 2017-12-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6586152B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526701B2 (en) * 1995-08-24 2004-05-17 セイコーインスツルメンツ株式会社 Semiconductor device
JP2000323665A (en) * 2000-01-01 2000-11-24 Sony Corp Manufacture of semiconductor device
JP4811988B2 (en) * 2005-03-23 2011-11-09 セイコーインスツル株式会社 Semiconductor device
JP4880939B2 (en) * 2005-07-29 2012-02-22 セイコーインスツル株式会社 Semiconductor device
JP5008543B2 (en) * 2007-12-18 2012-08-22 セイコーインスツル株式会社 Semiconductor device
JP2010182954A (en) * 2009-02-06 2010-08-19 Seiko Instruments Inc Semiconductor device
JP5696620B2 (en) * 2011-08-22 2015-04-08 富士通セミコンダクター株式会社 FUSE, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
JP2018067734A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
US8013394B2 (en) Integrated circuit having resistor between BEOL interconnect and FEOL structure and related method
TW516046B (en) Semiconductor device and a method of manufacturing thereof
JP5616826B2 (en) Semiconductor device having a resistance circuit
US20080132056A1 (en) INTEGRATION OF THIN FILM RESISTORS HAVING DIFFERENT TCRs INTO SINGLE DIE
JP6267987B2 (en) Semiconductor device
JP6586152B2 (en) Semiconductor device
TWI438890B (en) Semiconductor device
JP2006332428A (en) Semiconductor integrated circuit device
US11195772B2 (en) CMOS based devices for harsh media
JPH06204408A (en) Diffused resistor for semiconductor device
US7531877B2 (en) Semiconductor device
JP5959254B2 (en) Semiconductor device
JP2022065682A (en) Semiconductor device and manufacturing method for the same
US9806020B1 (en) Semiconductor device
KR101159112B1 (en) Variable capacitance capacitor and method for fabricating the same
US11049784B2 (en) Semiconductor device for use in harsh media
TWI733946B (en) Semiconductor device and manufacturing method of semiconductor device
WO2009096407A1 (en) Pressure sensor
US20230317324A1 (en) Hybrid resistors including resistor bodies with different drift effects
JPH08195479A (en) Semiconductor device and its manufacture
JP2717033B2 (en) Semiconductor integrated circuit
JPH01298746A (en) Semiconductor device and manufacture of the same
JP2008235749A (en) Semiconductor device
JPH0556020B2 (en)
JP2021086952A (en) Method for manufacturing semiconductor device and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190906

R150 Certificate of patent or registration of utility model

Ref document number: 6586152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250