JPH06204408A - Diffused resistor for semiconductor device - Google Patents

Diffused resistor for semiconductor device

Info

Publication number
JPH06204408A
JPH06204408A JP87193A JP87193A JPH06204408A JP H06204408 A JPH06204408 A JP H06204408A JP 87193 A JP87193 A JP 87193A JP 87193 A JP87193 A JP 87193A JP H06204408 A JPH06204408 A JP H06204408A
Authority
JP
Japan
Prior art keywords
layer
resistance
diffused
resistor
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP87193A
Other languages
Japanese (ja)
Inventor
Osamu Sasaki
修 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP87193A priority Critical patent/JPH06204408A/en
Publication of JPH06204408A publication Critical patent/JPH06204408A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of a resistance value of a diffused resistor layer which is formed by diffusing impurities into a semiconductor device even when an impurity concentration of the diffused resistor layer is lowered. CONSTITUTION:A p-type resistor layer 2 is diffused using a resistor pattern from the surface side of an n-type semiconductor region 1. A p-type resistor surface layer 3 is very shallowly diffused on the surface of the resistor layer 2, using substantially the same resistor pattern, as that of the resistor layer, at a high impurity concentration. An insulation film 11 covers the surfaces of the semiconductor region 1, the resistor layer 2 and the resistor surface layer 3. Then, terminals 12 are led out of both ends of the resistor surface layer 3, whereby a diffused resistor 20 is obtained. The influence of accumulated electric charges caused by mobile ions in the insulation film 11 on a carrier distribution within the resistor layer 2 is interrupted by the resistor surface layer 3, whereby variations in resistance value of the diffused resistor 20 is reduced to less than + or -0.1%, about one order of magnitude lower than with a conventional diffused resistor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に不純物の拡
散により作り込まれる抵抗であって、例えば圧力センサ
や加速度センサ用のピエゾ抵抗等のとくに正確な抵抗値
を要する場合に適する拡散抵抗に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance which is formed in a semiconductor device by diffusing impurities and is suitable for a case where a particularly accurate resistance value such as a piezo resistance for a pressure sensor or an acceleration sensor is required. .

【0002】[0002]

【従来の技術】電子回路用の抵抗はいわゆる外付け抵抗
とするよりも半導体装置への組み込み抵抗とするのが有
利であり、周知のようにディジタル回路用では電界効果
トランジスタをこれに利用することが多いが、アナログ
回路やセンサ用等のより正確な抵抗値を要する場合は半
導体内にそれと逆導電形の不純物を拡散して作り込んだ
拡散抵抗とするのが通例である。
2. Description of the Related Art It is advantageous to use a resistance for an electronic circuit as a built-in resistance in a semiconductor device rather than a so-called external resistance, and it is well known that a field effect transistor is used for this in a digital circuit. However, when a more accurate resistance value is required for analog circuits and sensors, it is customary to use a diffusion resistance created by diffusing impurities of the opposite conductivity type into the semiconductor.

【0003】よく知られていることではあるがこの拡散
抵抗の従来の代表例を図7に示す。図7(a) はその断面
図,図7(b) は上面図である。n形の半導体領域1は例
えば集積回路装置の半導体基板の上に成長させたエピタ
キシャル層であり、その表面からp形の抵抗層2を細長
いパターンで拡散してその両端の膨出部2aにそれぞれ接
続層6を同じp形の高不純物濃度で拡散した上で、表面
を覆う酸化シリコンや燐シリケートガラスの絶縁膜11の
上に配設したアルミの電極膜により絶縁膜11の窓内で接
続層6と接続した端子12を導出して拡散抵抗20とし、さ
らにその上側を窒化シリコン等の保護膜13で覆うのが通
例である。なお、抵抗層2はその不純物濃度と拡散深さ
により種々の面抵抗で作り込むことができ、拡散抵抗20
にはこの面抵抗と抵抗層2のパターンの有効長と幅の比
を適宜設定することにより種々の抵抗値をもたせること
ができる。この拡散抵抗20は抵抗層2に対しそれと半導
体領域1の間のpn接合に逆バイアス電圧を掛けた状態で
使用される。
As is well known, a conventional representative example of this diffused resistor is shown in FIG. FIG. 7 (a) is a sectional view and FIG. 7 (b) is a top view. The n-type semiconductor region 1 is, for example, an epitaxial layer grown on a semiconductor substrate of an integrated circuit device, and a p-type resistance layer 2 is diffused from its surface in an elongated pattern to form bulges 2a at both ends thereof. The connection layer 6 is diffused with the same p-type high impurity concentration, and then the connection layer is formed in the window of the insulating film 11 by the aluminum electrode film provided on the insulating film 11 of silicon oxide or phosphosilicate glass covering the surface. It is customary to lead out the terminal 12 connected to 6 to form the diffusion resistance 20, and to cover the upper side thereof with a protective film 13 such as silicon nitride. The resistance layer 2 can be formed with various surface resistances depending on the impurity concentration and the diffusion depth.
Can have various resistance values by appropriately setting the ratio of the sheet resistance and the effective length and width of the pattern of the resistance layer 2. The diffused resistor 20 is used in the state in which a reverse bias voltage is applied to the pn junction between the diffused resistor 20 and the semiconductor region 1.

【0004】[0004]

【発明が解決しようとする課題】ところで、一般的に拡
散抵抗は数百Ω程度以下の低抵抗用に適するが、1kΩ
以上の高抵抗用にはあまり適さず、とくにチップの小面
積内に高抵抗を作り込むため前述の抵抗層2の不純物濃
度を1018原子/cm3 程度以下に下げると抵抗値の精度が
低下してばらつきが出やすくなる問題がある。もちろ
ん、抵抗層用に導入する不純物量をイオン注入法により
正確に制御し、かつその熱拡散条件を厳密に管理して抵
抗値の精度を向上させるが、それでもばらつきを±1%
以下に下げるのは非常に困難なのが実情である。
By the way, generally, the diffusion resistance is suitable for low resistance of about several hundred Ω or less, but it is 1 kΩ.
It is not suitable for the above high resistance, and in particular, in order to build a high resistance in a small area of the chip, if the impurity concentration of the resistance layer 2 is reduced to about 10 18 atoms / cm 3 or less, the resistance value accuracy decreases. Therefore, there is a problem that variations easily occur. Of course, the amount of impurities introduced into the resistance layer is accurately controlled by the ion implantation method, and the thermal diffusion condition is strictly controlled to improve the accuracy of the resistance value, but the variation is still ± 1%.
The reality is that it is very difficult to reduce below.

【0005】抵抗値の精度に対する要求は拡散抵抗をセ
ンサに用いる場合に厳しく、とくにピエゾ抵抗ないしス
トレンゲージとして用いる場合は4個の拡散抵抗でブリ
ッジ回路を構成するので、抵抗値に±0.5 %以上のばら
つきがあるとブリッジ平衡をとるのが困難になり、セン
サの検出感度や精度を高めるには抵抗値のばらつきを±
0.1 %以下に抑えるのが望ましい。もちろん抵抗層2の
不純物濃度を高めればこの難点はかなり改善されるが、
同じ抵抗値をもつ拡散抵抗を作り込むに要するチップ面
積が著しく増加してしまう。
The requirement for the accuracy of the resistance value is strict when the diffusion resistance is used for the sensor. Especially, when the diffusion resistance is used as a piezo resistance or a strain gauge, a bridge circuit is composed of four diffusion resistances, so that the resistance value is ± 0.5% or more. It becomes difficult to achieve bridge balance if there is a variation in the resistance value.
It is desirable to keep it below 0.1%. Of course, if the impurity concentration of the resistance layer 2 is increased, this difficulty can be remedied considerably,
The chip area required to make a diffused resistor having the same resistance value increases significantly.

【0006】本発明の目的はかかる問題点を解決して抵
抗層の不純物濃度を低めた場合にも拡散抵抗の抵抗値の
精度を向上させることにある。
An object of the present invention is to solve the above problems and improve the accuracy of the resistance value of the diffusion resistance even when the impurity concentration of the resistance layer is lowered.

【0007】[0007]

【課題を解決するための手段】本件の第1発明の拡散抵
抗では、一方の導電形の半導体領域の表面から他方の導
電形の抵抗層を抵抗用のパターンで拡散し、抵抗層の表
面部に他方の導電形の抵抗表面層をそれとほぼ同じパタ
ーンかつ高不純物濃度で浅く拡散し、抵抗層と抵抗表面
層を含めて半導体領域の表面を絶縁膜で覆い、抵抗表面
層の両端部から端子をそれぞれ導出することにより上述
の目的を達成する。なお、上記中の抵抗表面層の不純物
濃度は抵抗層よりも1桁以上高く, ふつうは1019原子/
cm3 以上とし、その拡散深さは 0.1〜0.5 μmとするの
がよい。また、この抵抗表面層の拡散用のマスクパター
ンは抵抗層用と同じとし、抵抗層を拡散した後にこの抵
抗表面層を拡散するのが有利である。
In the diffused resistor of the first invention of the present application, the resistance layer of the other conductivity type is diffused from the surface of the semiconductor region of one conductivity type in a resistance pattern to form a surface portion of the resistance layer. Then, diffuse the resistance surface layer of the other conductivity type with the same pattern and a high impurity concentration, and cover the surface of the semiconductor area including the resistance layer and the resistance surface layer with an insulating film. The above-mentioned object is achieved by deriving each of these. The impurity concentration of the resistance surface layer in the above is higher than that of the resistance layer by one digit or more, and usually 10 19 atoms /
The diffusion depth is preferably 0.1 to 0.5 μm with a cm 3 or more. Further, it is advantageous that the mask pattern for diffusion of the resistance surface layer is the same as that for the resistance layer and that the resistance surface layer is diffused after the resistance layer is diffused.

【0008】本件の第2発明の拡散抵抗では、第1発明
と同様に抵抗層を拡散し、抵抗層の少なくとも大部分を
含む半導体領域の表面部に一方の導電形の表面層を浅く
拡散し、抵抗層と表面層を含めて半導体領域の表面を絶
縁膜で覆い、抵抗層の両端部から端子をそれぞれ導出す
ることにより前述の目的を達成する。なお、上記中の表
面層を抵抗層を含む半導体領域の全面に拡散し、この表
面層を通して抵抗層の各端部に達するように接続層を他
方の導電形で拡散して、この接続層の表面から端子をそ
れぞれ導出するのが有利である。また、表面層の拡散深
さはごく浅く,ふつうは 0.5〜1μmとすることでよ
い。
In the diffused resistor of the second aspect of the present invention, the resistive layer is diffused similarly to the first aspect of the invention, and the surface layer of one conductivity type is shallowly diffused in the surface portion of the semiconductor region including at least most of the resistive layer. The above-mentioned object is achieved by covering the surface of the semiconductor region including the resistance layer and the surface layer with an insulating film, and deriving the terminals from both ends of the resistance layer. The surface layer in the above is diffused over the entire surface of the semiconductor region including the resistance layer, and the connection layer is diffused in the other conductivity type so as to reach each end of the resistance layer through the surface layer. It is advantageous to derive each terminal from the surface. The diffusion depth of the surface layer is very shallow, and usually 0.5 to 1 μm.

【0009】本件の第3発明の拡散抵抗では、一方の導
電形の半導体領域の表面部の下側に他方の導電形の抵抗
層を抵抗用のパターンで埋め込み拡散し、半導体領域の
表面から他方の導電形の接続層を抵抗層の両端部に達す
るように高不純物濃度で拡散し、半導体領域の表面を絶
縁膜で覆い、接続層から端子をそれぞれ導出することに
より前述の目的を達成する。なお、上記のように抵抗層
を埋め込むにはイオン注入によってそれ用の不純物を深
く導入した上で熱拡散させることもできるが、半導体領
域を上下2層構成として下側の半導体領域の表面から抵
抗層をまず拡散した後に,その上に一方の導電形のエピ
タキシャル層を上側の半導体領域として成長させる方が
有利である。抵抗層をイオン注入により埋め込む際のイ
オン加速電圧は1MeV 以上, 望ましくは数MeV とするの
がよく、上側の半導体領域として成長させるエピタキシ
ャル層は1〜2μmとごく薄くてよい。
In the diffused resistor of the third aspect of the present invention, the resistance layer of the other conductivity type is buried under the surface portion of the semiconductor region of one conductivity type with a resistance pattern and diffused so that the other surface of the semiconductor region is diffused. The conductive type connection layer is diffused with a high impurity concentration so as to reach both ends of the resistance layer, the surface of the semiconductor region is covered with an insulating film, and the terminals are respectively led out from the connection layer to achieve the above-mentioned object. In order to embed the resistance layer as described above, it is possible to introduce impurities for the purpose deeply by ion implantation and then perform thermal diffusion, but the semiconductor region is made up of upper and lower two-layered structure and the resistance is applied from the surface of the lower semiconductor region. It is advantageous to first diffuse the layer and then grow an epitaxial layer of one conductivity type thereon as the upper semiconductor region. The ion acceleration voltage when burying the resistance layer by ion implantation is preferably 1 MeV or more, preferably several MeV, and the epitaxial layer grown as the upper semiconductor region may be as thin as 1 to 2 μm.

【0010】[0010]

【作用】本発明では、拡散抵抗の抵抗値精度を一層向上
するには抵抗層内のキャリアの縦方向の分布がその上側
を覆う絶縁膜内の蓄積電荷の影響を受けないようにする
必要がある点に着目し、抵抗層と絶縁膜との間にこの影
響を遮断する半導体層を介在させることにより問題を解
決するものである。すなわち、絶縁膜には微量であるが
可動イオンがあってその電荷が必ず蓄積されており、そ
の静電誘導により抵抗層の絶縁膜に接する表面部の多数
キャリアの分布が影響を受け、ないし逆の導電形に変わ
りやすく、しかも絶縁膜内の電荷の蓄積量や分布状態に
ばらつきが出やすくかつ経時的にも変化しやすいために
拡散抵抗の抵抗値がばらつきやすくなり、かつこの傾向
は抵抗層の不純物濃度が低いほど著しくなる。
According to the present invention, in order to further improve the accuracy of the resistance value of the diffused resistor, it is necessary to prevent the vertical distribution of carriers in the resistance layer from being influenced by the accumulated charges in the insulating film covering the upper side thereof. Focusing on a certain point, the problem is solved by interposing a semiconductor layer for blocking this influence between the resistance layer and the insulating film. That is, although a small amount of mobile ions are present in the insulating film and the electric charge is always accumulated, the distribution of majority carriers on the surface portion of the resistance layer in contact with the insulating film is affected by the electrostatic induction, or is not reversed. The conductivity value of the diffused resistor is likely to vary, and the accumulated amount and distribution of electric charges in the insulating film also tend to vary, and the resistance value of the diffused resistor tends to vary. The lower the impurity concentration, the more remarkable.

【0011】このため、前述の第1発明では抵抗層と同
じ導電形であるが不純物濃度が高い抵抗表面層により、
第2発明では抵抗層とは逆導電形の表面層により、第3
発明では埋め込まれた抵抗層の上側のそれと逆導電形の
半導体領域により、それぞれ抵抗層内のキャリアの縦方
向分布に対する絶縁膜内の電荷の蓄積量や分布状態の影
響を遮断して拡散抵抗の抵抗値精度を向上させる。これ
により、いずれの場合でも拡散抵抗の抵抗値のばらつき
を従来よりも1桁小さい±0.1 %ないしはそれ以下に減
少させることができる。
Therefore, in the above-described first invention, the resistance surface layer having the same conductivity type as that of the resistance layer, but having a high impurity concentration,
According to the second aspect of the invention, the surface layer having a conductivity type opposite to that of the resistance layer is used.
According to the invention, the semiconductor region of the opposite conductivity type to that of the upper side of the embedded resistance layer blocks the influence of the charge accumulation amount and the distribution state in the insulating film on the vertical distribution of carriers in the resistance layer, thereby reducing the diffusion resistance. Improve resistance accuracy. As a result, in any case, the variation in the resistance value of the diffused resistance can be reduced to ± 0.1%, which is one digit smaller than that of the conventional one, or less.

【0012】[0012]

【実施例】以下、図を参照して本件発明の実施例を説明
する。図1と図3と図5とにそれぞれ第1と第2と第3
発明による拡散抵抗20を断面図で示し、図2と図4と図
6にそれぞれこれら拡散抵抗を製造する際の主な工程ご
との状態を断面図で示す。いずれにも図7との対応部分
に同じ符号が付されており、抵抗層2は図7(b) に示す
ような平面的パターンで拡散されるものとする。
Embodiments of the present invention will be described below with reference to the drawings. First, second and third in FIGS. 1, 3 and 5, respectively.
A sectional view of a diffused resistor 20 according to the invention is shown in FIG. 2, FIG. 4, and FIG. 6 which are sectional views showing the steps of manufacturing the diffused resistor. The same reference numerals are given to the portions corresponding to those in FIG. 7, and the resistance layer 2 is assumed to be diffused in a planar pattern as shown in FIG. 7 (b).

【0013】図1の第1発明では、n形の半導体領域1
の表面から所定不純物濃度でp形の抵抗層2を拡散し、
それとほぼ同パターンでただしそれよりも1桁程度以上
高い不純物濃度でp形の抵抗表面層3をごく浅く拡散
し、抵抗層2と抵抗表面層3の上側を含めて半導体領域
1の表面を酸化シリコン等の絶縁膜11で覆い、かつ抵抗
表面層3の両端部からアルミの電極膜により端子12をそ
れぞれ導出してその上を窒化シリコン等の保護膜13で覆
って拡散抵抗20とする。
In the first invention of FIG. 1, an n-type semiconductor region 1 is provided.
Diffusing the p-type resistance layer 2 with a predetermined impurity concentration from the surface of
The p-type resistance surface layer 3 is diffused very shallowly with the same pattern as that, but with an impurity concentration higher by about one digit or more, and the surface of the semiconductor region 1 including the resistance layer 2 and the upper side of the resistance surface layer 3 is oxidized. The terminals 12 are respectively covered with an insulating film 11 made of silicon or the like and made of aluminum electrode films from both ends of the resistance surface layer 3 and are covered with a protective film 13 made of silicon nitride or the like to form a diffusion resistor 20.

【0014】図2(a) は抵抗層2の拡散工程であり、半
導体領域1の表面に酸化シリコンのマスク膜M1をフォト
プロセスにより形成し、これをマスクとして通例のボロ
ンをp形不純物としてイオン注入した上で熱拡散させる
ことにより抵抗層2をふつう2〜3μmの深さに作り込
む。この抵抗層2の不純物濃度は拡散抵抗20に必要な抵
抗値に応じ設定され、例えばこの抵抗値が1kΩ程度以
上の場合は1016〜1018原子/cm3 に設定される。なお、
この図2(a) の工程では抵抗層2を目標値より所定%,
例えば5〜10%だけ高い抵抗値で作り込むようにする。
FIG. 2 (a) shows a diffusion process of the resistance layer 2. A mask film M1 of silicon oxide is formed on the surface of the semiconductor region 1 by a photo process, and using this as a mask, boron is commonly used as a p-type impurity for ion implantation. By injecting and then thermally diffusing, the resistance layer 2 is usually formed to a depth of 2 to 3 μm. The impurity concentration of the resistance layer 2 is set according to the resistance value required for the diffusion resistance 20, and for example, when the resistance value is about 1 kΩ or more, it is set to 10 16 to 10 18 atoms / cm 3 . In addition,
In the process of FIG. 2 (a), the resistance layer 2 is set to a predetermined value from the target value,
For example, try to make it with a resistance value as high as 5 to 10%.

【0015】次の図2(b) は抵抗表面層3の拡散工程で
あり、前と同じマスク膜M1を用いてp形不純物を抵抗層
2の表面に高ドーズ量でイオン注入した上で短時間の熱
拡散により抵抗表面層3をふつう 0.2〜0.5 μmの深さ
に作り込む。抵抗表面層3の不純物濃度は抵抗層2より
も少なくとも1桁高く, 例えば1018〜1019原子/cm3
度かそれ以上とするのがよい。以後は絶縁膜11と端子12
と保護膜13を順次配設して図1の完成状態とする。な
お、拡散抵抗20の抵抗値は抵抗表面層3によって抵抗層
2の抵抗値より上述の5〜10%低い所定値になる。
Next, FIG. 2 (b) shows a diffusion process of the resistance surface layer 3, in which p-type impurities are ion-implanted into the surface of the resistance layer 2 at a high dose using the same mask film M1 as the previous one, and then short. The resistance surface layer 3 is usually formed to a depth of 0.2 to 0.5 μm by thermal diffusion for a time. The impurity concentration of the resistance surface layer 3 is higher than that of the resistance layer 2 by at least one digit, for example, 10 18 to 10 19 atoms / cm 3 or more. After that, insulating film 11 and terminal 12
And the protective film 13 are sequentially arranged to complete the state shown in FIG. The resistance value of the diffusion resistor 20 becomes a predetermined value lower than the resistance value of the resistance layer 2 by 5 to 10% by the resistance surface layer 3.

【0016】この第1発明では抵抗層2と絶縁膜11との
間に高不純物濃度の抵抗表面層3が介在しているので、
その遮断効果によって拡散抵抗20の本体である抵抗層2
内のキャリア分布が絶縁膜11内の蓄積電荷の影響を受け
ることがなく、拡散抵抗20の抵抗値のばらつきを±0.1
%程度にまで減少させることができる。さらに、この第
1発明は抵抗層2と抵抗表面層3の拡散用に同じマスク
膜M1を共用できるのでマスク形成用のフォトプロセスを
1回で済ませ得る利点がある。
In the first aspect of the invention, since the resistance surface layer 3 having a high impurity concentration is interposed between the resistance layer 2 and the insulating film 11,
Due to the blocking effect, the resistance layer 2 which is the main body of the diffused resistor 20
The carrier distribution inside is not affected by the accumulated charge in the insulating film 11, and the dispersion of the resistance value of the diffusion resistor 20 is ± 0.1
It can be reduced to about%. Further, the first invention can share the same mask film M1 for diffusion of the resistance layer 2 and the resistance surface layer 3, so that there is an advantage that the photoprocess for mask formation can be completed only once.

【0017】図3の第2発明では、n形の半導体領域1
の表面から前述のp形の抵抗層2を拡散し、抵抗層2の
大部分を含めて半導体領域1の表面部分にn形の表面層
4を浅く拡散し、表面層4を含む半導体領域1の表面を
絶縁膜11で覆い、抵抗層2の両端部分からそれぞれ端子
12を導出して拡散抵抗20を構成する。なお、端子12は表
面層4の拡散時に抵抗層2を露出させてそこから導出し
てもよいが、図示の例では表面層4を抵抗層2と半導体
領域1の表面全体に拡散しておき、表面層4の表面から
p形の接続層6を抵抗層2の各端部に達するように高不
純物濃度でそれぞれ拡散してそれから端子12を導出する
構造とされる。保護膜13が端子12を覆うように設けられ
るのは図1と同じである。
In the second invention of FIG. 3, the n-type semiconductor region 1 is used.
Of the semiconductor layer 1 including the surface layer 4 and the p-type resistance layer 2 described above is diffused, and the n-type surface layer 4 is shallowly diffused to the surface portion of the semiconductor region 1 including most of the resistance layer 2. The surface of the is covered with an insulating film 11
12 is derived to form the diffusion resistance 20. Although the terminal 12 may be exposed from the resistance layer 2 when the surface layer 4 is diffused, the surface layer 4 may be diffused over the entire surface of the resistance layer 2 and the semiconductor region 1 in the illustrated example. , The p-type connecting layer 6 is diffused from the surface of the surface layer 4 at a high impurity concentration so as to reach each end of the resistance layer 2, and the terminal 12 is led out therefrom. As in FIG. 1, the protective film 13 is provided so as to cover the terminals 12.

【0018】図4(a) 〜(c) に図3の構造の拡散抵抗20
の主な製造工程を示す。図4(a) の工程ではマスク膜M1
を用いる拡散により半導体領域1の表面から抵抗層2を
作り込み、次の図4(b) の工程では半導体領域1および
抵抗層2の表面全体にn形の表面層4を拡散し、さらに
図4(c) の工程で別のマスク膜M2を用いる拡散によりp
形の接続層6を表面層4の表面から抵抗層2に達するよ
うに拡散する。以後は絶縁膜11と端子12と保護膜13を順
次配設して図3の完成状態とする。表面層4の不純物濃
度はp形の抵抗層2の表面をn形に変え得るよう抵抗層
2の不純物濃度より高めに設定することでよく、その拡
散深さはふつう 0.5〜1μm程度と浅くてよい。接続層
6は1018〜1019原子/cm3 以上の高不純物濃度とされ
る。なお、図4(b) と図4(c) の工程は適宜入れ換えて
もよい。
FIGS. 4 (a) to 4 (c) show the diffusion resistance 20 of the structure of FIG.
The main manufacturing steps of are shown below. In the process of FIG. 4A, the mask film M1
The resistance layer 2 is formed from the surface of the semiconductor region 1 by diffusion using, and the n-type surface layer 4 is diffused over the entire surface of the semiconductor region 1 and the resistance layer 2 in the next step of FIG. 4 (b). In the step 4 (c), p is formed by diffusion using another mask film M2.
The connecting layer 6 in the form of a diffusion is diffused from the surface of the surface layer 4 to reach the resistance layer 2. After that, the insulating film 11, the terminal 12, and the protective film 13 are sequentially arranged to complete the state shown in FIG. The impurity concentration of the surface layer 4 may be set higher than the impurity concentration of the resistance layer 2 so that the surface of the p-type resistance layer 2 can be changed to the n-type. Good. The connection layer 6 has a high impurity concentration of 10 18 to 10 19 atoms / cm 3 or more. The steps of FIGS. 4 (b) and 4 (c) may be replaced with each other as appropriate.

【0019】図5に示す第3発明の実施例では、p形の
抵抗層をn形の半導体領域の表面の下側に埋め込むため
に半導体領域を下側の半導体領域1と上側の半導体領域
5の2層構成とする。このため、図6(a) に示すようn
形の半導体領域1の表面部にまずp形の抵抗層2をマス
ク膜M1を用いて拡散した後、図6(b) のように上側の半
導体領域5としてn形のエピタキシャル層を抵抗層2を
覆うようにごく薄く,例えば1〜2μmの厚みに成長さ
せる。さらに、図6(c) の工程でマスク膜M2を用いて半
導体領域5の表面からp形の接続層6を抵抗層2の各端
部に達するよう高不純物濃度で拡散した上で、半導体領
域5と接続層6の表面を覆う絶縁膜11と各接続層6に接
続された端子12とその上を覆う保護膜13とを順次配設し
て図5の拡散抵抗20の完成状態とする。
In the embodiment of the third invention shown in FIG. 5, the semiconductor region is embedded in the lower semiconductor region 1 and the upper semiconductor region 5 in order to embed the p-type resistance layer under the surface of the n-type semiconductor region. It is a two-layer structure. Therefore, as shown in FIG.
First, the p-type resistance layer 2 is diffused on the surface of the p-type semiconductor region 1 using the mask film M1, and then an n-type epitaxial layer is formed as the upper semiconductor region 5 as shown in FIG. 6B. Is grown so as to cover the film, for example, to a thickness of 1 to 2 μm. Further, in the step of FIG. 6C, the p-type connection layer 6 is diffused from the surface of the semiconductor region 5 with a high impurity concentration so as to reach each end of the resistance layer 2 using the mask film M2, and then the semiconductor region is formed. 5, the insulating film 11 covering the surfaces of the connection layers 6, the terminals 12 connected to each connection layer 6 and the protective film 13 covering the terminals 12 are sequentially arranged to complete the diffusion resistance 20 of FIG.

【0020】以上説明した第2発明および第3発明のい
ずれによる拡散抵抗20でも、p形の抵抗層2はいずれも
n形の表面層4または上側の半導体領域5によって絶縁
膜11から遮断されているので、抵抗層2内のキャリア分
布が絶縁膜11内の蓄積電荷の影響を受けることがなく、
拡散抵抗20の抵抗値のばらつきを±0.1 %程度ないしそ
れ以下に減少させることができる。いずれの場合もマス
ク膜M1とM2用にフォトプロセスを2回要するが従来と同
じである。なお、第3発明では抵抗層2を埋め込むため
に半導体領域を2層構成にするかわりに、抵抗値の精度
は若干落ちるが単一層の半導体領域の表面から抵抗層2
用の不純物を1〜数MeV の高加速電圧のイオン注入によ
り2〜数μmの深さに打ち込むようにしてもよい。
In both the diffusion resistance 20 according to the second invention and the third invention described above, the p-type resistance layer 2 is isolated from the insulating film 11 by the n-type surface layer 4 or the upper semiconductor region 5. Therefore, the carrier distribution in the resistance layer 2 is not affected by the accumulated charge in the insulating film 11,
It is possible to reduce the variation in the resistance value of the diffused resistor 20 to about ± 0.1% or less. In either case, the photo process is required twice for the mask films M1 and M2, which is the same as the conventional one. In the third aspect of the invention, instead of forming the semiconductor region in a two-layer structure in order to embed the resistance layer 2, the resistance value accuracy is slightly lowered, but the resistance layer 2 is formed from the surface of the single-layer semiconductor region.
The impurities for use may be implanted at a depth of 2 to several μm by ion implantation with a high acceleration voltage of 1 to several MeV.

【0021】なお、抵抗層2のキャリア分布に対する絶
縁膜11の蓄積電荷の影響を遮断するため、第1発明では
抵抗表面層3を抵抗層2と同じ導電形とし、第2と第3
発明では表面層4や上側の半導体領域5を抵抗層2と逆
の導電形とするが、いずれの場合も遮断効果は大差はな
い。この遮断効果上では、同導電形の抵抗表面層3の不
純物濃度は抵抗層2よりも極力高く設定するのがよく、
逆導電形の表面層4や上側の半導体領域5の不純物濃度
はとくに低くない程度でよい。本件発明による拡散抵抗
20は抵抗層2の面抵抗を0.5 〜5kΩ/□とし, 拡散パ
ターンの長さと幅の比を数〜10として数kΩ程度の抵抗
値をもたせた場合でも、そのばらつきを従来より1桁低
い± 0.1%以下に容易に管理でき、その作り込みに要す
る面積も面抵抗を高く設定して従来よりも縮小すること
ができる。
In order to block the influence of the charges accumulated in the insulating film 11 on the carrier distribution of the resistance layer 2, the resistance surface layer 3 has the same conductivity type as that of the resistance layer 2 in the first invention, and the second and third resistance layers are used.
In the invention, the surface layer 4 and the upper semiconductor region 5 have the conductivity type opposite to that of the resistance layer 2, but in any case, the blocking effect is not so different. In terms of this blocking effect, it is preferable to set the impurity concentration of the resistance surface layer 3 of the same conductivity type as high as possible than that of the resistance layer 2.
The impurity concentration of the surface layer 4 of the opposite conductivity type and the semiconductor region 5 on the upper side need not be particularly low. Diffusion resistance according to the present invention
No. 20 has a surface resistance of the resistance layer 2 of 0.5 to 5 kΩ / □, a diffusion pattern length to width ratio of several to 10 and even a resistance value of several kΩ, the variation is one digit lower than the conventional ±. It can be easily controlled to 0.1% or less, and the area required for making it can be reduced by setting the sheet resistance higher.

【0022】[0022]

【発明の効果】以上説明したとおり、本発明では拡散抵
抗の抵抗値の精度が低下しやすいのはその抵抗層内のキ
ャリアの分布がその上側の絶縁膜内の蓄積電荷の影響を
受ける点に原因があることに着目し、第1発明では抵抗
表面層を抵抗層と同じ導電形でその表面部に高不純物濃
度で拡散し、第2発明では表面層を抵抗層および半導体
領域の表面部に抵抗層と逆の導電形で拡散し、第3発明
では抵抗層をそれと逆の導電形の半導体領域の表面の下
側に埋め込み拡散することにより、いずれの場合にも抵
抗層内のキャリア分布に対する絶縁膜内の蓄積電荷の影
響を遮断して拡散抵抗の抵抗値のばらつきを従来より1
桁以上減少させることができる。
As described above, according to the present invention, the accuracy of the resistance value of the diffused resistor is likely to be lowered because the carrier distribution in the resistance layer is affected by the accumulated charge in the insulating film above the resistance layer. Focusing on the cause, in the first invention, the resistance surface layer is diffused to the surface portion with the same conductivity type as the resistance layer with a high impurity concentration, and in the second invention, the surface layer is formed on the resistance layer and the surface portion of the semiconductor region. In the third invention, diffusion is performed with the conductivity type opposite to that of the resistance layer, and in the third invention, the resistance layer is embedded and diffused under the surface of the semiconductor region with the conductivity type opposite to that. The influence of the accumulated charge in the insulating film is cut off, and the variation in the resistance value of the diffusion resistance is reduced to 1
It can be reduced by more than an order of magnitude.

【0023】なお、第1発明は不純物拡散用のマスク膜
を形成するためのフォトプロセスが1回で済ませ得る利
点があり、第2および第3発明は従来と同じく2回のフ
ォトプロセスを要するが拡散抵抗の抵抗値の制御が第1
発明よりも容易になる利点を有する。また、第1〜第3
発明のいずれも抵抗層の不純物濃度を1018原子/cm3
下に下げた場合にも拡散抵抗の抵抗値の精度を上述のよ
うに向上させる効果が高く、拡散抵抗が1kΩ以上の高
抵抗の場合や高い抵抗値の精度を要するピエゾ抵抗等の
センサ用拡散抵抗への適用にとくに有利である。
The first invention has the advantage that the photoprocess for forming the mask film for impurity diffusion can be completed only once, while the second and third inventions require two photoprocesses as in the conventional case. The first is the control of the resistance value of the diffusion resistance.
It has the advantage of being easier than the invention. Also, the first to the third
In any of the inventions, even if the impurity concentration of the resistance layer is reduced to 10 18 atoms / cm 3 or less, the effect of improving the accuracy of the resistance value of the diffusion resistance is high as described above, and the diffusion resistance of 1 kΩ or more is high. In particular, it is particularly advantageous for application to sensor diffusion resistors such as piezoresistors that require high resistance value accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1発明による拡散抵抗の実施例を示すその断
面図である。
FIG. 1 is a sectional view showing an embodiment of a diffused resistor according to the first invention.

【図2】図1の拡散抵抗を作り込む際の主な工程ごとの
状態を示し、同図(a) は抵抗層の拡散工程、同図(b) は
抵抗表面層の拡散工程を示す断面図である。
2A and 2B show the states of the main steps of manufacturing the diffusion resistance of FIG. 1, where FIG. 2A is a sectional view showing a diffusion step of a resistance layer and FIG. 2B is a sectional view showing a diffusion step of a resistance surface layer. It is a figure.

【図3】第2発明による拡散抵抗の実施例を示すその断
面図である。
FIG. 3 is a sectional view showing an embodiment of a diffused resistor according to the second invention.

【図4】図3の拡散抵抗を作り込む際の主な工程ごとの
状態を示し、同図(a) は抵抗層の拡散工程、同図(b) は
表面層の拡散工程、同図(c) は接続層の拡散工程をそれ
ぞれ示す断面図である。
4A and 4B show a state of each main process when the diffusion resistance of FIG. 3 is formed, wherein FIG. 4A is a diffusion process of a resistance layer, FIG. 4B is a diffusion process of a surface layer, and FIG. 3C is a cross-sectional view showing a diffusion process of the connection layer.

【図5】第3発明による拡散抵抗の実施例を示すその断
面図である。
FIG. 5 is a sectional view showing an embodiment of a diffused resistor according to the third invention.

【図6】図5の拡散抵抗を作り込む際の主な工程ごとの
状態を示し、同図(a) は抵抗層の拡散工程、同図(b) は
上側半導体領域としてのエピタキシャル層の成長工程、
同図(c) は接続層の拡散工程をそれぞれ示す断面図であ
る。
6A and 6B show a state of each main step when the diffusion resistance of FIG. 5 is formed, wherein FIG. 6A shows a diffusion step of a resistance layer, and FIG. 6B shows growth of an epitaxial layer as an upper semiconductor region. Process,
FIG. 3C is a cross-sectional view showing the diffusion process of the connection layer.

【図7】従来の拡散抵抗に関し、同図(a) はその断面
図、同図(b) は上面図である。
FIG. 7 is a sectional view of the conventional diffused resistor, and FIG. 7B is a top view thereof.

【符号の説明】[Explanation of symbols]

1 半導体領域ないしは下側の半導体領域 2 抵抗層 3 抵抗表面層 4 表面層 5 上側の半導体領域ないしはエピタキシャル層 6 接続層 11 絶縁膜 12 端子 13 保護膜 20 拡散抵抗 1 Semiconductor region or lower semiconductor region 2 Resistive layer 3 Resistive surface layer 4 Surface layer 5 Upper semiconductor region or epitaxial layer 6 Connection layer 11 Insulating film 12 Terminal 13 Protective film 20 Diffusion resistance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一方の導電形の半導体領域の表面から抵抗
用のパターンで拡散された他方の導電形の抵抗層と、抵
抗層の表面部にそれとほぼ同じパターンかつ高不純物濃
度で浅く拡散された他方の導電形の抵抗表面層と、抵抗
層および抵抗表面層を含む半導体領域の表面を覆う絶縁
膜とを備え、抵抗表面層の両端部から端子をそれぞれ導
出してなることを特徴とする半導体装置用拡散抵抗。
1. A resistance layer of the other conductivity type diffused from a surface of a semiconductor region of one conductivity type in a resistance pattern, and a surface of the resistance layer diffused shallowly with a pattern substantially the same as that of the resistance layer and a high impurity concentration. And a resistance surface layer of the other conductivity type and an insulating film covering the surface of the resistance layer and the semiconductor region including the resistance surface layer, wherein terminals are respectively derived from both ends of the resistance surface layer. Diffusion resistance for semiconductor devices.
【請求項2】一方の導電形の半導体領域の表面から抵抗
用のパターンで拡散された他方の導電形の抵抗層と、抵
抗層の少なくとも大部分を含む半導体領域の表面部に浅
く拡散された一方の導電形の表面層と、表面層を含めて
半導体領域の表面を覆う絶縁膜とを備え、抵抗層の両端
部分から端子をそれぞれ導出してなることを特徴とする
半導体装置用拡散抵抗。
2. A surface of a semiconductor region including at least most of the resistance layer of the other conductivity type and a resistance layer of the other conductivity type diffused from the surface of the semiconductor region of one conductivity type in a resistance pattern, and shallowly diffused to the surface portion. A diffused resistor for a semiconductor device, comprising a surface layer of one conductivity type and an insulating film covering the surface of the semiconductor region including the surface layer, wherein terminals are led out from both ends of the resistance layer.
【請求項3】一方の導電形の半導体領域の表面の下側に
抵抗用のパターンで埋め込み拡散された他方の導電形の
抵抗層と、抵抗層の両端部にそれぞれ達するよう半導体
領域の表面から高不純物濃度で拡散された他方の導電形
の接続層と、半導体領域の表面を覆う絶縁膜とを備え、
各接続層から端子をそれぞれ導出してなることを特徴と
する半導体装置用拡散抵抗。
3. A resistance layer of the other conductivity type embedded and diffused in a resistance pattern under the surface of the semiconductor region of one conductivity type, and a surface of the semiconductor region so as to reach both ends of the resistance layer, respectively. A connection layer of the other conductivity type diffused at a high impurity concentration, and an insulating film covering the surface of the semiconductor region,
A diffused resistor for a semiconductor device, characterized in that a terminal is derived from each connection layer.
JP87193A 1993-01-07 1993-01-07 Diffused resistor for semiconductor device Pending JPH06204408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP87193A JPH06204408A (en) 1993-01-07 1993-01-07 Diffused resistor for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP87193A JPH06204408A (en) 1993-01-07 1993-01-07 Diffused resistor for semiconductor device

Publications (1)

Publication Number Publication Date
JPH06204408A true JPH06204408A (en) 1994-07-22

Family

ID=11485741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP87193A Pending JPH06204408A (en) 1993-01-07 1993-01-07 Diffused resistor for semiconductor device

Country Status (1)

Country Link
JP (1) JPH06204408A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131035A (en) * 1993-11-01 1995-05-19 Masaki Esashi Fabrication of piezoelectric resistance element
JPH08204209A (en) * 1995-01-30 1996-08-09 Hitachi Ltd Semiconductor composite sensor
JP2000150784A (en) * 1997-02-24 2000-05-30 Internatl Business Mach Corp <Ibm> Noise-insulated buried resistor and its formation
JP2004063955A (en) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd Semiconductor device
JP2007324566A (en) * 2006-05-01 2007-12-13 Tanita Corp Semiconductor strain gauge and manufacturing method therefor
TWI416739B (en) * 2006-05-01 2013-11-21 Tanita Seisakusho Kk Semiconductor type strain gauge and manufacturing method thereof
JP2019158576A (en) * 2018-03-13 2019-09-19 アズビル株式会社 Piezoresistance sensor
JP2020193922A (en) * 2019-05-30 2020-12-03 三菱電機株式会社 Semiconductor strain detection element and mems actuator device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131035A (en) * 1993-11-01 1995-05-19 Masaki Esashi Fabrication of piezoelectric resistance element
JPH08204209A (en) * 1995-01-30 1996-08-09 Hitachi Ltd Semiconductor composite sensor
JP2000150784A (en) * 1997-02-24 2000-05-30 Internatl Business Mach Corp <Ibm> Noise-insulated buried resistor and its formation
JP2004063955A (en) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd Semiconductor device
JP2007324566A (en) * 2006-05-01 2007-12-13 Tanita Corp Semiconductor strain gauge and manufacturing method therefor
TWI416739B (en) * 2006-05-01 2013-11-21 Tanita Seisakusho Kk Semiconductor type strain gauge and manufacturing method thereof
JP2019158576A (en) * 2018-03-13 2019-09-19 アズビル株式会社 Piezoresistance sensor
JP2020193922A (en) * 2019-05-30 2020-12-03 三菱電機株式会社 Semiconductor strain detection element and mems actuator device
US11609133B2 (en) 2019-05-30 2023-03-21 Mitsubishi Electric Corporation Semiconductor strain detection element with impurity diffusion layer

Similar Documents

Publication Publication Date Title
US4176368A (en) Junction field effect transistor for use in integrated circuits
US4908682A (en) Power MOSFET having a current sensing element of high accuracy
US4945762A (en) Silicon sensor with trimmable wheatstone bridge
US4914497A (en) Semiconductor integrated circuit device provided with a capacitor element having an oxidation-resist film as a dielectric and process for manufacturing the same
US5759887A (en) Semiconductor device and a method of manufacturing a semiconductor device
JPH06204408A (en) Diffused resistor for semiconductor device
CA1314410C (en) Wiring structure of semiconductor pressure sensor
EP0423791B1 (en) MIS capacitive element
US4670731A (en) Semiconductor temperature sensor
US5304838A (en) Vertical resistive element for integrated circuit miniaturization
US4223335A (en) Semiconductor device body having identical isolated composite resistor regions
US3631313A (en) Resistor for integrated circuit
JPH058597B2 (en)
JP3113202B2 (en) Semiconductor device
JP3417482B2 (en) Method for manufacturing semiconductor device
JPS62234363A (en) Semiconductor integrated circuit
USRE34025E (en) Semiconductor device with isolation between MOSFET and control circuit
JPS6241422B2 (en)
KR0150122B1 (en) Fabrication method of semiconductor device
JP2627369B2 (en) Semiconductor integrated circuit
JP2004296883A (en) Semiconductor device and its manufacturing method
JPH07297412A (en) Piezoelectric resistance element
JPS57122560A (en) Semiconductor device
JPS59121966A (en) Manufacture of semiconductor device
JPS61242059A (en) Semiconductor device for capacitor microphone