JP6569865B2 - 固体レーザー装置 - Google Patents

固体レーザー装置 Download PDF

Info

Publication number
JP6569865B2
JP6569865B2 JP2016038298A JP2016038298A JP6569865B2 JP 6569865 B2 JP6569865 B2 JP 6569865B2 JP 2016038298 A JP2016038298 A JP 2016038298A JP 2016038298 A JP2016038298 A JP 2016038298A JP 6569865 B2 JP6569865 B2 JP 6569865B2
Authority
JP
Japan
Prior art keywords
light
laser medium
incident
solid
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016038298A
Other languages
English (en)
Other versions
JP2017157647A5 (ja
JP2017157647A (ja
Inventor
浩一 濱本
浩一 濱本
松田 竜一
竜一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016038298A priority Critical patent/JP6569865B2/ja
Priority to EP17759416.5A priority patent/EP3319186B1/en
Priority to US15/751,258 priority patent/US11063403B2/en
Priority to PCT/JP2017/000796 priority patent/WO2017149944A1/ja
Publication of JP2017157647A publication Critical patent/JP2017157647A/ja
Publication of JP2017157647A5 publication Critical patent/JP2017157647A5/ja
Application granted granted Critical
Publication of JP6569865B2 publication Critical patent/JP6569865B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • H01S3/027Constructional details of solid state lasers, e.g. housings or mountings comprising a special atmosphere inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0401Arrangements for thermal management of optical elements being part of laser resonator, e.g. windows, mirrors, lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Description

この発明は、固体レーザー装置に関する。
例えば、キロワットクラスの平均出力を有した高出力の固体レーザー装置のレーザー媒質として、Yb(イッテルビウム)をドープしたYAG(Yttrium Aluminium Garnet)等が知られている。
このようなレーザー媒質は、レーザー出力の増大に伴ってその温度が上昇してしまう。しかし、このレーザー媒質により高効率でレーザー発振させるためには、例えば、120K以下のような低温にすることが望ましい。そのため、このような高出力の固体レーザーでは、液化窒素などを用いてレーザー媒質を冷却することが行われている。しかしながら、レーザー媒質は、容器内に収容されているため、レーザー媒質を冷却することによって容器の内側と外側とに温度差が生じて結露が発生する場合がある。
そこで、特許文献1には、レーザー媒質および、レーザー媒質を冷却する冷媒が流れる冷媒容器を真空容器に収容して、特に窓を含む容器内側の結露を防止する技術が提案されている。
一方で、レーザー媒質の冷却を効果的に行う技術として、増幅媒質を薄くする方式が開示されている。しかし、このような方式では、レーザー反射のためのコーティングが必要となり、熱特性を悪化させる可能性が有る。
そこで、特許文献2には、薄く形成された増幅媒質を透明な媒質に接合して、全反射によりレーザー光が伝搬する構造が提案されている。
特許第5424320号公報 特許第5330801号公報
上述したレーザー媒質は、ガラス、単結晶、セラミックスなどの脆性材料で構成されている。そのため、特許文献2のような全反射によりレーザー光を伝搬させる方式で、特許文献1のように、レーザー媒質に直接シールを接触させてレーザー媒質を冷却する冷媒領域と真空領域とを区画しようとした場合、レーザー媒質に荷重がかかり、レーザー媒質が破損してしまう可能性が有る。
この発明は、上記事情に鑑みてなされたものであり、レーザー媒質の破損、および、レーザー光が遮られることを抑制しつつ、レーザー媒質を容易に交換でき、高効率でレーザー発振させることが可能な固体レーザー装置を提供することを目的とする。
この発明の第一態様によれば、固体レーザー装置は、レーザー媒質と、内側容器と、外側容器と、冷媒供給部と、カバー部と、を備える。レーザー媒質は、光の入射と出射との少なくとも一方がなされる光入出射面を表面の一部に有している。内側容器は、前記レーザー媒質を収容し、前記光入出射面に入射される入射光および前記光入出射面から出射される出射光が透過する内側光透過部を有する。外側容器は、前記内側容器を収容するとともに前記内側光透過部と対向する部位に設けられて、前記入射光および前記出射光を透過し、前記内側光透過部に対して真空断熱された外側光透過部を少なくとも有する。冷媒供給部は、前記レーザー媒質における前記光入出射面を除く少なくとも一部の表面に冷媒が接するように前記内側容器の内部に前記冷媒を供給する。カバー部は、前記光入出射面と前記内側光透過部との間の前記入射光および前記出射光が通過する光通過領域を、前記冷媒供給部によって冷媒が供給される冷媒供給領域から区画する。前記内側容器は、前記冷媒供給領域と前記光通過領域とが同一圧力となるように前記レーザー媒質を収容する。
内側光透過部と外側光透過部とが真空断熱されていることで、レーザー媒質を真空雰囲気に配置せずにレーザー媒質を冷媒によって冷却したとしても、内側光透過部の内外面に温度差が生じること、および、外側光透過部の内外面に温度差が生じることをそれぞれ抑制できる。そのため、内側光透過部と外側光透過部とに結露が発生することを抑制できる。さらに、レーザー媒質を真空雰囲気に配置する必要がなく、光通過領域と冷媒供給領域とを同一圧力下とすることができるため、カバー部をレーザー媒質に押し付ける必要が無くレーザー媒質にかかる荷重を低減できる。また、光通過領域と冷媒供給領域とを同一圧力下とすることで、レーザー媒質を強固に固定する必要がない。さらに、光入出射面を除く少なくとも一部の表面に冷媒が直接触れるように冷媒を供給できるため、効率よくレーザー媒質を冷却することができる。
その結果、レーザー媒質の破損、および、レーザー光が遮られることを抑制しつつ、レーザー媒質を容易に交換でき、高効率でレーザー発振させることが可能となる。
この発明の第二態様によれば、固体レーザー装置は、第一態様における光入出射面が、下方から上方に向かって漸次外方に配置される下向きの傾斜面とされ、前記冷媒供給部は、前記レーザー媒質に対して上下方向から冷媒を吹き付けるようにしてもよい。
このように構成することで、傾斜面の上端部から冷媒の液滴が落下し易くなるので、仮に、カバー部によって冷媒の移動を防ぎきれない場合であっても、冷媒の液滴が光入出射面の傾斜面を伝って移動することを低減できる。その結果、光が冷媒によって遮られることを抑制できる。
この発明の第三態様によれば、固体レーザー装置は、第一又は第二態様における冷媒供給部は、前記レーザー媒質に対して水平な方向から冷媒を吹き付けるようにしてもよい。
このように構成することで、扱いが容易な励起光およびレーザー出力光が水平面内を伝搬するようなレーザー媒質の形状とすることができる。さらに、レーザー媒質に対して水平な方向から冷媒が吹き付けられることで、冷媒の液滴が光入出射面に回り込むことを抑制できる。その結果、レーザー光が冷媒によって遮られることを抑制できる。
この発明の第四態様によれば、固体レーザー装置は、第一から第三態様の何れか一つの態様におけるカバー部が、前記レーザー媒質を支持する支持部を備えていてもよい。
このように構成することで、カバー部によってレーザー媒質を保持することができるため、カバー部と保持部とを個別に設ける場合よりも部品点数を低減できる。さらに、カバー部の配置自由度を向上できる。
この発明の第五態様によれば、固体レーザー装置は、第一から第四態様の何れか一つの態様において、前記内側容器の内部に設けられて、前記内側容器内の雰囲気に含まれる揮発成分を捕集するトラップ部を備えていてもよい。
このように構成することで、仮に、内側容器の内部に微小な揮発成分等が残存している場合であっても、これら揮発成分が内側光透過部やレーザー媒質に付着する前に捕集することができる。その結果、揮発成分による結露が生じることを抑制できる。
この発明の第六態様によれば、固体レーザー装置は、第一から第五態様の何れか一つの態様において、前記内側光透過部と前記光入出射面との少なくとも一方を加温可能な加温部を備えていてもよい。
このように構成することで、内側光透過部やレーザー媒質の光入出射面を温度上昇させることができるため、内側容器の内部において相対的に温度の低い箇所で先んじて揮発成分を結露させることができる。その結果、揮発成分がレーザー媒質や内側光透過部で結露することを抑制できる。
この発明の第七態様によれば、固体レーザー装置は、第六態様における内側容器が、真空引き可能な真空容器とされていてもよい。
このように構成することで、内側容器の内部を真空引きして、内側容器の内部に残存する揮発成分を減少させることができる。その結果、より一層、内側容器の内部に残存する揮発成分が光入出射面や内側光透過部に付着することを抑制することができる。
上記固体レーザー装置によれば、レーザー媒質の破損、および、レーザー光が遮られることを抑制しつつ、レーザー媒質を容易に交換でき、高効率でレーザー発振させることができる。
この発明の第一実施形態における固体レーザー装置の概略構成を示す図である。 上記固体レーザー装置のレーザー媒質の斜視図である。 第一実施形態における支持部材の固定箇所を示す斜視図である。 この発明の第一実施形態における固体レーザー装置の運用方法のフローチャートである。 この発明の第一実施形態の第一変形例における図3に相当する斜視図である。 この発明の第一実施形態の第二変形例における図3に相当する斜視図である。 この発明の第一実施形態の第三変形例における図3に相当する斜視図である。 この発明の第一実施形態の第四変形例における図3に相当する斜視図である。 この発明の第一実施形態の第五変形例における図3に相当する斜視図である。 この発明の第一実施形態の第六変形例における図3に相当する斜視図である。 この発明の第二実施形態における固体レーザー装置の図1に相当する図である。 この発明の第三実施形態における固体レーザー装置の図1に相当する図である。 この発明の第四実施形態における固体レーザー装置の図1に相当する図である。 図13のXIV−XIV線に沿う断面図である。 この発明の第五実施形態における固体レーザー装置の図1に相当する図である。 この発明の第六実施形態における固体レーザー装置の図1に相当する図である。 第五実施形態の変形例における固体レーザー装置の図1に相当する図である。
(第一実施形態)
次に、この発明の第一実施形態における固体レーザー装置について説明する。
図1は、この発明の第一実施形態における固体レーザー装置の概略構成を示す図である。図2は、上記固体レーザー装置のレーザー媒質の斜視図である。
この第一実施形態における固体レーザー装置は、活性元素としてイッテルビウム(以下、単にYbと称する)がドープされたイットリウム・アルミニウム・ガーネット(以下、単にYAGと称する)を増幅媒質として用いた固体レーザー装置を一例に説明するが、この増幅媒質または母材を用いる固体レーザー装置に限られない(以下、各変形例、および、第二から第六実施形態も同様)。
図1に示すように、第一実施形態の固体レーザー装置1Aは、レーザー媒質2Aと、内側容器3と、外側容器4と、冷媒供給部5と、カバー部6と、を主に備えている。
レーザー媒質2Aは、透明部10Aと増幅媒質11とを備えている。このレーザー媒質2Aは、透明部10Aに励起光の入射と、励起光を増幅したレーザー光の出射との少なくとも一方がなされる光入出射面を表面の一部に有している。
透明部10Aは、活性元素がドープされていないYAG等により形成されている。この透明部10Aとしては、大型化が可能なセラミックス素材を用いることができる。このようなセラミックス素材を用いることで、励起面積を広げるとともに、光強度の大きい励起光を増幅媒質11で吸収させることができる。
図2に示すように、透明部10Aは、2つの側面12Aと、上面13Aと、下面14Aと、2つの入(出)射面(光入出射面)15Aとを備えている。
2つの側面12Aは、それぞれYZ平面に平行に形成されている。2つの側面12Aは、それぞれ同一の台形状に形成されている。これら側面12Aは、X方向から見て重なるように配置されている。この台形状に形成された側面12Aの上辺12aと下辺12bとは、それぞれY方向に延びて、互いの長さ方向の中心位置がY方向で一致している。さらに、台形状に形成された側面12Aの2つの斜辺12cは、上辺12aと下辺12bとの端部同士を繋いでいる。
上面13Aは、2つの側面12Aが備える上辺12a同士を繋いでいる。下面14Aは、2つの側面12Aが備える下辺12b同士を繋いでいる。これら上面13Aおよび下面14Aは、それぞれXY平面に平行な平面に形成されている。
入(出)射面15Aは、X方向で隣り合う斜辺12c同士を繋いでいる。これら入(出)射面15Aは、下辺12bから上辺12aに向かうに従って上辺12aの長さ方向の中心位置に近づくように傾斜する平面に形成されている。これら入(出)射面15Aは、上述した励起光の入射と、励起光を増幅したレーザー光の出射との少なくとも一方がなされる光入出射面となる。これら入(出)射面15Aの傾斜角度は、励起光又はレーザー光の反射が少なくなるように設定されている。
増幅媒質11は、複数設けられ、透明部10Aの上面13Aと、下面14Aとにそれぞれ接合されている。この実施形態における増幅媒質11は、上面13Aに一つ、下面14Aに二つ設けられた場合を例示している。これら増幅媒質11は、薄い平板状に形成されている。増幅媒質11は、それぞれ活性元素であるYbがドープされたYAGにより形成されている。下面14Aに接合された増幅媒質11は、互いにY方向に間隔を空けて配置されるとともに、下面14AのY方向両端部に配置されている。上面13Aに接合された増幅媒質11は、Y方向における上面13Aの中央に配置されている。この実施形態の一例における増幅媒質11は、X方向において透明部10Aの幅寸法と同じ幅寸法を有した矩形板状に形成されている。
上述したレーザー媒質2Aによれば、一方の入(出)射面15Aから入射した励起光およびレーザー光は、それぞれ増幅媒質11で全反射されてジグザグな光路(図1参照)を形成し、他方の入(出)射面15Aから出射される。ここで、励起光は、励起光源(図示せず)から入射される。励起光が増幅されたレーザー光が入(出)射面15Aから入射される場合は、例えば、レーザー媒質2Aから出射された後に全反射ミラー等により反射されて同じ入(出)射面15Aから入射される。
図1に示すように、内側容器3は、レーザー媒質2Aを収容する。内側容器3は、レーザー媒質2Aの入(出)射面15Aに入射される入射光(例えば、励起光、レーザー光)および入(出)射面15Aから出射される出射光(例えば、レーザー光)を透過可能な内側窓部(内側光透過部)20を有している。この内側窓部20を介して入射光が、内側容器3の外部からレーザー媒質2Aが設置された内側容器3の内部に入射され、出射光が内側容器3の内部から外部へと出射される。この実施形態の内側容器3は、2つの内側窓部20を備えている。これら内側窓部20は、それぞれ2つの入(出)射面15Aに対して励起光やレーザー光を入出射可能な位置にそれぞれ一つずつ配置されている。なお、図1中、内側窓部20を透過する励起光およびレーザー光の光軸を実線で示している(以下、外側容器4を通る光軸も同様)。
外側容器4は、内側容器3を収容する。外側容器4は、内側窓部20と対向する部位に外側窓部(外側光透過部)21を備えている。外側容器4の内面22は、内側容器3の外面23と所定距離だけ離れて配置されている。さらに、この実施形態における外側容器4は、内側容器3を収容する真空容器であり、外側容器4と内側容器3との間に真空雰囲気が形成されている。つまり、内側容器3に対して外側容器4が真空断熱されている。したがって、内側容器3の内側窓部20と外側容器4の外側窓部21との間も、真空断熱されている。外側窓部21は、入射光および出射光を透過可能とされており、内側窓部20を通過する光は、外側窓部21も同様に通過する。なお、内側容器3は、例えば、容器の底部を下方から支持する支持部(図示せず)を介して支持されてもよい。また、容器の側方や上方から支持してもよい。
ここで、内側窓部20と外側窓部21とには、例えば、励起光およびレーザー光の反射を防止する反射防止膜を形成しても良い。内側窓部20と外側窓部21とは、励起光およびレーザー光の光軸に対して反射損失が最小となる入射角(ブルースター角)となるように配置しても良い。
冷媒供給部5は、レーザー媒質2Aにおける入(出)射面15Aを除く少なくとも一部の表面に液化窒素などの冷媒が接するように内側容器3の内部に冷媒を供給する。この実施形態における冷媒供給部5は、上述した複数の増幅媒質11に向けて冷媒を噴射する複数のノズル24を備えている。さらに、この実施形態においては、一つの増幅媒質11に対して一つのノズル24が設けられている。これらノズル24は、それぞれ透明部10Aの下面14Aに接合された増幅媒質11に対しては、下から上に向けて冷媒を噴射し、透明部10Aの上面13Aに接合された増幅媒質11に対しては、上から下に向けて冷媒を噴射する。このようにノズル24により冷媒を噴射することでインピンジメント冷却と同様に冷却することができ、その結果、効率よく増幅媒質11を冷却することができる。
カバー部6は、入(出)射面15Aと内側窓部20との間の入射光および出射光が通過する光通過領域(図1中、二点鎖線で囲んだ領域)A1を、冷媒供給部5によって冷媒が供給される冷媒供給領域A2(図1中、二点鎖線で囲んだ領域を除く領域)から区画する。すなわち、カバー部6は、冷媒供給部5によって内側容器3の内部に供給された冷媒が入(出)射面15Aに接触しないように内側容器3の内部空間を区画している。カバー部6は、レーザー媒質2Aにシール等を介して固定されている。
ここで、この実施形態におけるレーザー媒質2Aは、例えば、冷媒供給領域A2において、支持部材(図示せず)を介して内側容器3に支持されている。つまり、支持部材(図示せず)が励起光やレーザー光を遮ることが無いようになっている。
図3は、第一実施形態における支持部材の固定箇所を示す斜視図である。
この図3においては、支持部材(図示せず)の固定箇所を太線(実線および破線)で示している。さらに、図3においては、増幅媒質11の図示を省略している。
図3に示すように、この実施形態における支持部材は、上面13Aの周縁に沿ってレーザー媒質2Aに固定されている。さらに、支持部材は、下面14Aの周縁に沿ってレーザー媒質2Aに固定されている。
カバー部6は、入(出)射面15Aへ冷媒が接触することを抑制する。
図1に示すように、カバー部6は、光通過領域A1の直近の上面13Aから上方に立ち上がるように配置されるとともに、光通過領域A1の直近の下面14A(又は増幅媒質11)から下方に垂れ下がるように配置されている。これらカバー部6の立ち上がる長さ、および、垂れ下がる長さは、冷媒の噴射される勢いなどに応じて設定すればよい。例えば、カバー部6の一方の端部がレーザー媒質2Aに固定され、他方の端部が内側容器3の内面25に固定されていてもよい。
次に、上述した固体レーザー装置1Aの運用方法について図面を参照しながら説明する。
図4は、この発明の第一実施形態における固体レーザー装置の運用方法のフローチャートである。
図4に示すように、まず、内側容器3の内部の水分(例えば、水蒸気)等の揮発成分を除去する工程を行う(ステップS01)。
ここで、内側容器3の内部の揮発成分を除去するためには、内側容器3の内部に乾燥ガスによるパージを行うことで揮発成分を除去できる。乾燥ガスは、例えば、コールドトラップなどにより予め水分を取り除いている気体であればよい。また、上記内側容器3を真空容器とすることもできる。このように内側容器3を真空容器とした場合には、内側容器3を一時的に真空状態とした後に乾燥ガスによるパージを行うことが有効である。
さらに、内側容器3の内部を真空ポンプ(図示せず)により真空引きしつつ内側容器3を加熱する、いわゆるベーキングを行うようにしても良い。このように内側容器3のベーキングを行うことで、内側容器3の内面に付着した揮発成分を気化させて、この気化した揮発成分を真空ポンプ(図示せず)によって内側容器3の外部に排出できる。その結果、より一層、内側容器3の内部に残存する水分などの揮発成分を除去することができる。なお、揮発成分の除去として水分除去を一例に説明したが、水分以外の揮発成分(例えば、油分)も同様に除去可能である。
次に、励起光を入射させる前に、予めレーザー媒質2Aを冷却する予冷工程を行う(ステップS02)。この予冷工程においては、例えば、内側容器3の内部に液状の冷媒を注入し、内側容器3の内部に配置されているレーザー媒質2Aを冷媒に浸漬させることで、レーザー媒質2Aを均一に予冷却することができる。レーザー媒質2Aが浸漬された冷媒は、レーザー媒質2Aを予冷却した後、ドレン(図示せず)を介して内側容器3から排出される。
その後、ノズル24による冷媒の噴射を開始し、レーザー媒質2Aを十分に冷却する(ステップS03)。
さらに、レーザー媒質2Aが十分に冷却された状態で、レーザー媒質2Aへ励起光の入射を開始して徐々にその出力を増加させて(ステップS04)、定常運転へと移行する(ステップS05)。
したがって、上述した第一実施形態によれば、内側窓部20と外側窓部21とが真空断熱されていることで、レーザー媒質2Aを真空雰囲気に配置せずにレーザー媒質2Aを冷媒によって冷却したとしても、内側窓部20の内外面に温度差が生じること、および、外側窓部21の内外面に温度差が生じることをそれぞれ抑制できる。そのため、内側窓部20と外側窓部21とに結露が発生することを抑制できる。
さらに、レーザー媒質2Aを真空雰囲気に配置する必要がなく、光通過領域A1と冷媒供給領域A2とを同一圧力下とすることができる。そのため、カバー部6をレーザー媒質2Aに押し付ける必要が無くレーザー媒質にかかる荷重を低減できる。したがって、レーザー媒質2Aの変形や破損を低減できる。
さらに、光通過領域A1と冷媒供給領域A2とを同一圧力下とすることで、レーザー媒質2Aを強固に位置決め固定する必要がない。
さらに、光入出射面である入(出)射面15Aを除くレーザー媒質2Aの表面に冷媒が直接触れるように冷媒を供給できるため、効率よくレーザー媒質を冷却することができる。
(第一実施形態の第一変形例)
上述した第一実施形態においては、図3に示す固定位置でレーザー媒質2Aを支持する支持部材(図示せず)をレーザー媒質2Aに固定する場合について説明した。しかし、支持部材の固定位置は、上述した第一実施形態の固定位置に限られない。
図5は、この発明の第一実施形態の第一変形例における図3に相当する斜視図である。
例えば、図5に示すように、レーザー媒質2Aを支持する支持部材(図示せず)は、2つの側面12Aのそれぞれの周縁部に沿って固定するようにしても良い。このようにすることで、光入出射面である入(出)射面15Aを遮蔽することなく、増幅媒質の設置スペースを減少させることもない。更に、側面視におけるレーザー媒質2Aの台形の端部となる部分は先細りとなるため相対的に強度が低くなるが、この台形の端部となる部分に荷重が集中しないため、台形の端部となる部分への荷重をより少なくできる。
(第一実施形態の第二変形例)
図6は、この発明の第一実施形態の第二変形例における図3に相当する斜視図である。
例えば、図6に示すように、レーザー媒質2Aを支持する支持部材(図示せず)は、2つの入(出)射面の周縁部に沿って固定するようにしても良い。このようにすることで、冷媒によって直接冷却できるレーザー媒質2Aの表面積を増加できるとともに、増幅媒質の設置スペースを減少させることもない。
(第一実施形態の第三変形例)
図7は、この発明の第一実施形態の第三変形例における図3に相当する斜視図である。
例えば、図7に示すように、レーザー媒質2Aを支持する支持部材(図示せず)は、それぞれの2つの入(出)射面15Aよりも中央寄りの位置において、上面13Aと下面14Aとの両方に垂直な垂直面と交わる部分(矩形環状の部分)に固定するようにしても良い。このようにすることで、光入出射面である入(出)射面15Aを遮蔽することなく、更に、側面視におけるレーザー媒質2Aの台形の端部となる部分にかかる荷重をより少なくできる。
(第一実施形態の第四変形例)
図8は、この発明の第一実施形態の第四変形例における図3に相当する斜視図である。
例えば、図8に示すように、レーザー媒質2Aを支持する支持部材(図示せず)は、それぞれの2つの入(出)射面15Aよりも中央寄りの位置において、入(出)射面15Aと平行な平面と交わる部分(矩形環状の部分)に固定するようにしても良い。このようにすることで、第三変形例よりも冷媒によって直接冷却できるレーザー媒質2Aの表面積を増加できる。さらに、光入出射面である入(出)射面15Aを遮蔽することがない。
(第一実施形態の第五変形例)
図9は、この発明の第一実施形態の第五変形例における図3に相当する斜視図である。
例えば、図9に示すように、レーザー媒質2Aを支持する支持部材(図示せず)は、それぞれ2つの側面12Aの近傍で側面12Aと平行な平面と交わる部分(台形環状の部分)に固定するようにしても良い。このようにすることで、第二変形例よりも、側面視におけるレーザー媒質2Aの台形の端部となる部分にかかる荷重をより少なくできる。
(第一実施形態の第六変形例)
図10は、この発明の第一実施形態の第六変形例における図3に相当する斜視図である。
例えば、図10に示すように、レーザー媒質2Aを支持する支持部材(図示せず)は、それぞれ上面13Aおよび下面14Aの近傍で上面13Aおよび下面14Aと平行な平面と交わる部分(大小の環状の部分)に固定するようにしても良い。このようにすることで、特に、カバー部6の取り付けの妨げとならず、また、増幅媒質11の設置スペースを広く確保できる点で有利となる。
なお、レーザー媒質2Aに対する支持部材の固定部位は、上述した第一実施形態、および、各変形例の固定部位に限られない。例えば、これら固定部位を適宜組み合わせて用いても良い。
(第二実施形態)
次に、この発明の第二実施形態の固体レーザー装置を図面に基づき説明する。この第二実施形態の固体レーザー装置は、上述した第一実施形態の固体レーザー装置とレーザー媒質の向きが異なるだけであるため、同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
図11は、この発明の第二実施形態における固体レーザー装置の図1に相当する図である。
図11に示すように、この第二実施形態の固体レーザー装置1Bは、レーザー媒質2Bと、内側容器3と、外側容器4と、冷媒供給部5と、カバー部6と、を主に備えている。
レーザー媒質2Bは、透明部10Bと増幅媒質11とを備えている。
透明部10Bは、第一実施形態の透明部10Aと同様に、活性元素がドープされていないYAG等により形成されている。透明部10Bは、2つの側面12Bと、上面13Bと、下面14Bと、2つの入(出)射面(光入出射面)15Bとを備えている。この透明部10Bは、上述した第一実施形態の透明部10Aを、上下反転したものに相当する。すなわち、2つの側面12Bは、それぞれ逆台形状に形成され、上面13Bは下面14Bよりも長く形成されている。
さらに、2つの入(出)射面15Bは、下方から上方に向かって漸次外方に配置される下向きに傾斜する平面とされている。
この第二実施形態における透明部10Bには、上面13Bの中央と下面14Bの両端とに、それぞれ第一実施形態と同様に増幅媒質11が接合されている。冷媒供給部5のノズル24は、増幅媒質11に向けて冷媒を噴射可能な位置にそれぞれ配置されている。より具体的には、冷媒供給部5は、冷媒をレーザー媒質2Bの上方から下方に向けて噴射する一つのノズル24と、冷媒をレーザー媒質2Bの下方から上方に向けて噴射する二つのノズル24とをそれぞれ備えている。
カバー部6は、第一実施形態と同様に、入(出)射面15Bと内側窓部20との間の入射光および出射光が通過する光通過領域(図11中、二点鎖線で囲んだ領域)A1を、冷媒供給部5によって冷媒が供給される冷媒供給領域A2(図11中、二点鎖線で囲んだ領域を除く領域)から区画している。
したがって、上述した第二実施形態によれば、入(出)射面15Bが下向きに傾斜していることで、入(出)射面15Bの上端部から冷媒の液滴が落下し易くなるので、仮に、カバー部6によって冷媒の移動を防ぎきれない場合であっても、冷媒の液滴が光入出射面である入(出)射面15Bを伝って移動することを低減できる。その結果、光通過領域を通る励起光やレーザー光が冷媒によって遮られることを抑制できる。
(第三実施形態)
次に、この発明の第三実施形態の固体レーザー装置を図面に基づき説明する。この第三実施形態の固体レーザー装置は、上述した第一実施形態の固体レーザー装置と冷媒を吹き付ける向きが異なるだけである。そのため、第一実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
図12は、この発明の第三実施形態における固体レーザー装置の図1に相当する図である。
図12に示すように、この第三実施形態における固体レーザー装置1Cは、第一実施形態の固体レーザー装置1Aにおける、冷媒の噴射方向を上下方向から水平方向に変更し、且つ、この噴射方向の変更に伴いレーザー媒質の姿勢を90度変更したものである。すなわち、この実施形態のレーザー媒質2Cは、2つの台形状の面がそれぞれ上面13Cおよび下面14Cとなっている。さらに、レーザー媒質2Cの入(出)射面15Cが、それぞれ水平方向に傾斜している。このレーザー媒質2Cは、大きさの異なる側面12Cに、レーザー媒質2Aの上面13A、下面14Aと同様に、それぞれ増幅媒質11が接合されている。
したがって、上述した第三実施形態によれば、扱いが容易な励起光およびレーザー光が水平面内を伝搬するようなレーザー媒質2Cの形状としつつ、さらに、レーザー媒質2Cに対して水平な方向から冷媒が吹き付けることで、冷媒の液滴が入(出)射面15Cに回り込むことを抑制できる。その結果、第二実施形態と同様に、レーザー光が冷媒によって遮られることを抑制できる。
(第四実施形態)
次に、この発明の第四実施形態の固体レーザー装置を図面に基づき説明する。この第四実施形態の固体レーザー装置は、上述した第一実施形態の固体レーザー装置とカバー部材の構成が異なるだけである。そのため、第一実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
図13は、この発明の第四実施形態における固体レーザー装置の図1に相当する図である。図14は、図13のXIV−XIV線に沿う断面図である。
図13に示すように、この実施形態における固体レーザー装置1Dは、レーザー媒質2Dと、内側容器3と、外側容器4と、冷媒供給部5と、カバー部6Dと、を主に備えている。
カバー部6Dは、上述した第一実施形態の支持部材(図示せず)を兼ねている。すなわち、この第四実施形態のレーザー媒質2Dは、カバー部6Dを介して内側容器3に支持されている。
図13、図14に示すように、カバー部6Dは、光通過領域(図13中、二点鎖線で囲んだ領域)A1を、冷媒供給部5によって冷媒が供給される冷媒供給領域A2(図13中、二点鎖線で囲んだ領域を除く領域)から区画する。これにより、カバー部6Dは、レーザー媒質2Dの入(出)射面15Dへ冷媒が接触することを抑制する。
図14に示すように、カバー部6Dは、内側容器3の内面と、レーザー媒質2Dの上面13Dと共に、上面13Dの上方に配置される冷媒供給部5のノズル24を収容する空間(冷媒供給領域A2)を画成する。さらに、カバー部6Dは、内側容器3の内面と、レーザー媒質2Dの下面14Dと共に、下面14Dの下方に配置される冷媒供給部5のノズル24を収容する空間(冷媒供給領域A2)を画成する。
カバー部6Dと、レーザー媒質2Dとの接合される箇所には、例えば、冷媒が冷媒供給領域A2から光通過領域A1に漏出することを防止するシール材(図示せず)を設けても良い。ここで、このシール材は、液状の冷媒の移動を規制できればよく、気密性を担保する必要はない。また、この実施形態におけるカバー部6Dは、内側容器3の内面と接合されており、この接合箇所においても同様にシール材を設けても良い。
したがって、上述した第四実施形態によれば、カバー部6Dによってレーザー媒質2Dを保持することができるため、カバー部6Dと支持部材とを個別に設ける場合よりも部品点数を低減できる。
さらに、支持部材がカバー部6Dの設置を妨げることが無いので、カバー部6Dの配置自由度を向上できる。
(第五実施形態)
次に、この発明の第五実施形態の固体レーザー装置を図面に基づき説明する。この第五実施形態の固体レーザー装置は、トラップ部を備えている点で上述した第一実施形態の固体レーザー装置と異なる。そのため、第一実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
図15は、この発明の第五実施形態における固体レーザー装置の図1に相当する図である。
図15に示すように、この実施形態における固体レーザー装置1Eは、レーザー媒質2Aと、内側容器3と、外側容器4と、冷媒供給部5と、カバー部6と、トラップ部30と、を主に備えている。レーザー媒質2Aと、内側容器3と、外側容器4と、冷媒供給部5と、カバー部6とは、上述した第一実施形態と同様の構成である。
トラップ部30は、内側容器3内の雰囲気に含まれる水分などの揮発成分を捕集する。このトラップ部30は、例えば、内側窓部20から十分に離れた内側容器3の下部内面に配置することができる。このトラップ部30は、周囲よりも低温になることで、トラップ部30の低温部分に触れた揮発成分を凝縮させる。揮発成分が凝縮されて生じる液体は、例えば、トラップ部30の近傍に設けられたドレン(図示せず)等を介して固体レーザー装置1Eの外部に排出するようにしても良い。トラップ部30は、内側窓部20およびレーザー媒質2Aから十分に離れて配置されることでトラップ部30から内側窓部20およびレーザー媒質2Aに伝熱され難い。すなわち、トラップ部30が低温となっても、内側窓部20およびレーザー媒質2Aが冷却され難くなっている。ここで、例えば、トラップ部30と内側容器3の内面との間に大きな熱抵抗が生じるように、これらトラップ部30と内側容器3の内面との間に断熱材等を設けてもよい。
したがって、上述した第五実施形態によれば、内側容器3の内部に微小な揮発成分等が残存している場合であっても、これら揮発成分が内側窓部20やレーザー媒質2Aに付着する前に捕集することができる。その結果、揮発成分による結露が生じて、励起光やレーザー光が遮られることをより一層抑制できる。
(第六実施形態)
次に、この発明の第六実施形態の固体レーザー装置を図面に基づき説明する。この第六実施形態の固体レーザー装置は、加温部を備えている点で上述した第一実施形態の固体レーザー装置と異なる。そのため、第一実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
図16は、この発明の第六実施形態における固体レーザー装置の図1に相当する図である。
図16に示すように、この実施形態における固体レーザー装置1Fは、レーザー媒質2Aと、内側容器3と、外側容器4と、冷媒供給部5と、カバー部6と、加温部31と、を主に備えている。レーザー媒質2Aと、内側容器3と、外側容器4と、冷媒供給部5と、カバー部6とは、上述した第一実施形態と同様の構成である。
加温部31は、内側光透過部と入(出)射面15Aとの少なくとも一方を加温可能に構成されている。この実施形態における加温部31は、内側容器3の内面のうち、内側窓部20の周囲に配置されている。この加温部31は、例えば、内側窓部20を囲むように配置しても良い。加温部31は、例えば、ヒーターによる加温、電磁波の放射や温風送風による加温など種々の加温方法を採用できる。
ここで、加温部31は、光通過領域A1に配置されている。これにより、加温部31の熱が、内側窓部20だけではなく、内側容器3の内部気体を介して入(出)射面15Aにも熱が伝わり、又は、加温部31から放射される電磁波によって入(出)射面15Aも加温されるようになっている。なお、内側窓部20と入(出)射面15Aとの両方を加温する場合について説明したが、何れか一方のみを加温するようにしても良い。
したがって、上述した第六実施形態によれば、内側窓部20やレーザー媒質2Aの入(出)射面15Aを温度上昇させることができるため、内側容器3の内部において相対的に温度の低い箇所で先んじて水分等の揮発成分を結露させることができる。その結果、水分等の揮発成分がレーザー媒質2Aや内側窓部20で結露することを抑制できる。
この発明は、上述した各実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した各実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
例えば、上述した各実施形態および各変形例においては、レーザー媒質2Aが側面視で台形状に形成される場合を一例にして説明した。しかし、レーザー媒質2Aの形状は、側面視で台形状に限られない。例えば、レーザー媒質2Aは、側面視で平行四辺形であっても良い。また、レーザー媒質2Aは、ロッド形状、薄ディスク形状、スラブ形状、ディスク形状であっても良い。なお、励起光やレーザー光が水平面内を伝播する形状であると、取扱が容易になるので好ましい。
さらに、内側容器3および外側容器4の形状は一例であって、上述した各実施形態で図示した形状に限られるものでは無い。
図17は、第五実施形態の変形例における固体レーザー装置の図1に相当する図である。
例えば、図17に示す固体レーザー装置1Gように、第五実施形態のトラップ部30を第六実施形態の加温部31と組み合わせて用いても良い。このように構成することで、内側窓部20および入(出)射面15Aを加温して結露が生じることを低減しつつ、トラップ部30によって揮発成分を捕集することができるため、より積極的に結露の発生を抑制できる。
さらに、各実施形態の組合せは、第五実施形態と第六実施形態との組み合わせに限られず、上述した各実施形態の構成を適宜組み合わせて用いても良い。
また、冷媒として液化窒素を用いる場合を例示したが、液化窒素以外の冷媒を用いても良い。
さらに、上述した第一実施形態においては、予冷工程において、レーザー媒質2Aを冷媒に浸漬させる場合について説明したが、ノズル24からの冷媒噴射によって、予冷工程を行うようにしても良い。また、低温のガスにより、予冷工程を行うようにしても良い。
さらに、上述した第一実施形態においては、内側容器3と外側容器4との間の全域に渡って真空断熱する場合を一例に説明した。しかし、真空断熱は、内側窓部20と外側窓部21との間のみ行い、他の部分については、真空断熱以外の断熱構造(例えば、スーパーインシュレーション)や、積極的な断熱を行わない構造としても良い。
1A,1B,1C,1D,1E,1F,1G…固体レーザー装置 2A,2B,2C,2D,2E…レーザー媒質 3…内側容器 4…外側容器 5…冷媒供給部 6,6D…カバー部 10A,10B…透明部 11…増幅媒質 12A,12B,12C…側面 13A,13B,13C,13D…上面 14…下面 15A,15B,15C,15D…入(出)射面 20…内側窓部 21…外側窓部 22…内面 23…外面 24…ノズル 25…内面 30…トラップ部 31…加温部 A1…光通過領域 A2…冷媒供給領域

Claims (7)

  1. 光の入射と出射との少なくとも一方がなされる光入出射面を表面の一部に有したレーザー媒質と、
    前記レーザー媒質を収容し、前記光入出射面に入射される入射光および前記光入出射面から出射される出射光が透過する内側光透過部を有する内側容器と、
    前記内側容器を収容するとともに前記内側光透過部と対向する部位に設けられて、前記入射光および前記出射光を透過し、前記内側光透過部に対して真空断熱された外側光透過部を少なくとも有する外側容器と、
    前記レーザー媒質における前記光入出射面を除く少なくとも一部の表面に冷媒が接するように前記内側容器の内部に前記冷媒を供給する冷媒供給部と、
    前記光入出射面と前記内側光透過部との間の前記入射光および前記出射光が通過する光通過領域を、前記冷媒供給部によって冷媒が供給される冷媒供給領域から区画するカバー部と、
    を備え
    前記内側容器は、
    前記冷媒供給領域と前記光通過領域とが同一圧力となるように前記レーザー媒質を収容する固体レーザー装置。
  2. 前記光入出射面は、下方から上方に向かって漸次外方に配置される下向きの傾斜面とされ、
    前記冷媒供給部は、前記レーザー媒質に対して上下方向から冷媒を吹き付ける請求項1に記載の固体レーザー装置。
  3. 前記冷媒供給部は、前記レーザー媒質に対して水平な方向から冷媒を吹き付ける請求項1又は2に記載の固体レーザー装置。
  4. 前記カバー部は、前記レーザー媒質を支持する支持部を備える請求項1から3の何れか一項に記載の固体レーザー装置。
  5. 前記内側容器の内部に設けられて、前記内側容器内の雰囲気に含まれる揮発成分を捕集するトラップ部を備える請求項1から4の何れか一項に記載の固体レーザー装置。
  6. 前記内側光透過部と前記光入出射面との少なくとも一方を加温可能な加温部を備える請求項1から5の何れか一項に記載の固体レーザー装置。
  7. 前記内側容器は、真空引き可能な真空容器とされる請求項1から6の何れか一項に記載の固体レーザー装置。
JP2016038298A 2016-02-29 2016-02-29 固体レーザー装置 Active JP6569865B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016038298A JP6569865B2 (ja) 2016-02-29 2016-02-29 固体レーザー装置
EP17759416.5A EP3319186B1 (en) 2016-02-29 2017-01-12 Solid-state laser device
US15/751,258 US11063403B2 (en) 2016-02-29 2017-01-12 Solid-state laser device
PCT/JP2017/000796 WO2017149944A1 (ja) 2016-02-29 2017-01-12 固体レーザー装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038298A JP6569865B2 (ja) 2016-02-29 2016-02-29 固体レーザー装置

Publications (3)

Publication Number Publication Date
JP2017157647A JP2017157647A (ja) 2017-09-07
JP2017157647A5 JP2017157647A5 (ja) 2018-08-23
JP6569865B2 true JP6569865B2 (ja) 2019-09-04

Family

ID=59743710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038298A Active JP6569865B2 (ja) 2016-02-29 2016-02-29 固体レーザー装置

Country Status (4)

Country Link
US (1) US11063403B2 (ja)
EP (1) EP3319186B1 (ja)
JP (1) JP6569865B2 (ja)
WO (1) WO2017149944A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309913A1 (en) * 2016-10-17 2018-04-18 Universität Stuttgart Radiation field amplifier system
EP3309914A1 (en) 2016-10-17 2018-04-18 Universität Stuttgart Radiation field amplifier system
JP6926316B2 (ja) * 2018-02-26 2021-08-25 三菱重工業株式会社 固体レーザ装置
JP7341673B2 (ja) * 2019-02-27 2023-09-11 三菱重工業株式会社 レーザ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424320B1 (ja) * 1968-06-18 1979-08-20
SE386923B (sv) * 1972-04-21 1976-08-23 Owens Illinois Inc Forfarande for atervinning av kemikalier fran avlut, spec. avlut fran sulfitkokning pa natriumbas
US3857793A (en) * 1973-05-01 1974-12-31 Gte Laboratories Inc Fluorescent organic compound laser
US4787088A (en) * 1985-03-20 1988-11-22 Fuji Photo Film Co., Ltd. Semiconductor laser beam source apparatus
US5224110A (en) * 1992-05-27 1993-06-29 The United States Of America As Represented By The Secretary Of The Navy Tunable laser frequency stabilizing system
US6671305B2 (en) * 1996-11-29 2003-12-30 Corporation For Laser Optics Research Solid state laser
US5904870A (en) * 1998-05-14 1999-05-18 Midland Manufacturing Corp. Laser lens heater
WO2002045218A1 (fr) * 2000-11-30 2002-06-06 Mitsubishi Denki Kabushiki Kaisha Dispositif de laser solide
JP2006186230A (ja) * 2004-12-28 2006-07-13 Osaka Univ 光増幅モジュール、光増幅器およびレーザ発振器
US7535633B2 (en) * 2005-01-10 2009-05-19 Kresimir Franjic Laser amplifiers with high gain and small thermal aberrations
JP5330801B2 (ja) * 2008-11-04 2013-10-30 三菱重工業株式会社 レーザ利得媒質、レーザ発振器及びレーザ増幅器
JP5424320B2 (ja) * 2009-08-31 2014-02-26 浜松ホトニクス株式会社 固体レーザ装置
US9209598B1 (en) * 2011-12-14 2015-12-08 Colorado State University Research Foundation Cooling system for high average power laser
JP6003323B2 (ja) * 2012-07-18 2016-10-05 国立大学法人大阪大学 レーザ媒質ユニット、レーザ増幅器及びレーザ発振器並びに冷却方法
JP6308965B2 (ja) 2015-03-26 2018-04-11 三菱重工業株式会社 レーザ発振装置

Also Published As

Publication number Publication date
US20180233874A1 (en) 2018-08-16
US11063403B2 (en) 2021-07-13
EP3319186A1 (en) 2018-05-09
WO2017149944A1 (ja) 2017-09-08
EP3319186A4 (en) 2018-09-12
JP2017157647A (ja) 2017-09-07
EP3319186B1 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP6569865B2 (ja) 固体レーザー装置
EP1514332B1 (en) Laser cooling apparatus and method
JP4741707B2 (ja) 光学クリスタル、または、レーザクリスタル、それぞれ、のための冷却装置
US20140113797A1 (en) Device and method for cutting brittle member and cut-out brittle member
US20190203334A1 (en) Mask plate and manufacture method thereof, mask assembly and vapor deposition apparatus
KR20140065375A (ko) 유기 발광 다이오드를 캡슐화하기 위한 방법
US7822091B2 (en) Inverted composite slab sandwich laser gain medium
KR20200134157A (ko) 감압 건조 장치
JP2014015352A (ja) 基板加工方法及び装置
US20180083408A1 (en) Laser oscillation device
JP2016500928A (ja) 時間コントラストが向上したレーザーパルスを増幅する装置
US20050259705A1 (en) Laser oscillation device
JP2017157647A5 (ja)
KR20150045696A (ko) 레이저 열 처리 장치
JP2008306142A (ja) 筐体
JP2008059781A (ja) 封着方法
JP2018022875A (ja) ウェーハの加工方法
EP1670104B1 (en) Solid-state laser pumped module and laser oscillator
JP2005332842A (ja) レーザ発振装置
JP2014067671A (ja) 有機elパネル製造装置および有機elパネル製造方法
EP3820004B1 (en) Laser device
KR20200132705A (ko) 감압 건조 장치 및 용매 포집 부재의 제조 방법
JP2006337843A (ja) 液晶パネルのリペア方法及びリペア装置
JP4969024B2 (ja) 半導体装置の作製方法
JP2003142506A (ja) 半導体接合装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180710

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190723

R150 Certificate of patent or registration of utility model

Ref document number: 6569865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150