JP6567666B2 - 小型軽量オンデマンド赤外線較正のための多層カーボンナノチューブ黒体 - Google Patents

小型軽量オンデマンド赤外線較正のための多層カーボンナノチューブ黒体 Download PDF

Info

Publication number
JP6567666B2
JP6567666B2 JP2017526908A JP2017526908A JP6567666B2 JP 6567666 B2 JP6567666 B2 JP 6567666B2 JP 2017526908 A JP2017526908 A JP 2017526908A JP 2017526908 A JP2017526908 A JP 2017526908A JP 6567666 B2 JP6567666 B2 JP 6567666B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
nanotube layer
layer
heat
graphene sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017526908A
Other languages
English (en)
Other versions
JP2018501469A (ja
Inventor
チョウ,ジェームズ,アール.
ケトラ,クルト,エス.
ラコムスキー,デイヴィッド,エム.
タウンゼント,カール,ダブリュ.
エリアス,ウィリアム,イー.
マーブル,スチュアート,ジェイ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/548,135 external-priority patent/US9459154B2/en
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2018501469A publication Critical patent/JP2018501469A/ja
Application granted granted Critical
Publication of JP6567666B2 publication Critical patent/JP6567666B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本開示は、放射スペクトルの生成に関し、より詳細には、黒体放射スペクトルを生成するための方法及び装置に関する。
様々な光学システムにおいて、物体からの光信号が光学センサで受信され、光信号の測定値が光学センサで得られ、物体の特性が決定される。正確な測定値を得るために、1つ又は複数の標準波長で既知の光子束を使用して光学センサを較正することが必要なことがしばしばある。標準波長で光子束を提供するための1つの方法は、1つ以上の黒体放射体を選択された温度に加熱し、光学フィルタを使用して較正波長を選択することを含む。しかしながら、光学センサを較正するために黒体源を使用すると、サイズ、重量、及びパワー(SWaP)の問題が生じる。第1に、従来の黒体放射体は、黒体放射体を選択された温度に昇温し、選択された温度を維持するために、較正に使用する前に比較的長い時間加熱する必要がある。従って、従来の黒体源は、大量の電力を消費する。第2に、従来の黒体源及びそれらの支持光学構造は一般に大型であり、それらの1つ又は複数を使用すると、各黒体発光スペクトルを較正対象のセンサ上に結像させるための精密な光学機構が必要となる。第3に、そのような黒体放射体較正システム及びその付随する光学機構は、一般に重く煩雑である。
本開示の一実施形態に従った黒体放射スペクトルを生み出す装置は、印加電圧に応答して熱を生成するように構成された第1層と;前記第1層からの熱に応答して、黒体放射スペクトルを放出するように構成された第2層と;前記第1層と前記第2層との間の熱拡散層であり、当該熱拡散層の平面内での熱の空間的変動を減少させるように構成されたグラフェンシートを含む熱拡散層とを有する。
本開示の他の実施形態に従った黒体放射スペクトルを生成する膜は、印加電圧に応答して熱を生成するように構成された第1層と;前記第1層からの熱に応答して、黒体放射スペクトルを放出するように構成された第2層と;前記第1カーボンナノチューブ層と前記第2カーボンナノチューブ層との間の熱拡散層であり、当該熱拡散層の平面内での熱の空間的変動を減少させるように構成されたグラフェンシートを含む熱拡散層と;を有する。
本開示の他の実施形態に従った黒体放射スペクトルを生み出す方法は、第1層、第2層及び前記第1層と前記第2層との間に位置された少なくとも1つのグラフェンシートを含む薄膜素子の前記第1層に電圧を印加して、前記第1層において熱を生成する、電圧印加ステップと;前記少なくとも1つのグラフェンシートを使用して、前記薄膜素子の平面内の熱の空間的変動を減少させる、使用ステップとを含み;空間的変動が減少した熱が、前記第2層でフォトンを励起し、黒体放射スペクトルを生み出す。
他の特徴及び利点が、本開示の技法を通じて実現される。本開示の他の実施形態及び特徴がここで詳細に記述され、請求された開示の一部であるとみなされる。利点及び特徴とともに本開示をより良く理解することのために、以下の説明及び図面を参照されたい。
本開示であるとされる本主題は、明細書の結論としての請求項において、特に指摘され明瞭に請求される。本開示の前述の及び他の特徴及び効果は、添付する図面とともに以下の詳細な説明から明らかである。
例示的な実施形態に従った、光又は光学信号を検出するための例示的な光学システムを示す。 図1に示す例示的な較正装置の詳細図である。 図2の例示的な薄膜構造の詳細図である。 本開示の例示的なカーボンナノチューブ膜に電流を印加するときの、平衡温度に到達するための応答時間を示す。 図4の例示的なカーボンナノチューブ膜に供給した電流と、その結果としてのカーボンナノチューブ膜の空間的及び時間的な平衡温度との関係を示すテーブルを示す。 変形実施形態における本開示の薄膜構造の断面図を示す。
図1は、例示的な実施形態にしたがった、光又は光学信号を検出するための例示的な光学システム100を示す。光学システム100は、光学センサ又は光学検出器などのセンサ102を含む。選択された物体又はターゲット110から光路104に沿って伝搬する光又は光信号が、センサ102で検出される。センサ精度を維持するために、較正装置106(「キャリブレータ」)が光路104内に移動される。例示的な実施形態において、光学システム100は検出モードで動作可能であり、検出モードでは、較正装置106が光学センサ102の光路104から外れた第1位置Aに配置される。光学システム100はまた、較正モードで動作可能であり、較正モードでは、較正装置106は、光学センサ102の光路104内の第2位置Bに移動される。光路104内に入ると、較正装置106は、物体110からの光又は光学信号が光学センサ102に到達するのを阻止(block)する。次いで、較正装置106は、センサ102を較正するために、センサ102に対して1つ以上の較正波長の光を提供するように動作される。フィルタ112が示されており、較正装置106が第2位置Bにあるときに、較正装置106とセンサ102との間に配置される。センサ102を較正波長に較正することのために、フィルタ112は、較正波長に対応する選択された波長窓内の光子束がセンサ102に到達することを許す。例示的な実施形態では、波長窓は、約3ミクロン〜約5ミクロンである。
図2は、図1に示す例示的な較正装置106の詳細図を示す。例示的な較正装置106は、ある範囲の波長で光又は光子を放出するための拡張表面領域を提供する薄膜構造200を含む。薄膜構造200は、薄膜構造200のエッジに結合されたブレース構造202によって境界を定められてもよい。例示的な実施形態において、ブレース構造202は、薄膜構造200の平面内でわずかな外向きの力を適用するように構成しても良く、薄膜構造200の実質的に平坦な表面を維持する。ブレース構造202の端部203及び204は、ねじ、ボルトなどの固定デバイス205を介してユニット206に結合又は固定されてもよい。ユニット206に固定された端部203,204は、ロッド210の上端部212にさらに結合される。ロッド210は、ブレース端部203及び204を介して薄膜構造200に結合するための上方端部212と、ハウジング220内部に伸びる下方端部214とを含む。ロッド210は、ハウジング220内で回転可能であり、ハウジング220のアクチュエータアセンブリ228が、ロッド210を、ひいては薄膜構造200を選択された角度θだけ回転させるために使用される。較正装置106をセンサ102に対して方向付けることができ、角度θだけロッド210を回転させることが、薄膜構造200を第1位置(例えば、図1の位置A)から第2位置(例えば、位置図1のB)まで、移動させる。変形的には、較正装置106は、第1位置と第2位置との間で直線的に変位されてもよい。
様々な実施形態において、ワイヤ222及び224は、ロッド及び/又はハウジングの内部をブレース構造202に向かって通過する。ブレース構造202の右側部202Rに沿って配置されたワイヤ222は、薄膜構造200の一方の端部に電気的な結合を提供する。ブレース構造202の左側部202Lに沿って配置されたワイヤ224は、薄膜構造200の対向する端部に電気的な結合を提供する。ブレース構造202の遠位の位置では、ワイヤ222及び224は、制御可能な電源230の対向する局に結合される。したがって、電流回路が完成して、電源230の正極からワイヤ222を介してブレース構造202の右側部202Rへの電流をもたらす。該電流は、薄膜構造200を横切ってブレース構造202の左側部202Lのワイヤ224へと、そして電源230の負極へと流れる。制御可能な電源230を介して、可変電圧が薄膜構造200へと供給される。様々な特徴において、薄膜構造200に電流を印加することが、薄膜構造200の温度を上昇させる。選択された温度において、薄膜構造200は一般に、特徴的な黒体放射スペクトルを有する光子(フォトン)を放出し、黒体放射スペクトルはスペクトルのピーク放出を示す特徴的波長を含み、特徴的な黒体放射スペクトルは、薄膜構造200の温度に関係する。一般に、黒体放射体によって放射される光子の総数、及び波長の選択された範囲内における黒体放射体によって放射される光子の数は、その温度に関連する。温度が上昇するにつれて、選択された波長範囲内の全光子束及び光子束も増加する。オペレータは、制御可能な電源230における電圧又は電流を制御して、選択された黒体放射スペクトルを薄膜構造200に向けて放射させることができる。放射スペクトルの特徴的な波長及び他の特徴は、印加電圧の大きさ又は量に関係する。選択された波長範囲内の光子束を光学センサ102で測定して、光学センサ102を較正することができる。
図3は、図2の例示的な薄膜構造200の詳細図を示す。例示的な実施形態において、薄膜構造200は、第1カーボンナノチューブ層302を含む。第1カーボンナノチューブ層302は、当該第1カーボンナノチューブ層302の平面内に位置するように概して配向されたナノチューブのシートを含む。第1カーボンナノチューブ層302の一端は、制御可能な電源320の正極に結合され、第1カーボンナノチューブ層302の対向する端部は、制御可能な電源320の負極に接続されて、第1カーボンナノチューブ層302を通る電気回路を完成させる。第1熱伝導層304は、第1カーボンナノチューブ層302の頂部表面に結合される。その頂部表面は、第1カーボンナノチューブ層302の赤外線放射矢印315に面している表面である。第2熱伝導層308は、第1カーボンナノチューブ層302の底部表面に結合されている。その底部表面は、第1カーボンナノチューブ層302の赤外線放射矢印315から離れる方に面する表面である。様々な実施形態において、第1熱伝導層304及び第2熱伝導層308は、セラミック材料などの絶縁材料で作られている。第2カーボンナノチューブ層306が、第1カーボンナノチューブ層302の反対側の第1熱伝導層304に結合される。第2カーボンナノチューブ層306は、第1カーボンナノチューブ層302で発生した熱に応答して、IR放射矢印315によって示されるような選択された方向に光子を放出するように構成される。第2カーボンナノチューブ層306は、複数のカーボンナノチューブ312a〜312mを含む。複数のカーボンナノチューブ312a〜312mは、複数のカーボンナノチューブ312a〜312mの縦軸が第2カーボンナノチューブ層の表面に対して実質的に垂直になるように、配向されている。一般に、第2カーボンナノチューブ層306で励起された光子は、指示しているIR放射矢印315を含む第2カーボンナノチューブ層306上方半空間に放出される。赤外線放射矢印315で示される法線方向に放射される光子は、IR放射矢印315によって示されるように、較正のために使用される。様々な実施形態において、第2カーボンナノチューブ層306の放射率は、約0.995より大きい。低放射率金属膜310が、第1カーボンナノチューブ層302の反対側の第2熱伝導層308の表面に結合される。様々な実施形態において、低放射率金属膜310は、較正装置薄膜構造200の背面端からの熱の放射を防止するように構成されている。
例示的な薄膜構造200を動作させるために、制御可能な電源320が第1カーボンナノチューブ層302に電流を供給し、第1カーボンナノチューブ層302は供給された電流に応答して熱を生成する。第1カーボンナノチューブ層302で発生する温度及び熱量は、印加される電力量に直接関係する。第1カーボンナノチューブ層302は、図4に関して後述するように、平衡温度を得るのに適した電流が印加されると、選択された平衡温度に到達するよう急速に応答する。例示的な実施形態において、第1カーボンナノチューブ層302は、当該第1カーボンナノチューブ層302への電流印加から数秒以内で平衡温度に到達する。第1カーボンナノチューブ層302の表面における温度は一般に、図5に関して後述する空間的変動を有する。この空間的変動は、数ケルビンの温度範囲内である。第1カーボンナノチューブ層302で発生した熱は、第1熱伝導層304を通じて分散され、広範囲の波長の光子を第2カーボンナノチューブ層306において励起する。第1熱伝導層304は、第1熱伝導層304の平面内において、第1カーボンナノチューブ層で発生された熱を分散する。かくして、いったん熱が第2カーボンナノチューブ層306に達すると、第1カーボンナノチューブ層302で発生された熱及び温度の如何なる変動も、実質的に平滑化される。様々な実施形態において、第2カーボンナノチューブ層306における温度は、第2カーボンナノチューブ層306の表面に亘って、1.0ケルビン未満の空間変動を有する。別の実施形態では、空間変動は0.5ケルビン未満である。さらに別の実施形態では、空間変動は0.1ケルビン未満である。かくして、第2カーボンナノチューブ層306における複数のカーボンナノチューブ312a〜312mの各々は、第1熱伝導層304から実質的に同じ熱量を受け取る。第2カーボンナノチューブ層306で受け取られた熱は、複数のカーボンナノチューブ312a〜312mの縦軸線に沿って方向付けられ、したがって、概してIR放射矢印315によって示される方向に沿って伝搬する。さらに、光子束も法線方向に放出される。したがって、第2カーボンナノチューブ層306からの結果としてのスペクトルは、実質的に均一な温度に加熱された従来の黒体の黒体放射スペクトルと実質的に等価である。
図4は、本開示の例示的なカーボンナノチューブ膜200に電流を印加するときの第1カーボンナノチューブ層302において平衡温度を達成するための応答時間を示す。温度はケルビンで縦軸にプロットされ、時間は秒で横軸にプロットされている。時間t = 0において、第1カーボンナノチューブ層302に電圧を印加する(402)。時間t = 0秒の前には電流が供給されず、第1カーボンナノチューブ層302は室温、すなわち約290Kである。時間t = 0(402)で電流を供給すると、第1カーボンナノチューブ層302の温度を約t = 2秒(404)で約550Kの平衡温度まで上昇させる。
対照的に、従来の黒体源は、平衡温度に達するまでに数分間から数時間を必要とする。さらに、従来の黒体源を平衡温度に持って行くのに必要な時間の長さのために、従来の黒体源は、較正が必要なときに実質的に準備されるように、較正モードではないときに一般に平衡温度又はその近傍に維持される。従って、従来の黒体源を使用する較正システムは、大量の電力を消費する。本開示の薄膜構造は、比較的短時間(すなわち、約20秒未満)で平衡温度に達することができるので、非較正時間中に薄膜構造を平衡温度に維持する必要がない。さらに、薄膜構造は、例えば20秒未満のような、許容可能な時間枠内でセンサを較正するために使用することができる。しかしながら、薄膜構造の使用は、関連タスクを完了するための予想時間枠が20秒以下である動作に限定される必要はないことを理解されたい。したがって、本開示の例示的な薄膜構造を使用する較正光学センサは、オンデマンドで使用することができ、従来の黒体源を使用する較正方法よりも約90%以上の操作コストを節約することができる。
図5は、例示的なカーボンナノチューブ膜200に供給される電流と、薄膜構造200の第1カーボンナノチューブ層302の平衡温度との関係を示す表である。第1カラムは、第1カーボンナノチューブ層302に印加される電流量(アンペア単位)を示す。第2カラムは、選択された電流が印加されたときに達成されると予想されるターゲット(目標)温度(ケルビン単位)を示す。カラム3、4及び5は、選択された電圧が、それぞれ10秒、60秒及び180秒の時間に第1カーボンナノチューブ層302に印加されたときに達成された測定温度値(ケルビン単位)を示す。温度の空間的変動もまた、カラム3、4及び5のそれぞれに提供される第2の数(すなわち、「±1」、「±6」など)によって示されている。実際の温度は、温度の空間的変動が比較的小さく、示された時間(すなわち、10秒、60秒及び180秒)にわたって安定している。第1カーボンナノチューブ層302から第1熱伝導層304を通って熱を拡散させることにより、様々な実施形態において、約1.0ケルビン、約0.5ケルビン又は約0.1ケルビン未満の選択された範囲内に空間的変動が低減される。これにより、第2カーボンナノチューブ層306は均一に加熱され、複数のカーボンナノチューブ312a〜312mのそれぞれは、実質的に同じ温度に対応する黒体放射スペクトルを放出する。したがって、第1カーボンナノチューブ層302に供給される電流量を選択することにより、第2カーボンナノチューブ層306で生み出される黒体放射スペクトルが実質的に制御される。かくして、適切な較正時間枠にわたって、薄膜構造を使用して、センサの較正に使用するのに適した放射スペクトルをもたらすことができる。別の実施形態では、第1カーボンナノチューブ層302から第1熱伝導層304を通る熱の拡散を用いて、空間変動を約2ケルビン又は約3ケルビンの範囲内に低減することができる。温度の空間的変動のこのような減少が必要とされない動作においてさえも、約1.0ケルビン以内の温度の空間的変動を低減するために、当該薄膜構造を使用できることが理解されるべきである。
印加された電力に対する薄膜構造の比較的迅速な応答のために、較正装置106によって提供される黒体放射スペクトルは、比較的短時間で変更され得る。したがって、較正装置106を使用して、センサに複数の黒体放射スペクトルを迅速に提供することができる。
例示的な較正プロセスにおいて、較正装置106の薄膜構造200の第1カーボンナノチューブ層302を通して第1電圧が送られ、第1黒体放射スペクトルの第1光子セットを生成する。次いで、センサ102は、選択された較正波長において、すなわち、選択された較正波長に対応する波長窓にわたって、第1黒体放射スペクトルからの第1光子束に較正される。続いて、第2電圧が薄膜構造200を通して送られ、第2黒体放射スペクトルの第2光子セットを生成する。次いで、センサ102は、選択された較正波長での第2黒体放射スペクトルからの第2光子束に対して較正される。このプロセスは、同じ薄膜構造200を使用して任意の回数だけ繰り返して良く、較正プロセスを完了するまで、選択された波長で任意の数の光子束でセンサ102を較正することができる。変形的な実施形態において、複数の較正波長が使用され、複数の較正波長の各々で複数の光子束が測定されてセンサを較正する。較正プロセスの終わりに、較正装置106はセンサ102の光路104から移動又は回転されて離れ、それによりセンサ102がその意図された目的のために使用され得る。複数の較正波長を提供する薄膜構造200の能力によって、複数の従来の黒体放射源を使用する既知の較正装置よりも小さく軽い較正装置設計が可能になる。
図6は、変形実施形態における本開示の薄膜構造200の断面図を示す。薄膜構造200は、電極604a及び604bと電気的に接触する第1層(本明細書では「第1カーボンナノチューブ層602」と言う。)を含む。電極604a、604bは、第1カーボンナノチューブ層602に電流を供給するために、電源(図示せず)に接続することができる。図6において、薄膜構造体200の頂部側及び薄膜デバイス200の底部側には、例示及び説明の目的のために、「頂部」及び「底部」と記載してある。上部側は一般に、座標系625によって示されるように、正のz方向にある。第1カーボンナノチューブ層602、及び薄膜デバイス200の他の層は、座標系625のx−y平面内に存在する。第1カーボンナノチューブ層602は、当該第1カーボンナノチューブ層602の平面内に配向されたカーボンナノチューブを含む。第1カーボンナノチューブ層602に電圧が印加されると、第1カーボンナノチューブ層602の頂面602a又は第1カーボンナノチューブ層602の底面602bから外へ流れる熱が生成される。第1カーボンナノチューブ層602の頂面602a上には熱拡散層606が配置されている。第2カーボンナノチューブ層608(「第2カーボンナノチューブ層608」と言う。)を熱拡散層606に隣接させ、それにより熱拡散層606が第1カーボンナノチューブ層602と第2カーボンナノチューブ層608との間に挟まれる。第2カーボンナノチューブ層608は、x−y平面内に整列された平坦表面614と、平坦表面614の頂部に取り付けられ、平坦表面の法線に整列した複数のカーボンナノチューブ616(すなわち、複数のカーボンナノチューブ616の縦軸をz方向に整列させた)とを含む。一実施形態において、平坦表面614は、アルミナ基板(Al 2 O 3)の層である。
薄膜構造体200の動作において、印加電圧が、第1カーボンナノチューブ層602に熱を生成する。この熱は、熱拡散層606を通って第2カーボンナノチューブ層608へと伝わる。第2カーボンナノチューブ層608では、熱が複数のカーボンナノチューブ616から光子を励起し、光子は正のz方向に放出される。放射された光子は、黒体放射スペクトルを生成する。
第1カーボンナノチューブ602によって生成された熱の空間的分布は、x−y平面内で変化する傾向がある。熱拡散層606の機能は、熱が第2カーボンナノチューブ層608に達する時間までにx−y平面内のこの熱変化を低減することである。それにより、第2カーボンナノチューブ層608の表面に亘って、温度、したがって光子放出束が均一になる。第2熱拡散層606の構造は、空間的熱変化のこの減少を達成するように選択される。
特に、熱拡散層606は、第1カーボンナノチューブ層602の頂部表面602aから発散する熱を分配するための少なくとも1枚のグラフェンシートを含む。グラフェンシートは、グラフェン小板(graphene platelets)の圧縮層である。グラフェンシートは高効率で熱を伝導する。かくして、グラフェンシートは、高い熱的異方性を有し、熱は、第1熱伝導率に従ってグラフェンシートの平面内を流れ、グラフェンシートの平面に対して垂直方向に、第1熱伝導率より低い第2熱伝導率に従って流れる。この熱異方性の結果として、グラフェンは、当該グラフェンの平面内の熱密度の空間的変化を低減するために使用される。グラフェンシートはx−y平面内に整列しているので、その変化はx−y平面内で平滑化される。
一実施形態において、熱拡散層606は、第1カーボンナノチューブ層602と第2カーボンナノチューブ層608との間に単一のグラフェンシートを含む。別の実施形態では、熱拡散層606は、複数グラフェンシートのスタックを含む。図6の例示的な実施形態では、スタックは、少なくとも第1グラフェンシート610a及び第2グラフェンシート610bを含む。第1グラフェンシート610a及び第2グラフェンシート610bは、接着層612aによって接合されていてもよい。接着層612aは、熱的に異方性である必要はないが、断熱性であり、第1グラフェンシート610aと第2グラフェンシート610bとの間の熱伝達を可能にする。また、第1カーボンナノチューブ層602と第1グラフェンシート612aとの間に接着層612bを配置しても良く、第2カーボンナノチューブ層602と第2グラフェンシート612bとの間に接着層612cを配置しても良い。接着剤層612b及び621cは、熱的に異方性である必要はないが、同様に断熱性であってもよい。熱が第1カーボンナノチューブ層602の頂部表面602aから離れる方向に伝播すると、熱は第1グラフェンシート610a全体にわたってx−y平面内に分布する。熱は次に、第1グラフェンシート610aから第2グラフェンシート610bへと向けられる。第2グラフェンシート610bはさらに、x−y平面内で熱を分配する。かくして、第1グラフェンシート601a及び第2グラフェンシート601bの両方が、x−y平面における熱の空間的変動を低減するために使用される。2枚のグラフェンシートが図6に示されているが、他の実施形態では熱拡散層606に任意の数のグラフェンシートを使用できることを理解されたい。複数のグラフェンシートの使用は、x−y平面内における熱の空間的変動の非均一性を低減するのに役立つ。
薄膜構造200は、第1カーボンナノチューブ層602の底部表面602b上に配置された反射器620をさらに含む。反射器620は、底部表面602bから発する熱を第1カーボンナノチューブ層602の方向に戻すように方向付ける。反射された熱は、熱拡散層606を通過し、第2カーボンナノチューブ層608で光子を励起するために使用される。一実施形態において、グラフェンシート622及び接着層624が、第1カーボンナノチューブ層602と反射器624との間に配置しても良い。かくして、反射熱は、グラフェンシート622によって空間的に分散される。
図6の薄膜構造200は軽量であり、典型的には約40グラム未満であり、約25ミル(0.635ミリメートル)の厚さを有する。したがって、この薄膜構造は、空間が制限されている、且つ/或いは装置の重量が懸念される様々な動作又は装置に使用することができる。第2カーボンナノチューブ層608の頂部表面から放出されるエネルギーの温度変動は、第2カーボンナノチューブ層608の表面を横切って約0.05K未満である。
本明細書で用いる用語は、特定の実施形態を説明する目的のためのみであり、本発明を限定することは意図していない。本明細書で用いられているように、単数形「a」、「an」及び「the」(日本語の1つに対応)は、文脈上異なる意味が明示されている場合を除き、複数の形態をも含むことが意図されている。本明細書で用いられており、記述された特徴、完全体、ステップ、動作、素子及び/又はコンポーネントの存在を特定するのに用いられる用語「含む」、「有する」及び「備える」は、1つ以上の特徴、完全体、ステップ、動作、素子、コンポーネント及び/又はこれらのグループの存在を排除しない。
以下の特許請求の範囲内の機能手段構成要素又は機能工程構成要素に対応する構造、材料、作用及び均等物は、特定的に請求した他の請求項構成要素と連携して機能を実行するためのあらゆる構造、材料又は作用を含むことを意図している。例示的及び記述的目的のために本発明の説明をしてきたが、本発明は開示された形態で尽くされたりそれに限定されたりすることは意図していない。本発明の範囲及び真意から逸脱せずに、多くの修正及び変形が当業者に明らかである。本発明の原理及び実際的な応用を最良に説明するために、かつ、期待される特定用途に適する様々な修正を伴う様々な実施形態に向けた本発明を当業者が理解可能となるようにするために、実施形態を選択し説明した。
本明細書に示されるフローチャートは単なる一例に過ぎない。本発明の真意から逸脱することなく、このチャート又はそこに記載されたステップ(又は動作)には多くの変形が存在し得る。例えば、ステップは異なる順序で実行されてもよく、又はステップが追加、削除、又は変更されてもよい。これらの変形の全ては、請求された発明の一部とみなされる。
本発明の好適な実施形態を説明してきたが、当業者が後続の特許請求の範囲内に収まる様々な改良及び増強を、現在及び将来において、なし得ることを理解されたい。特許請求の範囲は、ここで初めて開示した本発明の適正な保護を維持するように解釈すべきである。

Claims (15)

  1. 黒体放射スペクトルを生み出す装置であって:
    印加電圧に応答して熱を生成するように構成された第1カーボンナノチューブ層と;
    前記第1カーボンナノチューブ層からの熱に応答して、黒体放射スペクトルを放出するように構成された第2カーボンナノチューブ層と;
    前記第1カーボンナノチューブ層と前記第2カーボンナノチューブ層との間の熱拡散層であり、当該熱拡散層の平面内での熱の空間的変動を減少させるように構成されたグラフェンシートを含む熱拡散層と;
    を有し、
    前記グラフェンシートがさらに、少なくとも第1グラフェンシート及び第2グラフェンシート並びに前記第1グラフェンシートと前記第2グラフェンシートとの間の断熱接着層を有するグラフェンスタックを含む、
    装置。
  2. 請求項1に記載された装置であって、
    前記第1カーボンナノチューブ層が、当該第1カーボンナノチューブ層の平面に整合されたカーボンナノチューブを含む、装置。
  3. 請求項1に記載された装置であって、
    前記第2カーボンナノチューブ層が平坦表面及び複数のカーボンナノチューブを含み、
    選択されたカーボンナノチューブが、前記平坦表面に実質的に垂直に方向付けられた縦軸を有し、前記第1カーボンナノチューブ層からの熱に応答して、前記縦軸に沿ってフォトンを放出する、
    装置。
  4. 請求項1に記載された装置であって、さらに、
    前記第1カーボンナノチューブ層に電圧を印加するように構成された制御可能電源を有する装置。
  5. 請求項4に記載された装置であって、
    前記黒体放射スペクトルの特性波長が、前記第1カーボンナノチューブ層における印加電圧の大きさに関係する、装置。
  6. 請求項1に記載された装置であって、さらに、
    前記第1カーボンナノチューブ層のうち前記熱拡散層とは反対側に位置された反射層を有する装置。
  7. 請求項6に記載された装置であって、さらに、
    前記第1カーボンナノチューブ層と前記反射層との間に位置されたグラフェンシートを有する装置。
  8. 黒体放射スペクトルを生成する膜であって:
    印加電圧に応答して熱を生成するように構成された第1カーボンナノチューブ層と;
    前記第1カーボンナノチューブ層からの熱に応答して、黒体放射スペクトルを放出するように構成された第2カーボンナノチューブ層と;
    前記第1カーボンナノチューブ層と前記第2カーボンナノチューブ層との間の熱拡散層であり、当該熱拡散層の平面内での熱の空間的変動を減少させるように構成されたグラフェンシートを含む熱拡散層と;
    を有し、
    前記グラフェンシートがさらに、少なくとも第1グラフェンシート及び第2グラフェンシート並びに前記第1グラフェンシートと前記第2グラフェンシートとの間の断熱接着層を有するグラフェンスタックを含む、
    膜。
  9. 請求項8に記載された膜であって、
    前記第2カーボンナノチューブ層が平坦表面及び複数のカーボンナノチューブを含み、
    選択されたカーボンナノチューブが、前記平坦表面に実質的に垂直に方向付けられた縦軸を有し、前記第1カーボンナノチューブ層からの熱に応答して、前記縦軸に沿ってフォトンを放出する、
    膜。
  10. 請求項8に記載された膜であって、さらに、
    前記グラフェンシートと前記第2カーボンナノチューブ層との間に位置された断熱接着層を有する膜。
  11. 請求項8に記載された膜であって、さらに、
    前記第1カーボンナノチューブ層のうち前記熱拡散層とは反対側に位置された反射層を有する膜。
  12. 黒体放射スペクトルを生み出す方法であって:
    第1カーボンナノチューブ層、第2カーボンナノチューブ層及び前記第1カーボンナノチューブ層と前記第2カーボンナノチューブ層との間に位置された少なくとも1つのグラフェンシートを含む薄膜素子の前記第1カーボンナノチューブ層に電圧を印加して、前記第1カーボンナノチューブ層において熱を生成する、電圧印加ステップ;及び
    前記少なくとも1つのグラフェンシートを使用して、前記薄膜素子の平面内の熱の空間的変動を減少させる、使用ステップ;
    を含み、
    空間的変動が減少した熱が、前記第2カーボンナノチューブ層でフォトンを励起し、黒体放射スペクトルを生み出し、
    前記グラフェンシートがさらに、少なくとも第1グラフェンシート及び第2グラフェンシート並びに前記第1グラフェンシートと前記第2グラフェンシートとの間の断熱接着層を有するグラフェンスタックを含む、
    方法。
  13. 請求項12に記載された方法であって、
    前記第2カーボンナノチューブ層におけるフォトンの励起がさらに複数のカーボンナノチューブを励起し、
    選択されたカーボンナノチューブが、平坦表面に実質的に垂直に方向付けられた縦軸を有し、前記熱に応答して、前記縦軸に沿って方向付けられたフォトンを放出する、
    方法。
  14. 請求項12に記載された方法であって、さらに、
    前記黒体放射スペクトルの特性波長を選択するために、前記の印加された電圧の大きさを変化させるステップを含む方法。
  15. 請求項12に記載された方法であって、さらに、
    前記薄膜素子の反射層を用いて、前記第1カーボンナノチューブ層からの熱を前記グラフェンシートへと反射するステップを含む方法。
JP2017526908A 2014-11-19 2015-11-13 小型軽量オンデマンド赤外線較正のための多層カーボンナノチューブ黒体 Active JP6567666B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/548,135 US9459154B2 (en) 2013-05-15 2014-11-19 Multi-layer advanced carbon nanotube blackbody for compact, lightweight, and on-demand infrared calibration
US14/548,135 2014-11-19
PCT/US2015/060526 WO2016081293A1 (en) 2014-11-19 2015-11-13 Multi-layer advanced carbon nanotube blackbody for compact, lightweight, and on-demand infrared calibration

Publications (2)

Publication Number Publication Date
JP2018501469A JP2018501469A (ja) 2018-01-18
JP6567666B2 true JP6567666B2 (ja) 2019-08-28

Family

ID=54705856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017526908A Active JP6567666B2 (ja) 2014-11-19 2015-11-13 小型軽量オンデマンド赤外線較正のための多層カーボンナノチューブ黒体

Country Status (8)

Country Link
EP (1) EP3221673B1 (ja)
JP (1) JP6567666B2 (ja)
KR (1) KR102007588B1 (ja)
CN (1) CN107076617B (ja)
CA (1) CA2962978C (ja)
IL (1) IL251886A0 (ja)
TW (1) TWI684002B (ja)
WO (1) WO2016081293A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3500817B1 (en) * 2016-06-07 2021-01-27 Coskun Kocabas System for controlling thermal radiation
US10248015B2 (en) 2016-12-22 2019-04-02 Raytheon Company Dynamic blackbody scene display
CN110031117A (zh) 2018-01-11 2019-07-19 清华大学 腔式黑体辐射源以及腔式黑体辐射源的制备方法
CN110031108A (zh) 2018-01-11 2019-07-19 清华大学 黑体辐射源及黑体辐射源的制备方法
CN110031106B (zh) * 2018-01-11 2021-04-02 清华大学 黑体辐射源
CN110031103A (zh) 2018-01-11 2019-07-19 清华大学 面源黑体以及面源黑体的制备方法
CN110031115A (zh) 2018-01-11 2019-07-19 清华大学 面源黑体
CN110031105A (zh) 2018-01-11 2019-07-19 清华大学 腔式黑体辐射源以及腔式黑体辐射源的制备方法
CN110031116A (zh) * 2018-01-11 2019-07-19 清华大学 腔式黑体辐射源
CN110031107B (zh) 2018-01-11 2022-08-16 清华大学 黑体辐射源及黑体辐射源的制备方法
CN110031104A (zh) 2018-01-11 2019-07-19 清华大学 面源黑体
CN110031109A (zh) 2018-01-11 2019-07-19 清华大学 黑体辐射源及黑体辐射源的制备方法
CN110031118A (zh) 2018-01-11 2019-07-19 清华大学 腔式黑体辐射源以及腔式黑体辐射源的制备方法
CN111121981B (zh) * 2018-11-01 2021-04-02 清华大学 黑体辐射源的制备方法
CN113375814A (zh) 2020-03-10 2021-09-10 百度在线网络技术(北京)有限公司 红外测温校准方法、装置、电子设备及存储介质

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257334A (ja) * 1990-03-08 1991-11-15 Chino Corp 放射源
JPH0729427U (ja) * 1993-10-28 1995-06-02 株式会社日鉄エレックス 放射温度計のオンライン点検装置
JPH0854285A (ja) * 1994-08-11 1996-02-27 Tokai Carbon Co Ltd 黒体炉
US6226453B1 (en) * 1997-09-16 2001-05-01 Applied Materials, Inc. Temperature probe with fiber optic core
EP1303742B1 (en) * 2000-07-27 2007-06-13 BAE SYSTEMS Information and Electronic Systems Integration Inc. Spectral drift and correction technique for hyperspectral imaging systems
US8471238B2 (en) * 2004-09-16 2013-06-25 Nantero Inc. Light emitters using nanotubes and methods of making same
EP1802947A1 (en) * 2004-10-01 2007-07-04 BAE Systems PLC High-emissivity radiator
DE102007004953A1 (de) * 2007-01-26 2008-07-31 Tesa Ag Heizelement
KR101081378B1 (ko) * 2009-11-06 2011-11-08 한국기초과학지원연구원 흑체의 온도제어장치 및 그 제어방법
CN102056353A (zh) * 2009-11-10 2011-05-11 清华大学 加热器件及其制备方法
JP5536436B2 (ja) * 2009-12-22 2014-07-02 スタンレー電気株式会社 黒体放射光源及びその製造方法
WO2011135978A1 (ja) * 2010-04-28 2011-11-03 学校法人 慶應義塾 カーボンナノチューブ発光素子、光源及びフォトカプラ
JP5633071B2 (ja) * 2011-01-26 2014-12-03 独立行政法人産業技術総合研究所 熱放射光源を用いた放射温度計の校正方法
US8552381B2 (en) * 2011-07-08 2013-10-08 The Johns Hopkins University Agile IR scene projector
KR20130069035A (ko) * 2011-12-16 2013-06-26 삼성전자주식회사 그래핀상의 하이브리드 나노구조체 형성 방법
KR20130106932A (ko) * 2012-03-21 2013-10-01 에스에스씨피 주식회사 분산성이 향상된 열확산 조성물 및 열확산 시트
US9363932B2 (en) 2012-06-11 2016-06-07 Nanotek Instruments, Inc. Integrated graphene film heat spreader for display devices
KR101455834B1 (ko) * 2013-04-01 2014-11-03 채경남 그래핀의 피에조 저항 특성을 이용한 스마트 복합재
KR20140128158A (ko) * 2013-04-26 2014-11-05 쓰리엠 이노베이티브 프로퍼티즈 캄파니 방열 시트
US9086327B2 (en) * 2013-05-15 2015-07-21 Raytheon Company Carbon nanotube blackbody film for compact, lightweight, and on-demand infrared calibration

Also Published As

Publication number Publication date
EP3221673A1 (en) 2017-09-27
CN107076617B (zh) 2019-10-08
KR102007588B1 (ko) 2019-08-05
TW201625937A (zh) 2016-07-16
EP3221673B1 (en) 2019-05-29
TWI684002B (zh) 2020-02-01
CN107076617A (zh) 2017-08-18
KR20170086578A (ko) 2017-07-26
CA2962978C (en) 2023-03-21
JP2018501469A (ja) 2018-01-18
WO2016081293A1 (en) 2016-05-26
CA2962978A1 (en) 2016-05-26
IL251886A0 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6567666B2 (ja) 小型軽量オンデマンド赤外線較正のための多層カーボンナノチューブ黒体
EP2997599B1 (en) Carbon nanotube blackbody film for compact, lightweight, and on-demand infrared calibration
US9459154B2 (en) Multi-layer advanced carbon nanotube blackbody for compact, lightweight, and on-demand infrared calibration
US10527499B2 (en) In-situ thin film based temperature sensing for high temperature uniformity and high rate of temperature change thermal reference sources
US9933311B2 (en) Blackbody function
JP6771657B2 (ja) 赤外線面放射源
US20050077285A1 (en) Device for homogeneous heating of an object
JP5861557B2 (ja) 検査装置
KR20160075053A (ko) 적외선 센서 교정용 흑체조립체 및 이를 포함하는 흑체 온도조절 시스템
US10701762B2 (en) Heat radiation device, and processing device using heat radiation device
US20130048884A1 (en) Agile ir scene projector
JP5633071B2 (ja) 熱放射光源を用いた放射温度計の校正方法
JP6977943B2 (ja) 赤外線放射装置
JP2009048165A (ja) 光学結晶の温度制御装置
JP7162228B1 (ja) 電子部品等の加熱観察装置
JP2003161846A (ja) 光ファイバシート
WO2012039198A1 (ja) 熱間変位測定装置及び熱間変位測定方法並びに電気抵抗測定装置
JP2014224788A (ja) 赤外線検出器の温度調整装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190731

R150 Certificate of patent or registration of utility model

Ref document number: 6567666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250