JP6548387B2 - Method and apparatus for estimating state of charge of secondary battery - Google Patents

Method and apparatus for estimating state of charge of secondary battery Download PDF

Info

Publication number
JP6548387B2
JP6548387B2 JP2014253186A JP2014253186A JP6548387B2 JP 6548387 B2 JP6548387 B2 JP 6548387B2 JP 2014253186 A JP2014253186 A JP 2014253186A JP 2014253186 A JP2014253186 A JP 2014253186A JP 6548387 B2 JP6548387 B2 JP 6548387B2
Authority
JP
Japan
Prior art keywords
charge
value
state
secondary battery
charge state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014253186A
Other languages
Japanese (ja)
Other versions
JP2016114469A (en
Inventor
康之 井奥
康之 井奥
龍治 真
真 龍治
匡哉 城
匡哉 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2014253186A priority Critical patent/JP6548387B2/en
Publication of JP2016114469A publication Critical patent/JP2016114469A/en
Application granted granted Critical
Publication of JP6548387B2 publication Critical patent/JP6548387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池の充電状態を推定する方法および装置に関する。   The present invention relates to a method and apparatus for estimating the state of charge of a secondary battery.

従来、主として携帯機器用の電源として使用する充放電可能な種々の二次電池が提案されてきた。さらには、近年、環境への配慮から、二次電池を搭載した大型機器が開発されている。たとえば、二次電池を搭載した車両は、ブレーキ時に生じる回生電力をこの二次電池に蓄え、車両の動力源として利用する。また、二次電池システムを設置した架線と接続される鉄道変電所は、電車が発生する回生電力を吸収し、電車が消費する力行電力を補完する。   Heretofore, various chargeable and dischargeable secondary batteries used mainly as a power source for portable devices have been proposed. Furthermore, in recent years, in consideration of the environment, large-sized devices equipped with secondary batteries have been developed. For example, a vehicle equipped with a secondary battery stores regenerative electric power generated at the time of braking in the secondary battery and uses it as a power source of the vehicle. In addition, the railway substation connected to the overhead wire on which the secondary battery system is installed absorbs the regenerative power generated by the train, and supplements the running power consumed by the train.

これらの用途においては、過放電や過充電により二次電池が適切に使用できなくなることを避けるため、二次電池の残容量、つまり二次電池の充電状態(SOC:State of Charge)を高い精度で推定する技術が必要である。従来、二次電池のSOCを推定する方法として、充放電の電流値を積算した電流積算値に基づいて推定する方法や、電池開放電圧とSOCの相関関係に基づいて推定する方法が知られている(例えば、特許文献1,2参照)。   In these applications, the remaining capacity of the secondary battery, that is, the state of charge (SOC: state of charge) of the secondary battery is highly accurate in order to prevent the secondary battery from becoming unusable due to overdischarge or overcharge. It is necessary to have a technique to estimate Conventionally, as a method of estimating the SOC of a secondary battery, a method of estimating based on a current integrated value obtained by integrating charge and discharge current values, and a method of estimating based on the correlation between a battery open circuit voltage and an SOC are known. (See, for example, Patent Documents 1 and 2).

特開2005−269824号公報JP, 2005-269824, A 特開2007−292778号公報JP 2007-292778 A

しかしながら、電流積算値による推定方法では、長期間運用すると電流値の検出誤差が蓄積されて、SOCの推定精度が次第に低下するという問題がある。   However, in the estimation method based on the current integrated value, there is a problem that the detection error of the current value is accumulated when the operation is performed for a long time, and the estimation accuracy of the SOC gradually decreases.

また、電池開放電圧とSOCの相関関係に基づいて推定する方法では、充放電を繰り返すことにより開放電圧値とSOCとの関係が変化していくことで、SOCの推定精度が低下するという問題がある。   Further, in the method of estimation based on the correlation between the battery open-circuit voltage and the SOC, the relationship between the open-circuit voltage value and the SOC changes by repeating charging and discharging, so that the estimation accuracy of the SOC is lowered. is there.

本発明の目的は、上記の課題を解決するために、推定精度の高い二次電池の充電状態推定方法および推定装置を提供することにある。   An object of the present invention is to provide a secondary battery charge state estimation method and estimation device with high estimation accuracy in order to solve the above-mentioned problems.

前記した目的を達成するために、本発明に係る二次電池の充電状態推定方法または推定装置は、二次電池の充電状態を、開放電圧値および電流積算値に基づいて推定する方法であって、充電状態推定時の瞬間的な開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを、前記二次電池の使用開始後の充放電特性データに基づいて更新し、前記更新された瞬時充電状態マップに基づいて、充電状態推定時の瞬間的な充電状態推定値を算出し、前記二次電池を流れた電流の積算値に基づいて、充電状態推定値を算出し、前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて、前記二次電池の制御に用いる制御用充電状態推定値を算出する。   In order to achieve the above object, a method of estimating a state of charge of a secondary battery according to the present invention is a method of estimating a state of charge of a secondary battery based on an open circuit voltage value and a current integration value. The instantaneous charge state map for determining the relationship between the instantaneous open circuit voltage value and the charge state estimated value at the time of charge state estimation is updated based on charge / discharge characteristic data after the start of use of the secondary battery, and the update Based on the instantaneous charge state map, the instantaneous charge state estimated value at the time of charge state estimation is calculated, and the charge state estimated value is calculated based on the integrated value of the current flowing through the secondary battery, and the instantaneous A control charge state estimate value used for control of the secondary battery is calculated based on a typical charge state estimate value and a charge state estimate value based on the current integrated value.

この構成によれば、開放電圧値および電流積算値の両方に基づいて二次電池の充電状態を算出するので、長期的には精度が悪化する電流積算値を用いる場合を、開放電圧値を用いて算出する場合が補完することにより、二次電池の充電状態の推定精度が向上する。しかも、開放電圧値と充電状態推定値との関係は、充放電を繰り返すに連れて変化するところ、開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを充放電履歴に基づいて更新するので、より高い精度で充電状態を推定することが可能となる。   According to this configuration, the state of charge of the secondary battery is calculated based on both the open circuit voltage value and the current integrated value, so using the open circuit voltage value in the case of using a current integrated value that degrades accuracy in the long run The estimation accuracy of the state of charge of the secondary battery is improved by complementing the calculation. Moreover, the relationship between the open circuit voltage value and the estimated charge condition value changes as the charge and discharge are repeated, and based on the charge and discharge history, the instantaneous charge condition map that determines the relationship between the open circuit voltage value and the estimated charge condition value. Since updating is performed, it is possible to estimate the state of charge with higher accuracy.

本発明の一実施形態に係る二次電池の充電状態推定方法において、充電状態0%から100%まで充電した場合の充電特性データである完全充電特性データと、充電状態100%から0%まで放電した場合の放電特性データである完全放電特性データとを基準として、充電状態0%と100%との間の部分的な充放電データである部分充放電特性データを規格化し、この規格化によって得た部分充放電電圧規格値を用いて前記瞬時充電状態マップを更新することが好ましい。この構成によれば、完全充放電特性のみならず、完全充放電特性と部分充放電特性との相対的な関係に基づいて瞬時充電状態マップを更新するので、極めて高い精度で充電状態を推定することができる。   In the method of estimating the state of charge of a secondary battery according to an embodiment of the present invention, complete charge characteristic data, which is charge characteristic data when charged from 0% to 100%, and discharge from 100% to 0% of charge. The partial charge / discharge characteristic data which is the partial charge / discharge data between 0% and 100% of the charge state is normalized based on the complete discharge characteristic data which is the discharge characteristic data in the case of It is preferable to update the instantaneous charge state map using the partial charge / discharge voltage standard value. According to this configuration, the instantaneous charge state map is updated based not only on the full charge and discharge characteristics but also on the relative relationship between the full charge and discharge characteristics and the partial charge and discharge characteristics, so the charge state is estimated with extremely high accuracy. be able to.

本発明の一実施形態に係る二次電池の充電状態推定方法において、充電から放電への切替え時に、直前の充電における充電の継続時間および充電電流積算量のいずれかが所定値を超えた場合に前記瞬時充電状態マップを更新し、放電から充電への切替え時に、直前の放電の継続時間および放電電流積算量のいずれかが所定値を超えた場合に前記瞬時充電状態マップを更新することが好ましい。この構成によれば、瞬時充電状態マップの更新を、二次電池の種類や用途、充放電パターン等に応じて適切なタイミングで行うことができる。   In the method of estimating the state of charge of a secondary battery according to an embodiment of the present invention, when switching from charge to discharge, if either the duration of charge in the last charge or the charge current integration amount exceeds a predetermined value. Preferably, the instantaneous charge state map is updated, and when switching from discharge to charge, the instantaneous charge state map is updated if any of the discharge last time and the discharge current integrated amount exceeds a predetermined value. . According to this configuration, the instantaneous charge state map can be updated at an appropriate timing according to the type and application of the secondary battery, the charge and discharge pattern, and the like.

本発明の一実施形態に係る二次電池の充電状態推定方法において、充放電電流値に時定数を用いた一次遅れ処理を施して電流一次遅れ値を算出し、この電流一次遅れ値に基づいて前記充電の継続時間および放電の継続時間を判定することが好ましい。この構成によれば、特に短い周期で充電と放電が切り替わる用途において、より適切に瞬時充電状態マップを更新するタイミングを判断することができる。   In the method for estimating the state of charge of a secondary battery according to one embodiment of the present invention, first-order delay processing using a time constant is performed on a charge / discharge current value to calculate a current first-order delay value, and based on this current first-order delay value. Preferably, the duration of the charge and the duration of the discharge are determined. According to this configuration, it is possible to more appropriately determine the timing at which the instantaneous charge state map is updated in an application in which charge and discharge are switched in a particularly short cycle.

本発明の一実施形態に係る二次電池の充電状態推定方法において、充電状態の領域に応じて時定数を設定し、この時定数を用いて、前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて前記二次電池の制御に用いる制御用充電状態推定値を算出することが好ましい。二次電池の種類によっては、充電状態の変化に対する開放電圧値の変化量が、充電状態の領域によって大きく異なる場合がある。上記構成によれば、このような二次電池に対して、充電状態の領域に応じて、開放電圧に基づく推定値の寄与率と電流積算値に基づく推定値の寄与率とを適切に調整することができるので、より高精度に充電状態を推定することができる。   In the method of estimating the state of charge of a secondary battery according to one embodiment of the present invention, a time constant is set according to a region of the state of charge, and the instantaneous charge state estimated value and the current integration are calculated using this time constant. It is preferable to calculate a control charge state estimated value used to control the secondary battery based on a value-based charge state estimated value. Depending on the type of secondary battery, the amount of change in the open circuit voltage value with respect to the change in the state of charge may greatly differ depending on the region of the state of charge. According to the above configuration, the contribution ratio of the estimated value based on the open circuit voltage and the contribution ratio of the estimated value based on the current integration value are appropriately adjusted to such a secondary battery according to the region of the state of charge. Can estimate the state of charge with higher accuracy.

本発明の一実施形態に係る二次電池の充電状態推定方法において、前記時定数の設定は、前記瞬時充電状態マップにおいて、0%から100%までの間の所定の複数の充電状態領域について、充電状態変化に対する電圧変化率を算出し、当該電圧変化率と前記充電状態変化に対する電圧変化率の所定の減少関数とから、前記各充電状態領域における時定数を算出して設定することを含むことが好ましい。上記の構成によれば、瞬時充電状態マップから、二次電池の充電状態の領域に応じた時定数の設定を、簡便かつ適切に行うことができる。   In the method of estimating the state of charge of a secondary battery according to an embodiment of the present invention, the setting of the time constant is performed for a plurality of predetermined state of charge regions between 0% and 100% in the instantaneous charge state map. Calculating the voltage change rate with respect to the charge state change, and calculating and setting the time constant in each of the charge state regions from the voltage change rate and a predetermined decreasing function of the voltage change rate with respect to the charge state change. Is preferred. According to the above configuration, setting of the time constant according to the region of the state of charge of the secondary battery can be performed simply and appropriately from the instantaneous charge state map.

本発明の一実施形態に係る二次電池の充電状態推定方法において、前記時定数を、充放電の休止時間に応じて補正することが好ましい。より具体的には、例えば、前記時定数と、前記充放電の休止時間の長さとが正の相関を有するように前記時定数を補正することが好ましい。電池の開放電圧は、充放電停止後の休止時間によっても変化するが、上記の構成によれば、充放電間の休止時間の影響を加味したより精度の高い推定が可能となる。   In the method of estimating charge state of a secondary battery according to an embodiment of the present invention, it is preferable to correct the time constant in accordance with the charge / discharge pause time. More specifically, for example, it is preferable to correct the time constant so that the time constant has a positive correlation with the length of the charging / discharging pause time. Although the open circuit voltage of the battery changes depending on the rest time after charge and discharge stop, according to the above configuration, it is possible to estimate with higher accuracy taking into consideration the influence of the rest time between charge and discharge.

本発明の一実施形態に係る二次電池の充電状態推定方法において、前記時定数を、充放電電流の大きさに応じて補正することが好ましい。より具体的には、例えば、前記時定数と、前記充放電電流の大きさとが正の相関を有するように前記時定数を補正することが好ましい。上記の構成によれば、開放電圧に基づいて算出するSOC推定値の誤差が大きくなることを抑制することができる。   In the method of estimating charge state of a secondary battery according to one embodiment of the present invention, it is preferable to correct the time constant in accordance with the magnitude of charge and discharge current. More specifically, for example, it is preferable to correct the time constant so that the time constant and the magnitude of the charge and discharge current have a positive correlation. According to the above configuration, it is possible to suppress an increase in the error of the SOC estimated value calculated based on the open circuit voltage.

本発明の一実施形態に係る二次電池の充電状態推定方法において、さらに、前記瞬間的な開放電圧値を算出するために用いる内部抵抗基準値を、前記二次電池の充放電特性データに基づいて更新することが好ましい。この構成によれば、長期間運用や充放電の繰り返しにより変化する二次電池の内部抵抗値を、充放電履歴に基づいて更新するので、さらに高い精度で充電状態を推定することができる。   In the method of estimating charge state of a secondary battery according to one embodiment of the present invention, further, an internal resistance reference value used to calculate the instantaneous open circuit voltage value is based on charge / discharge characteristic data of the secondary battery. It is preferable to update the According to this configuration, since the internal resistance value of the secondary battery, which changes due to long-term operation or repetition of charge and discharge, is updated based on the charge and discharge history, the state of charge can be estimated with higher accuracy.

以上のように、本発明に係る二次電池の充電状態推定方法および推定装置によれば、二次電池の充電状態を高い精度で推定することが可能となる。   As described above, according to the method of estimating charging state of a secondary battery and the estimating device according to the present invention, it is possible to estimate the charging state of the secondary battery with high accuracy.

本発明の一実施形態に係る充電状態推定装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the charge condition estimation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法の概略を示すフロー図である。It is a flowchart which shows the outline of the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法における内部抵抗値算出の例を示す図である。It is a figure which shows the example of internal resistance value calculation in the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法における瞬時充電状態マップの更新の例を示すフロー図である。It is a flowchart which shows the example of the update of the instantaneous charge condition map in the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法における瞬時充電状態マップの更新に用いる基準充放電マップの例を示すグラフである。It is a graph which shows the example of the reference | standard charge / discharge map used for the update of the instantaneous charge condition map in the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法における電圧値の規格化の例を示すグラフである。It is a graph which shows the example of normalization of the voltage value in the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法において作成される部分充電マップの例を示すグラフである。It is a graph which shows the example of the partial charge map created in the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法において作成される部分放電マップの例を示すグラフである。It is a graph which shows the example of the partial discharge map created in the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法における瞬時充電状態マップの更新の例を示すグラフである。It is a graph which shows the example of the update of the instantaneous charge condition map in the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法において使用する充電効率マップの例を示す表である。It is a table | surface which shows the example of the charge efficiency map used in the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法における制御SOC算出時定数の設定例を示すグラフである。It is a graph which shows the setting example of the control SOC calculation time constant in the charge condition estimation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る充電状態推定方法における時定数の算出に用いるグラフの一例である。It is an example of the graph used for calculation of the time constant in the charge condition estimation method which concerns on one Embodiment of this invention. 充電電流値を変化させた場合の開放電圧値と充電状態推定値の関係の例を示すグラフである。It is a graph which shows the example of the relationship between the open circuit voltage value at the time of changing charge current value, and a charge condition estimated value. 放電電流値を変化させた場合の開放電圧値と充電状態推定値の関係の例を示すグラフである。It is a graph which shows the example of the relationship between the open circuit voltage value at the time of changing a discharge current value, and a charge condition estimated value.

以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, although an embodiment concerning the present invention is described according to a drawing, the present invention is not limited to this embodiment.

図1に、本発明の一実施形態に係る二次電池の充電状態推定方法を実行する充電状態推定装置1の概略構成を示す。この充電状態推定装置1は、開放電圧値および電流積算値に基づいて二次電池の充電状態(SOC:State of Charge)を推定する装置であり、充電状態推定時の瞬間的な開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを、二次電池の使用開始後の充放電特性データに基づいて更新する瞬時充電状態マップ更新ブロック3、更新された瞬時充電状態マップに基づいて、充電状態推定時の瞬間的な充電状態推定値を算出する瞬時充電状態推定ブロック5、二次電池を流れた電流値の積算値(電流積算値)に基づいて、充電状態推定値を算出する電流積算充電状態推定ブロック7、および瞬間的な充電状態推定値および電流積算値に基づく充電状態推定値に基づいて、二次電池の制御に用いる制御用充電状態推定値を算出する制御用充電状態推定ブロック9を備えている。また、充電状態推定装置1は、電流積算値の保存等に用いられる図示しない記憶装置(たとえば、メモリ)、電流積算値の計算等のために用いられる図示しない計時手段(たとえば、時計)を備えている。   FIG. 1 shows a schematic configuration of a charge state estimation device 1 that executes a method of estimating a charge state of a secondary battery according to an embodiment of the present invention. The charge state estimation device 1 is a device that estimates the charge state (SOC: State of Charge) of the secondary battery based on the open circuit voltage value and the current integrated value, and calculates the instantaneous open circuit voltage value at the time of charge state estimation. Instantaneous charge state map update block 3 which updates the instantaneous charge state map which determines the relationship with the charge state estimated value based on charge / discharge characteristic data after the start of use of the secondary battery, based on the updated instantaneous charge state map The momentary charge state estimation block 5 which calculates momentary charge state estimated value at the time of charge state estimation, the charge state estimate value is calculated based on the integrated value (current integrated value) of the current value flowing through the secondary battery Control charge state estimation for control of a secondary battery based on the current integration charge state estimation block 7 and the charge state estimation value based on the instantaneous charge state estimation value and the current integration value A control charge state estimation block 9 for calculating a value is provided. Further, the charge state estimation device 1 is provided with a storage device (for example, a memory) (not shown) used for storing the current integrated value, etc., and a clocking means (for example, clock) (not shown) used for calculating the current integrated value. ing.

図2に、本実施形態に係る充電状態推定方法の計算フローを示す。計算フローは、電池電圧値、電池電流値および電池温度を計測する第1段階と、電池電圧値、電池電流値および電池温度値から瞬間的な充電状態推定値(以下、「瞬時SOC推定値」と呼ぶ。)を求める第2段階と、電流積算値に基づく充電状態推定値(以下、「電流積算SOC推定値」と呼ぶ。)を求める第3段階と、瞬時SOC推定値および電流積算SOC推定値に基づいて、二次電池の充放電制御に使用する制御用充電状態推定値(以下、「制御SOC推定値」と呼ぶ。)を求めて出力する第4段階と、を含む。   The calculation flow of the charge condition estimation method which concerns on FIG. 2 at this embodiment is shown. The calculation flow is a first step of measuring a battery voltage value, a battery current value, and a battery temperature, and an instantaneous charge state estimated value from the battery voltage value, the battery current value, and the battery temperature value (hereinafter referred to as "instant SOC estimated value" And the third step of obtaining the estimated state of charge (hereinafter referred to as “the current integrated SOC estimated value”) based on the current integrated value, and the instantaneous SOC estimated value and the current integrated SOC estimation. And a fourth step of determining and outputting a control charge state estimated value (hereinafter, referred to as “control SOC estimated value”) to be used for charge / discharge control of the secondary battery based on the value.

第1段階では、二次電池の電池電圧値、電池電流値および電池温度を実測する(ステップS1)。これらの実測データは、それぞれ、電圧測定器11,電流測定器13および電池温度測定器15によって取得され、図示しない記憶装置に格納される。また、本計算フローを開始した時刻を図示しない計時手段で計時し、この時刻を図示しない記憶装置に格納する。   In the first stage, the battery voltage value, battery current value and battery temperature of the secondary battery are measured (step S1). These actual measurement data are acquired by the voltage measuring device 11, the current measuring device 13 and the battery temperature measuring device 15, respectively, and stored in a storage device (not shown). Further, the time when the present calculation flow is started is measured by a clocking means (not shown), and this time is stored in a storage device (not shown).

なお、複数の二次電池(セル)を直並列に組み合わせて電池モジュールや電池システムを構成する場合は、電池モジュールや電池システムの構成を考慮して、実測した電池モジュールや電池システムの電圧値、電流値および電池温度を、セル単位の電池電圧値、電池電流値、電池温度に換算して、これらを図示しない記憶装置に格納してもよい。たとえば、所定個数の二次電池を直列に接続してなる電池モジュールの場合、電池モジュールの電圧値を所定個数で除した値を電池電圧値として用いるなど、既存の換算方法を用いることができる。電池電流値、電池温度についても同様であるので、詳細は省略する。   When a battery module or a battery system is configured by combining a plurality of secondary batteries (cells) in series and in parallel, the measured voltage value of the battery module or battery system in consideration of the configuration of the battery module or the battery system, The current value and the battery temperature may be converted into a battery voltage value in a cell unit, a battery current value, and a battery temperature, and these may be stored in a storage device (not shown). For example, in the case of a battery module formed by connecting a predetermined number of secondary batteries in series, an existing conversion method can be used, such as using a value obtained by dividing the voltage value of the battery module by the predetermined number as the battery voltage value. The same applies to the battery current value and the battery temperature, so the details will be omitted.

第2段階では、あらかじめ用意された開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップと、算出された開放電圧値とから瞬時SOC推定値を求める。開放電圧値は、次式(1)で算出される。以下、実測電流の符号は、放電時を正、充電時を負と定義する。
開放電圧(V)= 実測電圧(V)+(内部抵抗(Ω)×実測電流(A))(1)
In the second step, an instantaneous SOC estimated value is obtained from an instantaneous charge state map that defines the relationship between the open circuit voltage value and the estimated charge state value prepared in advance and the calculated open circuit voltage value. The open circuit voltage value is calculated by the following equation (1). Hereinafter, the sign of the measured current is defined as positive at the time of discharge and negative at the time of charge.
Open circuit voltage (V) = Measured voltage (V) + (Internal resistance (Ω) x Measured current (A)) (1)

ここで、第1段階の前、すなわち二次電池のSOCのモニタリングを始める前に、電池温度とSOCと二次電池の内部抵抗値とを対応づける内部抵抗特性マップを以下の手順で作成し、図示しない記憶装置に格納する。   Here, before the first step, that is, before starting the monitoring of the SOC of the secondary battery, create an internal resistance characteristic map that associates the battery temperature, the SOC, and the internal resistance value of the secondary battery according to the following procedure, Store in a storage device not shown.

第1に、所定の電池温度および所定のSOCにおいて、様々な充放電電流値で、所定時間、二次電池の充放電を行い、その途中の電池電圧値を測定する。たとえば、定格容量141Ahの二次電池において、電池温度を10℃、SOCを10%の状態とした後に、70.5A(0.5C)の放電を15秒間行い、放電開始10秒後の電池電圧値を測定する。次に、70.5A(0.5C)の充電を15秒間行い、充電開始10秒後の電池電圧値を測定する。さらに、141A(1.0C)の放電を15秒間、141A(1.0C)の充電を15秒間、282A(2.0C)の放電を15秒間、282A(2.0C)の充電を15秒間行い、各充放電開始10秒後の電池電圧値を測定する。第2に、測定した充放電電流値と電池電圧値とから、二次電池の内部抵抗値を求める。上述の例において、3回の定電流放電と3回の定電流充電とを電流値を変えて行い、各電流値に対応する電池電圧値を測定したので、図3(a)に示すように、電池電流値および電池電圧値をプロットする。そして、図3(a)に示すグラフにプロットした電池電流値および電池電圧値から、電流値の変化に対する電圧値の変化の傾きを直線近似により求め、この傾きを二次電池の内部抵抗値とする。   First, at a predetermined battery temperature and a predetermined SOC, charge and discharge of the secondary battery are performed at various charge / discharge current values for a predetermined time, and a battery voltage value in the middle is measured. For example, in a secondary battery with a rated capacity of 141 Ah, after setting the battery temperature to 10 ° C. and the SOC to 10%, discharge for 70.5 A (0.5 C) is performed for 15 seconds, and the battery voltage 10 seconds after the discharge start taking measurement. Next, charging for 70.5 A (0.5 C) is performed for 15 seconds, and a battery voltage value 10 seconds after the start of charging is measured. Furthermore, discharge of 141A (1.0C) for 15 seconds, charge of 141A (1.0C) for 15 seconds, discharge of 282A (2.0C) for 15 seconds, charge of 282A (2.0C) for 15 seconds, and each charge / discharge Measure the battery voltage value 10 seconds after the start. Second, the internal resistance value of the secondary battery is determined from the measured charge / discharge current value and the battery voltage value. In the above example, three constant current discharges and three constant current charges were performed with different current values, and battery voltage values corresponding to the respective current values were measured, as shown in FIG. 3 (a). , Plot the battery current value and the battery voltage value. Then, from the battery current value and the battery voltage value plotted in the graph shown in FIG. 3A, the slope of the change of the voltage value with respect to the change of the current value is determined by linear approximation, and this slope is the internal resistance value of the secondary battery Do.

第3に、第1および第2の手順を、電池温度やSOCを変えて繰り返し行い、内部抵抗特性マップを作成する。上述の例において、図3(b)に示す内部抵抗特性マップのうち、電池温度が10℃,SOCが10%の場合の内部抵抗値r11が得られる。同様にして、電池温度やSOCを適宜変更して第1および第2の手順を繰り返し、図3(b)に示す内部抵抗特性マップを完成する。   Third, the first and second procedures are repeated while changing the battery temperature and the SOC to create an internal resistance characteristic map. In the above-mentioned example, in the internal resistance characteristic map shown in FIG. 3B, the internal resistance value r11 is obtained when the battery temperature is 10 ° C. and the SOC is 10%. Similarly, the first and second procedures are repeated by appropriately changing the battery temperature and the SOC, and the internal resistance characteristic map shown in FIG. 3B is completed.

なお、二次電池の内部抵抗値の算出方法は、上述の方法に限定されず、たとえば、電流値が正の場合(放電)と負の場合(充電)とに分け、放電時の内部抵抗値・充電時の内部抵抗値を別々に算出してもよい。また、近似方法は直線近似に限定されず、様々な方法を採用することができる。   The method of calculating the internal resistance value of the secondary battery is not limited to the method described above. For example, the internal resistance value at the time of discharge is divided into positive (discharge) and negative (charge) current values. -The internal resistance value during charging may be calculated separately. Further, the approximation method is not limited to linear approximation, and various methods can be adopted.

次いで、ステップS1で実測した電池温度および1計算フロー前に求めた制御SOC推定値(後述)に基づいて、内部抵抗値演算ブロック17は、内部抵抗特性マップから内部抵抗値を求める(ステップS2)。内部抵抗特性マップに、内部抵抗値が見つからない場合は、内部抵抗値演算ブロック17は線形補間によって内部抵抗値を求める。たとえば、図3(b)の内部抵抗特性マップにおいて、電池温度が13℃、制御SOC値が10%の内部抵抗を求める場合、内部抵抗値演算ブロック17は、電池温度が10℃,SOC10%の内部抵抗値および電池温度が15℃,SOC10%の内部抵抗値から、線形補間によって内部抵抗値を算出する。なお、線形補間以外の方法を用いてもよい。   Next, based on the battery temperature measured in step S1 and the control SOC estimated value (described later) obtained one calculation flow before, the internal resistance value calculation block 17 obtains the internal resistance value from the internal resistance characteristic map (step S2) . If the internal resistance value is not found in the internal resistance characteristic map, the internal resistance value calculation block 17 obtains the internal resistance value by linear interpolation. For example, in the internal resistance characteristic map of FIG. 3B, when the internal resistance having a battery temperature of 13 ° C. and a control SOC value of 10% is obtained, the internal resistance value calculation block 17 has a battery temperature of 10 ° C. and SOC 10%. The internal resistance value is calculated by linear interpolation from the internal resistance value and the internal resistance value at a battery temperature of 15 ° C. and SOC 10%. Note that methods other than linear interpolation may be used.

この計算フローが初回の場合、1計算フロー前は存在しないため、制御SOC推定値は存在しない。この場合は、制御SOC推定値の代わりに、別の方法で求めたSOC値を用いてもよい。たとえば、特許文献1の電流積算値に基づくSOC値を用いるなど、公知の手法を用いてもよい。   When this calculation flow is the first time, there is no control SOC estimated value since it does not exist one calculation flow before. In this case, an SOC value obtained by another method may be used instead of the control SOC estimated value. For example, a known method may be used, such as using the SOC value based on the current integration value of Patent Document 1.

なお、一般に、二次電池の内部抵抗値は、充放電を繰り返すことにより劣化(上昇)する。また、二次電池には製造のばらつきがあるため、内部抵抗値にもばらつきがある。したがって、次式(2)に基づいて、内部抵抗特性マップを所定の時間間隔で連続的に更新することにより、二次電池の劣化やばらつきを定期的に反映した内部抵抗値を得られるようにすることが好ましい。
内部抵抗(Ω)= (開放電圧(V)−実測電圧(V))/実測電流(A)(2)
Generally, the internal resistance value of the secondary battery is deteriorated (increased) by repeating charge and discharge. In addition, since there are manufacturing variations in secondary batteries, there are also variations in internal resistance values. Therefore, by continuously updating the internal resistance characteristic map at predetermined time intervals based on the following equation (2), it is possible to obtain an internal resistance value that regularly reflects the deterioration or variation of the secondary battery. It is preferable to do.
Internal resistance (Ω) = (Open voltage (V)-Measured voltage (V)) / Measured current (A) (2)

本実施形態では、1計算フロー前に実測した電池電圧値、電池電流値および電池温度と、これらの値に基づいてステップS3(後述)で求めた1計算フロー前の開放電圧値とから、内部抵抗基準値演算ブロック19は、式(2)を用いて内部抵抗値を算出する。また、内部抵抗基準値演算ブロック19は、1計算フロー前に実測した電池温度と、1計算フロー前に求めた制御SOC推定値と、算出した内部抵抗値とに基づいて、電池温度とSOC(制御SOC値)と二次電池の内部抵抗値とを対応づける、図3(b)に示す内部抵抗特性マップを更新する(ステップS2’)。内部抵抗特性マップは、定期的,連続的に更新しなくともよく、任意のタイミングで更新してもよいが、二次電池の充電状態を高い精度で推定するためには、更新頻度は多いほうが好ましく、また定期的、連続的に更新するほうが好ましい。   In the present embodiment, the battery voltage value, the battery current value, and the battery temperature measured before one calculation flow, and the open circuit voltage value before the one calculation flow calculated in step S3 (described later) based on these values are internally The resistance reference value calculation block 19 calculates the internal resistance value using equation (2). Further, the internal resistance reference value calculation block 19 calculates the battery temperature and the SOC based on the battery temperature measured before one calculation flow, the control SOC estimated value obtained before one calculation flow, and the calculated internal resistance value. The internal resistance characteristic map shown in FIG. 3B, which associates the control SOC value) with the internal resistance value of the secondary battery, is updated (step S2 '). The internal resistance characteristic map may not be updated regularly or continuously, and may be updated at any timing, but in order to estimate the state of charge of the secondary battery with high accuracy, the frequency of update is higher Preferably, it is preferable to periodically and continuously renew.

次に、開放電圧算出ブロック21は、ステップS1で実測した電池電圧値および電池電流値と、ステップS2で得られた内部抵抗値とから、式(1)に基づいて、開放電圧値を求め(ステップS3)、図示しない記憶装置に格納する。   Next, the open circuit voltage calculation block 21 obtains the open circuit voltage value from the battery voltage value and the battery current value actually measured in step S1, and the internal resistance value obtained in step S2 based on the equation (1) Step S3), store in a storage device not shown.

本実施形態では、瞬時充電状態マップ更新ブロック3は、図示しない記憶装置に格納された、充電状態推定時の瞬間的な開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを、二次電池の使用開始後の充放電特性データに基づいて更新する(ステップS4)。この瞬時充電状態マップの更新について、以下詳細に説明する。なお、以下の説明において、理解を容易にするために、「グラフを用いる」、「グラフを作成する」等の表現を用いて説明する場合があるが、ここでの「グラフ」とは、対象となる2つのパラメータ間の相関を示すデータを指しており、必ずしも視覚的に表現されたグラフである必要はない。例えば、「グラフ」は、表の形式で2つのパラメータ間の相関を示してもよい。   In this embodiment, the instantaneous charge state map update block 3 stores the instantaneous charge state map which is stored in the storage device (not shown) and determines the relationship between the instantaneous open circuit voltage value at the time of charge state estimation and the charge state estimated value. It updates based on the charge / discharge characteristic data after the start of use of a secondary battery (step S4). The update of the instantaneous charge state map will be described in detail below. Note that in the following description, in order to facilitate understanding, expressions such as “use a graph” and “create a graph” may be used in some cases, but “graph” here is an object. It refers to data that indicates the correlation between two parameters, and does not have to be a visually represented graph. For example, a "graph" may show the correlation between two parameters in the form of a table.

第1段階の前、すなわち二次電池のSOCのモニタリングを始める前に、図5に示すように、瞬時充電状態マップを更新する際の参照基準となる基準マップを作成し、図示しない記憶装置に格納する。具体的には、充電状態0%から100%までの完全充電、および異なる複数の充電状態から100%までの部分充電試験(図5(a)では充電状態30%,40%,50%,60%,70%から100%までの5回の部分充電試験)を行い、種々の充電状態に対する開放電圧値の変化を示すグラフ(充電特性データ)からなる基準充電マップを作成する。同様に、充電状態100%から0%までの完全放電、および異なる複数の充電状態から0%までの部分放電試験(図5(b)では充電状態30%,40%,50%,60%,70%から0%までの5回の部分放電試験)を行い、種々の充電状態に対する開放電圧値の変化を示すグラフ(放電特性データ)からなる基準放電マップを作成する。本実施形態では、0.2Cの充放電電流で試験を行い、基準充電マップ・基準放電マップを作成する。なお、基準充電マップ・基準放電マップは、0.2Cに限られず、0.1Cや0.01Cなど、実施態様等を考慮して、所望の充放電電流値で試験を行うことで作成することができる。   Before the first stage, that is, before starting the monitoring of the SOC of the secondary battery, as shown in FIG. 5, a reference map to be used as a reference in updating the instantaneous charge state map is created and stored in a storage device not shown. Store. Specifically, full charge from 0% to 100% charge state, and partial charge test from multiple different charge states to 100% (30%, 40%, 50%, 60 charge states in FIG. 5A) Five partial charge tests (%, 70% to 100%) are performed to create a reference charge map consisting of graphs (charge characteristic data) showing changes in open circuit voltage values with respect to various charge states. Similarly, full discharge from 100% to 0% of charge state, and partial discharge test from 0% of different charge states (30%, 40%, 50%, 60% state of charge in FIG. 5 (b) Five partial discharge tests (from 70% to 0%) are performed to create a reference discharge map consisting of graphs (discharge characteristic data) showing changes in open circuit voltage values with respect to various charge states. In the present embodiment, a test is performed at a charge / discharge current of 0.2 C to create a reference charge map and a reference discharge map. The reference charge map and the reference discharge map are not limited to 0.2 C, but may be created by conducting tests at desired charge / discharge current values in consideration of embodiments such as 0.1 C and 0.01 C. Can.

同じ開放電圧値を示しても、二次電池が充電中か放電中かによって、充電状態は異なる。たとえば、図5(a)の基準充電マップによれば、開放電圧が1.361Vを示すとき、瞬時SOC50%から部分充電を行っている場合であれば、瞬時SOC50%から100%までの部分充電に係るグラフを参照すると、瞬時SOCは60%であることがわかる。一方、図5(b)の基準放電マップによれば、瞬時SOC70%から部分放電を行っている場合、瞬時SOC70%から0%までの部分放電に係るグラフを参照すると、瞬時SOCは65%であることがわかる。このように、二次電池が充電中か放電中かを実測電流に基づいて判別し、充電マップまたは放電マップを適切に選択することによって、瞬時SOCを適切に求めることができる。   Even if the same open circuit voltage value is indicated, the state of charge differs depending on whether the secondary battery is charging or discharging. For example, according to the reference charge map of FIG. 5A, when the open circuit voltage indicates 1.361 V, if partial charging is being performed from instantaneous SOC 50%, partial charge from instantaneous SOC 50% to 100%. Referring to the graph according to, it can be seen that the instantaneous SOC is 60%. On the other hand, according to the reference discharge map of FIG. 5B, when performing partial discharge from instantaneous SOC 70%, referring to the graph related to partial discharge from instantaneous SOC 70% to 0%, the instantaneous SOC is 65%. I understand that there is. As described above, it is possible to appropriately determine the instantaneous SOC by determining whether the secondary battery is charging or discharging based on the measured current and appropriately selecting the charge map or the discharge map.

さらに、二次電池の充電や放電の繰り返し、特に充電状態が0%を超え100%未満の状態において充電や放電を繰り返すことにより、基準充電マップおよび基準放電マップに基づいて求めた充電状態と、実際の充電状態とにずれが生じ、充電状態の推定の精度が悪化する。そこで、ステップS4において、瞬時充電状態マップ更新ブロック3は、充電状態0%から100%まで二次電池を充電した場合の充電特性データである完全充電特性データと、充電状態100%から0%まで二次電池を放電した場合の放電特性データである完全放電特性データとを基準として、充電状態0%と100%との間の部分的な充放電データである部分充放電特性データを規格化し、この規格化によって得られた部分充放電電圧規格値を用いて瞬時充電状態マップを更新する。図4に、瞬時充電状態マップの作成および更新のフローを示す。   Furthermore, the charging state determined based on the reference charging map and the reference discharging map by repeating charging and discharging of the secondary battery, in particular, repeating charging and discharging when the state of charge is greater than 0% and less than 100%; Deviation from the actual state of charge occurs, and the accuracy of estimation of the state of charge deteriorates. Therefore, in step S4, the instantaneous charge state map update block 3 is from 100% to 0% full charge characteristic data, which is charge characteristic data when the secondary battery is charged from 0% to 100% charge state. Standardize the partial charge / discharge characteristic data which is the partial charge / discharge data between 0% and 100% of the charge state based on the complete discharge characteristic data which is the discharge characteristic data when discharging the secondary battery, The instantaneous charge state map is updated using the partial charge / discharge voltage standard value obtained by this normalization. FIG. 4 shows a flow of creation and update of the instantaneous charge state map.

まず、基準充電マップに基づいて、各部分充電における各SOC値に対応する電圧値を、完全充電における電圧値および完全放電における電圧値によって規格化する。同様に、基準放電マップに基づいて、各部分放電における各SOC値に対応する電圧値を、完全充電における電圧値および完全放電における電圧値によって規格化する。部分充電の電圧値の規格値は次式(3)で算出し、部分放電の電圧値の規格値は次式(4)で算出する。
部分充電電圧規格値= (部分充電電圧値−完全放電電圧値)
/(完全充電電圧値−完全放電電圧値) (3)
部分放電電圧規格値= (部分放電電圧値−完全放電電圧値)
/(完全充電電圧値−完全放電電圧値) (4)
First, based on the reference charge map, the voltage value corresponding to each SOC value in each partial charge is normalized by the voltage value in complete charge and the voltage value in complete discharge. Similarly, based on the reference discharge map, the voltage value corresponding to each SOC value in each partial discharge is normalized by the voltage value in full charge and the voltage value in full discharge. The standard value of the partial charge voltage value is calculated by the following equation (3), and the standard value of the partial discharge voltage value is calculated by the following equation (4).
Partial charge voltage standard value = (partial charge voltage value-complete discharge voltage value)
/ (Complete charge voltage value-complete discharge voltage value) (3)
Partial discharge voltage standard value = (partial discharge voltage value-complete discharge voltage value)
/ (Complete charge voltage value-complete discharge voltage value) (4)

SOC50%からの部分充電におけるSOC=60%での電圧値を規格化する例を示す。たとえば、図5(a)を参照すると、完全充電におけるSOC=60%での電圧値が1.390V,図5(b)を参照すると、完全放電におけるSOC=60%での電圧値が1.315V,図5(a)のSOC50%から100%までの部分充電に係るグラフを参照すると、SOC50%からの部分充電におけるSOC=60%での電圧値が1.361Vであるから、部分充電規格値は、上式(3)より、(1.361−1.315)/(1.390−1.315)=0.613となる。   The example which normalizes the voltage value in SOC = 60% in the partial charge from SOC50% is shown. For example, referring to FIG. 5 (a), the voltage value at SOC = 60% in full charge is 1.390 V, and referring to FIG. 5 (b), the voltage value at SOC = 60% in full discharge is 1. Referring to the graph relating to partial charge from SOC 50% to 100% in FIG. 5A, the voltage value at SOC = 60% in partial charge from 50% of SOC is 1.361 V, and therefore the partial charge standard is used. From the above equation (3), the value is (1.361-1.315) / (1.390-1.315) = 0.613.

次に、二次電池の動作が充電から放電に切り替わった場合に、規格化された電圧値を使用して、次式(5)に基づいて、部分充電マップを作成/更新する。
部分充電電圧値= 部分充電電圧規格値
×(完全充電電圧値−部分放電電圧値)
+部分放電電圧値 (5)
Next, when the operation of the secondary battery is switched from charge to discharge, the partial charge map is created / updated based on the following equation (5) using the normalized voltage value.
Partial charge voltage value = Partial charge voltage standard value
× (full charge voltage value-partial discharge voltage value)
+ Partial discharge voltage value (5)

上述したとおり、式(3)に基づいてSOC50%からの部分充電におけるSOC=60%での電圧値を規格化する例を示した。同様の手順を繰り返すことにより、図5(a)の基準充電マップ,図5(b)の基準放電マップ,および式(3)に基づいて、SOC50%からの部分充電における、SOC=50〜100%の部分充電規格値を求め、次いで、図5(a)の基準充電マップ,図5(b)の基準放電マップ,および式(5)に基づいて、SOC50%からの部分充電における、SOC=50〜100%の部分充電電圧値を求めると、図6に示すグラフのようになる。   As mentioned above, the example which normalizes the voltage value in SOC = 60% in the partial charge from SOC50% based on Formula (3) was shown. By repeating the same procedure, based on the reference charge map of FIG. 5A, the reference discharge map of FIG. 5B, and the equation (3), SOC = 50 to 100 in partial charge from SOC 50%. % Partial charge standard value, and then, based on the reference charge map of FIG. 5 (a), the reference discharge map of FIG. 5 (b), and the equation (5), SOC = 50 in partial charge from SOC 50% The partial charge voltage value of 50 to 100% is obtained as shown in the graph of FIG.

ただし、部分充電から部分放電に切り替わった時点(部分放電開始点)でのSOC(放電切替SOC)を超えるSOC領域については、基準充電マップの完全充電または部分充電における電圧値を用いてもよい。   However, for the SOC region exceeding the SOC (discharge switching SOC) at the time of switching from partial charge to partial discharge (partial discharge start point), the voltage value in full charge or partial charge of the reference charge map may be used.

SOC0%から50%まで部分充電を行い、その後SOC30%まで部分放電を行った例を以下に説明する。この例では、図5(a)の基準充電マップの完全充電におけるグラフと、図5(b)の基準放電マップのSOC50%から0%までのグラフとを用いる。   An example in which partial charging is performed from SOC 0% to 50% and then partial discharging to SOC 30% will be described below. In this example, a graph at the full charge of the reference charge map of FIG. 5 (a) and a graph from SOC 50% to 0% of the reference discharge map of FIG. 5 (b) are used.

まず、これらの2つのグラフと、式(3)とから、SOC30%から50%の範囲において、部分充電電圧規格値を求める。次に、SOC30%から50%の範囲においては、基準充電マップの完全充電におけるグラフ(完全充電電圧値)と、基準放電マップのSOC50%から0%までのグラフ(部分放電電圧値)とから、式(5)と部分充電電圧規格値とに基づいて、規格化されたグラフを部分充電マップに描画し、SOC50%から100%の範囲においては、基準充電マップの完全充電におけるグラフのSOC50%から100%の部分のグラフを使用し、部分充電マップに描画する。図7に示すグラフは、SOC50%から30%まで部分放電を行った場合に、部分充電電圧規格値を求め、この規格値に基づいて規格化されたグラフを描画する上述の手順により得られる、部分充電マップに描画されるグラフである。   First, a partial charge voltage standard value is obtained in the range of SOC 30% to 50% from these two graphs and the equation (3). Next, in the SOC 30% to 50% range, from the graph (full charge voltage value) in the full charge of the reference charge map and the graph from the SOC 50% to 0% of the reference discharge map (partial discharge voltage value) Based on the equation (5) and the partial charge voltage standard value, a normalized graph is drawn on the partial charge map, and in the SOC 50% to 100% range, the SOC 50% of the graph at the full charge of the reference charge map Use the 100% graph and draw on the partial charge map. The graph shown in FIG. 7 is obtained by the above-described procedure of obtaining a partial charge voltage standard value and drawing a normalized graph based on the standard value when partial discharge is performed from SOC 50% to 30%. It is a graph drawn on a partial charge map.

なお、充放電を繰り返した結果、SOC50%まで部分充電を行い、その後SOC30%まで部分放電を行う場合は、図5(b)の基準放電マップのSOC50%から0%までのグラフではなく、後述する手順で描画/更新される部分放電マップのSOC50%から0%までのグラフを用いることが好ましい。これは、部分放電マップは、二次電池の初期状態を示す基準放電マップと異なり、二次電池の充放電履歴に基づいて描画/更新されるため、現在の二次電池の状態をより反映したものとなっていることによる。本実施形態では、図5(a)の基準充電マップの完全充電におけるグラフと、図7の描画/更新された部分放電マップのSOC50%から0%までのグラフとを用い、部分充電マップを更新(再描画)する。以上説明したように、部分充電マップの更新を行うことにより、部分充放電を何度も繰り返した場合でも、充電時において、開放電圧値から、精度の高い瞬時SOC推定値を求めることができる。   In addition, as a result of repeating charging / discharging, when performing partial charge to SOC50% and performing partial discharge to SOC30% after that, it is not the graph from SOC50% to 0% of the reference discharge map of FIG. It is preferable to use a graph from SOC 50% to 0% of the partial discharge map drawn / updated in the following procedure. This is because the partial discharge map is drawn / updated based on the charge / discharge history of the secondary battery, unlike the reference discharge map showing the initial state of the secondary battery, thus reflecting the current state of the secondary battery more It is because it has become a thing. In this embodiment, the partial charge map is updated using the graph in the full charge of the reference charge map of FIG. 5A and the graph from SOC 50% to 0% of the drawn / updated partial discharge map of FIG. (Redraw) As described above, by updating the partial charge map, even when partial charge and discharge are repeated many times, it is possible to obtain an accurate instantaneous SOC estimation value from the open circuit voltage value during charging.

同様に、放電から充電に切り替わった場合に、規格化された電圧値を使用して、次式(6)に基づいて、部分放電マップを作成/更新する。
部分放電電圧値= 部分放電電圧規格値
×(部分充電電圧値−完全放電電圧値)
+完全放電電圧値 (6)
Similarly, when the discharge is switched to the charge, the partial discharge map is created / updated based on the following equation (6) using the normalized voltage value.
Partial discharge voltage value = Partial discharge voltage standard value
× (partial charge voltage value-complete discharge voltage value)
+ Complete discharge voltage value (6)

ただし、部分放電から部分充電に切り替わった時点(部分充電開始点)でのSOC(充電切替SOC)より低いSOC領域については、基準放電マップの完全放電または部分放電における電圧値を用いてもよい。   However, for the SOC region lower than the SOC (charge switching SOC) at the time of switching from partial discharge to partial charge (partial charge start point), a voltage value in complete discharge or partial discharge of the reference discharge map may be used.

SOC0%からSOC100%まで充電を行った後、SOC30%まで部分放電を行い、その後SOC70%まで部分充電を行った例を示す。この例では、図5(b)の基準放電マップの完全放電におけるグラフと、図5(a)の基準充電マップのSOC30%から100%までのグラフとを用いる。   An example is shown in which after partial charge to SOC 30% after partial charge to SOC 100% after SOC 0% to SOC 100%, partial charge to SOC 70% is performed. In this example, a graph of the complete discharge of the reference discharge map of FIG. 5B and a graph of SOC 30% to 100% of the reference charge map of FIG. 5A are used.

まず、これらの2つのグラフと、式(4)とから、SOC30%から70%の範囲において、部分放電電圧規格値を求める。次に、SOC30%から70%の範囲においては、基準放電マップの完全放電におけるグラフ(完全放電電圧値)と、基準充電マップのSOC30%から100%までのグラフ(部分充電電圧値)とから、式(6)と部分放電電圧規格値とに基づいて、規格化されたグラフを部分放電マップに描画し、SOC0%から30%の範囲においては、基準放電マップのSOC70%から0%までの部分放電におけるグラフのSOC0%から30%の部分のグラフを部分放電マップに描画する。図8に示すグラフは、SOC30%から70%まで部分充電を行った場合に、部分放電電圧規格値を求め、この規格値に基づいて規格化されたグラフを描画する上述の手順により得られる、部分放電マップに描画されるグラフである。   First, a partial discharge voltage standard value is determined in the range of SOC 30% to 70% from these two graphs and the equation (4). Next, in the range of SOC 30% to 70%, from the graph (full discharge voltage value) in the complete discharge of the reference discharge map and the graph from 30% to 100% of SOC of the reference charge map (partial charge voltage value) Based on the equation (6) and the partial discharge voltage standard value, a normalized graph is drawn on the partial discharge map, and in the SOC 0% to 30% range, the SOC 70% to 0% of the reference discharge map The graph of the portion of SOC 0% to 30% of the graph in discharge is drawn on the partial discharge map. The graph shown in FIG. 8 is obtained by the above-described procedure of obtaining a partial discharge voltage standard value and drawing a normalized graph based on the standard value when partial charge is performed from SOC 30% to 70%. It is a graph drawn on a partial discharge map.

なお、充放電を繰り返した結果、SOC30%まで部分放電を行い、その後SOC70%まで部分放電を行う場合は、図5(a)の基準充電マップのSOC30%から100%までのグラフではなく、上述の手順で描画/更新される部分充電マップのSOC30%から100%までのグラフを用いることが好ましい。これは、部分充電マップは、二次電池の初期状態を示す基準充電マップと異なり、二次電池の充放電履歴に基づいて描画/更新されるため、現在の二次電池の状態をより反映したものとなっていることによる。本実施形態では、図5(b)の基準放電マップの完全放電におけるグラフと、図8の描画/更新された部分充電マップのSOC30%から100%までのグラフとを用い、部分放電マップを更新(再描画)する。以上説明したように、部分放電マップの更新を行うことにより、部分充放電を何度も繰り返した場合でも、放電時において、開放電圧値から、精度の高い瞬時SOC推定値を求めることができる。   As a result of repeating charge and discharge, partial discharge is performed up to SOC 30%, and then partial discharge is performed up to SOC 70%, not the graph from SOC 30% to 100% of the reference charge map of FIG. It is preferable to use a graph of SOC 30% to 100% of the partial charge map drawn / updated in the procedure of This is because the partial charge map is drawn / updated based on the charge / discharge history of the secondary battery, unlike the reference charge map showing the initial state of the secondary battery, thus reflecting the current state of the secondary battery more It is because it has become a thing. In this embodiment, the partial discharge map is updated using the graph of the complete discharge of the reference discharge map of FIG. 5B and the graph of SOC 30% to 100% of the drawn / updated partial charge map of FIG. (Redraw) As described above, by updating the partial discharge map, even when partial charging and discharging are repeated many times, it is possible to obtain an accurate instantaneous SOC estimation value from the open circuit voltage value at the time of discharge.

充電切替SOCや放電切替SOCに対応するグラフ(充放電特性データ)が、基準充電マップ・基準放電マップ・部分充電マップ・部分放電マップに用意されていない場合は、すでに用意されているグラフから、充電切替SOCや放電切替SOCの上下に最も近い値のものであってグラフがあるものを各1つ選定し、これらの部分充電特性データや部分放電特性データを比例按分して、充電切替SOCや放電切替SOCに対応するグラフを部分充電マップ・部分放電マップに作成する。例えば、図9に示すように、放電切替SOCがa%であり、これより高い側の最も近いものでグラフのある放電切替SOC値がb%,低い側の最も近いものでグラフのある放電切替SOC値がc%である場合、放電切替時の開放電圧値に対応するSOC値の比率X=(b−a)/(b−c)を用いて、次式(7)によりこの放電切替SOC値a%に対応するグラフを部分充電マップに作成する。
開放電圧= (切替SOC値c%の開放電圧)×X
+(切替SOC値b%の開放電圧)×(1−X) (7)
If a graph (charge / discharge characteristic data) corresponding to the charge switching SOC or the discharge switching SOC is not prepared in the reference charge map, the reference discharge map, the partial charge map, or the partial discharge map, from the already prepared graph, Select one each with the closest value to the charge switching SOC or the discharge switching SOC, and have a graph, and divide the partial charge characteristic data and the partial discharge characteristic data proportionally to select the charge switching SOC or A graph corresponding to the discharge switching SOC is created in the partial charge map / partial discharge map. For example, as shown in FIG. 9, the discharge switching SOC is a%, and the nearest one higher than this, and the discharge switching SOC value with a graph is b%, the nearest nearest one with a graph, the discharge switching When the SOC value is c%, the discharge switching SOC is calculated according to the following equation (7) using the ratio X = (b−a) / (b−c) of the SOC value corresponding to the open circuit voltage value at the time of discharge switching. Create a graph corresponding to the value a% in the partial charge map.
Open circuit voltage = (Open circuit voltage of switching SOC value c%) × X
+ (Open circuit voltage of switching SOC value b%) × (1-X) (7)

同様に、部分放電から部分充電への切替え時には、充電切替SOCの上下に隣接するSOC値の部分充電特性データを比例按分して、充電切替SOCに対応するグラフを部分放電マップに作成する。このように、部分充電マップや部分放電マップを随時更新することで、開放電圧値から、より精度の高い瞬時SOC推定値を求めることが可能になる。   Similarly, at the time of switching from partial discharge to partial charge, partial charge characteristic data of SOC values adjacent to upper and lower sides of the charge switching SOC are proportionally divided, and a graph corresponding to the charge switching SOC is created in the partial discharge map. As described above, by updating the partial charge map and the partial discharge map as needed, it is possible to obtain the more accurate instantaneous SOC estimated value from the open circuit voltage value.

なお、図4に示すように、本実施形態では、充電から放電への切替え時には、直前の充電における充電の継続時間または充電電流積算量の変化のいずれかが所定値を超えた場合に瞬時充電状態マップ更新ブロック3が部分充電マップを更新する。また、放電から充電への切替え時には、直前の放電の継続時間または放電電流積算量の変化のいずれかが所定値を超えた場合に瞬時充電状態マップ更新ブロック3が部分放電マップを更新する。   As shown in FIG. 4, in the present embodiment, at the time of switching from charge to discharge, instantaneous charging is performed when either the duration of charge in the last charge or the change in charge current integration amount exceeds a predetermined value. State map update block 3 updates the partial charge map. Further, at the time of switching from discharge to charge, the instantaneous charge state map update block 3 updates the partial discharge map when either the duration of the last discharge or the change in the discharge current integrated amount exceeds a predetermined value.

具体的には、部分充電から部分放電への切替え時には、マップ更新判定ブロック23は、以下の更新条件(a),(b)のいずれかを満たすか否かを判定する。
(a):所定の設定時間以上の間、充電電流が継続して流れる。
(b):充電電流が継続して流れている間に、所定量以上、MAP積算SOC(後述)が増加する。
上述の更新条件を満たす場合、瞬時充電状態マップ更新ブロック3は、1計算フロー前に求めた制御SOC推定値を放電切替SOCとして、上述の方法により部分充電マップを更新する。
Specifically, at the time of switching from partial charge to partial discharge, the map update determination block 23 determines whether one of the following update conditions (a) and (b) is satisfied.
(A): The charging current continues to flow for a predetermined set time or more.
(B): While the charging current continues to flow, the MAP integrated SOC (described later) increases by a predetermined amount or more.
When the above update condition is satisfied, the instantaneous charge state map update block 3 updates the partial charge map by the above-described method, using the control SOC estimated value obtained one calculation flow before as the discharge switching SOC.

同様に、部分放電から部分充電への切替え時には、マップ更新判定ブロック23は、以下の更新条件(c),(d)のいずれかを満たすか否かを判定する。
(c):所定の設定時間以上の間、放電電流が継続して流れる。
(d):放電電流が継続して流れている間に、所定量以上、MAP積算SOCが減少する。
上述の更新条件を満たす場合、瞬時充電状態マップ更新ブロック3は、1計算フロー前に求めた制御SOC推定値を充電切替SOCとして、上述の方法により部分充電マップを更新する。
Similarly, at the time of switching from partial discharge to partial charge, the map update determination block 23 determines whether any of the following update conditions (c) and (d) are satisfied.
(C): A discharge current continuously flows for a predetermined set time or more.
(D): While the discharge current continues to flow, the MAP integrated SOC decreases by a predetermined amount or more.
When the above update condition is satisfied, the instantaneous charge state map update block 3 updates the partial charge map by the above-described method, using the control SOC estimated value obtained one calculation flow before as the charge switching SOC.

ここで、マップ更新判定ブロック23は、たとえば、ステップS1の後に図示しない記憶装置に格納された実測電流値および時刻を確認することにより、充電の継続時間または放電の継続時間を確認することができ、更新条件(a),(c)が満たされているか否かを判別することができる。   Here, the map update determination block 23 can confirm the duration of charge or the duration of discharge by, for example, confirming the measured current value and time stored in the storage device (not shown) after step S1. It can be determined whether the update conditions (a) and (c) are satisfied.

なお、マップ更新判定ブロック23による更新条件(a),(c)において、電流の一次遅れ演算を用いることもできる。本実施形態において、電流一次遅れ値演算ブロック25は、ステップS1で測定した実測電流値に時定数(一次遅れ時定数:Tf)を用いた一次遅れ処理を施して電流一次遅れ値を算出し、マップ更新判定ブロック23は、この電流一次遅れ値を充電電流値または放電電流値として、更新条件(a),(c)が満たされたか否かを判別する。電流一次遅れ値は、次式(8)により算出する。なお、算出した電流一次遅れ値は、たとえば、1計算フロー後に電流一次遅れ値前回値として用いるため、図示しない記憶装置に格納する。また、電流一次遅れ値の算出の初回においては、電流一次遅れ前回値は0とすることができる。
電流一次遅れ値= 電流一次遅れ値前回値
+(実測電流値−電流一次遅れ値前回値)/Tf (8)
短い周期で充放電が切り替わる場合、更新条件(a),(c)が満たされない。このとき、充放電が頻回切り替わっているが、所定の設定時間の全体を通して見ると、充放電電流が継続して流れたときと同様に二次電池のSOCが変化している場合であっても、更新条件(a),(c)が満たされないため、マップ更新判定ブロック23は部分充電マップや部分放電マップを更新しないことがある。そこで、電流一次漏れ値を充電電流値または放電電流値として用いることで、短い周期で充放電が切り替わる場合であっても、マップ更新判定ブロック23は部分充電マップや部分放電マップを適切なタイミングで更新することができる。
In addition, in the update conditions (a) and (c) by the map update determination block 23, it is also possible to use first-order delay calculation of the current. In the present embodiment, the current first-order delay value calculation block 25 performs first-order delay processing using a time constant (first-order delay time constant: Tf) to the measured current value measured in step S1 to calculate the first-order current delay value. The map update determination block 23 determines whether the update conditions (a) and (c) are satisfied, using the current primary delay value as a charging current value or a discharging current value. The current first-order lag value is calculated by the following equation (8). The calculated first-order current delay value is stored, for example, in a storage device (not shown) because it is used as the first-order current delay value previous value after one calculation flow. In addition, the current first-order lag previous value can be set to 0 at the first time of calculation of the current first-order lag value.
Current primary delay value = Current primary delay value previous value
+ (Measured current value-current first-order lag value previous value) / Tf (8)
When charge and discharge are switched in a short cycle, the update conditions (a) and (c) are not satisfied. At this time, charge and discharge are frequently switched, but looking at the entire predetermined set time, it is a case where the SOC of the secondary battery is changed as in the case where the charge and discharge current flows continuously. Also, since the update conditions (a) and (c) are not satisfied, the map update determination block 23 may not update the partial charge map or the partial discharge map. Therefore, by using the primary leakage current value as the charging current value or the discharging current value, the map update determination block 23 sets the partial charge map or partial discharge map at an appropriate timing even when charging and discharging are switched in a short cycle. It can be updated.

また、マップ更新判定ブロック23による更新条件(b),(d)において、充電電流積算量(MAP積算SOC)の変化を考慮することにより、瞬時充電状態マップ更新ブロック3が瞬時充電状態マップを更新するタイミングを、単に充電から放電、放電から充電に状態が切り替わる毎ではなく、より適切なタイミングとすることができる。   In addition, the instantaneous charge state map update block 3 updates the instantaneous charge state map by considering the change in the charge current integrated amount (MAP integrated SOC) in the update conditions (b) and (d) by the map update determination block 23 The timing to perform can be more appropriate timing, not just every time the state changes from charge to discharge and from discharge to charge.

瞬時充電状態マップ更新のタイミングの調整は、必ずしも上記の方法に限定されないが、充放電の継続時間または充放電電流積算量のいずれかが所定値を超えた場合に瞬時充電状態マップを更新することにより、二次電池の種類や用途、充放電パターン等に応じて適切なタイミングで瞬時充電状態マップを更新することができる。特に、充放電の継続時間の判定に、電流値に一次遅れ処理を施した電流一次遅れ値を用いることにより、回生電力の吸収や力行電力の補完が頻回に起きる二次電池システムを接続した鉄道変電所のような短い周期で充電と放電が切り替わる用途や、風力発電や太陽光発電等の自然エネルギーを用いた出力が経時的に安定しない発電用途において、より適切に瞬時充電状態マップを更新するタイミングを判断することができる。   The adjustment of the timing of instantaneous charge state map update is not necessarily limited to the above method, but the instantaneous charge state map should be updated when either the charge / discharge duration time or the charge / discharge current integration amount exceeds a predetermined value. Thus, the instantaneous charge state map can be updated at an appropriate timing according to the type and application of the secondary battery, the charge and discharge pattern, and the like. In particular, by using the current first-order delay value obtained by performing first-order delay processing on the current value to determine the duration of charge and discharge, the secondary battery system where absorption of regenerative power and complementation of power running power frequently occur is connected. Update the instantaneous charge condition map more appropriately in applications such as railway substations where charging and discharging are switched in a short cycle, and in applications where output using natural energy such as wind power and solar power is not stable over time It is possible to determine the timing of

次に、瞬時充電状態推定ブロック5は、ステップS4で更新された瞬時充電状態マップと、ステップS3で求めた開放電圧値とに基づいて、瞬時SOC推定値を算出する(ステップS5)。本実施形態においては、ステップS1で測定した実測電流値から充電状態か放電状態かを判別し、充電の場合は基準充電マップおよび部分充電マップ、放電の場合は基準放電マップおよび部分放電マップに基づいて、開放電圧値から瞬時SOC推定値を算出する。   Next, the instantaneous charge state estimation block 5 calculates an instantaneous SOC estimated value based on the instantaneous charge state map updated in step S4 and the open circuit voltage value obtained in step S3 (step S5). In the present embodiment, it is determined from the measured current value measured in step S1 whether the charging state or the discharging state, and in the case of charging, the reference charging map and partial charging map, and in the case of discharging, the reference discharging map and partial discharge map. Then, an instantaneous SOC estimated value is calculated from the open circuit voltage value.

第3段階では、電流積算SOC推定値を求める。本実施形態の第3段階では、充電効率と電流積算値とに基づくMAP積算SOCを求め、これを電流積算SOC推定値とする。   In the third stage, a current integrated SOC estimated value is obtained. In the third step of this embodiment, the MAP integrated SOC is obtained based on the charging efficiency and the current integrated value, and this is used as the current integrated SOC estimated value.

第1段階の前、すなわち二次電池のSOCのモニタリングを始める前に、充電効率を求める。充電効率とは、充電電流量に対する放電電流量の百分率をいう。充電効率の測定は、一定の電流値で所定時間充電を行い、その後放電を行い、充電電流量と放電電流量とを求め、これから充電効率を算出することで行う。充電効率は、電池温度およびSOCにより異なるため、電池温度や充放電するSOC範囲を変えて、繰り返し充電効率の測定を行い、充電効率マップを作成し、図示しない記憶装置に格納する。充電効率マップは、たとえば、図10に示すように、電池温度およびSOCに対応付けられた充電効率(%)の態様とすることができる。なお、線形補間等の方法を用いて充電効率マップの作成を作成してよいことは、内部抵抗特性マップに内部抵抗値が見つからない場合と同様である。   Before the first stage, that is, before starting the monitoring of the SOC of the secondary battery, the charging efficiency is determined. The charge efficiency refers to the percentage of the amount of discharge current to the amount of charge current. The measurement of the charge efficiency is performed by charging at a constant current value for a predetermined time and then discharging to determine the charge current amount and the discharge current amount, and calculating the charge efficiency from this. The charging efficiency varies depending on the battery temperature and the SOC, so the battery temperature and the SOC range to be charged and discharged are changed to repeatedly measure the charging efficiency, create a charging efficiency map, and store it in a storage device (not shown). The charge efficiency map can be, for example, as shown in FIG. 10, an aspect of charge efficiency (%) associated with the battery temperature and the SOC. It should be noted that creation of the charge efficiency map may be created using a method such as linear interpolation as in the case where the internal resistance value is not found in the internal resistance characteristic map.

充電効率演算ブロック27は、ステップS1で実測した電池温度と、1計算フロー前に求めた制御SOC推定値と、充電効率マップとに基づいて、充電効率を算出する(ステップS6)。次に、電流積算充電状態推定ブロック7は、充電効率演算ブロック27で算出した充電効率を用いて、MAP積算SOCを次式(9)により算出する(ステップS7)。なお、算出したMAP積算SOCは、たとえば、1計算フロー後にMAP積算SOC前回値として用いられるため、図示しない記憶装置に格納する。
MAP積算SOC(%)= MAP積算SOC前回値(%)
+(充電効率×電流積算SOC(%)の変化量)(9)
The charge efficiency calculation block 27 calculates the charge efficiency based on the battery temperature measured in step S1, the control SOC estimated value obtained before one calculation flow, and the charge efficiency map (step S6). Next, the current integration charge state estimation block 7 calculates MAP integration SOC according to the following expression (9) using the charging efficiency calculated by the charging efficiency calculation block 27 (step S7). The calculated MAP integrated SOC is, for example, used as the MAP integrated SOC previous value after one calculation flow, and thus is stored in a storage device (not shown).
MAP integrated SOC (%) = MAP integrated SOC previous value (%)
+ (Change amount of charge efficiency × current integrated SOC (%)) (9)

ここで、「電流積算SOC(%)」とは、充電効率を1として電池を流れた電流値を積算して算出したSOC推定値を意味する。電流積算SOCは、電流積算値のみに基づいて算出した充電状態であり、従来提案された様々な手法で求めることが可能である。また、電流積算SOC(%)の変化量とは、現在の電流積算SOC(%)と1計算フロー前の電流積算SOC(%)との差分である。現在の電流積算SOC(%)は、たとえば、1計算フロー後に電流積算SOC(%)の変化量を求めるために使われるため、図示しない記憶装置に格納する。   Here, the “current integration SOC (%)” means an SOC estimated value calculated by integrating the current values flowing through the battery with the charging efficiency being 1. The current integration SOC is a charging state calculated based only on the current integration value, and can be obtained by various methods proposed conventionally. Further, the amount of change of the current integration SOC (%) is a difference between the current integration SOC (%) and the current integration SOC (%) one calculation flow before. The present current integration SOC (%) is stored in a storage device (not shown), for example, because it is used to obtain the amount of change of the current integration SOC (%) after one calculation flow.

この計算フローが初回の場合、1計算フロー前は存在しないため、MAP積算SOC(%)や電流積算SOC(%)は存在しない。この場合は、ステップS2において制御SOC推定値が存在しないときと同様の対処を行ってもよいので、詳細は省略する。   When this calculation flow is the first time, since there is no previous one calculation flow, there is no MAP integrated SOC (%) or current integrated SOC (%). In this case, since the same measures as when there is no control SOC estimated value may be performed in step S2, the details will be omitted.

電流積算SOC推定値は、電池を流れた電流値を積算した電流積算値に基づいて求めてもよい。しかし、上記のように二次電池の充電効率を考慮した値であるMAP積算SOCを用いることにより、電流積算SOC推定値の推定精度を高めることができる。   The current integrated SOC estimated value may be determined based on a current integrated value obtained by integrating the current value flowing through the battery. However, the estimation accuracy of the current integration SOC estimated value can be enhanced by using the MAP integration SOC which is a value in consideration of the charging efficiency of the secondary battery as described above.

最後に、第4段階では、制御SOC推定値を求めて出力する。第4段階では、まず、制御用充電状態推定ブロック9は、充電状態の領域に応じて設定される時定数(制御SOC算出時定数:Tc)を用いて、瞬間的な充電状態推定値および電流積算値に基づいて、最終的な充電状態推定値である制御SOC推定値を算出する(ステップS8)。   Finally, in the fourth stage, the control SOC estimated value is obtained and output. In the fourth step, first, the control charge state estimation block 9 uses the time constant (control SOC calculation time constant: Tc) which is set according to the region of the charge state, to estimate the instantaneous charge state estimated value and the current. A control SOC estimated value which is a final charge state estimated value is calculated based on the integrated value (step S8).

具体的には、ステップS5で算出した瞬時SOC推定値と、図示しない記憶装置に格納された制御SOC推定値前回値と、ステップS6で算出したMAP積算SOCと、図示しない記憶装置に格納されたMAP積算SOC前回値とから、次式(10)により制御SOC推定値を求める。
制御SOC推定値(%)
=制御SOC推定値前回値(%)+(MAP積算SOC(%)−MAP積算SOC前回値(%))
+{瞬時SOC推定値(%)−(制御SOC推定値前回値(%)+(MAP積算SOC(%)−MAP積算SOC前回値(%))}/Tc
(10)
Specifically, the instantaneous SOC estimated value calculated in step S5, the control SOC estimated value previous value stored in the storage device (not shown), the MAP integrated SOC calculated in step S6, and the storage device (not shown) From the MAP integration SOC previous value, the control SOC estimated value is determined by the following equation (10).
Control SOC estimated value (%)
= Control SOC estimated value previous value (%) + (MAP integrated SOC (%)-MAP integrated SOC previous value (%))
+ {Instant SOC estimated value (%)-(control SOC estimated value previous value (%) + (MAP integrated SOC (%)-MAP integrated SOC previous value (%))} / Tc
(10)

ただし、式(10)によって算出された制御SOC推定値が所定の設定値(たとえば100)を超える場合には、次式(11)で得られる値を制御SOC推定値とすることが好ましい。
制御SOC推定値(%)=
=制御SOC推定値前回値(%)+(MAP積算SOC(%)−MAP積算SOC前回値(%))
+{瞬時SOC推定値(%)−(制御SOC推定値前回値(%)+(MAP積算SOC(%)−MAP積算SOC前回値(%))}/Tc
+電流積算SOC(%)の変化量
(11)
However, when the control SOC estimated value calculated by equation (10) exceeds a predetermined set value (for example, 100), it is preferable to use the value obtained by the following equation (11) as the control SOC estimated value.
Control SOC estimated value (%) =
= Control SOC estimated value previous value (%) + (MAP integrated SOC (%)-MAP integrated SOC previous value (%))
+ {Instant SOC estimated value (%)-(control SOC estimated value previous value (%) + (MAP integrated SOC (%)-MAP integrated SOC previous value (%))} / Tc
Amount of change in + accumulated current SOC (%)
(11)

瞬時SOC推定値の算出可能範囲を超えた充電が一度行われると、ステップS5で求めた瞬時SOC推定値の算出値がそのまま高止まりする傾向がある。この結果、二次電池に充電を続けて電流積算値が増加しても、式(10)で算出する制御SOC推定値が変化せず、二次電池の過充電状態を招くおそれがある。そこで、式(10)を電流積算SOC(%)の変化量も考慮するように改めた式(11)により、二次電池が過充電状態となるおそれを効果的に抑止することができる。   Once charging exceeding the calculable range of the instantaneous SOC estimated value is performed, the calculated value of the instantaneous SOC estimated value obtained in step S5 tends to remain high as it is. As a result, even if the secondary battery is continuously charged and the current integrated value increases, the control SOC estimated value calculated by the equation (10) does not change, which may lead to an overcharged state of the secondary battery. Therefore, the possibility that the secondary battery will be in the overcharged state can be effectively suppressed by the equation (11), which is modified so that the amount of change of the current integration SOC (%) is also taken into consideration of the equation (10).

式(10),(11)で用いた制御SOC算出時定数Tcは、図11に一例を示すように、制御SOC算出時定数設定器29によって、充電状態の領域に応じて変更することが可能である。例えば、充電状態の変化に対する電圧変化量が大きい領域では、制御SOC算出時定数Tcを小さい値に設定して、開放電圧に基づく瞬時SOC推定値の寄与率を大きくすることが好ましい。一方、充電状態の変化に対する電圧変化量が小さい領域では、開放電圧の微小な変化により瞬時SOC推定値が大きく変化するため、制御SOC算出時定数Tcを大きい値に設定して、開放電圧に基づく瞬時SOC推定値の寄与率を小さくし、電流積算に基づく電流積算SOC推定値の寄与率を大きくすることが好ましい。   The control SOC calculation time constant Tc used in the equations (10) and (11) can be changed according to the state of charge by the control SOC calculation time constant setter 29, as an example is shown in FIG. It is. For example, it is preferable to set the control SOC calculation time constant Tc to a small value and increase the contribution rate of the instantaneous SOC estimated value based on the open circuit voltage in a region where the voltage change amount with respect to the change of the charge state is large. On the other hand, in a region where the amount of voltage change with respect to the change in the state of charge is small, the instantaneous SOC estimated value greatly changes due to a minute change in open circuit voltage. Therefore, control SOC calculation time constant Tc is set to a large value and It is preferable to reduce the contribution rate of the instantaneous SOC estimation value and increase the contribution rate of the current integration SOC estimation value based on the current integration.

例えば、ニッケル水素二次電池のように、充電状態の浅い領域と深い領域において充電状態の変化に対する電圧変化が大きく、充電状態の中間領域において充電状態の変化に対する電圧変化が小さい特性を有する二次電池に適用する場合、充電状態の浅い領域(0〜15%)と深い領域(85〜100%)においては、制御SOC算出時定数Tcを小さい値、たとえば900に設定し、充電状態の中間領域(30〜70%)では、制御SOC算出時定数Tcを大きい値、たとえば3600に設定する。充電状態が15〜30%および70〜85%の範囲では、線形補間した時定数を設定する。   For example, as in a nickel-hydrogen secondary battery, a secondary that has a characteristic that the voltage change to the change of the charge state is large in the shallow region and the deep region of the charge state and the voltage change to the change of the charge state is small in the middle region of the charge state When applied to a battery, the control SOC calculation time constant Tc is set to a small value, for example 900, in the shallow region (0 to 15%) and the deep region (85 to 100%) of the charged state, and the intermediate region of the charged state At (30 to 70%), the control SOC calculation time constant Tc is set to a large value, for example, 3600. In the 15-30% and 70-85% state of charge, a linearly interpolated time constant is set.

また、制御SOC算出時定数設定器29は、制御SOC算出時定数Tcを、たとえば、瞬時充電状態マップにおいて、0%から100%までの間の所定の複数の充電状態領域について、充電状態変化に対する電圧変化率を算出し、この電圧変化率と前記充電状態変化に対する電圧変化率の所定の減少関数とから、前記各充電状態領域における時定数を算出して設定することにより自動的に設定することも可能である。より具体的には、以下のように制御SOC算出時定数Tcを設定する。   Further, control SOC calculation time constant setting unit 29 sets control SOC calculation time constant Tc to, for example, a change in the state of charge with respect to a plurality of predetermined charge state regions between 0% and 100% in the instantaneous charge state map. The voltage change rate is calculated and automatically set by calculating and setting time constants in the respective charge state regions from the voltage change rate and a predetermined decreasing function of the voltage change rate with respect to the charge state change. Is also possible. More specifically, the control SOC calculation time constant Tc is set as follows.

第1に、制御SOC算出時定数設定器29は、時定数算出用SOCグラフを作成し、図示しない記憶装置に格納する。時定数算出用SOCグラフは、様々なものを利用できるが、たとえば、図示しない記憶装置に格納されている、図5(a)の基準充電マップの完全充電におけるグラフと、図5(b)の基準放電マップの完全放電におけるグラフとを均等に按分してなる、図12に示す時定数算出用SOCグラフを作成し、図示しない記憶装置に格納してもよい。第2に、制御SOC算出時定数Tcを算出する所定の減少関数と、時定数算出用SOCグラフとから、制御SOC算出時定数設定器29は、充電状態と制御SOC算出時定数Tcとを対応付けるグラフを作成し、図示しない記憶装置に格納する。たとえば、図12に示す時定数算出用SOCグラフの場合、充電状態の中間領域(30〜70%)では、充電状態に微小な変化(ΔSOC)が生じても、電圧変化量(ΔV)は小さい。一方、充電状態の浅い領域(0〜15%)や充電状態の深い領域(85〜100%)では、充電状態に微小な変化(ΔSOC)が生じたときの電圧変化量(ΔV)は大きい。   First, the control SOC calculation time constant setting unit 29 creates a time constant calculating SOC graph and stores it in a storage device (not shown). Although various SOC graphs for time constant calculation can be used, for example, the graph for the complete charging of the reference charge map of FIG. 5A and the graph of FIG. The SOC graph for calculating the time constant shown in FIG. 12, which is equally distributed with the graph in the complete discharge of the reference discharge map, may be created and stored in a storage device (not shown). Second, the control SOC calculation time constant setter 29 associates the state of charge with the control SOC calculation time constant Tc from the predetermined decreasing function for calculating the control SOC calculation time constant Tc and the time constant calculation SOC graph. A graph is created and stored in a storage device (not shown). For example, in the case of the SOC graph for time constant calculation shown in FIG. 12, the voltage change amount (ΔV) is small in the middle region (30 to 70%) of the charge state even if a slight change (ΔSOC) occurs in the charge state. . On the other hand, in a shallow area (0 to 15%) of the charged state and a deep area (85 to 100%) of the charged state, the amount of voltage change (ΔV) when a minute change (ΔSOC) occurs in the charged state is large.

上記減少関数は、制御SOC算出時定数Tcを、充電状態変化に対する電圧変化率(ΔV/ΔSOC)に対して負の相関を持つように算出する減少関数である。この減少関数により、充電状態の中間領域では充電状態変化に対する電圧変化率(ΔV/ΔSOC)が小さいので、制御SOC算出時定数Tcは大きい値、たとえば3600が算出される。同様に、この減少関数により、充電状態の浅い領域(0〜15%)や充電状態の深い領域(85〜100%)では、充電状態変化に対する電圧変化率(ΔV/ΔSOC)が大きいので、制御SOC算出時定数Tcは小さい値(たとえば、900)が算出される。なお、充電状態が15〜30%および70〜85%の範囲では、適切な減少関数を用いることで、時定数の設定は線形補間に限られず、様々な手法を取ることができる。第3に、制御SOC算出時定数設定器29は、充電状態が0〜100%の範囲で、任意の充電状態領域に対応する制御SOC算出時定数Tcを算出した後、図11に示すSOCと制御SOC算出時定数Tcとを対応付けるグラフを作成し、図示しない記憶装置に格納する。   The decrease function is a decrease function that calculates the control SOC calculation time constant Tc so as to have a negative correlation with the voltage change rate (ΔV / ΔSOC) with respect to the charge state change. Since the voltage change rate (ΔV / ΔSOC) with respect to the charge state change is small in the middle region of the charge state by this decrease function, a large value, for example, 3600, is calculated for the control SOC calculation time constant Tc. Similarly, with this decreasing function, the voltage change rate (ΔV / ΔSOC) with respect to charge state change is large in the shallow area (0 to 15%) of the charge state and the deep area (85 to 100%) of the charge state. A small value (for example, 900) is calculated for the SOC calculation time constant Tc. In addition, in a 15 to 30% and 70 to 85% range of charge condition, setting of a time constant is not restricted to linear interpolation, and can use various methods by using an appropriate decreasing function. Third, after the control SOC calculation time constant setter 29 calculates the control SOC calculation time constant Tc corresponding to an arbitrary charge state region in the charge state range of 0 to 100%, the control SOC calculation time constant setter 29 A graph correlating the control SOC calculation time constant Tc is created and stored in a storage device (not shown).

その後、制御用充電状態推定ブロック9は、式(10)または式(11)により制御SOC推定値を求めるが、式(10)または式(11)の制御SOC算出時定数Tcは、図示しない記憶装置に格納された制御SOC推定値前回値に基づいて、上述の制御SOC算出時定数設定器29が作成した、図11に示すSOCと時定数Tcとを対応付けるグラフから求める。   Thereafter, control charge state estimation block 9 obtains a control SOC estimated value by equation (10) or equation (11), but control SOC calculation time constant Tc of equation (10) or equation (11) is stored not shown Based on the control SOC estimated value previous value stored in the device, it is determined from the graph shown in FIG. 11 that associates the SOC shown in FIG. 11 with the time constant Tc created by the control SOC calculation time constant setting unit 29 described above.

制御SOC推定値を算出するにあたり、制御SOC算出時定数Tcを用いなくともよい。しかし、この時定数Tcを用いることにより、充電状態の変化に対する開放電圧値の変化量が充電状態の領域によって大きく異なる二次電池に対して、充電状態の領域に応じて、開放電圧に基づく推定値の寄与率と電流積算値に基づく推定値の寄与率とが適切に調整された制御SOC推定値を算出することができる。   When calculating the control SOC estimated value, the control SOC calculation time constant Tc may not be used. However, by using this time constant Tc, the estimated amount based on the open circuit voltage for the secondary battery in which the amount of change in the open circuit voltage value with respect to the change in the charge state varies greatly depending on the area of the charge state. A control SOC estimated value can be calculated in which the contribution ratio of the value and the contribution ratio of the estimated value based on the current integrated value are appropriately adjusted.

さらに、制御SOC算出時定数Tcは、充放電間の休止時間の長さに応じて補正することが好ましい。これは、二次電池の開放電圧は、充放電停止後の休止時間によっても変化するため、開放電圧に基づき算出する推定値の寄与率を下げる必要があることによる。特に、二次電池の充放電停止後の休止時間が長くなると、充放電を再開しても、充放電停止前の開放電圧と同じ開放電圧が得られるようになるまでの時間、すなわち二次電池の状態が回復するまでの時間は長くなるため、開放電圧に基づき算出する推定値に影響を及ぼす。したがって、二次電池の充放電停止後の休止時間と、時定数Tcとには正の相関を持たせることが好ましい。   Furthermore, it is preferable that the control SOC calculation time constant Tc be corrected according to the length of the pause time between charging and discharging. This is because the open circuit voltage of the secondary battery also changes depending on the rest time after the charge and discharge stop, so it is necessary to reduce the contribution rate of the estimated value calculated based on the open circuit voltage. In particular, when the pause time after the charge / discharge stop of the secondary battery is long, the time until the open circuit voltage same as the open circuit voltage before the charge / discharge stop is obtained can be obtained even if the charge / discharge is resumed, ie, the secondary battery Since the time until the state of 回復 recovers becomes long, it affects the estimated value calculated based on the open circuit voltage. Therefore, it is preferable to give a positive correlation between the time constant Tc and the rest time after the charge and discharge stop of the secondary battery.

ここで、充放電停止を電流測定器13で検知して、この時刻を図示しない計時手段で測定して図示しない記憶装置に記憶させることで、休止時間を求めることができる。さらに、休止時間に対する所定の増加関数を用意し、上述のように求めた休止時間と、この休止時間に対する増加関数と、現時点の制御SOC算出時定数Tcとから、休止時間を考慮した制御SOC算出時定数Tc’を導出し、これを新たな制御SOC算出時定数としてもよい。なお、増加関数は、休止時間に対する制御SOC算出時定数Tcの加算値を求めるものでもよい。休止時間が0の場合は時定数Tcに対する加算値が0(Tcの変化なし)、10分の場合は加算値を100、20分の場合は加算値を300とする増加関数であってもよい。また、増加関数は、休止時間に対する制御SOC算出時定数Tcの乗率を求めるものであってもよい。たとえば、休止時間が0の場合は時定数Tcに対する乗率が1(Tcの変化なし)、10分の場合は乗率1.1、20分の場合は乗率1.3とする増加関数であってもよい。増加関数は、これらに限らず、様々な形態を取ることができる。このようにすることで、休止時間が長くなるにつれて、制御SOC算出時定数Tcが大きな値となるように補正することができ、充放電間の休止時間の影響を加味したより精度の高い推定が可能となる。   Here, the stop time can be determined by detecting the charge / discharge stop by the current measuring instrument 13 and measuring this time by the clocking means (not shown) and storing it in the storage device (not shown). Further, a control function is calculated taking into consideration the pause time from the pause time determined as described above, the increase function to the pause time, and the control SOC calculation time constant Tc at the present time. A time constant Tc 'may be derived and used as a new control SOC calculation time constant. Note that the increase function may be one that obtains the addition value of the control SOC calculation time constant Tc with respect to the pause time. If the pause time is 0, the increment value may be 0 (no change in Tc) with respect to the time constant Tc, the increment value may be 100 for the 10 minutes, and 300 for the 20 minutes. . Further, the increase function may be to obtain a multiplication factor of the control SOC calculation time constant Tc with respect to the pause time. For example, if the pause time is 0, the multiplication factor for the time constant Tc is 1 (no change in Tc), the multiplication factor is 1.1 for 10 minutes, and the multiplication factor is 1.3 for 20 minutes. It may be. The increasing function is not limited to these, and can take various forms. By doing this, as the pause time becomes longer, the control SOC calculation time constant Tc can be corrected to become a large value, and a more accurate estimation can be made in consideration of the influence of the pause time between charge and discharge. It becomes possible.

さらに、制御SOC算出時定数Tcは、二次電池の充放電電流値に応じて補正することが好ましい。詳細には、充放電電流値が大きい場合は、制御SOC算出時定数Tcの値を大きく設定することで、開放電圧に基づき算出する推定値の寄与率を下げ、電流積算に基づくSOC推定値の寄与率を大きくすることが好ましい。   Furthermore, it is preferable that the control SOC calculation time constant Tc be corrected according to the charge / discharge current value of the secondary battery. Specifically, when the charge / discharge current value is large, the contribution rate of the estimated value calculated based on the open circuit voltage is reduced by setting the value of control SOC calculation time constant Tc large, and the SOC estimated value based on current integration is It is preferable to increase the contribution rate.

図13に示す充電電流値を変えた場合の開放電圧と充電状態推定値の関係のように、大電流充電時(たとえば、1.0C)において、所定のSOCにおける開放電圧値は、基準充電マップ(0.2C充電時のグラフ)に基づいて求めた電圧値よりも高くなる傾向がある。また、図14に示す放電電流値を変えた場合の開放電圧と充電状態推定値の関係のように、大電流放電時(たとえば、1.0C)において、所定のSOCにおける開放電圧値は、基準放電マップ(0.2C放電時のグラフ)に基づいて求めた電圧値よりも低くなる傾向がある。この場合、基準充電マップや基準放電マップを用いてSOC推定値を算出すると、実際のSOCよりもずれた値が算出されるため、大電流充放電時に開放電圧に基づき算出するSOC推定値の精度が悪化する。したがって、二次電池の充放電電流値と、制御SOC算出時定数Tcとには正の相関を持たせることが好ましい。さらに、二次電池の充放電電流値に対する所定の増加関数を用意し、当該増加関数と、現時点の制御SOC算出時定数Tcとから、充放電電流値を考慮した制御SOC算出時定数Tc’’を導出し、これを新たな制御SOC算出時定数としてもよい。なお、増加関数は、たとえば、充放電電流値に対する制御SOC算出時定数Tcの加算値を求めるものでもよく、充放電電流値に対する制御SOC算出時定数Tcの乗率を求めるものであってもよい。増加関数は、これらに限らず、様々な形態を取ることができる。このように、制御SOC算出時定数Tcを、充放電電流の大きさに応じて補正することで、開放電圧に基づいて算出するSOC推定値の誤差が大きくなることを抑制することができる。   As in the relationship between the open circuit voltage and the estimated charge state value when the charge current value shown in FIG. 13 is changed, the open circuit voltage value at a predetermined SOC during high current charging (for example, 1.0 C) It tends to be higher than the voltage value obtained based on the graph at the time of 0.2 C charge). Further, as shown in FIG. 14, as in the relationship between the open circuit voltage and the estimated charge state value when the discharge current value is changed, the open circuit voltage value at a predetermined SOC during the large current discharge (for example, 1.0 C) It tends to be lower than the voltage value obtained based on the map (graph at the time of 0.2 C discharge). In this case, when the SOC estimated value is calculated using the reference charge map or the reference discharge map, a value deviated from the actual SOC is calculated. Therefore, the accuracy of the SOC estimated value calculated based on the open circuit voltage during large current charging and discharging Is worse. Therefore, it is preferable to give a positive correlation between the charge / discharge current value of the secondary battery and the control SOC calculation time constant Tc. Furthermore, a predetermined increase function for the charge / discharge current value of the secondary battery is prepared, and a control SOC calculation time constant Tc ′ ′ considering the charge / discharge current value from the increase function and the control SOC calculation time constant Tc at the present time May be derived as a new control SOC calculation time constant. Here, the increase function may be, for example, one for obtaining an addition value of control SOC calculation time constant Tc to the charge / discharge current value, or one for obtaining a multiplication factor of control SOC calculation time constant Tc to the charge / discharge current value. . The increasing function is not limited to these, and can take various forms. As described above, by correcting the control SOC calculation time constant Tc according to the magnitude of the charge and discharge current, it is possible to suppress an increase in the error of the SOC estimated value calculated based on the open circuit voltage.

次に、ステップS8で算出した制御SOC推定値を出力する(ステップS9)。制御SOC推定値は、1計算フロー後に用いられるため、図示しない記憶装置に格納される。   Next, the control SOC estimated value calculated in step S8 is output (step S9). Since the control SOC estimated value is used after one calculation flow, it is stored in a storage device (not shown).

以上説明した計算フローは、さらに高い精度で充電状態を推定するために、様々な変形が可能である。   The calculation flow described above can be variously modified in order to estimate the state of charge with higher accuracy.

たとえば、図3(b)に示す内部抵抗特性マップは、基準状態(たとえば25℃、SOC50%)における内部抵抗値である基準値と、他の状態を当該基準値に対する相対値(たとえば、差分や乗率)で表現したマップとを組み合わせて構成してもよい。この構成により、ある状態(たとえば、10℃、SOC10%)において内部抵抗が変化したときに、内部抵抗特性マップ全体をこの変化に基づいて書き換えることができる。   For example, in the internal resistance characteristic map shown in FIG. 3B, a reference value which is an internal resistance value in a reference state (for example, 25.degree. C., SOC 50%) and other states relative to the reference value (e.g. It may constitute combining with the map expressed by multiplication factor. With this configuration, when the internal resistance changes in a certain state (for example, 10 ° C., SOC 10%), the entire internal resistance characteristic map can be rewritten based on the change.

また、上述の実施形態において、内部抵抗特性マップは、充放電開始10秒後の内部抵抗値を用いて作成したが、たとえば、充放電開始後20秒後の内部抵抗値を用いた内部抵抗特性マップや、充放電開始後30秒後の内部抵抗値を用いた内部抵抗特性マップを別途作成し、図示しない記憶装置に記憶させてもよい。これにより、充電状態から放電状態に、または放電状態から充電状態に切り替わる時間を計時することにより、充放電状態が継続した時間を求めることができ、この継続時間に対応する内部抵抗特性マップを用いることができる。その結果、より適切な内部抵抗値を得ることができ、より適切な開放電圧値を求めることができるので、充電状態の推定精度をさらに高めることができる。   In the above embodiment, the internal resistance characteristic map is created using the internal resistance value 10 seconds after the start of charge and discharge, but for example, the internal resistance characteristic using the internal resistance value 20 seconds after the start of charge and discharge A map or an internal resistance characteristic map using an internal resistance value 30 seconds after the start of charge and discharge may be separately created and stored in a storage device (not shown). Thus, by measuring the time for switching from the charged state to the discharged state or from the discharged state to the charged state, the time during which the charge / discharge state continues can be determined, and the internal resistance characteristic map corresponding to this duration is used. be able to. As a result, a more appropriate internal resistance value can be obtained, and a more appropriate open circuit voltage value can be obtained, so that the estimation accuracy of the state of charge can be further enhanced.

以上説明したように、本実施形態に係る充電状態の推定方法および推定装置によれば、二次電池の充電状態を、開放電圧値および電流積算値の両方に基づいて二次電池の充電状態を算出するので、長期的には精度が悪化する電流積算値を用いる場合を、開放電圧値を用いて算出する場合が補完することにより、二次電池の充電状態の推定精度が向上する。しかも、開放電圧値と充電状態推定値との関係は、充放電を繰り返すに連れて変化するところ、開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを充放電履歴に基づいて更新するので、より高い精度で充電状態を推定することが可能となる。   As described above, according to the estimation method and estimation device of the charge state according to the present embodiment, the charge state of the secondary battery is determined based on both the open circuit voltage value and the current integration value. Since the calculation is performed, the estimation accuracy of the state of charge of the secondary battery is improved by complementing the case of using the open circuit voltage value in the case of using the current integrated value whose accuracy deteriorates in the long run. Moreover, the relationship between the open circuit voltage value and the estimated charge condition value changes as the charge and discharge are repeated, and based on the charge and discharge history, the instantaneous charge condition map that determines the relationship between the open circuit voltage value and the estimated charge condition value. Since updating is performed, it is possible to estimate the state of charge with higher accuracy.

以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。   As described above, although the preferred embodiments of the present invention have been described with reference to the drawings, various additions, modifications, or deletions can be made without departing from the spirit of the present invention. Therefore, such is also included in the scope of the present invention.

1 充電状態推定装置
3 瞬時充電状態マップ更新ブロック
5 瞬時充電状態推定ブロック
7 電流積算充電状態推定ブロック
9 制御用充電状態推定ブロック
11 電圧測定器
13 電流測定器
15 電池温度測定器
17 内部抵抗値演算ブロック
19 内部抵抗基準値演算ブロック
21 開放電圧算出ブロック
23 マップ更新判定ブロック
25 電流一次遅れ値演算ブロック
27 充電効率演算ブロック
29 制御SOC算出時定数設定器
DESCRIPTION OF SYMBOLS 1 charge state estimation apparatus 3 instantaneous charge state map update block 5 instantaneous charge state estimation block 7 current integration charge state estimation block 9 control charge state estimation block 11 voltage measuring device 13 current measuring device 15 battery temperature measuring device 17 internal resistance value calculation Block 19 Internal resistance reference value calculation block 21 Open voltage calculation block 23 Map update judgment block 25 Current first-order lag value calculation block 27 Charge efficiency calculation block 29 Control SOC calculation time constant setter

Claims (12)

二次電池の充電状態を、開放電圧値および電流積算値に基づいて推定する方法であって、
充電状態推定時の瞬間的な開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを、前記二次電池の使用開始後における充電状態0%から100%まで充電した場合の充電特性データである完全充電特性データと、充電状態100%から0%まで放電した場合の放電特性データである完全放電特性データとを基準として、充電状態0%と100%との間の部分的な充放電データである部分充放電特性データを規格化し、この規格化によって得た部分充放電電圧規格値を用いて前記瞬時充電状態マップを更新することと、
前記更新された瞬時充電状態マップに基づいて、充電状態推定時の瞬間的な充電状態推定値を算出することと、
前記二次電池を流れた電流の積算値に基づいて、充電状態推定値を算出することと、
前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて、前記二次電池の制御に用いる制御用充電状態推定値を算出することと、
を含む二次電池の充電状態推定方法。
A method of estimating the state of charge of a secondary battery based on an open circuit voltage value and an integrated current value,
Charging characteristics when charging from 0% to 100% of the charge condition after the start of use of the secondary battery, the instantaneous charge condition map defining the relationship between the instantaneous open circuit voltage value at the time of charge condition estimation and the charge condition estimated value Based on the full charge characteristic data which is data and the full discharge characteristic data which is the discharge characteristic data at the time of discharging from 100% of charge state to 0%, partial charging between 0% and 100% of charge state is performed. Normalizing the partial charge / discharge characteristic data, which is discharge data, and updating the instantaneous charge state map using the partial charge / discharge voltage standard value obtained by the standardization;
Calculating an instantaneous charge state estimated value at the time of charge state estimation based on the updated instantaneous charge state map;
Calculating a charge state estimated value based on an integrated value of the current flowing through the secondary battery;
Calculating a control charge state estimate used for control of the secondary battery based on the instantaneous charge state estimate and the charge state estimate based on the current integrated value;
A method of estimating the state of charge of a secondary battery, including:
二次電池の充電状態を、開放電圧値および電流積算値に基づいて推定する方法であって、
充電状態推定時の瞬間的な開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを、前記二次電池の使用開始後の充放電特性データに基づいて更新することと、
前記更新された瞬時充電状態マップに基づいて、充電状態推定時の瞬間的な充電状態推定値を算出することと、
前記二次電池を流れた電流の積算値に基づいて、充電状態推定値を算出することと、
前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて、前記二次電池の制御に用いる制御用充電状態推定値を算出することと、
を含み、
充電から放電への切替え時に、直前の充電における充電の継続時間および充電電流積算量のいずれかが所定値を超えた場合に前記瞬時充電状態マップを更新し、放電から充電への切替え時に、直前の放電の継続時間および放電電流積算量のいずれかが所定値を超えた場合に前記瞬時充電状態マップを更新する、二次電池の充電状態推定方法。
A method of estimating the state of charge of a secondary battery based on an open circuit voltage value and an integrated current value,
Updating an instantaneous charge state map, which determines the relationship between the instantaneous open circuit voltage value at the time of charge state estimation and the charge state estimated value, based on charge / discharge characteristic data after the start of use of the secondary battery,
Calculating an instantaneous charge state estimated value at the time of charge state estimation based on the updated instantaneous charge state map;
Calculating a charge state estimated value based on an integrated value of the current flowing through the secondary battery;
Calculating a control charge state estimate used for control of the secondary battery based on the instantaneous charge state estimate and the charge state estimate based on the current integrated value;
Including
At the time of switching from charging to discharging, the instantaneous charge state map is updated when either the duration of charging in the last charge or the charging current integration amount exceeds a predetermined value, and at the time of switching from discharging to charging, A method of estimating a state of charge of a secondary battery, comprising updating the instantaneous charge state map when any of the duration of discharge and the integrated amount of discharge current exceeds a predetermined value.
請求項に記載の二次電池の充電状態推定方法において、充放電電流値に一次遅れ時定数を用いた一次遅れ処理を施して電流一次遅れ値を算出し、この電流一次遅れ値に基づいて前記充電の継続時間および放電の継続時間を判定する、二次電池の充電状態推定方法。 In the method for estimating the state of charge of a secondary battery according to claim 2 , a primary delay process is performed on the charge / discharge current value using a primary delay time constant to calculate a primary current delay value, and based on the primary current delay value. A method for estimating the state of charge of a secondary battery, comprising determining the duration of charging and the duration of discharging. 請求項からのいずれか一項に記載の二次電池の充電状態推定方法において、充電状態の領域に応じて制御SOC算出時定数を設定し、この制御SOC算出時定数を用いて、前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて前記二次電池の制御に用いる制御用充電状態推定値を算出する、二次電池の充電状態推定方法。 The method for estimating charge state of a secondary battery according to any one of claims 1 to 3 , wherein a control SOC calculation time constant is set according to a region of the charge state, and the control SOC calculation time constant is used to A secondary battery charging state estimation method, comprising: calculating a control charging state estimation value used to control the secondary battery based on an instantaneous charging state estimation value and a charging state estimation value based on the current integrated value. 請求項に記載の二次電池の充電状態推定方法において、前記制御SOC算出時定数の設定は、前記瞬時充電状態マップにおいて、0%から100%までの間の所定の複数の充電状態領域について、充電状態変化に対する電圧変化率を算出し、当該電圧変化率と前記充電状態変化に対する電圧変化率の所定の減少関数とから、前記各充電状態領域における時定数を算出して設定することを含む二次電池の充電状態推定方法。 5. The method for estimating charge state of a secondary battery according to claim 4 , wherein setting of said control SOC calculation time constant is performed for a plurality of predetermined charge state regions between 0% and 100% in said instantaneous charge state map. Calculating a voltage change rate with respect to a charge state change, and calculating and setting a time constant in each of the charge state regions from the voltage change rate and a predetermined decreasing function of the voltage change rate with respect to the charge state change. Method of estimating charging state of secondary battery. 請求項またはに記載の二次電池の充電状態推定方法において、前記制御SOC算出時定数を、充放電の休止時間の長さに応じて補正する二次電池の充電状態推定方法。 The method for estimating the state of charge of a secondary battery according to claim 4 or 5 , wherein the control SOC calculation time constant is corrected according to the length of the charging / discharging pause time. 請求項に記載の二次電池の充電状態推定方法において、前記制御SOC算出時定数と、前記充放電の休止時間の長さとが正の相関を有するように前記制御SOC算出時定数を補正する二次電池の充電状態推定方法。 The method for estimating charge state of a secondary battery according to claim 6 , wherein the control SOC calculation time constant is corrected such that the control SOC calculation time constant and the length of the charging / discharging pause time have a positive correlation. Method of estimating charging state of secondary battery. 請求項からのいずれか一項に記載の二次電池の充電状態推定方法において、前記制御SOC算出時定数を、充放電電流の大きさに応じて補正する二次電池の充電状態推定方法。 The method for estimating charge state of a secondary battery according to any one of claims 4 to 7 , wherein the control SOC calculation time constant is corrected according to the magnitude of charge and discharge current. . 請求項に記載の二次電池の充電状態推定方法において、前記制御SOC算出時定数と、前記充放電電流の大きさとが正の相関を有するように前記制御SOC算出時定数を補正する二次電池の充電状態推定方法。 9. The secondary battery charge state estimating method according to claim 8 , wherein the control SOC calculation time constant is corrected such that the control SOC calculation time constant and the magnitude of the charge / discharge current have a positive correlation. Battery state of charge estimation method. 請求項1からのいずれか一項に記載の二次電池の充電状態推定方法において、さらに、前記瞬間的な開放電圧値を算出するために用いる内部抵抗基準値を、前記二次電池の充放電特性データに基づいて更新することを含む二次電池の充電状態推定方法。 The method for estimating charge state of a secondary battery according to any one of claims 1 to 9 , further comprising: charging an internal resistance reference value used to calculate the instantaneous open circuit voltage value; A method for estimating the state of charge of a secondary battery, which comprises updating based on discharge characteristic data. 二次電池の充電状態を、開放電圧値および電流積算値に基づいて推定する装置であって、
充電状態推定時の瞬間的な開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを、前記二次電池の使用開始後における充電状態0%から100%まで充電した場合の充電特性データである完全充電特性データと、充電状態100%から0%まで放電した場合の放電特性データである完全放電特性データとを基準として、充電状態0%と100%との間の部分的な充放電データである部分充放電特性データを規格化し、この規格化によって得た部分充放電電圧規格値を用いて前記瞬時充電状態マップを更新する手段と、
前記更新された瞬時充電状態マップに基づいて、充電状態推定時の瞬間的な充電状態推定値を算出する手段と、
前記二次電池を流れた電流の積算値に基づいて、充電状態推定値を算出する手段と、
前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて、前記二次電池の制御に用いる制御用充電状態推定値を算出する手段と、
を備える二次電池の充電状態推定装置。
An apparatus for estimating the state of charge of a secondary battery based on an open circuit voltage value and an integrated current value,
Charging characteristics when charging from 0% to 100% of the charge condition after the start of use of the secondary battery, the instantaneous charge condition map defining the relationship between the instantaneous open circuit voltage value at the time of charge condition estimation and the charge condition estimated value Based on the full charge characteristic data which is data and the full discharge characteristic data which is the discharge characteristic data at the time of discharging from 100% of charge state to 0%, partial charging between 0% and 100% of charge state is performed. Means for normalizing partial charge / discharge characteristic data, which is discharge data, and updating the instantaneous charge state map using the partial charge / discharge voltage standard value obtained by the standardization;
A means for calculating an instantaneous charge state estimated value at the time of charge state estimation based on the updated instantaneous charge state map;
A means for calculating a charge state estimated value based on an integrated value of the current flowing through the secondary battery;
Means for calculating a control charge state estimate used for control of the secondary battery based on the instantaneous charge state estimate and the charge state estimate based on the current integrated value;
A charge state estimation device for a secondary battery comprising:
二次電池の充電状態を、開放電圧値および電流積算値に基づいて推定する装置であって、
充電状態推定時の瞬間的な開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを、前記二次電池の使用開始後の充放電特性データに基づいて更新する手段と、
前記更新された瞬時充電状態マップに基づいて、充電状態推定時の瞬間的な充電状態推定値を算出する手段と、
前記二次電池を流れた電流の積算値に基づいて、充電状態推定値を算出する手段と、
前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて、前記二次電池の制御に用いる制御用充電状態推定値を算出する手段と、
を備え、
前記瞬時充電状態マップを更新する手段は、充電から放電への切替え時に、直前の充電における充電の継続時間および充電電流積算量のいずれかが所定値を超えた場合に前記瞬時充電状態マップを更新し、放電から充電への切替え時に、直前の放電の継続時間および放電電流積算量のいずれかが所定値を超えた場合に前記瞬時充電状態マップを更新する、二次電池の充電状態推定装置。
An apparatus for estimating the state of charge of a secondary battery based on an open circuit voltage value and an integrated current value,
A means for updating an instantaneous charge state map for determining a relationship between an instantaneous open circuit voltage value and a charge state estimated value at the time of charge state estimation, based on charge / discharge characteristic data after the start of use of the secondary battery;
A means for calculating an instantaneous charge state estimated value at the time of charge state estimation based on the updated instantaneous charge state map;
A means for calculating a charge state estimated value based on an integrated value of the current flowing through the secondary battery;
Means for calculating a control charge state estimate used for control of the secondary battery based on the instantaneous charge state estimate and the charge state estimate based on the current integrated value;
Equipped with
The means for updating the instantaneous charge state map updates the instantaneous charge state map when any of the charge duration time and the charge current integration amount in the last charge exceeds a predetermined value at the time of switching from charge to discharge. The apparatus for estimating the state of charge of a secondary battery, which updates the instantaneous charge state map when any of the last time of discharge and the integrated amount of discharge current exceeds a predetermined value at the time of switching from discharge to charge.
JP2014253186A 2014-12-15 2014-12-15 Method and apparatus for estimating state of charge of secondary battery Active JP6548387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014253186A JP6548387B2 (en) 2014-12-15 2014-12-15 Method and apparatus for estimating state of charge of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253186A JP6548387B2 (en) 2014-12-15 2014-12-15 Method and apparatus for estimating state of charge of secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019086263A Division JP6826152B2 (en) 2019-04-26 2019-04-26 Secondary battery charge status estimation method and estimation device

Publications (2)

Publication Number Publication Date
JP2016114469A JP2016114469A (en) 2016-06-23
JP6548387B2 true JP6548387B2 (en) 2019-07-24

Family

ID=56141550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253186A Active JP6548387B2 (en) 2014-12-15 2014-12-15 Method and apparatus for estimating state of charge of secondary battery

Country Status (1)

Country Link
JP (1) JP6548387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199302A4 (en) * 2021-10-29 2023-06-21 Contemporary Amperex Technology Co., Limited Battery pack charging control method and apparatus, electronic device and storage medium

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305309B2 (en) * 2016-07-29 2019-05-28 Con Edison Battery Storage, Llc Electrical energy storage system with battery state-of-charge estimation
JP6733485B2 (en) * 2016-10-11 2020-07-29 トヨタ自動車株式会社 Secondary battery charge state estimation system
CN107340479B (en) * 2017-06-16 2020-10-09 山东大学 Method and system for improving SOC (state of charge) calculation precision of power battery of electric automobile
US11159022B2 (en) 2018-08-28 2021-10-26 Johnson Controls Tyco IP Holdings LLP Building energy optimization system with a dynamically trained load prediction model
US11163271B2 (en) 2018-08-28 2021-11-02 Johnson Controls Technology Company Cloud based building energy optimization system with a dynamically trained load prediction model
EP3872506A4 (en) 2018-10-26 2023-01-11 Vehicle Energy Japan Inc. Battery control device
JP7346034B2 (en) * 2019-02-01 2023-09-19 株式会社東芝 Storage battery management device and method
CN110118941A (en) * 2019-05-21 2019-08-13 泰兴市宁辉锂电池有限公司 A kind of method of quick detection self discharge of lithium iron phosphate battery
CN110967647B (en) 2019-06-24 2020-11-17 宁德时代新能源科技股份有限公司 Charge state correction method and device
JP7214884B2 (en) * 2020-03-16 2023-01-30 株式会社東芝 Information processing device, information processing method, computer program and information processing system
GB2601022B (en) * 2020-06-24 2022-11-02 Ming Wong Kai Method, apparatus, storage medium and terminal equipment for estimating the impedance of battery
CN117227576B (en) * 2023-11-15 2024-02-27 广汽埃安新能源汽车股份有限公司 Battery power control method, storage medium, and electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4171536B2 (en) * 1998-04-01 2008-10-22 株式会社東芝 Secondary battery charge state detection device
JP2003035755A (en) * 2001-07-25 2003-02-07 Hitachi Ltd Method for detecting stored power in battery
JP4638194B2 (en) * 2004-09-28 2011-02-23 富士重工業株式会社 Remaining capacity calculation device for power storage device
WO2013031559A1 (en) * 2011-08-30 2013-03-07 三洋電機株式会社 Battery system, electric vehicle, movable body, power storage device, and power supply device
JP2014231988A (en) * 2011-09-27 2014-12-11 三洋電機株式会社 Battery system, charging state estimation device, electric vehicle, traveling object, power storage device and power supply device
JP6065561B2 (en) * 2012-03-08 2017-01-25 日産自動車株式会社 Secondary battery control device and SOC detection method
JP2014059206A (en) * 2012-09-18 2014-04-03 Toyota Industries Corp Charge state estimation device and charge state estimation method
JP5994680B2 (en) * 2013-02-27 2016-09-21 株式会社豊田自動織機 Battery remaining capacity estimation method and apparatus
JP6033155B2 (en) * 2013-03-29 2016-11-30 日立オートモティブシステムズ株式会社 Battery control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199302A4 (en) * 2021-10-29 2023-06-21 Contemporary Amperex Technology Co., Limited Battery pack charging control method and apparatus, electronic device and storage medium

Also Published As

Publication number Publication date
JP2016114469A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6548387B2 (en) Method and apparatus for estimating state of charge of secondary battery
JP5466564B2 (en) Battery degradation estimation method, battery capacity estimation method, battery capacity equalization method, and battery degradation estimation apparatus
JP5994521B2 (en) State estimation device, open-circuit voltage characteristics generation method
KR102080632B1 (en) Battery management system and its operating method
JP6151163B2 (en) Battery state calculation device and battery state calculation method
EP3064952B1 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
JP6729985B2 (en) Storage battery system charge control device, storage battery system and storage battery charge control method
US20160061908A1 (en) Secondary battery capacity measurement system and secondary battery capacity measurement method
JP6714838B2 (en) State estimation device and state estimation method
EP3106892B1 (en) State estimation device and state estimation method
JP7201792B2 (en) BATTERY MANAGEMENT DEVICE, BATTERY MANAGEMENT METHOD, POWER STORAGE SYSTEM
JP5535968B2 (en) CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM
US20140278170A1 (en) State of charge (soc) display for rechargeable battery
JP6655801B2 (en) Lithium ion secondary battery life estimation device
JP2006215001A (en) Management device for battery
JP6826152B2 (en) Secondary battery charge status estimation method and estimation device
JP2019070621A (en) Secondary battery system
JP2014025738A (en) Residual capacity estimation device
JP6575835B2 (en) Storage device management device, power storage device, photovoltaic power generation system, degradation amount estimation method, and computer program
EP3379277B1 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
JP2011169831A (en) Device and method for detection of battery state
JP2013108919A (en) Soc estimator
JP2014068468A (en) Charge control device
JP2013183509A (en) Charge/discharge amount prediction system and charge/discharge amount prediction method
JP6494431B2 (en) Deterioration diagnosis device for electricity storage devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190625

R150 Certificate of patent or registration of utility model

Ref document number: 6548387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250