JP2014059206A - Charge state estimation device and charge state estimation method - Google Patents

Charge state estimation device and charge state estimation method Download PDF

Info

Publication number
JP2014059206A
JP2014059206A JP2012204152A JP2012204152A JP2014059206A JP 2014059206 A JP2014059206 A JP 2014059206A JP 2012204152 A JP2012204152 A JP 2012204152A JP 2012204152 A JP2012204152 A JP 2012204152A JP 2014059206 A JP2014059206 A JP 2014059206A
Authority
JP
Japan
Prior art keywords
soc
ocv
characteristic
value
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012204152A
Other languages
Japanese (ja)
Inventor
Katsunori Tanaka
克典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012204152A priority Critical patent/JP2014059206A/en
Priority to PCT/JP2013/069839 priority patent/WO2014045706A1/en
Publication of JP2014059206A publication Critical patent/JP2014059206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a charge state estimation device and a charge state estimation method for a secondary battery which estimate an SOC value more accurately for variations in SOC-OCV characteristics due to charging and discharging and reduce an estimation error of the SOC.SOLUTION: The charge state estimation device comprises: a plurality of SOC-OCV characteristics tables 4-1 each containing a full charge characteristic curve, a complete discharge characteristic curve, and at least one SOC-OCV characteristic curve dividing a region between the full charge characteristic curve and the complete discharge characteristic curve, each of the SOC-OCV characteristic curves being given a travel value; a travel amount calculation part 4-2 calculating, based on a current integration amount by charging and discharging and a travel value of the SOC-OCV characteristic curve used immediately before the charging and discharging, a travel amount of the SOC-OCV characteristic curve according to the current integration amount; an SOC-OCV characteristics selection part 4-3 determining a travel value closest to the travel amount and selecting an SOC-OCV characteristic curve of the travel value; and an SOC estimation part 4-5 estimating an SOC value from a measured OCV value by using the selected SOC-OCV characteristic curve.

Description

本発明は、二次電池の充電状態推定装置及び充電状態推定方法に関し、特に充電状態(SOC:State of Charge)を、二次電池の開放電圧(OCV:Open Circuit Voltage)から、SOC−OCV特性を基に推定する際に、該推定誤差を低減する充電状態推定装置及び充電状態推定方法に関する。   The present invention relates to a state-of-charge estimation apparatus and a state-of-charge estimation method for a secondary battery, and in particular, a state of charge (SOC) is determined from an open circuit voltage (OCV) of the secondary battery and an SOC-OCV characteristic. The present invention relates to a state-of-charge estimation device and a state-of-charge estimation method that reduce the estimation error when estimating based on the method.

リチウムイオンバッテリ等の二次電池を用いる自動車や電装機器等の装置において、その性能は、使用する二次電池の性能に大きく影響されるため、該二次電池の充放電状態を効率的に精度良く制御し、該二次電池の性能を高く維持することが要求されている。   In devices such as automobiles and electrical equipment that use secondary batteries such as lithium-ion batteries, the performance is greatly affected by the performance of the secondary battery used. It is required to control well and maintain high performance of the secondary battery.

このような二次電池において、充電状態(以下「SOC」という)は、該二次電池の開放電圧(以下「OCVという)から、SOCとOCVとの相関関係を示すSOC−OCV特性を基に推定することができる。図5の(a)は、SOC−OCV特性の一例を示している。   In such a secondary battery, the state of charge (hereinafter referred to as “SOC”) is based on the SOC-OCV characteristic indicating the correlation between SOC and OCV from the open circuit voltage (hereinafter referred to as “OCV”) of the secondary battery. 5A shows an example of the SOC-OCV characteristic.

SOC−OCV特性は、二次電池の内部抵抗や分極現象等の影響により、充電時と放電時とで特性曲線が変動する特性を有する。図5の(b)は、SOC−OCV特性の変動の一例を示す。図5の(b)において、5−1は、完全放電状態から満充電状態まで充電したときのSOC−OCV特性(以下「満充電特性」という)を示す。また、5−2は、満充電状態から完全放電状態まで放電したときのSOC−OCV特性(以下「完全放電特性」という)を示す。   The SOC-OCV characteristic has a characteristic that the characteristic curve varies between charging and discharging due to the influence of the internal resistance and polarization phenomenon of the secondary battery. FIG. 5B shows an example of variation in SOC-OCV characteristics. In FIG. 5B, 5-1 indicates the SOC-OCV characteristic (hereinafter referred to as “full charge characteristic”) when the battery is charged from the fully discharged state to the fully charged state. Reference numeral 5-2 represents SOC-OCV characteristics (hereinafter referred to as “complete discharge characteristics”) when discharged from a fully charged state to a fully discharged state.

完全放電と満充電との間の状態で、二次電池の充電又は放電が行われたとき、SOC−OCV特性として、どのような特性曲線を辿るかは、過去の充放電の実施状況に依存し、各充放電の実施に対してSOC−OCV特性がどのような特性曲線となるかを厳密に特定することは困難である。   When the secondary battery is charged or discharged in a state between full discharge and full charge, the characteristic curve to follow as the SOC-OCV characteristic depends on the past charge / discharge implementation state. However, it is difficult to specify exactly what characteristic curve the SOC-OCV characteristic becomes for each charge / discharge.

そのため、一般に、SOC−OCV特性として、満充電特性5−1と完全放電特性5−2との間の平均的な値を取った平均特性5−3を用いて、SOCの推定が行われる。図5の(a)は、このSOC−OCV特性の平均特性5−3の一例を示している。   Therefore, in general, the SOC is estimated using an average characteristic 5-3 that is an average value between the full charge characteristic 5-1 and the complete discharge characteristic 5-2 as the SOC-OCV characteristic. FIG. 5A shows an example of the average characteristic 5-3 of the SOC-OCV characteristic.

充放電の実施によってSOC−OCV特性がどのような特性曲線となるかを正確に定めることは困難であるが、完全放電状態と満充電状態の中間の通常の使用中の充電状態における充放電時のSOC−OCV特性は、図6の(a)に示すように、満充電特性5−1と、完全放電特性5−2との間を辿る。   Although it is difficult to accurately determine what kind of characteristic curve the SOC-OCV characteristic will be when charging / discharging is performed, during charging / discharging in a normal charging state between the fully discharged state and the fully charged state As shown in FIG. 6A, the SOC-OCV characteristic follows between the full charge characteristic 5-1 and the complete discharge characteristic 5-2.

充放電が繰り返された場合、OCVは図6の(b)に示すように、満充電特性5−1と完全放電特性5−2との間で変動する。SOC−OCV特性は、傾きが一様ではなく、満充電状態(SOC=100%)又は完全放電状態(SOC=0%)の近傍区域では、特性曲線の傾きが急峻であるのに対して、その中間の通常の使用中の充電状態の区域では、該特性曲線の傾きは緩やかである。   When the charging / discharging is repeated, the OCV varies between the full charge characteristic 5-1 and the complete discharge characteristic 5-2 as shown in FIG. In the SOC-OCV characteristic, the slope is not uniform, and the slope of the characteristic curve is steep in the vicinity of the fully charged state (SOC = 100%) or the fully discharged state (SOC = 0%). In the middle normal charging state area, the slope of the characteristic curve is gentle.

そのため、充放電電流の積算量が同じであっても、充電状態(SOC)の区域によって、また、充電か放電かの実施状況によって、OCVの値の変動量は異なるものとなり、電流積算量によりOCVの値の変動量を定めることは困難である。   For this reason, even if the integrated amount of charge / discharge current is the same, the amount of fluctuation in the OCV value varies depending on the state of charge (SOC) and depending on whether the charge or discharge is performed. It is difficult to determine the fluctuation amount of the OCV value.

このようにOCVとSOCとの関係が充放電の履歴により変化してしまう二次電池(大ヒステリシス電池)に対して、精度良く電池制御を行う先行技術は、例えば下記の特許文献1〜3等により知られている。   As described above, prior art for performing battery control with high accuracy for a secondary battery (large hysteresis battery) in which the relationship between the OCV and the SOC changes depending on the charge / discharge history is, for example, Patent Documents 1 to 3 listed below. Is known by.

該特許文献1に記載の技術は、基準状態電池電圧が常用最小電圧値を超えて低下した場合に、常用最大電圧値近傍まで充電し、その後、目標電圧値近傍まで放電する方法に関するものである。   The technique described in Patent Document 1 relates to a method of charging to near the maximum normal voltage value and then discharging to the vicinity of the target voltage value when the reference state battery voltage drops below the normal minimum voltage value. .

特許文献2に記載の技術は、二次電池の充放電によって生じるヒステリシス特性に着目し、該二次電池の充放電量の積算に基づいて求めたSOCの今回値と所定の目標SOC値との差を収束させる充放電制御に係るものである。   The technique described in Patent Document 2 pays attention to the hysteresis characteristic generated by charging / discharging of the secondary battery, and calculates the current SOC value obtained based on integration of the charging / discharging amount of the secondary battery and a predetermined target SOC value. This relates to charge / discharge control for converging the difference.

特許文献3等に記載の技術は、充電後のOCVと放電後のOCVとが異なる二次電池に対して、充電後のOCVと放電後のOCVを区別して測定し、SOC−OCV特性を示す充電率算出用テーブルとして、充電側テーブルと放電側テーブルを選択的に適用し、充電率を精度良く算出する技術に係るものである。   The technique described in Patent Document 3 and the like shows a SOC-OCV characteristic by separately measuring the OCV after charging and the OCV after discharging for a secondary battery in which the OCV after charging is different from the OCV after discharging. The present invention relates to a technique for calculating a charging rate with high accuracy by selectively applying a charging side table and a discharging side table as a charging rate calculation table.

特開2000−261905号公報JP 2000-261905 A 特開2002−238106号公報JP 2002-238106 A 特開2011−169817JP2011-169817A

一般に、測定したOCVの値からSOCの値を推定する際に、図5の(a)に示すようなSOC−OCV特性の平均特性が使用されるが、この平均特性を使用して推定したSOCの値は、実際には、上述の充放電の履歴によるSOC−OCV特性の変動による誤差を含む推定を行っていることになる。   In general, when estimating the SOC value from the measured OCV value, the average characteristic of the SOC-OCV characteristic as shown in FIG. 5A is used. The SOC estimated using this average characteristic is used. The value of is actually estimated including an error due to fluctuations in the SOC-OCV characteristics due to the above-described charge / discharge history.

即ち、図5の(b)に示すように、測定したOCVの値Vpに対して、SOC−OCV特性の平均特性5−3を使用した場合、SOCの推定値はSpとなるが、実際のSOCの取り得る値としては、満充電特性5−1におけるSOCの値S1と、完全放電特性5−2におけるSOC値S2との間の何れか値であり、SOCの推定値Spは、最大でそれらとの差分であるE1又はE2の誤差を含むものとなる。   That is, as shown in FIG. 5B, when the average characteristic 5-3 of the SOC-OCV characteristic is used for the measured OCV value Vp, the estimated value of SOC becomes Sp. The possible value of the SOC is any value between the SOC value S1 in the full charge characteristic 5-1 and the SOC value S2 in the complete discharge characteristic 5-2. The estimated value Sp of the SOC is a maximum. It includes an error of E1 or E2 which is the difference between them.

そのため、測定したOCVの値でSOC−OCV特性の平均特性5−3によりSOCの値を算出すると、殆どの場合、該SOCの値は真値とはならない。しかし、SOC−OCV特性の変動に対して、SOCの真値がいずれの値となるかを厳密に特定することは極めて困難であり、事実上不可能に近い。   Therefore, when the SOC value is calculated from the measured OCV value based on the average characteristic 5-3 of the SOC-OCV characteristic, the SOC value is not a true value in most cases. However, it is extremely difficult to specify exactly which value the SOC value is true for fluctuations in the SOC-OCV characteristics, and it is virtually impossible.

SOCの真値が特定されないことによる影響として、
(1)二次電池の充放電制御を適正に行うことができず、二次電池の使用上の安全性を低下させることとなる。
(2)SOCの推定誤差によって、使用可能な電気エネルギーの範囲を過少評価してしまう。
(3)電力制御における判定などにおいて、SOCの値を使用して行う判定の正確性が損なわれ、電力制御などを適正に行うことができなる。
などの問題が生じる。
As an effect of not specifying the true value of SOC,
(1) The charge / discharge control of the secondary battery cannot be performed properly, and the safety in use of the secondary battery is reduced.
(2) The range of usable electrical energy is underestimated due to the SOC estimation error.
(3) In determination in power control and the like, accuracy of determination using the SOC value is impaired, and power control and the like can be performed appropriately.
Problems arise.

上記課題に鑑み、本発明は、充放電の実施によるSOC−OCV特性の変動に対して、充放電の実施状況に応じて真値により近いSOC−OCV特性を推定し、該推定したSOC−OCV特性を用いてSOCの値を推定し、SOCの推定誤差を低減することができる充電状態推定装置及び充電状態推定方法を提供する。   In view of the above problems, the present invention estimates the SOC-OCV characteristic closer to the true value in accordance with the state of charge / discharge with respect to fluctuations in the SOC-OCV characteristic due to charge / discharge, and the estimated SOC-OCV A state of charge estimation device and a state of charge estimation method capable of estimating an SOC value using characteristics and reducing an SOC estimation error are provided.

本発明の一つの形態である充電状態推定装置は、OCVからSOC−OCV特性を基にSOCを推定する充電状態推定装置において、満充電特性と、完全放電特性と、該満充電特性と完全放電特性との間の領域を分割する少なくとも1本のSOC−OCV特性とを含む複数のSOC−OCV特性をマッピングし、かつ、各SOC−OCV特性に対して移動値を付与したSOC−OCV特性テーブルと、充放電による電流積算量と、該充放電の直前に用いられたSOC−OCV特性の移動値とに基づいて、該電流積算量に応じたSOC−OCV特性の移動量を算出する移動量算出手段と、前記移動量算出手段で算出された移動量に最も近い移動値を判定し、該移動値のSOC−OCV特性を、前記複数のSOC−OCV特性の中から選択するSOC−OCV特性選択手段と、前記SOC−OCV特性選択手段で選択されたSOC−OCV特性を使用し、測定されたOCVの値からSOCの値を推定するSOC推定手段と、を備えたものである。   A state-of-charge estimation device according to one aspect of the present invention is a state-of-charge estimation device that estimates SOC based on SOC-OCV characteristics from OCV, and is a full charge characteristic, a complete discharge characteristic, the full charge characteristic, and a full discharge. SOC-OCV characteristic table in which a plurality of SOC-OCV characteristics including at least one SOC-OCV characteristic that divides the area between the characteristics are mapped, and a movement value is assigned to each SOC-OCV characteristic The amount of movement for calculating the amount of movement of the SOC-OCV characteristic according to the amount of integrated current based on the current accumulated amount due to charging / discharging and the movement value of the SOC-OCV characteristic used immediately before the charging / discharging A calculating unit and a movement value closest to the movement amount calculated by the movement amount calculating unit are determined, and an SOC-OCV characteristic of the movement value is selected from the plurality of SOC-OCV characteristics. C-OCV characteristic selection means, and SOC estimation means for estimating the SOC value from the measured OCV value using the SOC-OCV characteristic selected by the SOC-OCV characteristic selection means. is there.

これにより、充放電電流の電流積算量に応じて変動するSOC−OCV特性の移動量を推測し、予め用意した複数のSOC−OCV特性の中から、該移動量に最も近いSOC−OCV特性を選択し、該SOC−OCV特性を用いて、SOCの推定を行うにより、SOC推定の誤差を低減することが可能となる。   As a result, the movement amount of the SOC-OCV characteristic that fluctuates according to the current integrated amount of the charge / discharge current is estimated, and the SOC-OCV characteristic that is closest to the movement amount is obtained from a plurality of SOC-OCV characteristics prepared in advance. It is possible to reduce the SOC estimation error by selecting and estimating the SOC using the SOC-OCV characteristic.

また、前記移動量算出手段は、放電による電流積算に対して、充電による電流積算に比べて、前記SOC−OCV特性の移動量を下方へ移動させる演算を行うものである。これにより、放電時の電流積算量に対して、充電時に比べて移動量を下方へ修正し、より精度良くSOC−OCV特性を選択することが可能となる。   Further, the movement amount calculation means performs an operation for moving the movement amount of the SOC-OCV characteristic downward with respect to the current integration due to discharging as compared with the current integration due to charging. As a result, the movement amount is corrected downward with respect to the current integrated amount at the time of discharge as compared with the time of charge, and the SOC-OCV characteristic can be selected with higher accuracy.

また、前記SOC−OCV特性選択手段で選択されたSOC−OCV特性に、前記二次電池の劣化年数に応じた劣化係数を乗じたSOC−OCV特性を生成するSOC−OCV特性劣化推定手段を備え、前記SOC推定手段は、前記SOC−OCV特性劣化推定手段で生成されたSOC−OCV特性を用いて、前記SOCの値を推定するものである。これにより、二次電池の経年劣化に応じた、精度の高いSOCの値を推定することが可能となる。   In addition, there is provided SOC-OCV characteristic deterioration estimation means for generating an SOC-OCV characteristic obtained by multiplying the SOC-OCV characteristic selected by the SOC-OCV characteristic selection means by a deterioration coefficient corresponding to the deterioration year of the secondary battery. The SOC estimation means estimates the SOC value using the SOC-OCV characteristic generated by the SOC-OCV characteristic deterioration estimation means. Thereby, it is possible to estimate a highly accurate SOC value according to the aging of the secondary battery.

本発明によれば、充放電の実施によるSOC−OCV特性の変動に対して、充放電の実施状況に応じて真値により近いSOC−OCV特性を推定し、該推定したSOC−OCV特性を用いて、SOCの値を推定することにより、SOCの推定誤差を低減することができる。   According to the present invention, the SOC-OCV characteristic that is closer to the true value is estimated in accordance with the state of charge / discharge with respect to the fluctuation of the SOC-OCV characteristic due to the charge / discharge, and the estimated SOC-OCV characteristic is used. Thus, the estimation error of the SOC can be reduced by estimating the SOC value.

本発明による追加したSOC−OCV特性の曲線の例を示す図である。It is a figure which shows the example of the curve of the added SOC-OCV characteristic by this invention. SOC−OCV特性の選定のフローの例を示す図である。It is a figure which shows the example of the flow of selection of a SOC-OCV characteristic. 劣化マップの選定のフローの例を示す図である。It is a figure which shows the example of the flow of selection of a deterioration map. 本発明の充電状態推定装置の機能ブロックの構成例を示す図である。It is a figure which shows the structural example of the functional block of the charge condition estimation apparatus of this invention. SOC−OCV特性の一例を示す図である。It is a figure which shows an example of a SOC-OCV characteristic. 充放電時のSOC−OCV特性の一例を示す図である。It is a figure which shows an example of the SOC-OCV characteristic at the time of charging / discharging.

本発明の実施形態を以下の実施例に基づいて詳しく説明する。本発明では、図1に示すように、完全放電状態から満充電状態まで充電したときのSOC−OCV特性(満充電特性)5−1の曲線と、満充電状態から完全放電状態まで放電したときのSOC−OCV特性(完全放電特性)5−2の曲線とで囲まれるSOC−OCV特性領域内に、各OCVの値に対して、それぞれ異なるSOCの値の点を通過するSOC−OCV特性1−1,1−2,1−3を新たに追加する。   Embodiments of the present invention will be described in detail based on the following examples. In the present invention, as shown in FIG. 1, the SOC-OCV characteristic (full charge characteristic) 5-1 curve when charged from the fully discharged state to the fully charged state, and when discharged from the fully charged state to the fully discharged state SOC-OCV characteristic 1 that passes through points of different SOC values for each OCV value in the SOC-OCV characteristic region surrounded by the curve of SOC-OCV characteristic (complete discharge characteristic) 5-2 -1,1-2,1-3 are newly added.

新たに追加したSOC−OCV特性1−1,1−2,1−3は、満充電特性5−1及び完全放電特性5−2におけるSOCの0%及び100%のOCV電圧3.0V及び4.1Vの点を通過するが、それ以外の点で交差することは無く、満充電特性5−1及び完全放電特性5−2で囲まれるSOC−OCV特性領域をほぼ均等に分割するように追加する。   The newly added SOC-OCV characteristics 1-1, 1-2, and 1-3 include 0% and 100% OCV voltages of 3.0 V and 4 in the full charge characteristics 5-1 and the full discharge characteristics 5-2. .1V passes through the point, but does not intersect at other points, and is added to divide the SOC-OCV characteristic region surrounded by the full charge characteristic 5-1 and complete discharge characteristic 5-2 almost evenly. To do.

SOCとOCVとの対応関係をマッピングして記憶するSOC−OCV特性テーブルは、満充電特性5−1、完全放電特性5−2及び新たに追加したSOC−OCV特性1−1,1−2,1−3のそれぞれのSOCとOCVとの対応関係をマッピングして記憶する。   The SOC-OCV characteristic table that maps and stores the correspondence relationship between the SOC and the OCV includes a full charge characteristic 5-1, a complete discharge characteristic 5-2, and newly added SOC-OCV characteristics 1-1, 1-2, and the like. The correspondence relationship between each SOC 1-3 and OCV 1-3 is mapped and stored.

新たに追加するSOC−OCV特性1−1,1−2,1−3として、図1では3本追加した例を示しているが、追加する本数は3本に限られるものではなく、二次電池の特性や、要求されるSOCの推定精度によって適宜増減することができ、少なくとも1本を追加することによって、従来に比べてSOCの精度を向上させることができる。以下では、3本追加した実施例について説明する。   As the newly added SOC-OCV characteristics 1-1, 1-2, and 1-3, FIG. 1 shows an example in which three are added. However, the number of added SOC-OCV characteristics 1-1, 1-2, and 1-3 is not limited to three. It can be appropriately increased or decreased depending on the characteristics of the battery and the required SOC estimation accuracy, and by adding at least one, the accuracy of the SOC can be improved as compared with the conventional case. Hereinafter, an embodiment in which three are added will be described.

SOCの推定は、新たに追加した3本のSOC−OCV特性1−1,1−2,1−3と、満充電特性5−1及び完全放電特性5−2の合計5本のSOC−OCV特性の何れかを用いて行う。ここで、SOC−OCV特性1−2は、満充電特性5−1と完全放電特性5−2との平均特性とし、SOC−OCV特性1−1は、満充電特性5−1と平均特性1−2との平均特性とし、SOC−OCV特性1−3は、完全放電特性5−2と平均特性1−2との平均特性とする。   The SOC is estimated by adding five SOC-OCV characteristics including three newly added SOC-OCV characteristics 1-1, 1-2, and 1-3, a full charge characteristic 5-1 and a complete discharge characteristic 5-2. Use any of the characteristics. Here, the SOC-OCV characteristic 1-2 is an average characteristic of the full charge characteristic 5-1 and the complete discharge characteristic 5-2, and the SOC-OCV characteristic 1-1 is the full charge characteristic 5-1 and the average characteristic 1. -2 and the SOC-OCV characteristic 1-3 is an average characteristic of the complete discharge characteristic 5-2 and the average characteristic 1-2.

この5本のSOC−OCV特性のそれぞれについて、各OCVの値に対応する各SOCの値をマッピングしたSOC−OCV特性テーブルの一例を表1に示す。   Table 1 shows an example of an SOC-OCV characteristic table in which each SOC value corresponding to each OCV value is mapped for each of the five SOC-OCV characteristics.

Figure 2014059206
SOC−OCV特性テーブルは、各SOC−OCV特性のそれぞれに対応付けて付与した移動値を同時に保持する。表1に示す例では、平均特性1−2の位置を基準位置として平均特性1−2の移動値を0とし、この平均特性1−2からの移動量(乖離)を示す移動値を、他のSOC−OCV特性に対して付与している。
Figure 2014059206
The SOC-OCV characteristic table simultaneously holds movement values assigned in association with the respective SOC-OCV characteristics. In the example shown in Table 1, the position of the average characteristic 1-2 is set as a reference position, the movement value of the average characteristic 1-2 is set to 0, and the movement value indicating the movement amount (deviation) from the average characteristic 1-2 is set to other values. To the SOC-OCV characteristics.

そのため、満充電特性5−1の移動値を1、完全放電特性5−2の移動値を−1、満充電特性5−1と平均特性1−2との平均特性SOC−OVC特性1−1の移動値を0.5、完全放電特性5−2と平均特性1−2との平均特性SOC−OVC特性1−3の移動値を−0.5とする。   Therefore, the movement value of the full charge characteristic 5-1 is 1, the movement value of the complete discharge characteristic 5-2 is -1, the average characteristic SOC-OVC characteristic 1-1 of the full charge characteristic 5-1 and the average characteristic 1-2. Is 0.5, and the movement value of the average characteristic SOC-OVC characteristic 1-3 of the complete discharge characteristic 5-2 and the average characteristic 1-2 is -0.5.

この5本のSOC−OCV特性に対して、充放電により二次電池に入出力される電流の積算によって、OCVの値がSOC−OCV特性領域内をどのように移動し、SOCの推定に用いるSOC−OCV特性がどのように移動するかを推測する。そして推測した移動値のSOC−OCV特性を用いてSOCを推定することにより、SOCの推定誤差を低減する。   With respect to these five SOC-OCV characteristics, how the OCV value moves in the SOC-OCV characteristic area by integrating the currents input to and output from the secondary battery by charging and discharging, and is used for estimating the SOC. It is estimated how the SOC-OCV characteristic moves. Then, the estimation error of the SOC is reduced by estimating the SOC using the SOC-OCV characteristic of the estimated movement value.

SOC−OCV特性における通常使用状態の中央部の区域で、完全放電特性5−2上の点P2から満充電特性5−1上の点P1まで充電したとき、図1の充電特性1−4の曲線となり、満充電特性5−1上の点P1から完全放電特性5−2上の点P2まで放電したとき、図1の放電特性1−5の曲線となることが想定されるが、その曲線を正確に特定することは困難である。   When charging from the point P2 on the complete discharge characteristic 5-2 to the point P1 on the full charge characteristic 5-1, in the central area of the normal use state in the SOC-OCV characteristic, the charge characteristic 1-4 of FIG. It is assumed that when the discharge is made from the point P1 on the full charge characteristic 5-1 to the point P2 on the complete discharge characteristic 5-2, the curve becomes the curve of the discharge characteristic 1-5 in FIG. It is difficult to specify accurately.

そこで、SOC−OCV特性の移動値が最小値(=−1)から最大値(=+1)まで変化する点P2から点P1までのSOCの変化量ΔSOCを予め測定し、この変化量ΔSOCに対するSOC−OCV特性の移動値の最大変化幅(=2)の比を移動係数として算出しておく。なお、放電時は、充電時に比べて、同一の変化量ΔSOCに対して、OCVの変化量が大きくなることから、放電時には、移動値を下方に修正するための下方修正係数を移動係数に乗じる。   Therefore, the SOC change amount ΔSOC from the point P2 to the point P1 where the movement value of the SOC-OCV characteristic changes from the minimum value (= −1) to the maximum value (= + 1) is measured in advance, and the SOC with respect to the change amount ΔSOC is measured. The ratio of the maximum change width (= 2) of the movement value of the -OCV characteristic is calculated as the movement coefficient. When discharging, the change amount of OCV becomes larger than the same change amount ΔSOC as compared with the time of charging. Therefore, when discharging, the movement coefficient is multiplied by a downward correction coefficient for correcting the movement value downward. .

充放電により二次電池に入出力される電流積算量によって変動するSOCの変化量ΔSOCは、
ΔSOC=電流積算量÷満容量・・・(式1)
により算出される。
The amount of change ΔSOC in the SOC that varies depending on the amount of accumulated current input to and output from the secondary battery due to charge / discharge is
ΔSOC = accumulated current ÷ full capacity (Equation 1)
Is calculated by

従って、二次電池に入出力される電流積算により変動するSOC−OCV特性の移動量は、以下の式により算出される。
移動量=前回の移動値−ΔSOC×移動係数×下方修正係数・・・(式2)
上記(式2)により算出した移動量に対して、離散値である移動値のうち、どの移動値が該移動量に最も近いかを判定し、最も近い移動値を選定する。
Therefore, the amount of movement of the SOC-OCV characteristic that varies due to the integration of current input to and output from the secondary battery is calculated by the following equation.
Movement amount = previous movement value−ΔSOC × movement coefficient × downward correction coefficient (Equation 2)
With respect to the movement amount calculated by the above (Expression 2), it is determined which movement value is the closest to the movement amount among the movement values that are discrete values, and the closest movement value is selected.

(式2)において、前回の移動値の初期値は、完全放電状態から充電中の場合は1である。(満充電状態である場合は、満充電特性5−1に近い値になるので、満充電特性5−1の移動値である1とする。)また、ΔSOCの算出における電流積算量は、放電電流をプラス、充電電流をマイナスとしている。移動係数は、以下に説明するが一例として1/8.1とする。また、下方修正係数は、充電時には1であり、放電時には、二次電池の特性に依存して決定されるが、一例として1.0005とする。   In (Expression 2), the initial value of the previous movement value is 1 when charging from the fully discharged state. (In the fully charged state, since the value is close to the full charge characteristic 5-1, it is set to 1 which is the movement value of the full charge characteristic 5-1.) Further, the integrated current in the calculation of ΔSOC is the discharge The current is positive and the charging current is negative. As described below, the movement coefficient is 1 / 8.1 as an example. Further, the downward correction coefficient is 1 at the time of charging, and is determined depending on the characteristics of the secondary battery at the time of discharging.

ここで、移動係数について詳述する。SOC−OCV特性は、充電特性と放電特性とでSOCやOCVの乖離がそれらの区域に応じて変化する。本実施例では、OCVの値からSOCの値を推定するため、同一のOCVの値に対してSOCの値の乖離が最も大きい区域(図1で一例として示す区域L)で、完全放電特性5−2の点から満充電特性5−1の点へOCVが変動する電流積算量を測定する。   Here, the movement coefficient will be described in detail. As for the SOC-OCV characteristic, the difference between the SOC and the OCV varies depending on the area between the charge characteristic and the discharge characteristic. In this embodiment, since the SOC value is estimated from the OCV value, the complete discharge characteristic 5 is obtained in an area (area L shown as an example in FIG. 1) in which the deviation of the SOC value is the largest with respect to the same OCV value. The accumulated current amount at which the OCV fluctuates from the point -2 to the point of the full charge characteristic 5-1.

その電流積算量に相当するSOCの変化量ΔSOCを算出し、一例として16.2%を得る。即ち、16.2%充電してSOCを変化させると、完全放電特性5−2から満充電特性5−1へ移動することとなるため、連続して16.2%充電すれば、移動値が−1から+1へと変化し、その変化幅は2となることから、移動係数として2/16.2=1/8.1が決定される。移動係数はSOC−OCV特性の移動値に対応させて前記移動量を正規化する係数であり、△SOCの変化1%あたりの移動値の変化を示す。   An SOC change amount ΔSOC corresponding to the integrated current amount is calculated, and 16.2% is obtained as an example. That is, if the SOC is changed by charging 16.2%, the full discharge characteristic 5-2 shifts to the full charge characteristic 5-1. Since -1 changes to +1 and the change width is 2, 2 / 16.2 = 1 / 8.1 is determined as the movement coefficient. The movement coefficient is a coefficient that normalizes the movement amount in correspondence with the movement value of the SOC-OCV characteristic, and indicates a change in movement value per 1% change in ΔSOC.

次に下方修正係数について説明する。SOC−OCV特性において、OCVは放電側の方が充電側より低い値を示し、充電時と放電時とで同じ電流積算量であっても、放電時の方が充電時より変動が大きいこととなる。そこで、放電中の移動量を加速させるために下方修正係数を使用する。   Next, the downward correction coefficient will be described. In the SOC-OCV characteristics, OCV shows a lower value on the discharge side than on the charge side, and even when the current integration amount is the same at the time of charging and discharging, the variation at the time of discharging is larger than that at the time of charging. Become. Therefore, a downward correction coefficient is used to accelerate the amount of movement during discharge.

SOCは、通常、満充電容量を分母に、電流積算量を分子にして、以下の式により算出される。
SOC=初期SOC+電流積算量÷満充電容量・・・(式3)
しかし、放電容量は充電容量より少ないため、充電時のSOC変化10%の電流積算量と同じだけの電流積算量を放電した場合、放電時は上式の分母である満充電容量が、充電時より小さくなるため、放電時のSOC変動は10%以上になる。この変動は二次電池の充放電効率に左右され、電池特有の値であるが、公知の充放電効率99.5%の1/10を下方修正への影響度として使用し、1.0005を下方修正係数として決定することができる。
The SOC is normally calculated by the following equation using the full charge capacity as the denominator and the accumulated current amount as the numerator.
SOC = initial SOC + current integrated amount / full charge capacity (Equation 3)
However, since the discharge capacity is smaller than the charge capacity, if the current integration amount equal to the current integration amount of 10% SOC change during charging is discharged, the full charge capacity, which is the denominator of the above equation, is Since it becomes smaller, the SOC fluctuation at the time of discharge becomes 10% or more. This fluctuation depends on the charge / discharge efficiency of the secondary battery and is a value specific to the battery. However, 1/10 of the known charge / discharge efficiency of 99.5% is used as the degree of influence on the downward correction, and 1.0005 is used. It can be determined as a downward correction factor.

次にSOC−OCV特性領域の分割数について説明する。上述の実施例では、満充電特性5−1と完全放電特性5−2とで囲まれるSOC−OCV特性領域内に、3本のSOC−OCV特性1−1,1−2,1−3の曲線を追加して、該SOC−OCV特性領域を4つに分割した。   Next, the number of divisions of the SOC-OCV characteristic area will be described. In the above-described embodiment, the three SOC-OCV characteristics 1-1, 1-2, and 1-3 are included in the SOC-OCV characteristic region surrounded by the full charge characteristic 5-1 and the complete discharge characteristic 5-2. A curve was added to divide the SOC-OCV characteristic area into four.

分割数を幾つにするかは、要求される精度による。今、要求精度が1%であるとし、満充電特性5−1と完全放電特性5−2とでSOCの最大乖離が4%であったとすると、該最大乖離4%の領域を4分割することにより、1%刻みのSOC−OCV特性でSOCを推定することにより、要求精度1%のSOC推定を行うことが可能となる。   The number of divisions depends on the required accuracy. Now, assuming that the required accuracy is 1%, and the maximum SOC deviation is 4% between the full charge characteristic 5-1 and the complete discharge characteristic 5-2, the area of the maximum deviation 4% is divided into four. Thus, it is possible to estimate the SOC with the required accuracy of 1% by estimating the SOC with the SOC-OCV characteristics in increments of 1%.

電流センサやA/D変換の誤差などによって発生する電流積算誤差が1%を超える場合には、追加するSOC−OCV特性の本数を低減する。例えば、最大乖離4%、電流積算誤差が1.5%よりも大きい場合、SOC−OCV特性の合計本数を4として分割数を3に減らし、最大乖離4%の領域を3分割して、精度1.3%(=4%÷3)とする。   When the current integration error generated due to a current sensor or an A / D conversion error exceeds 1%, the number of SOC-OCV characteristics to be added is reduced. For example, when the maximum deviation is 4% and the current integration error is larger than 1.5%, the total number of SOC-OCV characteristics is set to 4, the number of divisions is reduced to 3, and the area of maximum deviation 4% is divided into 3 1.3% (= 4% ÷ 3).

次にSOC−OCV特性テーブルについて詳述する。SOC−OCV特性テーブルは、横方向に離散的なOCVの各値を配列し、該OCVの各値に対してSOCの値をそれぞれマッピングしている。二次電池の電圧を測定した場合、SOC−OCV特性テーブルの各OCVの値よりもきめ細かい中間値が検出される。このOCVの中間値に対しては、線形補間によりSOCの数値を補うことができる。一方、SOC−OCV特性テーブルの縦方向の移動値に関しては、前述した分割数に係るため、移動値についてSOC−OCV特性の線形補間は行わない。   Next, the SOC-OCV characteristic table will be described in detail. In the SOC-OCV characteristic table, discrete OCV values are arranged in the horizontal direction, and SOC values are mapped to the respective OCV values. When the voltage of the secondary battery is measured, an intermediate value finer than the value of each OCV in the SOC-OCV characteristic table is detected. For the intermediate value of the OCV, the SOC value can be supplemented by linear interpolation. On the other hand, since the vertical movement value of the SOC-OCV characteristic table is related to the number of divisions described above, linear interpolation of the SOC-OCV characteristic is not performed on the movement value.

次にSOC−OCV特性の移動量について詳述する。上述の実施例では、SOCの推定に用いるSOC−OCV特性として合計で5本用意し、充放電による電流積算による移動量を算出し、用意した5本のSOC−OCV特性のうち、その移動値が該移動量に近いものを選択する。なお、移動量が±1以上の場合は、移動値±1として扱う。そのため、SOCの推定に用いるSOC−OCV特性は、満充電特性5−1及び完全放電特性5−2で囲まれる領域を超えて広がることは無く、SOCの推定値が従来の推定値より劣化することは無い。   Next, the movement amount of the SOC-OCV characteristic will be described in detail. In the above-described embodiment, a total of five SOC-OCV characteristics are used as SOC-OCV characteristics to be used for estimating the SOC, and a movement amount based on current integration by charging / discharging is calculated. Among the five SOC-OCV characteristics, the movement value is calculated. Selects the one close to the amount of movement. When the movement amount is ± 1 or more, it is handled as a movement value ± 1. Therefore, the SOC-OCV characteristic used for estimating the SOC does not extend beyond the region surrounded by the full charge characteristic 5-1 and the complete discharge characteristic 5-2, and the estimated value of the SOC is deteriorated from the conventional estimated value. There is nothing.

ここで具体的な数値例を用いて上述の動作を説明する。今、図1の点Qを開始点として放電が行われたとする。点Qは、満充電特性5−1(移動値:+1)上に有り、OCVが4.047V、SOCが95.02%であるとする(表1参照)。そして放電によるSOCの変化量ΔSOCが前述の(式1)により4.98%として算出されたとする。   Here, the above-described operation will be described using specific numerical examples. Now, it is assumed that discharge is performed with the point Q in FIG. 1 as a starting point. It is assumed that the point Q is on the full charge characteristic 5-1 (movement value: +1), the OCV is 4.047 V, and the SOC is 95.02% (see Table 1). Then, it is assumed that the SOC change ΔSOC due to discharge is calculated as 4.98% by the above-described (Equation 1).

すると、前述の(式2)により、移動量は、
移動量=1−5×(1/8.1)×1.0005=0.3824
として算出される。
Then, according to the above (Equation 2), the movement amount is
Movement amount = 1-5 x (1 / 8.1) x 1.0005 = 0.3824
Is calculated as

この移動量0.3824に対して、離散値である移動値(+1,+0.5,0,−0.5,−1)のうち、どの移動値が最も近いかを判定し、最も近い移動値+0.5を選定する。従って、移動値0.5のSOC−OCV特性1−1を用いることとし、表1のSOC−OCV特性テーブルのうち、移動値0.5のSOC−OCV特性を参照して、OCVの値からSOCを求めることとなる。   Of the movement values (+1, +0.5, 0, −0.5, −1) which are discrete values, it is determined which movement value is the closest to the movement amount 0.3824, and the closest movement Select the value +0.5. Accordingly, the SOC-OCV characteristic 1-1 having a movement value of 0.5 is used, and the SOC-OCV characteristic table of Table 1 is referred to the SOC-OCV characteristic having a movement value of 0.5, and the OCV value is calculated. The SOC is obtained.

次に二次電池の経年劣化について説明する。二次電池は経年劣化によってSOC−OCV特性が変化する。従って、劣化状態に応じて、SOC−OCV特性のマッピングデータを補正する必要がある。この補正を行うために、劣化年数毎の劣化マップを用意する。   Next, aged deterioration of the secondary battery will be described. The secondary battery changes its SOC-OCV characteristics due to aging. Therefore, it is necessary to correct the mapping data of the SOC-OCV characteristic according to the deterioration state. In order to perform this correction, a deterioration map for each deterioration year is prepared.

劣化マップの一例を表2に示す。   An example of the deterioration map is shown in Table 2.

Figure 2014059206
劣化マップの横方向にはOCVの値に応じた劣化係数を配列し、縦方向には劣化年数に応じた劣化係数配列する。該劣化マップの係数をSOC−OCV特性のマッピングデータに乗じることにより、劣化に対する補正を行う。劣化マップは各SOC−OCV特性5−1、5−2、1−1、1−2、1−3毎に保管することとする。
Figure 2014059206
Degradation coefficients corresponding to the OCV values are arranged in the horizontal direction of the deterioration map, and deterioration coefficients are arranged in the vertical direction according to the deterioration years. The deterioration is corrected by multiplying the mapping data of the SOC-OCV characteristic by the coefficient of the deterioration map. The deterioration map is stored for each SOC-OCV characteristic 5-1, 5-2, 1-1, 1-2, 1-3.

上述のSOC−OCV特性の選定及び劣化マップの選定のフローの例を図2及び図3に示す。図2に示すように、二次電池が充電中か放電中かを判定する(S2−1,S2−2)。充電中の場合、充電時の電流積算による移動量を、前述の(式2)の下方修正係数を1に設定して算出する(S2−3)。放電中の場合、放電時の電流積算による移動量を、前述の(式2)の下方修正係数を1.0005に設定して算出する(S2−4)。充電中でも放電中でもない場合、移動量に変動が無いので、前回の移動量を保持する(S2−5)。   An example of the flow of selecting the above-mentioned SOC-OCV characteristic and selecting the deterioration map is shown in FIGS. As shown in FIG. 2, it is determined whether the secondary battery is being charged or discharged (S2-1, S2-2). In the case of charging, the movement amount due to current integration at the time of charging is calculated by setting the downward correction coefficient of the above (Equation 2) to 1 (S2-3). In the case of discharging, the movement amount due to current integration during discharging is calculated by setting the downward correction coefficient of the above-described (Equation 2) to 1.0005 (S2-4). If it is neither charging nor discharging, the movement amount is not changed, and the previous movement amount is held (S2-5).

次に移動量が−0.75未満か、−0.75以上−0.25未満か、−0.25以上0.25未満か、0.25以上0.75未満か、を判定する(S2−6〜S2−9)。移動量が−0.75未満のとき移動値−1のSOC−OCV特性を選択(S2−10)する。移動量が−0.75以上−0.25未満のとき移動値−0.5のSOC−OCV特性を選択する(S2−11)。移動量が−0.25以上0.25未満のとき移動値0のSOC−OCV特性を選択する(S2−12)。移動量が0.25以上0.75未満のとき移動値0.5のSOC−OCV特性を選択する(S2−13)。移動量がそれ以外の場合、移動値1のSOC−OCV特性を選択する(S2−14)。   Next, it is determined whether the movement amount is less than -0.75, -0.75 or more and less than -0.25, -0.25 or more and less than 0.25, or 0.25 or more and less than 0.75 (S2 -6 to S2-9). When the movement amount is less than -0.75, the SOC-OCV characteristic of the movement value -1 is selected (S2-10). When the movement amount is -0.75 or more and less than -0.25, the SOC-OCV characteristic having a movement value of -0.5 is selected (S2-11). When the movement amount is -0.25 or more and less than 0.25, the SOC-OCV characteristic with the movement value 0 is selected (S2-12). When the movement amount is not less than 0.25 and less than 0.75, the SOC-OCV characteristic having a movement value of 0.5 is selected (S2-13). When the amount of movement is other than that, the SOC-OCV characteristic of the movement value 1 is selected (S2-14).

次に二次電池の劣化推定を行う。図3に示す例のように、二次電池の劣化年数が0年か、1年か、n年か、9年かを判定する(S3−1〜S3−4)。劣化年数が0年の場合、年数0の劣化マップを選択し(S3−5)、劣化年数が1年の場合、年数1の劣化マップを選択し(S3−6)、劣化年数がn年の場合、年数nの劣化マップを選択し(S3−7)、劣化年数が9年の場合、年数9の劣化マップを選択し(S3−8)、それ以外の場合、年数10の劣化マップを選択する(S3−9)。なお、図3では、劣化マップを10年分用意する例を示しているが、劣化マップを何年分用意するかは、二次電池の性能等に依存して適宜選定する。   Next, the deterioration of the secondary battery is estimated. As in the example illustrated in FIG. 3, it is determined whether the age of the secondary battery is 0 years, 1 year, n years, or 9 years (S3-1 to S3-4). When the deterioration year is 0 years, the deterioration map of year 0 is selected (S3-5). When the deterioration year is 1 year, the deterioration map of year 1 is selected (S3-6), and the deterioration year is n years. If the deterioration year is 9 years, select the deterioration map of year 9 (S3-8), otherwise select the deterioration map of year 10 (S3-8). (S3-9). FIG. 3 shows an example in which the deterioration map is prepared for 10 years, but how many years the deterioration map is prepared is appropriately selected depending on the performance of the secondary battery and the like.

劣化マップには、SOC−OCV特性テーブルのSOCの値を、経年劣化により低減させる劣化係数をマッピングしておく。劣化年数に応じて選択した劣化マップの劣化係数を、SOC−OCV特性テーブルのSOCの値に掛け合せて、劣化年数に対応したSOC−OCV特性テーブルを作成する(S3−10)。   In the deterioration map, a deterioration coefficient for reducing the SOC value of the SOC-OCV characteristic table due to aging deterioration is mapped. The SOC-OCV characteristic table corresponding to the deterioration years is created by multiplying the deterioration coefficient of the deterioration map selected according to the deterioration years by the SOC value of the SOC-OCV characteristic table (S3-10).

前述の図2のフローによる移動量で選択し、図3のフローで劣化推定したSOC−OCV特性を用い、測定したOCVの値を基に、SOCの値を推定する(S−11)。なお、劣化年数の決定は、電池電圧と同期して測定される電流値を用いた劣化推定により算定することができる。   The SOC value is estimated based on the measured OCV value using the SOC-OCV characteristic selected by the movement amount according to the flow of FIG. 2 described above and the deterioration estimated by the flow of FIG. 3 (S-11). It should be noted that the age of deterioration can be determined by deterioration estimation using a current value measured in synchronization with the battery voltage.

上述のSOC−OCV特性の選択を行うSOC推定装置の機能ブロック構成例を図4に示す。SOC推定装置は、テーブル記憶部4−1、移動量算出部4−2、SOC−OCV特性選択部4−3、SOC−OCV特性劣化推定部4−4、及びSOC推定部4−5を備える。   FIG. 4 shows a functional block configuration example of the SOC estimation apparatus that selects the above-described SOC-OCV characteristic. The SOC estimation device includes a table storage unit 4-1, a movement amount calculation unit 4-2, an SOC-OCV characteristic selection unit 4-3, an SOC-OCV characteristic deterioration estimation unit 4-4, and an SOC estimation unit 4-5. .

SOC−OCV特性テーブル記憶部4−1は、満充電特性5−1と完全放電特性5−2のほかに、その間を分割する少なくとも1本のSOC−OCV特性のマッピングデータを記憶する。移動量算出部4−2は、前回選択した移動値の保持部4−6に保持された移動値と、電流積算量測定部4−7で測定された充放電の電流積算量と、移動係数保持部4−8に保持された移動係数と、下方修正係数保持部4−9に保持された下方修正係数とを用いて、前述の(式2)により、SOC−OCV特性の移動量を算出する。   The SOC-OCV characteristic table storage unit 4-1 stores mapping data of at least one SOC-OCV characteristic that divides between the full charge characteristic 5-1 and the complete discharge characteristic 5-2. The movement amount calculation unit 4-2 includes a movement value held in the movement value holding unit 4-6 selected last time, a current integration amount of charge / discharge measured by the current integration amount measurement unit 4-7, and a movement coefficient. Using the movement coefficient held in the holding unit 4-8 and the lower correction coefficient held in the lower correction coefficient holding unit 4-9, the movement amount of the SOC-OCV characteristic is calculated by the above-described (Equation 2). To do.

SOC−OCV特性選択部4−3は、移動量算出部4−2で算出された移動量に最も近い移動値を判定し、該移動値のSOC−OCV特性を選択する。SOC−OCV特性劣化推定部4−4は、SOC推定対象の二次電池の劣化年数に応じた劣化マップを劣化マップ記憶部4−10から読み出し、該劣化マップの劣化係数をSOC−OCV特性のマッピングデータに乗算し、劣化推定したSOC−OCV特性を生成する。   The SOC-OCV characteristic selection unit 4-3 determines the movement value closest to the movement amount calculated by the movement amount calculation unit 4-2, and selects the SOC-OCV characteristic of the movement value. The SOC-OCV characteristic deterioration estimation unit 4-4 reads a deterioration map corresponding to the deterioration year of the secondary battery to be estimated from the deterioration map storage unit 4-10, and calculates the deterioration coefficient of the deterioration map of the SOC-OCV characteristic. The mapping data is multiplied to generate an SOC-OCV characteristic whose deterioration has been estimated.

SOC推定部4−5は、SOC−OCV特性選択部4−3で選択され、SOC−OCV特性劣化推定部4−4で劣化推定されたSOC−OCV特性を用いて、測定されたOCVの値からSOCの値を推定する。   The SOC estimation unit 4-5 is a value of the measured OCV using the SOC-OCV characteristic selected by the SOC-OCV characteristic selection unit 4-3 and estimated by the SOC-OCV characteristic deterioration estimation unit 4-4. From this, the SOC value is estimated.

以上、本発明のSOC推定装置及びSOC推定方法の実施形態について実施例を基に説明したが、本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の構成又は実施形態を取ることができる。   The embodiments of the SOC estimation apparatus and the SOC estimation method of the present invention have been described based on the examples. However, the present invention is not limited to the above-described embodiments and does not depart from the gist of the present invention. Various configurations or embodiments may be taken within.

4−1 SOC−OCV特性テーブル記憶部
4−2 移動量算出部
4−3 SOC−OCV特性選択部
4−4 SOC−OCV特性劣化推定部
4−5 SOC推定部
4−6 前回選択した移動値保持部
4−7 電流積算量測定部
4−8 移動係数保持部
4−9 下方修正係数保持部
4−10 劣化マップ記憶部
4-1 SOC-OCV characteristic table storage unit 4-2 Movement amount calculation unit 4-3 SOC-OCV characteristic selection unit 4-4 SOC-OCV characteristic deterioration estimation unit 4-5 SOC estimation unit 4-6 Previously selected movement value Holding unit 4-7 Current integration amount measuring unit 4-8 Movement coefficient holding unit 4-9 Downward correction coefficient holding unit 4-10 Degradation map storage unit

Claims (8)

二次電池の開放電圧(OCV)からSOC−OCV特性を基に充電状態(SOC)を推定する充電状態推定装置において、
完全放電状態から満充電状態まで充電したときのSOC−OCV特性(以下「満充電特性」という)と、満充電状態から完全放電状態まで放電した時のSOC−OCV特性(以下「完全放電特性」という)と、該満充電特性と完全放電特性との間の領域を分割する少なくとも1本のSOC−OCV特性とを含む複数のSOC−OCV特性をマッピングし、かつ、各SOC−OCV特性に対して移動値を付与したSOC−OCV特性テーブルと、
充放電による電流積算量と、該充放電の直前に用いられたSOC−OCV特性の移動値とに基づいて、該電流積算量に応じたSOC−OCV特性の移動量を算出する移動量算出手段と、
前記移動量算出手段で算出された移動量に最も近い移動値を判定し、該移動値のSOC−OCV特性を、前記複数のSOC−OCV特性の中から選択するSOC−OCV特性選択手段と、
前記SOC−OCV特性選択手段で選択されたSOC−OCV特性を使用し、測定されたOCVの値からSOCの値を推定するSOC推定手段と、
を備えたことを特徴とする充電状態推定装置。
In the state of charge estimation device for estimating the state of charge (SOC) based on the SOC-OCV characteristics from the open circuit voltage (OCV) of the secondary battery,
SOC-OCV characteristics (hereinafter referred to as “full charge characteristics”) when charging from a fully discharged state to a fully charged state, and SOC-OCV characteristics (hereinafter referred to as “complete discharge characteristics”) when discharging from a fully charged state to a fully discharged state. A plurality of SOC-OCV characteristics including at least one SOC-OCV characteristic that divides a region between the full charge characteristic and the full discharge characteristic, and for each SOC-OCV characteristic SOC-OCV characteristic table to which the movement value is given,
Movement amount calculation means for calculating the movement amount of the SOC-OCV characteristic according to the current accumulation amount based on the current accumulation amount due to charging / discharging and the movement value of the SOC-OCV characteristic used immediately before the charging / discharging. When,
A SOC-OCV characteristic selection unit that determines a movement value closest to the movement amount calculated by the movement amount calculation unit, and selects an SOC-OCV characteristic of the movement value from the plurality of SOC-OCV characteristics;
SOC estimation means for estimating the SOC value from the measured OCV value using the SOC-OCV characteristic selected by the SOC-OCV characteristic selection means;
A charging state estimation device comprising:
前記移動量算出手段は、放電による電流積算に対して、充電による電流積算に比べて、前記SOC−OCV特性の移動量を下方へ移動させる演算を行うことを特徴とする請求項1に記載の充電状態推定装置。   2. The movement amount calculation unit performs an operation of moving the movement amount of the SOC-OCV characteristic downward with respect to the current integration due to discharging as compared with the current integration due to charging. Charge state estimation device. 前記移動量算出手段は、充放電の電流積算によるSOCの変化分に、前記SOC−OCV特性の移動値に対応させて前記移動量を正規化する移動係数を乗算し、かつ、放電時に該乗算の値にSOC−OCV特性を下方に移動させる下方修正係数を乗算し、更に、該乗算の値の分だけ、前記充放電の直前に用いたSOC−OCV特性の移動値を増減させて、前記移動量を算出することを特徴とする請求項1に記載の充電状態推定装置。   The movement amount calculating means multiplies the change amount of the SOC due to charge / discharge current integration by a movement coefficient for normalizing the movement amount in correspondence with the movement value of the SOC-OCV characteristic, and the multiplication at the time of discharge. Is multiplied by a downward correction coefficient for moving the SOC-OCV characteristic downward, and the movement value of the SOC-OCV characteristic used immediately before the charge / discharge is increased or decreased by the value of the multiplication, The charge amount estimation apparatus according to claim 1, wherein the movement amount is calculated. 前記SOC−OCV特性選択手段で選択されたSOC−OCV特性に、前記二次電池の劣化年数に応じた劣化係数を乗じたSOC−OCV特性を生成するSOC−OCV特性劣化推定手段を備え、前記SOC推定手段は、前記SOC−OCV特性劣化推定手段で生成されたSOC−OCV特性を用いて、前記SOCの値を推定することを特徴とする請求項1乃至3の何れかに記載の充電状態推定装置。   SOC-OCV characteristic deterioration estimation means for generating an SOC-OCV characteristic obtained by multiplying the SOC-OCV characteristic selected by the SOC-OCV characteristic selection means by a deterioration coefficient corresponding to the deterioration year of the secondary battery, 4. The state of charge according to claim 1, wherein the SOC estimation unit estimates the value of the SOC using the SOC-OCV characteristic generated by the SOC-OCV characteristic deterioration estimation unit. Estimating device. 二次電池の開放電圧(OCV)からSOC−OCV特性を基に充電状態(SOC)を推定する充電状態推定方法において、
完全放電状態から満充電状態まで充電したときのSOC−OCV特性(以下「満充電特性」という)と、満充電状態から完全放電状態まで放電した時のSOC−OCV特性(以下「完全放電特性」という)と、該満充電特性と完全放電特性との間の領域を分割する少なくとも1本のSOC−OCV特性とを含む複数のSOC−OCV特性をマッピングし、かつ、各SOC−OCV特性に対して移動値を付与したSOC−OCV特性テーブルを用い、
充放電による電流積算量と、該充放電の直前に用いられたSOC−OCV特性の移動値とに基づいて、該電流積算量に応じたSOC−OCV特性の移動量を算出し、
前記算出された移動量に最も近い移動値を判定し、該移動値のSOC−OCV特性を、前記複数のSOC−OCV特性の中から選択し、
前記選択されたSOC−OCV特性を使用し、測定されたOCVの値からSOCの値を推定することを特徴とする充電状態推定方法。
In the state of charge estimation method for estimating the state of charge (SOC) based on the SOC-OCV characteristics from the open circuit voltage (OCV) of the secondary battery,
SOC-OCV characteristics (hereinafter referred to as “full charge characteristics”) when charging from a fully discharged state to a fully charged state, and SOC-OCV characteristics (hereinafter referred to as “complete discharge characteristics”) when discharging from a fully charged state to a fully discharged state. A plurality of SOC-OCV characteristics including at least one SOC-OCV characteristic that divides a region between the full charge characteristic and the full discharge characteristic, and for each SOC-OCV characteristic Using the SOC-OCV characteristic table to which the movement value is given,
Based on the current accumulated amount due to charging / discharging and the movement value of the SOC-OCV characteristic used immediately before the charging / discharging, the movement amount of the SOC-OCV characteristic corresponding to the current accumulated amount is calculated,
Determining a movement value closest to the calculated movement amount, and selecting an SOC-OCV characteristic of the movement value from the plurality of SOC-OCV characteristics;
A state of charge estimation method, wherein the SOC value is estimated from the measured OCV value using the selected SOC-OCV characteristic.
前記移動量の算出は、放電による電流積算に対して、充電による電流積算に比べて、前記SOC−OCV特性の移動量を下方へ移動させる演算を行うことを特徴とする請求項5に記載の充電状態推定方法。   6. The calculation of the movement amount according to claim 5, wherein the movement amount is calculated by moving the movement amount of the SOC-OCV characteristic downward with respect to the current integration due to the discharge as compared with the current integration due to the charging. Charge state estimation method. 前記移動量の算出は、充放電の電流積算によるSOCの変化分に、前記SOC−OCV特性の移動値に対応させて前記移動量を正規化する移動係数を乗算し、かつ、放電時に該乗算の値にSOC−OCV特性を下方に移動させる下方修正係数を乗算し、更に、該乗算の値の分だけ、前記充放電の直前に用いたSOC−OCV特性の移動値を増減させて、前記移動量を算出することを特徴とする請求項5に記載の充電状態推定装置。   The movement amount is calculated by multiplying the change in the SOC due to charge / discharge current integration by a movement coefficient that normalizes the movement amount in correspondence with the movement value of the SOC-OCV characteristic, and the multiplication at the time of discharge. Is multiplied by a downward correction coefficient for moving the SOC-OCV characteristic downward, and the movement value of the SOC-OCV characteristic used immediately before the charge / discharge is increased or decreased by the value of the multiplication, The charge state estimation apparatus according to claim 5, wherein the movement amount is calculated. 前記選択されたSOC−OCV特性に、前記二次電池の劣化年数に応じた劣化係数を乗じたSOC−OCV特性を生成し、該劣化係数を乗じたSOC−OCV特性を用いて、前記SOCの値を推定することを特徴とする請求項5乃至7の何れかに記載の充電状態推定方法。   An SOC-OCV characteristic obtained by multiplying the selected SOC-OCV characteristic by a deterioration coefficient corresponding to the age of the secondary battery is generated, and the SOC-OCV characteristic obtained by multiplying the deterioration coefficient is used. The charge state estimation method according to claim 5, wherein a value is estimated.
JP2012204152A 2012-09-18 2012-09-18 Charge state estimation device and charge state estimation method Pending JP2014059206A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012204152A JP2014059206A (en) 2012-09-18 2012-09-18 Charge state estimation device and charge state estimation method
PCT/JP2013/069839 WO2014045706A1 (en) 2012-09-18 2013-07-23 State-of-charge estimation device and state-of-charge estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204152A JP2014059206A (en) 2012-09-18 2012-09-18 Charge state estimation device and charge state estimation method

Publications (1)

Publication Number Publication Date
JP2014059206A true JP2014059206A (en) 2014-04-03

Family

ID=50341032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204152A Pending JP2014059206A (en) 2012-09-18 2012-09-18 Charge state estimation device and charge state estimation method

Country Status (2)

Country Link
JP (1) JP2014059206A (en)
WO (1) WO2014045706A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064104A1 (en) * 2014-10-24 2016-04-28 주식회사 엘지화학 Method for estimating soc-ocv profile according to degeneration of secondary battery
JP2016114469A (en) * 2014-12-15 2016-06-23 川崎重工業株式会社 Secondary battery charge state estimation method and secondary battery charge state estimation device
JP2017125813A (en) * 2016-01-15 2017-07-20 株式会社Gsユアサ Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method
KR101779941B1 (en) 2014-12-29 2017-09-19 주식회사 엘지화학 Apparatus and method of measuring for a state of charge of a battery
JP2018153069A (en) * 2017-03-14 2018-09-27 株式会社豊田自動織機 Battery pack
JP6406469B1 (en) * 2017-06-02 2018-10-17 株式会社Gsユアサ Storage amount estimation device, storage module, storage amount estimation method, and computer program
JP2018194357A (en) * 2017-05-15 2018-12-06 株式会社豊田自動織機 Charge rate estimating device
JP2019052900A (en) * 2017-09-14 2019-04-04 株式会社豊田自動織機 Battery pack
US10254346B2 (en) 2014-02-25 2019-04-09 Mitsubishi Electric Corporation SOC estimation device for secondary battery
WO2019093349A1 (en) * 2017-11-08 2019-05-16 株式会社Gsユアサ Electricity storage element management device, battery, and management method
CN109950643A (en) * 2017-12-12 2019-06-28 丰田自动车株式会社 The method of secondary battery system and the SOC for estimating secondary cell
WO2019156457A1 (en) * 2018-02-07 2019-08-15 주식회사 엘지화학 Device and method for estimating soc according to operation state of battery
WO2019172527A1 (en) * 2018-03-07 2019-09-12 주식회사 엘지화학 Method and apparatus for estimating soc-ocv profile
JP2019164148A (en) * 2019-04-26 2019-09-26 川崎重工業株式会社 Secondary battery charge state estimation method and secondary battery charge state estimation device
JP2020043084A (en) * 2016-01-15 2020-03-19 株式会社Gsユアサ Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method
JP2020079764A (en) * 2018-11-14 2020-05-28 トヨタ自動車株式会社 Secondary-battery state determination method
US10838011B2 (en) 2017-04-27 2020-11-17 Toyotda Jidosha Kabushiki Kaisha Method for estimating state of charge and on-vehicle battery system
CN112130077A (en) * 2020-09-30 2020-12-25 东风汽车集团有限公司 SOC estimation method of power battery pack under different working conditions
US11150303B2 (en) 2017-06-02 2021-10-19 Gs Yuasa International Ltd. Management device, energy storage module, management method, and computer program
KR20210150463A (en) * 2019-06-24 2021-12-10 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Method, device, management system and storage medium for determining battery state of charge
CN114264998A (en) * 2021-12-27 2022-04-01 傲普(上海)新能源有限公司 Method for correcting SOC (state of charge) by using OCV (open Circuit-State Charge) -SOC (State of Charge) curve
US11808815B2 (en) 2018-12-18 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Battery state estimation device, battery state estimation method, and battery system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181584B2 (en) * 2017-03-29 2021-11-23 Gs Yuasa International Ltd. Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
US20200018798A1 (en) * 2017-03-29 2020-01-16 Gs Yuasa International Ltd. Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
JP6477959B2 (en) * 2017-07-19 2019-03-06 株式会社Gsユアサ Estimation device, power storage device, estimation method, and computer program
US11237214B2 (en) 2017-07-19 2022-02-01 Gs Yuasa International Ltd. Estimation device, energy storage apparatus, estimation method, and computer program
CN110967636B (en) * 2019-06-24 2020-12-11 宁德时代新能源科技股份有限公司 Battery state of charge correction method, device and system and storage medium
CN110967647B (en) * 2019-06-24 2020-11-17 宁德时代新能源科技股份有限公司 Charge state correction method and device
JP7375473B2 (en) 2019-10-31 2023-11-08 株式会社Gsユアサ Energy storage amount estimating device, energy storage amount estimation method, and computer program
WO2021186512A1 (en) * 2020-03-16 2021-09-23 株式会社 東芝 Information processing device, information processing method, computer program and information processing system
CN111505511B (en) * 2020-04-30 2021-10-01 北京嘀嘀无限科技发展有限公司 Method for measuring capacity of single battery cell of electric vehicle, electronic equipment and storage medium
CN111722118B (en) * 2020-06-22 2023-02-10 上海理工大学 Lithium ion battery SOC estimation method based on SOC-OCV optimization curve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997646B2 (en) * 1999-04-05 2007-10-24 株式会社デンソー Battery remaining capacity calculation method
JP2003168489A (en) * 2001-11-30 2003-06-13 Yuasa Corp Detecting method of charging/discharging state of alkaline storage battery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10254346B2 (en) 2014-02-25 2019-04-09 Mitsubishi Electric Corporation SOC estimation device for secondary battery
US10209320B2 (en) 2014-10-24 2019-02-19 Lg Chem, Ltd. Method for estimating SOC-OCV profile by degradation of secondary battery
WO2016064104A1 (en) * 2014-10-24 2016-04-28 주식회사 엘지화학 Method for estimating soc-ocv profile according to degeneration of secondary battery
JP2016114469A (en) * 2014-12-15 2016-06-23 川崎重工業株式会社 Secondary battery charge state estimation method and secondary battery charge state estimation device
KR101779941B1 (en) 2014-12-29 2017-09-19 주식회사 엘지화학 Apparatus and method of measuring for a state of charge of a battery
JP2017125813A (en) * 2016-01-15 2017-07-20 株式会社Gsユアサ Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method
US10712393B2 (en) 2016-01-15 2020-07-14 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method
JP2020043084A (en) * 2016-01-15 2020-03-19 株式会社Gsユアサ Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method
JP2018153069A (en) * 2017-03-14 2018-09-27 株式会社豊田自動織機 Battery pack
US10838011B2 (en) 2017-04-27 2020-11-17 Toyotda Jidosha Kabushiki Kaisha Method for estimating state of charge and on-vehicle battery system
JP2018194357A (en) * 2017-05-15 2018-12-06 株式会社豊田自動織機 Charge rate estimating device
JP2018206762A (en) * 2017-06-02 2018-12-27 株式会社Gsユアサ Stored amount estimation device, power storage module, stored amount estimation method, and computer program
US11150303B2 (en) 2017-06-02 2021-10-19 Gs Yuasa International Ltd. Management device, energy storage module, management method, and computer program
WO2018221423A1 (en) * 2017-06-02 2018-12-06 株式会社Gsユアサ Power storage amount estimation apparatus, power storage module, power storage amount estimation method, and computer program
US10761143B2 (en) 2017-06-02 2020-09-01 Gs Yuasa International Ltd. Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
JP6406469B1 (en) * 2017-06-02 2018-10-17 株式会社Gsユアサ Storage amount estimation device, storage module, storage amount estimation method, and computer program
JP2019052900A (en) * 2017-09-14 2019-04-04 株式会社豊田自動織機 Battery pack
US10971766B2 (en) 2017-11-08 2021-04-06 Gs Yuasa International Ltd. Management system, battery, and management method for energy storage device
WO2019093349A1 (en) * 2017-11-08 2019-05-16 株式会社Gsユアサ Electricity storage element management device, battery, and management method
JP2019087458A (en) * 2017-11-08 2019-06-06 株式会社Gsユアサ Management device of power storage element and management method
CN109950643A (en) * 2017-12-12 2019-06-28 丰田自动车株式会社 The method of secondary battery system and the SOC for estimating secondary cell
CN109950643B (en) * 2017-12-12 2022-04-01 丰田自动车株式会社 Secondary battery system and method for estimating SOC of secondary battery
US11448703B2 (en) 2018-02-07 2022-09-20 Lg Energy Solution, Ltd. Device and method for estimating SOC via open-circuit voltage of battery
WO2019156457A1 (en) * 2018-02-07 2019-08-15 주식회사 엘지화학 Device and method for estimating soc according to operation state of battery
WO2019172527A1 (en) * 2018-03-07 2019-09-12 주식회사 엘지화학 Method and apparatus for estimating soc-ocv profile
US11415631B2 (en) 2018-03-07 2022-08-16 Lg Energy Solution, Ltd. Method and apparatus for estimating SOC-OCV profile
JP2020079764A (en) * 2018-11-14 2020-05-28 トヨタ自動車株式会社 Secondary-battery state determination method
JP7174327B2 (en) 2018-11-14 2022-11-17 トヨタ自動車株式会社 Method for determining state of secondary battery
US11808815B2 (en) 2018-12-18 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Battery state estimation device, battery state estimation method, and battery system
JP2019164148A (en) * 2019-04-26 2019-09-26 川崎重工業株式会社 Secondary battery charge state estimation method and secondary battery charge state estimation device
KR20210150463A (en) * 2019-06-24 2021-12-10 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Method, device, management system and storage medium for determining battery state of charge
KR102606496B1 (en) * 2019-06-24 2023-11-29 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Methods, devices, management systems and storage media for determining battery state of charge
US11899071B2 (en) 2019-06-24 2024-02-13 Contemporary Amperex Technology Co., Limited Method and apparatus for determining state of charge of battery, management system and storage medium
CN112130077A (en) * 2020-09-30 2020-12-25 东风汽车集团有限公司 SOC estimation method of power battery pack under different working conditions
CN114264998A (en) * 2021-12-27 2022-04-01 傲普(上海)新能源有限公司 Method for correcting SOC (state of charge) by using OCV (open Circuit-State Charge) -SOC (State of Charge) curve

Also Published As

Publication number Publication date
WO2014045706A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
WO2014045706A1 (en) State-of-charge estimation device and state-of-charge estimation method
KR102035678B1 (en) Method and appratus for caculating state of health(soh) of a battery
JP4571000B2 (en) Remaining capacity calculation device for power storage device
JP6182025B2 (en) Battery health estimation device and health estimation method
JP5170851B2 (en) Storage battery charge state detection method and storage battery charge state detection device
TWI478418B (en) Calibration method and system for discharging curve of a battery
JP6548387B2 (en) Method and apparatus for estimating state of charge of secondary battery
EP3064952B1 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
EP2320242A2 (en) Apparatus and method for cell balancing using the voltage variation behavior of battery cell
JP5878088B2 (en) Battery module and state estimation method thereof
JP2015111086A (en) Battery state calculation device and battery state calculation method
CN103797375A (en) A system and a method for determining a state of charge of a battery
KR102347014B1 (en) Remaining battery estimating device, storage battery remaining estimating method, and program
WO2019230033A1 (en) Parameter estimation device, parameter estimation method, and computer program
JP2015224975A (en) Battery charge/discharge current detection device
JPWO2013141100A1 (en) Battery state estimation device
JPWO2016189832A1 (en) Storage battery control device, power storage system, control method, and computer-readable medium
TW201643458A (en) Battery remaining power predicting device and battery pack
JP2014025739A (en) Battery state estimation apparatus
JP2013250071A (en) Full charge capacity detection device and storage battery system
JP6541412B2 (en) Charging rate calculation method and charging rate calculation device
JP6386351B2 (en) Calculation method of charge rate of storage battery
JP5886225B2 (en) Battery control device and battery control method
JP6350174B2 (en) Battery system control device and battery system control method
JP2011047820A (en) Secondary cell device and vehicle