# JP2016114469A - Secondary battery charge state estimation method and secondary battery charge state estimation device - Google Patents

Secondary battery charge state estimation method and secondary battery charge state estimation device Download PDF

## Info

Publication number
JP2016114469A
JP2016114469A JP2014253186A JP2014253186A JP2016114469A JP 2016114469 A JP2016114469 A JP 2016114469A JP 2014253186 A JP2014253186 A JP 2014253186A JP 2014253186 A JP2014253186 A JP 2014253186A JP 2016114469 A JP2016114469 A JP 2016114469A
Authority
JP
Japan
Prior art keywords
charge
state
value
secondary battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014253186A
Other languages
Japanese (ja)
Inventor

Original Assignee

Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2014253186A priority Critical patent/JP2016114469A/en
Publication of JP2016114469A publication Critical patent/JP2016114469A/en
Application status is Pending legal-status Critical

## Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery charge state estimation method and a secondary battery charge state estimation device having high estimation accuracy.SOLUTION: A method for estimating a charge state of a secondary battery on the basis of an open voltage value and a current integrated value, comprises updating an instantaneous charge state map defining a relation between an instantaneous open voltage value and a charge state estimation value at a time of estimating the charge state on the basis of charge/discharge characteristic data after start of using the secondary battery; calculating the instantaneous charge state estimation value at the time of estimating the charge state; calculating a charge state estimation value on the basis of an integrated value of a current flowing in the secondary battery; and calculating a control charge state estimation value for used in control over the secondary battery on the basis of the charge state estimation value based on the instantaneous charge state estimation value and the current integrated value.SELECTED DRAWING: Figure 2

## Description

これらの用途においては、過放電や過充電により二次電池が適切に使用できなくなることを避けるため、二次電池の残容量、つまり二次電池の充電状態（ＳＯＣ：Ｓｔａｔｅ ｏｆ Ｃｈａｒｇｅ）を高い精度で推定する技術が必要である。 In these applications, in order to avoid that the secondary battery by overdischarge or overcharge can not be used properly, the remaining capacity of the secondary battery, i.e. the charge state of the secondary battery (SOC: State of Charge) of the high precision it is in need is estimated to technology. 従来、二次電池のＳＯＣを推定する方法として、充放電の電流値を積算した電流積算値に基づいて推定する方法や、電池開放電圧とＳＯＣの相関関係に基づいて推定する方法が知られている（例えば、特許文献１，２参照）。 As a method for estimating the SOC of the secondary battery, a method of estimating, based on the current integrated value obtained by integrating the current values ​​of the charge and discharge, it is known a method of estimating on the basis of the correlation between the battery open voltage and SOC are (e.g., see Patent documents 1 and 2).

しかしながら、電流積算値による推定方法では、長期間運用すると電流値の検出誤差が蓄積されて、ＳＯＣの推定精度が次第に低下するという問題がある。 However, the estimation method based on current integration value, the detection error of the long term when operating current value is accumulated, there is a problem that estimation accuracy of the SOC decreases gradually.

また、電池開放電圧とＳＯＣの相関関係に基づいて推定する方法では、充放電を繰り返すことにより開放電圧値とＳＯＣとの関係が変化していくことで、ＳＯＣの推定精度が低下するという問題がある。 In the method of estimating on the basis of the correlation between the battery open voltage and SOC, that the relationship between the open-circuit voltage value and SOC by repeating charge and discharge will change, a problem that the estimation accuracy of the SOC is reduced is there.

この構成によれば、開放電圧値および電流積算値の両方に基づいて二次電池の充電状態を算出するので、長期的には精度が悪化する電流積算値を用いる場合を、開放電圧値を用いて算出する場合が補完することにより、二次電池の充電状態の推定精度が向上する。 According to this configuration, since the calculated state of charge of the secondary battery based on both the open-circuit voltage value and the current accumulated value in the long term the case of using the accumulated current value accuracy degradation, using an open voltage value when calculating Te is by complement, to improve the estimation accuracy of the state of charge of the secondary battery. しかも、開放電圧値と充電状態推定値との関係は、充放電を繰り返すに連れて変化するところ、開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを充放電履歴に基づいて更新するので、より高い精度で充電状態を推定することが可能となる。 Moreover, the relationship of the open-circuit voltage value and the state of charge estimate, where changes taken to repeated charging and discharging, on the basis of the instantaneous charging state map that defines the relationship between the open voltage and the charge state estimate to the charge and discharge history since updating, it is possible to estimate the state of charge at a higher accuracy.

なお、複数の二次電池（セル）を直並列に組み合わせて電池モジュールや電池システムを構成する場合は、電池モジュールや電池システムの構成を考慮して、実測した電池モジュールや電池システムの電圧値、電流値および電池温度を、セル単位の電池電圧値、電池電流値、電池温度に換算して、これらを図示しない記憶装置に格納してもよい。 In the case constituting the battery module or the battery system by combining a plurality of secondary batteries (cells) in series-parallel, taking into account the configuration of the battery module or battery system, the voltage value of the actually measured battery module or battery system, the current value and battery temperature, battery voltage of each cell, the battery current value, in terms of battery temperature, may be stored these a storage device (not shown). たとえば、所定個数の二次電池を直列に接続してなる電池モジュールの場合、電池モジュールの電圧値を所定個数で除した値を電池電圧値として用いるなど、既存の換算方法を用いることができる。 For example, if a battery module formed by connecting a secondary battery of a predetermined number in series, such as using a value obtained by dividing the voltage of the battery module in a predetermined number as a battery voltage, it is possible to use an existing conversion process. 電池電流値、電池温度についても同様であるので、詳細は省略する。 Battery current value, the same is true for the battery temperature, the details are omitted.

ここで、第１段階の前、すなわち二次電池のＳＯＣのモニタリングを始める前に、電池温度とＳＯＣと二次電池の内部抵抗値とを対応づける内部抵抗特性マップを以下の手順で作成し、図示しない記憶装置に格納する。 Here, before the first step, i.e. before starting the SOC monitoring of the secondary battery, to create the internal resistance characteristic map associating the internal resistance of the battery temperature and SOC and the secondary battery by the following procedure, stored in a storage device (not shown).

なお、二次電池の内部抵抗値の算出方法は、上述の方法に限定されず、たとえば、電流値が正の場合（放電）と負の場合（充電）とに分け、放電時の内部抵抗値・充電時の内部抵抗値を別々に算出してもよい。 The method of calculating the internal resistance of the secondary battery is not limited to the above-described method, for example, for negative and when the current value is positive (discharge) divided into a (charged), the internal resistance during discharge - the internal resistance during charging may be calculated separately. また、近似方法は直線近似に限定されず、様々な方法を採用することができる。 Further, the approximation method is not limited to linear approximation, it is possible to adopt various methods.

この計算フローが初回の場合、１計算フロー前は存在しないため、制御ＳＯＣ推定値は存在しない。 If this calculation flow for the first time, for 1 calculation flow before does not exist, the control SOC estimation value is not present. この場合は、制御ＳＯＣ推定値の代わりに、別の方法で求めたＳＯＣ値を用いてもよい。 In this case, instead of the control SOC estimation value may be used SOC values ​​obtained in different ways. たとえば、特許文献１の電流積算値に基づくＳＯＣ値を用いるなど、公知の手法を用いてもよい。 For example, such as with SOC value based on the current integrated value of the patent document 1, it may be used known techniques.

なお、一般に、二次電池の内部抵抗値は、充放電を繰り返すことにより劣化（上昇）する。 In general, the internal resistance of the secondary battery is deteriorated by repeating charge and discharge (increased). また、二次電池には製造のばらつきがあるため、内部抵抗値にもばらつきがある。 Also, the secondary battery because of the variations in manufacture, there is a variation in the internal resistance. したがって、次式（２）に基づいて、内部抵抗特性マップを所定の時間間隔で連続的に更新することにより、二次電池の劣化やばらつきを定期的に反映した内部抵抗値を得られるようにすることが好ましい。 Therefore, based on the following equation (2), by continuously updating the internal resistance characteristic map at a predetermined time interval, so as to obtain the internal resistance value regularly reflects the deterioration and variation of the secondary battery it is preferable to.

さらに、二次電池の充電や放電の繰り返し、特に充電状態が０％を超え１００％未満の状態において充電や放電を繰り返すことにより、基準充電マップおよび基準放電マップに基づいて求めた充電状態と、実際の充電状態とにずれが生じ、充電状態の推定の精度が悪化する。 Moreover, the repetition of charge and discharge of the secondary battery, by repeating charge and discharge, particularly in charge state is less than 100% greater than 0% state, and state of charge determined on the basis of the reference charging map and reference discharge map, the actual lag behind the charge state, the accuracy of the estimated state of charge deteriorates. そこで、ステップＳ４において、瞬時充電状態マップ更新ブロック３は、充電状態０％から１００％まで二次電池を充電した場合の充電特性データである完全充電特性データと、充電状態１００％から０％まで二次電池を放電した場合の放電特性データである完全放電特性データとを基準として、充電状態０％と１００％との間の部分的な充放電データである部分充放電特性データを規格化し、この規格化によって得られた部分充放電電圧規格値を用いて瞬時充電状態マップを更新する。 Therefore, in step S4, the instantaneous charging state map updating block 3, the full charge characteristic data is charge characteristic data when charging the secondary battery from 0% state of charge to 100%, to 0% from the charging state 100% as a reference and complete discharge characteristic data as a discharge characteristic data when discharging of the secondary battery, and partial normalized partial charge-discharge characteristic data is discharge data between 0% and 100% state of charge, updating the instantaneous state of charge map using the obtained partial charge-discharge voltage standard value obtained by the normalization. 図４に、瞬時充電状態マップの作成および更新のフローを示す。 Figure 4 shows a flow of creating and updating the instantaneous state of charge map.

まず、基準充電マップに基づいて、各部分充電における各ＳＯＣ値に対応する電圧値を、完全充電における電圧値および完全放電における電圧値によって規格化する。 First, based on the reference charging map, a voltage value corresponding to each SOC value in each partially charged, normalized by a voltage value in the voltage value and a full discharge at full charge. 同様に、基準放電マップに基づいて、各部分放電における各ＳＯＣ値に対応する電圧値を、完全充電における電圧値および完全放電における電圧値によって規格化する。 Similarly, based on the reference discharge map, the voltage value corresponding to each SOC value in each partial discharge, normalized by a voltage value in the voltage value and a full discharge at full charge. 部分充電の電圧値の規格値は次式（３）で算出し、部分放電の電圧値の規格値は次式（４）で算出する。 Standard value of the voltage value of the partial charge calculated by the following equation (3), the standard value of the voltage value of the partial discharge is calculated by the following equation (4).

／（完全充電電圧値−完全放電電圧値） （３） / (Full charge voltage value - full discharge voltage value) (3)

／（完全充電電圧値−完全放電電圧値） （４） / (Full charge voltage value - full discharge voltage value) (4)

ＳＯＣ５０％からの部分充電におけるＳＯＣ＝６０％での電圧値を規格化する例を示す。 An example normalizing the voltage values ​​at SOC = 60% in the partially charged from SOC 50%. たとえば、図５（ａ）を参照すると、完全充電におけるＳＯＣ＝６０％での電圧値が１．３９０Ｖ，図５（ｂ）を参照すると、完全放電におけるＳＯＣ＝６０％での電圧値が１．３１５Ｖ，図５（ａ）のＳＯＣ５０％から１００％までの部分充電に係るグラフを参照すると、ＳＯＣ５０％からの部分充電におけるＳＯＣ＝６０％での電圧値が１．３６１Ｖであるから、部分充電規格値は、上式（３）より、（１．３６１−１．３１５）／（１．３９０−１．３１５）＝０．６１３となる。 For example, referring to FIG. 5 (a), complete the voltage value at SOC = 60% in the charging 1.390V, referring to FIG. 5 (b), the voltage value at SOC = 60% in a completely discharged 1. 315 V, Referring to the graph of partial charge from SOC 50% to 100% in FIG. 5 (a), since the voltage value at SOC = 60% in the partially charged from SOC 50% is 1.361V, partially charged standards value, the above equation (3) becomes (1.361-1.315) / (1.390-1.315) = 0.613.

×（完全充電電圧値−部分放電電圧値） × (full charge voltage value - partial discharge voltage value)
＋部分放電電圧値 （５） + Partial discharge voltage value (5)

ただし、部分充電から部分放電に切り替わった時点（部分放電開始点）でのＳＯＣ（放電切替ＳＯＣ）を超えるＳＯＣ領域については、基準充電マップの完全充電または部分充電における電圧値を用いてもよい。 However, the SOC region exceeding SOC (discharge switching SOC) at the time of switching to partial discharge from partially charged (partial discharge starting point), may be used voltage value at full charge or partially charged reference charging map.

ＳＯＣ０％から５０％まで部分充電を行い、その後ＳＯＣ３０％まで部分放電を行った例を以下に説明する。 It performs partial charge from SOC 0% to 50%, an example of performing a partial discharge thereafter until SOC 30% below. この例では、図５（ａ）の基準充電マップの完全充電におけるグラフと、図５（ｂ）の基準放電マップのＳＯＣ５０％から０％までのグラフとを用いる。 In this example, using the graph in full charge of the reference charge map of FIG. 5 (a), a graph of the SOC 50% of the reference discharge map shown in FIG. 5 (b) to 0%.

まず、これらの２つのグラフと、式（３）とから、ＳＯＣ３０％から５０％の範囲において、部分充電電圧規格値を求める。 First, with these two graphs, from the equation (3), in the range of SOC 30% and 50%, obtaining a partial charging voltage standard value. 次に、ＳＯＣ３０％から５０％の範囲においては、基準充電マップの完全充電におけるグラフ（完全充電電圧値）と、基準放電マップのＳＯＣ５０％から０％までのグラフ（部分放電電圧値）とから、式（５）と部分充電電圧規格値とに基づいて、規格化されたグラフを部分充電マップに描画し、ＳＯＣ５０％から１００％の範囲においては、基準充電マップの完全充電におけるグラフのＳＯＣ５０％から１００％の部分のグラフを使用し、部分充電マップに描画する。 Then, in the range of SOC 30% and 50%, with the graph (full charge voltage value) in the fully charged reference charging map, from the graph from SOC 50% of the reference discharge map to 0% (partial discharge voltage value), based on the partial charge voltage standard value and equation (5), to draw a graph that is normalized to partially charged map, in the 100% range of SOC 50%, the SOC 50 percent of the graph in full charge of the reference charge map using the graph of 100% of the portion, to draw the partially charged map. 図７に示すグラフは、ＳＯＣ５０％から３０％まで部分放電を行った場合に、部分充電電圧規格値を求め、この規格値に基づいて規格化されたグラフを描画する上述の手順により得られる、部分充電マップに描画されるグラフである。 The graph shown in Figure 7, when performing partial discharge from SOC 50% to 30%, calculated partial charging voltage standard value obtained by the above procedure to draw a graph that is normalized on the basis of the standard value, it is a graph drawn on partial charging map.

なお、充放電を繰り返した結果、ＳＯＣ５０％まで部分充電を行い、その後ＳＯＣ３０％まで部分放電を行う場合は、図５（ｂ）の基準放電マップのＳＯＣ５０％から０％までのグラフではなく、後述する手順で描画／更新される部分放電マップのＳＯＣ５０％から０％までのグラフを用いることが好ましい。 As a result of repeated charging and discharging, it performs partial charge to SOC 50% in the case then performing the partial discharge to SOC 30% rather than the graph from SOC 50% of the reference discharge map shown in FIG. 5 (b) to 0%, later it is preferable to use a graph from SOC 50% partial discharge map that is drawn / updated in step to 0% to. これは、部分放電マップは、二次電池の初期状態を示す基準放電マップと異なり、二次電池の充放電履歴に基づいて描画／更新されるため、現在の二次電池の状態をより反映したものとなっていることによる。 This partial discharge map is different from the reference discharge map showing the initial state of the secondary battery, to be drawn / updated based on the charge and discharge history of the battery, and better reflect the current state of the rechargeable battery due to the fact that has become a thing. 本実施形態では、図５（ａ）の基準充電マップの完全充電におけるグラフと、図７の描画／更新された部分放電マップのＳＯＣ５０％から０％までのグラフとを用い、部分充電マップを更新（再描画）する。 In the present embodiment, using the graph of the graph in full charge of the reference charge map of FIG. 5 (a), from SOC 50% drawing / updated partial discharge map of FIG. 7 to 0%, update the partial charging map (re-drawing) to. 以上説明したように、部分充電マップの更新を行うことにより、部分充放電を何度も繰り返した場合でも、充電時において、開放電圧値から、精度の高い瞬時ＳＯＣ推定値を求めることができる。 As described above, by updating the partial charging map, even when the partial charge-discharge repeatedly, at the time of charge, the open circuit voltage values, can be determined with high precision instantaneous estimated SOC value.

×（部分充電電圧値−完全放電電圧値） × (partially charged voltage - full discharge voltage value)
＋完全放電電圧値 （６） + Full discharge voltage value (6)

ただし、部分放電から部分充電に切り替わった時点（部分充電開始点）でのＳＯＣ（充電切替ＳＯＣ）より低いＳＯＣ領域については、基準放電マップの完全放電または部分放電における電圧値を用いてもよい。 However, the lower SOC range than SOC (charge switching SOC) at the time of switching to partially charged from the partial discharge (partially charged starting point), may be used voltage value in a completely discharged or partial discharge of the reference discharge map.

ＳＯＣ０％からＳＯＣ１００％まで充電を行った後、ＳＯＣ３０％まで部分放電を行い、その後ＳＯＣ７０％まで部分充電を行った例を示す。 After charging from SOC 0% to SOC 100%, it performs partial discharge to SOC 30%, showing an example in which a portion charged to then SOC 70%. この例では、図５（ｂ）の基準放電マップの完全放電におけるグラフと、図５（ａ）の基準充電マップのＳＯＣ３０％から１００％までのグラフとを用いる。 In this example, using the graph of the graph in a full discharge of the reference discharge map of FIG. 5 (b), the SOC 30% of the reference charging map shown in FIG. 5 (a) to 100%.

まず、これらの２つのグラフと、式（４）とから、ＳＯＣ３０％から７０％の範囲において、部分放電電圧規格値を求める。 First, with these two graphs, from the equation (4), in the range of 70% SOC 30%, obtaining the partial discharge voltage specifications. 次に、ＳＯＣ３０％から７０％の範囲においては、基準放電マップの完全放電におけるグラフ（完全放電電圧値）と、基準充電マップのＳＯＣ３０％から１００％までのグラフ（部分充電電圧値）とから、式（６）と部分放電電圧規格値とに基づいて、規格化されたグラフを部分放電マップに描画し、ＳＯＣ０％から３０％の範囲においては、基準放電マップのＳＯＣ７０％から０％までの部分放電におけるグラフのＳＯＣ０％から３０％の部分のグラフを部分放電マップに描画する。 Then, in the range of 70% to SOC 30%, the graph (full discharge voltage value) in the complete discharge of a reference discharge map, from the graph from SOC 30% reference charging map to 100% (partial charge voltage value), based on the the partial discharge voltage standard value formula (6), part of the draw a graph that is normalized to the partial discharge map, in the range of from SOC 0% to 30%, from SOC 70% of the reference discharge map to 0% the graph of the 30% portion from SOC 0% of the chart in the discharge draws a partial discharge map. 図８に示すグラフは、ＳＯＣ３０％から７０％まで部分充電を行った場合に、部分放電電圧規格値を求め、この規格値に基づいて規格化されたグラフを描画する上述の手順により得られる、部分放電マップに描画されるグラフである。 The graph shown in FIG. 8, when performing partial charging to 70% SOC 30%, determine the partial discharge voltage standard value obtained by the above procedure to draw a graph that is normalized on the basis of the standard value, it is a graph drawn on partial discharge map.

なお、充放電を繰り返した結果、ＳＯＣ３０％まで部分放電を行い、その後ＳＯＣ７０％まで部分放電を行う場合は、図５（ａ）の基準充電マップのＳＯＣ３０％から１００％までのグラフではなく、上述の手順で描画／更新される部分充電マップのＳＯＣ３０％から１００％までのグラフを用いることが好ましい。 As a result of repeated charging and discharging, it performs partial discharge to SOC 30% in the case then performing the partial discharge to SOC 70% rather than the graph from SOC 30% of the reference charging map shown in FIG. 5 (a) up to 100% above it is preferable to use a graph from SOC 30% partially charged map that is in step drawing / updating to 100%. これは、部分充電マップは、二次電池の初期状態を示す基準充電マップと異なり、二次電池の充放電履歴に基づいて描画／更新されるため、現在の二次電池の状態をより反映したものとなっていることによる。 This is partially charged map is different from the reference charge map showing the initial state of the secondary battery, to be drawn / updated based on the charge and discharge history of the battery, and better reflect the current state of the rechargeable battery due to the fact that has become a thing. 本実施形態では、図５（ｂ）の基準放電マップの完全放電におけるグラフと、図８の描画／更新された部分充電マップのＳＯＣ３０％から１００％までのグラフとを用い、部分放電マップを更新（再描画）する。 In the present embodiment, using the graph of the graph in a full discharge of the reference discharge map of FIG. 5 (b), the SOC 30% drawing / updating portion charged map of FIG. 8 to 100%, update the partial discharge map (re-drawing) to. 以上説明したように、部分放電マップの更新を行うことにより、部分充放電を何度も繰り返した場合でも、放電時において、開放電圧値から、精度の高い瞬時ＳＯＣ推定値を求めることができる。 As described above, by updating the partial discharge map, even when the partial charge-discharge repeatedly, during discharging, from the open voltage, it is possible to obtain a highly accurate instantaneous estimated SOC value.

＋（切替ＳＯＣ値ｂ％の開放電圧）×（１−Ｘ） （７） + (Switching SOC value b% of the open voltage) × (1-X) (7)

なお、図４に示すように、本実施形態では、充電から放電への切替え時には、直前の充電における充電の継続時間または充電電流積算量の変化のいずれかが所定値を超えた場合に瞬時充電状態マップ更新ブロック３が部分充電マップを更新する。 As shown in FIG. 4, in the present embodiment, at the time of switching from charge to discharge, the instantaneous charging when any change in duration or charging current accumulated amount of charge in the immediately preceding charge exceeds a predetermined value state map update block 3 to update the part charging map. また、放電から充電への切替え時には、直前の放電の継続時間または放電電流積算量の変化のいずれかが所定値を超えた場合に瞬時充電状態マップ更新ブロック３が部分放電マップを更新する。 Further, at the time of switching to the charge from the discharge, the instantaneous charging state map updating block 3 updates the partial discharge map if any change in duration or integrated discharge current amount immediately before the discharge exceeds a predetermined value.

（ａ）：所定の設定時間以上の間、充電電流が継続して流れる。 (A): For more than a predetermined set time, it flows the charging current is continuously.
（ｂ）：充電電流が継続して流れている間に、所定量以上、ＭＡＰ積算ＳＯＣ（後述）が増加する。 (B): while the charging current is flowing continuously, a predetermined amount or more, MAP integration SOC (described later) is increased.

（ｃ）：所定の設定時間以上の間、放電電流が継続して流れる。 (C): For more than a predetermined set time, it flows the discharge current continues.
（ｄ）：放電電流が継続して流れている間に、所定量以上、ＭＡＰ積算ＳＯＣが減少する。 (D): While the discharge current is flowing continuously, a predetermined amount or more, MAP integration SOC is reduced.

ここで、マップ更新判定ブロック２３は、たとえば、ステップＳ１の後に図示しない記憶装置に格納された実測電流値および時刻を確認することにより、充電の継続時間または放電の継続時間を確認することができ、更新条件（ａ），（ｃ）が満たされているか否かを判別することができる。 Here, the map update determination block 23, for example, by confirming the measured current value and the time stored in a storage device (not shown) after step S1, it is possible to check the duration of the duration or discharging of the charge , update condition (a), it is possible to determine whether or not satisfied (c).

なお、マップ更新判定ブロック２３による更新条件（ａ），（ｃ）において、電流の一次遅れ演算を用いることもできる。 Note that the update condition by map update determination block 23 (a), (c), the can also be used first-order lag calculation of current. 本実施形態において、電流一次遅れ値演算ブロック２５は、ステップＳ１で測定した実測電流値に時定数（一次遅れ時定数：Ｔｆ）を用いた一次遅れ処理を施して電流一次遅れ値を算出し、マップ更新判定ブロック２３は、この電流一次遅れ値を充電電流値または放電電流値として、更新条件（ａ），（ｃ）が満たされたか否かを判別する。 In the present embodiment, the current first-order lag value calculation block 25, the time constant (first-order lag time constant: Tf) to the measured current value measured in step S1 is subjected to first-order lag processing using the calculated current first-order lag value, map update determination block 23, a charging current value or the discharge current value of the current first-order lag value, updating condition (a), it is determined whether or not satisfied (c). 電流一次遅れ値は、次式（８）により算出する。 Current primary delay value is calculated by the following equation (8). なお、算出した電流一次遅れ値は、たとえば、１計算フロー後に電流一次遅れ値前回値として用いるため、図示しない記憶装置に格納する。 Incidentally, the calculated current first-order lag value, for example, for use as a first-order lag value previous value current after one calculation flow, and stores in the storage device (not shown). また、電流一次遅れ値の算出の初回においては、電流一次遅れ前回値は０とすることができる。 In the initial calculation of the current first-order delay value, the current first-order lag previous value may be zero.

＋（実測電流値−電流一次遅れ値前回値）／Ｔｆ （８） + (Measured current value - the current primary delay value previous value) / Tf (8)

また、マップ更新判定ブロック２３による更新条件（ｂ），（ｄ）において、充電電流積算量（ＭＡＰ積算ＳＯＣ）の変化を考慮することにより、瞬時充電状態マップ更新ブロック３が瞬時充電状態マップを更新するタイミングを、単に充電から放電、放電から充電に状態が切り替わる毎ではなく、より適切なタイミングとすることができる。 The update update conditions by the map update determination block 23 (b), (d), the by considering the change in the charging current integrated amount (MAP integration SOC), instantaneous charge state map updating block 3 the instantaneous charge state map the timing of simply discharging from the charging, not for each state to the charging switched from the discharge can be a more appropriate timing.

ＭＡＰ積算ＳＯＣ（％）＝ ＭＡＰ積算ＳＯＣ前回値（％） MAP integrated SOC (%) = MAP integration SOC previous value (%)
＋（充電効率×電流積算ＳＯＣ（％）の変化量）（９） + (The amount of change in charging efficiency × current accumulation SOC (%)) (9)

ここで、「電流積算ＳＯＣ（％）」とは、充電効率を１として電池を流れた電流値を積算して算出したＳＯＣ推定値を意味する。 Here, "current integration SOC (%)" means the SOC estimation value calculated by integrating the current value flowing through the battery charging efficiency as one. 電流積算ＳＯＣは、電流積算値のみに基づいて算出した充電状態であり、従来提案された様々な手法で求めることが可能である。 Current integration SOC is a charge state calculated based only on the current integrated value, it can be determined by conventional proposed various techniques. また、電流積算ＳＯＣ（％）の変化量とは、現在の電流積算ＳＯＣ（％）と１計算フロー前の電流積算ＳＯＣ（％）との差分である。 Further, the amount of change in the current integration SOC (%), which is the difference between the present current integration SOC (%) and 1 calculation flow before the current integration SOC (%). 現在の電流積算ＳＯＣ（％）は、たとえば、１計算フロー後に電流積算ＳＯＣ（％）の変化量を求めるために使われるため、図示しない記憶装置に格納する。 Present current integration SOC (%), for example, because they are used to determine the amount of change in current integration SOC (%) after 1 calculation flow, and stores in the storage device (not shown).

この計算フローが初回の場合、１計算フロー前は存在しないため、ＭＡＰ積算ＳＯＣ（％）や電流積算ＳＯＣ（％）は存在しない。 If this calculation flow for the first time, for 1 calculation flow before does not exist, MAP integration SOC (%) and current integration SOC (%) is not present. この場合は、ステップＳ２において制御ＳＯＣ推定値が存在しないときと同様の対処を行ってもよいので、詳細は省略する。 In this case, since it is subjected to the same action as when there is no control SOC estimation value in step S2, the details are omitted.

＝制御ＳＯＣ推定値前回値（％）＋（ＭＡＰ積算ＳＯＣ（％）−ＭＡＰ積算ＳＯＣ前回値（％）） = Control SOC estimation value previous value (%) + (MAP integration SOC (%) - MAP integration SOC previous value (%))
＋｛瞬時ＳＯＣ推定値（％）−（制御ＳＯＣ推定値前回値（％）＋（ＭＡＰ積算ＳＯＣ（％）−ＭＡＰ積算ＳＯＣ前回値（％））｝／Ｔｃ + {Instantaneous estimated SOC value (%) - (control SOC estimation value previous value (%) + (MAP integration SOC (%) - MAP integration SOC previous value (%))} / Tc
（１０） (10)

ただし、式（１０）によって算出された制御ＳＯＣ推定値が所定の設定値（たとえば１００）を超える場合には、次式（１１）で得られる値を制御ＳＯＣ推定値とすることが好ましい。 However, if the control SOC estimation value calculated by the equation (10) exceeds a predetermined set value (e.g., 100), it is preferable to control the SOC estimation value a value obtained by the following equation (11).

＝制御ＳＯＣ推定値前回値（％）＋（ＭＡＰ積算ＳＯＣ（％）−ＭＡＰ積算ＳＯＣ前回値（％）） = Control SOC estimation value previous value (%) + (MAP integration SOC (%) - MAP integration SOC previous value (%))
＋｛瞬時ＳＯＣ推定値（％）−（制御ＳＯＣ推定値前回値（％）＋（ＭＡＰ積算ＳＯＣ（％）−ＭＡＰ積算ＳＯＣ前回値（％））｝／Ｔｃ + {Instantaneous estimated SOC value (%) - (control SOC estimation value previous value (%) + (MAP integration SOC (%) - MAP integration SOC previous value (%))} / Tc
＋電流積算ＳＯＣ（％）の変化量 + Amount of change in the current integration SOC (%)
（１１） (11)

また、制御ＳＯＣ算出時定数設定器２９は、制御ＳＯＣ算出時定数Ｔｃを、たとえば、瞬時充電状態マップにおいて、０％から１００％までの間の所定の複数の充電状態領域について、充電状態変化に対する電圧変化率を算出し、この電圧変化率と前記充電状態変化に対する電圧変化率の所定の減少関数とから、前記各充電状態領域における時定数を算出して設定することにより自動的に設定することも可能である。 The control SOC calculating time constant setting device 29, the control SOC calculating time constant Tc, for example, in the instant charge state map, for a given plurality of charge state region of between 0% and 100%, relative state of charge change calculating a voltage change rate, and a predetermined decreasing function of the voltage change rate with respect to the state of charge changes the voltage change rate, automatically set by the setting by calculating the time constant of the charging state region that it is also possible. より具体的には、以下のように制御ＳＯＣ算出時定数Ｔｃを設定する。 More specifically, to set the control SOC calculating time constant Tc as follows.

その後、制御用充電状態推定ブロック９は、式（１０）または式（１１）により制御ＳＯＣ推定値を求めるが、式（１０）または式（１１）の制御ＳＯＣ算出時定数Ｔｃは、図示しない記憶装置に格納された制御ＳＯＣ推定値前回値に基づいて、上述の制御ＳＯＣ算出時定数設定器２９が作成した、図１１に示すＳＯＣと時定数Ｔｃとを対応付けるグラフから求める。 Thereafter, the control state of charge estimation block 9 is determined to control SOC estimation value by the formula (10) or (11), the control SOC calculating time constant Tc of the formula (10) or (11), not shown storage device based on the stored control SOC estimation value previous value, the control SOC calculating time constant setting device 29 described above is created, determined from the graph associating the SOC and the time constant Tc shown in FIG. 11.

さらに、制御ＳＯＣ算出時定数Ｔｃは、充放電間の休止時間の長さに応じて補正することが好ましい。 Furthermore, the control SOC calculating time constant Tc is preferably corrected in accordance with the length of the pause time between charge and discharge. これは、二次電池の開放電圧は、充放電停止後の休止時間によっても変化するため、開放電圧に基づき算出する推定値の寄与率を下げる必要があることによる。 This open circuit voltage of the secondary battery, because it changes depending pause time after stopping charging and discharging, due to the need to reduce the contribution of the estimated value calculated based on the open-circuit voltage. 特に、二次電池の充放電停止後の休止時間が長くなると、充放電を再開しても、充放電停止前の開放電圧と同じ開放電圧が得られるようになるまでの時間、すなわち二次電池の状態が回復するまでの時間は長くなるため、開放電圧に基づき算出する推定値に影響を及ぼす。 In particular, the secondary when the pause time after the charge-discharge stop of the battery becomes longer, even restart the charging and discharging time of until the same open-circuit voltage is obtained and the open-circuit voltage before stopping charging and discharging, i.e. rechargeable battery because the state becomes longer time to recover, affect the estimated value calculated based on the open-circuit voltage. したがって、二次電池の充放電停止後の休止時間と、時定数Ｔｃとには正の相関を持たせることが好ましい。 Therefore, the pause time after the charge-discharge stop of the secondary battery, time to the constant Tc is preferred to provide a positive correlation.

ここで、充放電停止を電流測定器１３で検知して、この時刻を図示しない計時手段で測定して図示しない記憶装置に記憶させることで、休止時間を求めることができる。 Here, by detecting the discharge stops at current measuring device 13, by storing in a storage device (not shown) as measured by the clock means (not shown) this time, it is possible to determine the downtime. さらに、休止時間に対する所定の増加関数を用意し、上述のように求めた休止時間と、この休止時間に対する増加関数と、現時点の制御ＳＯＣ算出時定数Ｔｃとから、休止時間を考慮した制御ＳＯＣ算出時定数Ｔｃ'を導出し、これを新たな制御ＳＯＣ算出時定数としてもよい。 Furthermore, providing a predetermined increasing function for downtime, and rest time obtained as described above, and an increasing function for the downtime, and a control SOC calculating time constant Tc of the current, the control SOC calculated in consideration of downtime It derives a constant Tc 'time, which may be used as the new control SOC calculating time constant. なお、増加関数は、休止時間に対する制御ＳＯＣ算出時定数Ｔｃの加算値を求めるものでもよい。 Note that increasing function may be one of finding the sum of the control SOC calculating time constant Tc for downtime. 休止時間が０の場合は時定数Ｔｃに対する加算値が０（Ｔｃの変化なし）、１０分の場合は加算値を１００、２０分の場合は加算値を３００とする増加関数であってもよい。 Added value for the time constant Tc in the case of downtime 0 0 (no change in Tc), if the added value of 100, 20 minutes for 10 minutes may be an increasing function of the 300 and the added value . また、増加関数は、休止時間に対する制御ＳＯＣ算出時定数Ｔｃの乗率を求めるものであってもよい。 Also, increasing function may be one of finding the multiplying factor of the control SOC calculating time constant Tc for downtime. たとえば、休止時間が0の場合は時定数Ｔｃに対する乗率が１（Ｔｃの変化なし）、１０分の場合は乗率１．１、２０分の場合は乗率１．３とする増加関数であってもよい。 For example, (no change in Tc) multiplying factor is 1 for the time constant Tc if rest time is 0, in the case of 10-minute increasing function of the multiplying factor 1.3 in the case of multiplying factor 1.1,20 minutes it may be. 増加関数は、これらに限らず、様々な形態を取ることができる。 Increasing function is not limited thereto, can take a variety of forms. このようにすることで、休止時間が長くなるにつれて、制御ＳＯＣ算出時定数Ｔｃが大きな値となるように補正することができ、充放電間の休止時間の影響を加味したより精度の高い推定が可能となる。 In this way, as the pause time becomes longer, the control SOC calculating time constant Tc can be corrected to a larger value, highly accurate estimation than in consideration of the influence of the pause time between charge and discharge It can become.

さらに、制御ＳＯＣ算出時定数Ｔｃは、二次電池の充放電電流値に応じて補正することが好ましい。 Furthermore, the control SOC calculating time constant Tc is preferably corrected in accordance with the charging and discharging current of the secondary battery. 詳細には、充放電電流値が大きい場合は、制御ＳＯＣ算出時定数Ｔｃの値を大きく設定することで、開放電圧に基づき算出する推定値の寄与率を下げ、電流積算に基づくＳＯＣ推定値の寄与率を大きくすることが好ましい。 In particular, if the discharge current value is large, the control SOC calculating time that the value of the constant Tc is set large, lowering the contribution of the estimated value calculated based on the open-circuit voltage, the SOC estimation value based on the current integrated it is preferable to increase the contribution rate.

たとえば、図３（ｂ）に示す内部抵抗特性マップは、基準状態（たとえば２５℃、ＳＯＣ50%）における内部抵抗値である基準値と、他の状態を当該基準値に対する相対値（たとえば、差分や乗率）で表現したマップとを組み合わせて構成してもよい。 For example, the internal resistance characteristic map shown in FIG. 3 (b), reference state (e.g. 25 ° C., SOC 50%) and the reference value is an internal resistance value in a relative value to another state for the reference value (e.g., difference Ya multiplying factor) may be configured in combination with a map that was expressed in. この構成により、ある状態（たとえば、１０℃、ＳＯＣ10%）において内部抵抗が変化したときに、内部抵抗特性マップ全体をこの変化に基づいて書き換えることができる。 With this configuration, a certain state (e.g., 10 ° C., SOC 10%) when the internal resistance is changed in, can be rewritten based on the entire internal resistance characteristics mapped to this change.

また、上述の実施形態において、内部抵抗特性マップは、充放電開始10秒後の内部抵抗値を用いて作成したが、たとえば、充放電開始後20秒後の内部抵抗値を用いた内部抵抗特性マップや、充放電開始後30秒後の内部抵抗値を用いた内部抵抗特性マップを別途作成し、図示しない記憶装置に記憶させてもよい。 Further, in the embodiment described above, the internal resistance characteristic map has been created using the internal resistance after discharge after 10 seconds, for example, the internal resistance using an internal resistance of 20 seconds after initiation charge and discharge characteristics map and, charging and discharging the internal resistance after 30 seconds after the start of separately creating the internal resistance characteristic map using may be stored in a storage device (not shown). これにより、充電状態から放電状態に、または放電状態から充電状態に切り替わる時間を計時することにより、充放電状態が継続した時間を求めることができ、この継続時間に対応する内部抵抗特性マップを用いることができる。 Thus, from the charge state to the discharge state, or by measuring the time to switch from the discharge state to the charge state, it is possible to determine the time of charge and discharge state continues, using an internal resistance characteristic map corresponding to the duration be able to. その結果、より適切な内部抵抗値を得ることができ、より適切な開放電圧値を求めることができるので、充電状態の推定精度をさらに高めることができる。 As a result, it is possible to obtain a more appropriate internal resistance value, it is possible to obtain a better open circuit voltage values, it is possible to further enhance the estimation accuracy of the state of charge.

１ 充電状態推定装置 ３ 瞬時充電状態マップ更新ブロック ５ 瞬時充電状態推定ブロック ７ 電流積算充電状態推定ブロック ９ 制御用充電状態推定ブロック １１ 電圧測定器 １３ 電流測定器 １５ 電池温度測定器 １７ 内部抵抗値演算ブロック １９ 内部抵抗基準値演算ブロック ２１ 開放電圧算出ブロック ２３ マップ更新判定ブロック ２５ 電流一次遅れ値演算ブロック ２７ 充電効率演算ブロック ２９ 制御ＳＯＣ算出時定数設定器 1 the device for estimating charged state 3 instantaneous charge state map update block 5 instantaneous charge state estimation block 7 current integration charge state estimation block 9 controlling charging state estimation block 11 the voltage measuring device 13 the current measuring device 15 the battery temperature measuring device 17 the internal resistance value calculation block 19 internal resistance reference value calculation block 21 open voltage calculation block 23 maps update decision block 25 a current first-order lag value calculation block 27 charging efficiency calculating block 29 controls SOC calculating time constant setting device

## Claims (12)

1. 二次電池の充電状態を、開放電圧値および電流積算値に基づいて推定する方法であって、 The charge state of the secondary battery, a method of estimating, based on the open-circuit voltage value and the current integrated value,
充電状態推定時の瞬間的な開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを、前記二次電池の使用開始後の充放電特性データに基づいて更新することと、 And that the instantaneous charge state map that defines the relationship between the instantaneous open circuit voltage value at the time of estimating charged state and the charging state estimate is updated based on the charging and discharging characteristics data after the start of use of the secondary battery,
前記更新された瞬時充電状態マップに基づいて、充電状態推定時の瞬間的な充電状態推定値を算出することと、 And that on the basis of the updated instantaneous charge state map, calculates the instantaneous charge state estimation value at the time of estimating charged state,
前記二次電池を流れた電流の積算値に基づいて、充電状態推定値を算出することと、 And that based on the integrated value of the current flowing through the secondary battery, calculates a charged state estimate,
前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて、前記二次電池の制御に用いる制御用充電状態推定値を算出することと、 And that on the basis of the instantaneous state of charge estimate and charge state estimates based on the current integrated value is calculated for control charge state estimation value used for control of the secondary battery,
を含む二次電池の充電状態推定方法。 Method of estimating charged state of a secondary battery including.
2. 請求項１に記載の二次電池の充電状態推定方法において、充電状態０％から１００％まで充電した場合の充電特性データである完全充電特性データと、充電状態１００％から０％まで放電した場合の放電特性データである完全放電特性データとを基準として、充電状態０％と１００％との間の部分的な充放電データである部分充放電特性データを規格化し、この規格化によって得た部分充放電電圧規格値を用いて前記瞬時充電状態マップを更新する、二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to claim 1, the full charge characteristic data is charge characteristic data when charging from 0% state of charge to 100%, when discharged from the charge state of 100% to 0% as the discharge characteristics relative to the complete discharge characteristic data is a data, partial charge-discharge portion charging and discharging characteristics data is data normalized, portions obtained by the normalization between 0% and 100% state of charge updating the instantaneous state of charge map using the discharge voltage standard value, the method of estimating charged state of a secondary battery.
3. 請求項１または２に記載の二次電池の充電状態推定方法において、充電から放電への切替え時に、直前の充電における充電の継続時間および充電電流積算量のいずれかが所定値を超えた場合に前記瞬時充電状態マップを更新し、放電から充電への切替え時に、直前の放電の継続時間および放電電流積算量のいずれかが所定値を超えた場合に前記瞬時充電状態マップを更新する、二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to claim 1 or 2, at the time of switching from charge to discharge, if one of the duration of the charging immediately before the charging and the charging current accumulated amount exceeds a predetermined value the instantaneous updates the charge state map, at the time of switching from discharge to charge, updates the instantaneous charge state map if one of the duration and the discharge current accumulated amount immediately before the discharge exceeds a predetermined value, the secondary the method of estimating charged state of a battery.
4. 請求項３に記載の二次電池の充電状態推定方法において、充放電電流値に時定数を用いた一次遅れ処理を施して電流一次遅れ値を算出し、この電流一次遅れ値に基づいて前記充電の継続時間および放電の継続時間を判定する、二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to claim 3, calculates the current primary delay value by performing first-order lag processing using the time constant for charging and discharging current, the charging on the basis of the current primary delay value duration and determining the duration of discharge, the method of estimating charged state of a secondary battery.
5. 請求項１から４のいずれか一項に記載の二次電池の充電状態推定方法において、充電状態の領域に応じて時定数を設定し、この時定数を用いて、前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて前記二次電池の制御に用いる制御用充電状態推定値を算出する、二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to claim 1, any one of 4, to set the time constant depending on the area of ​​the charging state, with this time constant, the instantaneous charge state estimation It calculates a control state of charge estimation value used for control of the secondary battery based on the charge state estimation value based on the values ​​and the accumulated current value, the method of estimating charged state of a secondary battery.
6. 請求項５に記載の二次電池の充電状態推定方法において、前記時定数の設定は、前記瞬時充電状態マップにおいて、０％から１００％までの間の所定の複数の充電状態領域について、充電状態変化に対する電圧変化率を算出し、当該電圧変化率と前記充電状態変化に対する電圧変化率の所定の減少関数とから、前記各充電状態領域における時定数を算出して設定することを含む二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to claim 5, setting of the time constant, in the instantaneous charge state map, for a given plurality of charge state region of between 0% and 100% state of charge calculating a voltage change rate with respect to the change, a secondary battery comprising from a predetermined decreasing function of the voltage change rate with respect to the state of charge changes the voltage change rate, the set by calculating the time constant of the charging state region method of estimating charged state.
7. 請求項５または６に記載の二次電池の充電状態推定方法において、前記時定数を、充放電の休止時間の長さに応じて補正する二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to claim 5 or 6, the method of estimating charged state of a secondary battery of the time constant is corrected in accordance with the length of the pause time of charge and discharge.
8. 請求項７に記載の二次電池の充電状態推定方法において、前記時定数と、前記充放電の休止時間の長さとが正の相関を有するように前記時定数を補正する二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to claim 7, the state of charge of the secondary battery and the time constant, the length of the pause time of the charging and discharging to correct the time constant so as to have a positive correlation estimation method.
9. 請求項５から８のいずれか一項に記載の二次電池の充電状態推定方法において、前記時定数を、充放電電流の大きさに応じて補正する二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to any one of claims 5 8, the method of estimating charged state of a secondary battery of the time constant is corrected according to the magnitude of the charge and discharge current.
10. 請求項９に記載の二次電池の充電状態推定方法において、前記時定数と、前記充放電電流の大きさとが正の相関を有するように前記時定数を補正する二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to claim 9, and the time constant, the method of estimating charged state of a secondary battery wherein and the magnitude of the charge and discharge current for correcting the time constant so as to have a positive correlation .
11. 請求項１から１０のいずれか一項に記載の二次電池の充電状態推定方法において、さらに、前記瞬間的な開放電圧値を算出するために用いる内部抵抗基準値を、前記二次電池の充放電特性データに基づいて更新することを含む二次電池の充電状態推定方法。 In the method of estimating charged state of a secondary battery according to claim 1, any one of 10, further the internal resistance reference value used to calculate the instantaneous open circuit voltage value, the charge of the secondary battery method of estimating charged state of a secondary battery includes updating based on the discharge characteristic data.
12. 二次電池の充電状態を、開放電圧値および電流積算値に基づいて推定する装置であって、 The charge state of the secondary battery, there is provided an apparatus for estimating, based on the open-circuit voltage value and the current integrated value,
充電状態推定時の瞬間的な開放電圧値と充電状態推定値との関係を定める瞬時充電状態マップを、前記二次電池の使用開始後の充放電特性データに基づいて更新する手段と、 It means for updating on the basis of the instantaneous charging state map that defines the relationship between the instantaneous open circuit voltage value at the time of estimating charged state and the charging state estimate, the charge and discharge characteristics data after the start of use of the secondary battery,
前記更新された瞬時充電状態マップに基づいて、充電状態推定時の瞬間的な充電状態推定値を算出する手段と、 Based on the updated instantaneous charge state map, and means for calculating the instantaneous charge state estimation value at the time of estimating charged state,
前記二次電池を流れた電流の積算値に基づいて、充電状態推定値を算出する手段と、 Based on the integrated value of the current flowing through the secondary battery, and means for calculating the state of charge estimate,
前記瞬間的な充電状態推定値および前記電流積算値に基づく充電状態推定値に基づいて、前記二次電池の制御に用いる制御用充電状態推定値を算出する手段と、 On the basis of the instantaneous state of charge estimate and charge state estimates based on the current integrated value, and means for calculating a control state of charge estimation value used for control of the secondary battery,
を備える二次電池の充電状態推定装置。 Device for estimating charged state of a secondary battery comprising a.
JP2014253186A 2014-12-15 2014-12-15 Secondary battery charge state estimation method and secondary battery charge state estimation device Pending JP2016114469A (en)

## Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014253186A JP2016114469A (en) 2014-12-15 2014-12-15 Secondary battery charge state estimation method and secondary battery charge state estimation device

## Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253186A JP2016114469A (en) 2014-12-15 2014-12-15 Secondary battery charge state estimation method and secondary battery charge state estimation device

## Publications (1)

Publication Number Publication Date
JP2016114469A true JP2016114469A (en) 2016-06-23

# Family

## Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253186A Pending JP2016114469A (en) 2014-12-15 2014-12-15 Secondary battery charge state estimation method and secondary battery charge state estimation device

## Country Status (1)

JP (1) JP2016114469A (en)

## Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180034285A1 (en) * 2016-07-29 2018-02-01 Johnson Controls Technology Company Electrical energy storage system with battery state-of-charge estimation

## Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289685A (en) * 1998-04-01 1999-10-19 Toshiba Battery Co Ltd Device for detecting charged state of secondary battery
JP2003035755A (en) * 2001-07-25 2003-02-07 Hitachi Ltd Method for detecting stored power in battery
JP2006098134A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulation device
WO2013031559A1 (en) * 2011-08-30 2013-03-07 三洋電機株式会社 Battery system, electric vehicle, movable body, power storage device, and power supply device
JP2013213808A (en) * 2012-03-08 2013-10-17 Nissan Motor Co Ltd Control device for secondary battery and soc detection method
JP2014059206A (en) * 2012-09-18 2014-04-03 Toyota Industries Corp Charge state estimation device and charge state estimation method
WO2014132491A1 (en) * 2013-02-27 2014-09-04 株式会社豊田自動織機 Method and device for estimating battery state of charge
JP2014196985A (en) * 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 Battery control device
JP2014231988A (en) * 2011-09-27 2014-12-11 三洋電機株式会社 Battery system, charging state estimation device, electric vehicle, traveling object, power storage device and power supply device

## Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289685A (en) * 1998-04-01 1999-10-19 Toshiba Battery Co Ltd Device for detecting charged state of secondary battery
JP2003035755A (en) * 2001-07-25 2003-02-07 Hitachi Ltd Method for detecting stored power in battery
JP2006098134A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulation device
WO2013031559A1 (en) * 2011-08-30 2013-03-07 三洋電機株式会社 Battery system, electric vehicle, movable body, power storage device, and power supply device
JP2014231988A (en) * 2011-09-27 2014-12-11 三洋電機株式会社 Battery system, charging state estimation device, electric vehicle, traveling object, power storage device and power supply device
JP2013213808A (en) * 2012-03-08 2013-10-17 Nissan Motor Co Ltd Control device for secondary battery and soc detection method
JP2014059206A (en) * 2012-09-18 2014-04-03 Toyota Industries Corp Charge state estimation device and charge state estimation method
WO2014132491A1 (en) * 2013-02-27 2014-09-04 株式会社豊田自動織機 Method and device for estimating battery state of charge
JP2014196985A (en) * 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 Battery control device

## Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180034285A1 (en) * 2016-07-29 2018-02-01 Johnson Controls Technology Company Electrical energy storage system with battery state-of-charge estimation

## Similar Documents

Publication Publication Date Title
US6841972B2 (en) Method for resetting a state of charge of a battery of a hybrid electric vehicle
JP4638251B2 (en) Battery management system
JP5042369B2 (en) Operating method of a power storage device and a power storage device of the power generation system
US7944178B2 (en) Fully-charged battery capacity detection method
CN101285874B (en) Battery full charge capacity detection method
Haifeng et al. A new SOH prediction concept for the power lithium-ion battery used on HEVs
KR101160975B1 (en) Rechargeable battery charging method and apparatus
Hu et al. Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models
JP5248764B2 (en) Abnormality detecting device of the storage element, the abnormality detecting method and the abnormality detecting program of the storage element
US20060091861A1 (en) Battery state of charge reset
WO2012050014A1 (en) Power management system
CN101542306B (en) The abnormality detection apparatus and method for a power storage device
US20060091863A1 (en) Battery state of charge voltage hysteresis estimator
CN102124360B (en) Storage battery device, storage battery state of charge evaluation device and method
CN102313843A (en) Method of detecting battery internal resistance
CN1835273A (en) Power supply with status detector and initial characteristic determination means
JP5439126B2 (en) Status detector for the power supply
JP4668306B2 (en) Lifetime estimating method of life estimation device and a secondary battery of the secondary battery
JP2011257219A (en) Internal resistance of secondary battery and calculation device for calculating open voltage
CN105027379B (en) Charging and discharging secondary battery system and power allocation method and the like having a plurality of batteries
CN102162836A (en) Estimation method of vehicle battery stress optical coefficient (SOC)
CN100573179C (en) Method for managing a rechargeable battery pack
JP2009081981A (en) Charge state optimizing apparatus and battery pack system provided therewith
JP5035401B2 (en) Battery status detecting method and a battery status detecting apparatus, and an operational expression deriving method
CN102478637A (en) Method for checking and modulating battery capacity and power based on discharging/charging characteristics

## Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205