JP5535968B2 - CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM - Google Patents

CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM Download PDF

Info

Publication number
JP5535968B2
JP5535968B2 JP2011050178A JP2011050178A JP5535968B2 JP 5535968 B2 JP5535968 B2 JP 5535968B2 JP 2011050178 A JP2011050178 A JP 2011050178A JP 2011050178 A JP2011050178 A JP 2011050178A JP 5535968 B2 JP5535968 B2 JP 5535968B2
Authority
JP
Japan
Prior art keywords
time
secondary battery
rate
calculated
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011050178A
Other languages
Japanese (ja)
Other versions
JP2012185124A (en
Inventor
雅之 橋本
哲郎 重水
政巳 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011050178A priority Critical patent/JP5535968B2/en
Publication of JP2012185124A publication Critical patent/JP2012185124A/en
Application granted granted Critical
Publication of JP5535968B2 publication Critical patent/JP5535968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、運用中の二次電池の充電率を推定する充電率推定装置、充電率推定方法、及びプログラムに関する。   The present invention relates to a charging rate estimation device, a charging rate estimation method, and a program for estimating a charging rate of a secondary battery in operation.

一般に、二次電池のSOC(State Of Charge:充電率)は、下記式(1)を用いて算出する。   In general, the SOC (State Of Charge) of a secondary battery is calculated using the following formula (1).

Figure 0005535968
Figure 0005535968

但し、S(t)は、t時間後のSOCを示し、S(0)は、初期状態のSOCを示す。また、I(t)は、t時間における充放電電流を示す。なお、I(t)は、充電時に正の値となり、放電時に負の値となる。また、Qは、二次電池の満充電容量を示す。つまり、従来、二次電池のSOCは、二次電池の充放電電流の積算値を用いて算出している。 However, S (t) indicates the SOC after time t, and S (0) indicates the SOC in the initial state. Further, I t (t) represents a charge / discharge current at time t. Note that I t (t) takes a positive value during charging and takes a negative value during discharging. Q indicates the full charge capacity of the secondary battery. That is, conventionally, the SOC of the secondary battery is calculated using the integrated value of the charge / discharge current of the secondary battery.

なお、離散的にSOCを算出する場合は、式(1)を離散関数に変換した式(1)´を用いる。但し、S(n−1)は、演算周期に対応する時刻における二次電池のSOCである。また、Tは、演算周期を示す。 In addition, when calculating SOC discretely, Formula (1) 'which converted Formula (1) into the discrete function is used. However, S (n-1) is the SOC of the secondary battery at the time corresponding to the calculation cycle. T s indicates a calculation cycle.

しかし、二次電池の充放電電流の積算値を用いてSOCの演算を行った場合、積算によって電流検出誤差が蓄積され、所定時間経過後の算出結果であるSOCが実際のSOCと大きく異なってしまうおそれがある。   However, when the SOC is calculated using the integrated value of the charge / discharge current of the secondary battery, the current detection error is accumulated due to the integration, and the calculated SOC after a predetermined time elapses is greatly different from the actual SOC. There is a risk that.

この問題を解決する方法として、特許文献1には、電流の充放電が反転するときを静定状態と仮定して二次電池の開放電圧を推定し、当該開放電圧からSOCを求める方法が開示されている。なお、二次電池が静定状態でない場合、二次電池内部のインピーダンスにより開放電圧が正確に推定できないため、静定状態のときに開放電圧から求めたSOCを用いて初期状態のSOCを修正し、電流積算値を用いてSOCを求める方法が用いられている。   As a method for solving this problem, Patent Document 1 discloses a method of estimating the open-circuit voltage of a secondary battery on the assumption that the charging / discharging of current is reversed and determining the SOC from the open-circuit voltage. Has been. When the secondary battery is not in a static state, the open circuit voltage cannot be accurately estimated due to the impedance inside the secondary battery. Therefore, the SOC in the initial state is corrected using the SOC obtained from the open circuit voltage in the static state. A method of obtaining the SOC using the current integrated value is used.

特開平11−206028号公報Japanese Patent Laid-Open No. 11-206028

しかしながら、二次電池が静定状態であるときに初期状態のSOCを修正する方法を用いる場合、二次電池が静定状態になるまで、電流積算値の誤差が解消されないという問題があった。なお、式(1)または式(1)´を用いてSOCを算出する場合、誤差の要因としては、電池劣化による満充電容量Qの変化とが挙げられる。例えば公称電池容量の70%までを製品寿命とした場合、満充電容量が公称電池容量から30%減少することとなり、SOC推定における大きな誤差の要因となる。   However, when using the method of correcting the SOC in the initial state when the secondary battery is in a static state, there is a problem that the error of the current integrated value is not eliminated until the secondary battery is in a static state. In addition, when calculating SOC using Formula (1) or Formula (1) ', the cause of the error is a change in the full charge capacity Q due to battery deterioration. For example, when the product life is up to 70% of the nominal battery capacity, the full charge capacity is reduced by 30% from the nominal battery capacity, which causes a large error in SOC estimation.

本発明は上記の課題を解決するためになされたものであり、運用中の二次電池の充電率を推定する充電率推定装置であって、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部と、前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部と、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部と、前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部と、前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部とを備え、前記充電率推定部は、前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値と前記実測電流の誤差とを用いて前記二次電池の充電率の上限値及び下限値を演算し、前記充電率演算部が演算した充電率が、前記充電率の上限値以上である場合、前記充電率の上限値を前記二次電池の充電率として推定し、前記充電率演算部が演算した充電率が、前記充電率の下限値以下である場合、前記充電率の下限値を前記二次電池の充電率として推定し、前記充電率演算部が演算した充電率が、前記充電率の上限値未満と前記充電率の下限値との間の値を示す場合、前記充電率演算部が演算した前記第2の時刻における充電率を、前記二次電池の充電率として推定することを特徴とする。 The present invention has been made in order to solve the above-described problem, and is a charging rate estimation device that estimates the charging rate of a secondary battery in operation, and the measured current of the secondary battery at a first time and Using the measured voltage, the charging rate of the secondary battery at the first time is calculated, and the measured current and the measured voltage of the secondary battery at a second time that is a time after the first time. And the charging rate calculation unit for calculating the charging rate of the secondary battery at the second time, and the charging rate calculation unit from the charging rate at the second time calculated by the charging rate calculation unit. A charge rate change amount calculation unit for calculating a charge rate change amount by subtracting the calculated charge rate at the first time, and charge / discharge of the secondary battery from the first time to the second time Current value integration that calculates the integrated value of the measured current by And dividing the integrated value of the current calculated by the current value integrating unit by the charging rate change calculated by the charging rate change calculating unit, thereby obtaining the full charge capacity of the secondary battery at the second time. A charging rate of the secondary battery is estimated using a full charge capacity calculation unit to be calculated, a full charge capacity calculated by the full charge capacity calculation unit, and an integrated value of an actually measured current due to charging and discharging of the secondary battery. A charging rate estimation unit , wherein the charging rate estimation unit uses the full charge capacity calculated by the full charge capacity calculation unit, the integrated value of the measured current due to charging / discharging of the secondary battery, and the error of the measured current. The upper limit value and the lower limit value of the charging rate of the secondary battery are calculated, and when the charging rate calculated by the charging rate calculation unit is equal to or higher than the upper limit value of the charging rate, the upper limit value of the charging rate is set to the second value. Estimated as the charge rate of the secondary battery, and the charge rate calculated by the charge rate calculator When the rate is equal to or lower than the lower limit value of the charging rate, the lower limit value of the charging rate is estimated as the charging rate of the secondary battery, and the charging rate calculated by the charging rate calculation unit is the upper limit value of the charging rate. The charging rate at the second time calculated by the charging rate calculation unit is estimated as the charging rate of the secondary battery. .

また、本発明においては、前記充電率推定部は、さらに前記二次電池の満充電容量の測定誤差を用いて、前記二次電池の充電率の下限値及び上限値を演算することが好ましい。  In the present invention, it is preferable that the charging rate estimation unit further calculates a lower limit value and an upper limit value of the charging rate of the secondary battery using a measurement error of the full charge capacity of the secondary battery.

また、本発明は、運用中の二次電池の充電率を推定する充電率推定装置であって、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部と、前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部と、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部と、前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部と、前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部とを備え、前記第1の時刻は、前記二次電池の実測温度または実測電流が所定の範囲内に収まっている時刻であり、前記第2の時刻は、前記第1の時刻からその時刻までの間に、前記二次電池の実測温度または実測電流が所定の範囲を超えない時刻であることを特徴とする。  The present invention is also a charging rate estimation device for estimating a charging rate of a secondary battery in operation, wherein the first current is measured using a measured current and a measured voltage of the secondary battery at a first time. The charging rate of the secondary battery at the time is calculated, and the measured current and the measured voltage of the secondary battery at the second time, which is a time after the first time, are used at the second time. A charging rate calculation unit that calculates a charging rate of the secondary battery, and a charging rate at the first time calculated by the charging rate calculation unit from a charging rate at the second time calculated by the charging rate calculation unit. A charging rate change amount calculation unit that calculates a charging rate change amount by subtracting, and a current value that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time The integration unit and the current calculated by the current value integration unit. A full charge capacity calculation unit for calculating a full charge capacity of the secondary battery at the second time by dividing the calculated value by the charge rate change calculated by the charge rate change calculation unit; and the full charge A charge rate estimation unit that estimates a charge rate of the secondary battery using a full charge capacity calculated by a capacity calculation unit and an integrated value of an actually measured current due to charging and discharging of the secondary battery; The time is a time when the measured temperature or the measured current of the secondary battery is within a predetermined range, and the second time is between the first time and the time. It is a time when the actually measured temperature or the actually measured current does not exceed a predetermined range.

また、本発明は、運用中の二次電池の充電率を推定する充電率推定装置であって、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部と、前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部と、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部と、前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部と、前記満充電容量演算部が異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を推定する関数推定部と、前記関数推定部が推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部とを備え、前記関数推定部は、前記満充電容量演算部が異なる時刻に演算した二次電池の満充電容量のうち、直前の時刻に演算した二次電池の満充電容量との差または推定した関数が示す満充電容量との差が所定の閾値を超えないものを前記関数の推定に用いることを特徴とする。The present invention is also a charging rate estimation device for estimating a charging rate of a secondary battery in operation, wherein the first current is measured using a measured current and a measured voltage of the secondary battery at a first time. The charging rate of the secondary battery at the time is calculated, and the measured current and the measured voltage of the secondary battery at the second time, which is a time after the first time, are used at the second time. A charging rate calculation unit that calculates a charging rate of the secondary battery, and a charging rate at the first time calculated by the charging rate calculation unit from a charging rate at the second time calculated by the charging rate calculation unit. A charging rate change amount calculation unit that calculates a charging rate change amount by subtracting, and a current value that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time The integration unit and the current calculated by the current value integration unit. A full charge capacity calculation unit for calculating a full charge capacity of the secondary battery at the second time by dividing the calculated value by the charge rate change calculated by the charge rate change calculation unit; and the full charge A function estimation unit that estimates a function indicating the relationship between time and full charge capacity from the full charge capacities of a plurality of secondary batteries calculated at different times by the capacity calculation unit, and a function estimated by the function estimation unit The charging rate for identifying the charging rate of the secondary battery using the full charging capacity and the integrated value of the measured current due to charging / discharging of the secondary battery, specifying the full charging capacity of the secondary battery at the current time An estimation unit, wherein the function estimation unit is a difference between the full charge capacity of the secondary battery calculated at the previous time among the full charge capacities of the secondary battery calculated at different times by the full charge capacity calculation unit. Or the difference from the full charge capacity indicated by the estimated function is Characterized by using one that does not exceed the value in the estimation of the function.

また、本発明は、運用中の二次電池の充電率を推定する充電率推定装置であって、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部と、前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部と、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部と、前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部と、前記満充電容量演算部が異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を定期的に推定する関数推定部と、前記関数推定部が推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部と、前記関数推定部が推定した関数における時間の係数の変化を監視し、当該係数の変化が所定の閾値以上であった場合に、警告を発する警告部とを備えることを特徴とする。The present invention is also a charging rate estimation device for estimating a charging rate of a secondary battery in operation, wherein the first current is measured using a measured current and a measured voltage of the secondary battery at a first time. The charging rate of the secondary battery at the time is calculated, and the measured current and the measured voltage of the secondary battery at the second time, which is a time after the first time, are used at the second time. A charging rate calculation unit that calculates a charging rate of the secondary battery, and a charging rate at the first time calculated by the charging rate calculation unit from a charging rate at the second time calculated by the charging rate calculation unit. A charging rate change amount calculation unit that calculates a charging rate change amount by subtracting, and a current value that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time The integration unit and the current calculated by the current value integration unit. A full charge capacity calculation unit for calculating a full charge capacity of the secondary battery at the second time by dividing the calculated value by the charge rate change calculated by the charge rate change calculation unit; and the full charge A function estimation unit that periodically estimates a function indicating the relationship between time and full charge capacity from the full charge capacities of a plurality of secondary batteries calculated at different times by the capacity calculation unit, and a function estimated by the function estimation unit The full charge capacity of the secondary battery at the current time is identified with reference to the above, and the charge rate of the secondary battery is estimated using the full charge capacity and the integrated value of the measured current due to charge / discharge of the secondary battery A charging rate estimation unit that monitors the change of the coefficient of time in the function estimated by the function estimation unit, and a warning unit that issues a warning when the change of the coefficient is equal to or greater than a predetermined threshold. Features.

また、本発明においては、前記充電率演算部は、前記二次電池の実測電流と実測電圧とから前記二次電池の開放電圧を演算し、前記二次電池の開放電圧と充電率の関係を示すテーブルを参照して、前記演算した開放電圧から前記二次電池の充電率を演算することが好ましい。Further, in the present invention, the charging rate calculation unit calculates an open voltage of the secondary battery from the measured current and measured voltage of the secondary battery, and the relationship between the open voltage of the secondary battery and the charging rate is calculated. It is preferable to calculate the charging rate of the secondary battery from the calculated open circuit voltage with reference to the table shown.

また、本発明は、運用中の二次電池の充電率を推定する充電率推定方法であって、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算するステップと、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算するステップと、前記第2の時刻における充電率から前記第1の時刻における充電率を減じることで、充電率変化量を演算するステップと、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算するステップと、前記電流の積算値を前記充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算するステップと、前記演算した満充電容量と前記二次電池の充放電による実測電流の積算値と前記実測電流の誤差とを用いて前記二次電池の充電率の上限値及び下限値を演算するステップと、前記演算した充電率が、前記充電率の上限値以上である場合、前記充電率の上限値を前記二次電池の充電率として推定するステップと、前記演算した充電率が、前記充電率の下限値以下である場合、前記充電率の下限値を前記二次電池の充電率として推定するステップと、前記演算した充電率が、前記充電率の上限値未満と前記充電率の下限値との間の値を示す場合、前記演算した前記第2の時刻における充電率を、前記二次電池の充電率として推定するステップとを有することを特徴とする。  The present invention is also a charge rate estimation method for estimating a charge rate of a secondary battery in operation, wherein the first current is measured using a measured current and a measured voltage of the secondary battery at a first time. Using the step of calculating the charging rate of the secondary battery at the time, and the measured current and measured voltage of the secondary battery at a second time that is a time after the first time, Calculating a charging rate of the secondary battery at a time; calculating a charging rate change amount by subtracting the charging rate at the first time from the charging rate at the second time; and the first Calculating the integrated value of the measured current due to charging / discharging of the secondary battery from the time to the second time, and dividing the integrated value of the current by the amount of change in the charging rate, The secondary battery is full at the time An upper limit value and a lower limit of the charging rate of the secondary battery using the step of calculating the electric capacity, the calculated full charge capacity, the integrated value of the measured current due to charging and discharging of the secondary battery, and the error of the measured current A step of calculating a value, a step of estimating an upper limit value of the charging rate as a charging rate of the secondary battery when the calculated charging rate is equal to or greater than an upper limit value of the charging rate, and the calculated charging rate. Is lower than the lower limit value of the charging rate, the step of estimating the lower limit value of the charging rate as the charging rate of the secondary battery, and the calculated charging rate is less than the upper limit value of the charging rate and the charging And a step of estimating the calculated charge rate at the second time as the charge rate of the secondary battery when a value between the lower limit value of the rate is indicated.

また、本発明は、運用中の二次電池の充電率を推定する充電率推定方法であって、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算するステップと、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算するステップと、前記第2の時刻における充電率から前記第1の時刻における充電率を減じることで、充電率変化量を演算するステップと、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算するステップと、前記電流の積算値を前記充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算するステップと、前記二次電池の満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定するステップとを有し、前記第1の時刻は、前記二次電池の実測温度または実測電流が所定の範囲内に収まっている時刻であり、前記第2の時刻は、前記第1の時刻からその時刻までの間に、前記二次電池の実測温度または実測電流が所定の範囲を超えない時刻であることを特徴とする。The present invention is also a charge rate estimation method for estimating a charge rate of a secondary battery in operation, wherein the first current is measured using a measured current and a measured voltage of the secondary battery at a first time. Using the step of calculating the charging rate of the secondary battery at the time, and the measured current and measured voltage of the secondary battery at a second time that is a time after the first time, Calculating a charging rate of the secondary battery at a time; calculating a charging rate change amount by subtracting the charging rate at the first time from the charging rate at the second time; and the first Calculating the integrated value of the measured current due to charging / discharging of the secondary battery from the time to the second time, and dividing the integrated value of the current by the amount of change in the charging rate, The secondary battery is full at the time A step of calculating an electric capacity, and a step of estimating a charging rate of the secondary battery using a full charge capacity of the secondary battery and an integrated value of an actually measured current due to charging and discharging of the secondary battery. The first time is a time when the measured temperature or measured current of the secondary battery is within a predetermined range, and the second time is between the first time and the time. The time when the measured temperature or measured current of the secondary battery does not exceed a predetermined range.

また、本発明は、運用中の二次電池の充電率を推定する充電率推定方法であって、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算するステップと、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算するステップと、前記第2の時刻における充電率から前記第1の時刻における充電率を減じることで、充電率変化量を演算するステップと、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算するステップと、前記電流の積算値を前記充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算するステップと、異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を推定するステップと、推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定するステップとを有し、前記関数を推定するステップでは、異なる時刻に演算した二次電池の満充電容量のうち、直前の時刻に演算した二次電池の満充電容量との差または推定した関数が示す満充電容量との差が所定の閾値を超えないものを前記関数の推定に用いることを特徴とする。The present invention is also a charge rate estimation method for estimating a charge rate of a secondary battery in operation, wherein the first current is measured using a measured current and a measured voltage of the secondary battery at a first time. Using the step of calculating the charging rate of the secondary battery at the time, and the measured current and measured voltage of the secondary battery at a second time that is a time after the first time, Calculating a charging rate of the secondary battery at a time; calculating a charging rate change amount by subtracting the charging rate at the first time from the charging rate at the second time; and the first Calculating the integrated value of the measured current due to charging / discharging of the secondary battery from the time to the second time, and dividing the integrated value of the current by the amount of change in the charging rate, The secondary battery is full at the time A step of calculating a capacity, a step of estimating a function indicating a relationship between time and a full charge capacity from the full charge capacities of a plurality of secondary batteries calculated at different times, and a current time with reference to the estimated function Identifying the full charge capacity of the secondary battery in the battery, and estimating the charge rate of the secondary battery using the full charge capacity and the integrated value of the measured current due to charge and discharge of the secondary battery. In the step of estimating the function, among the full charge capacities of the secondary batteries calculated at different times, the difference from the full charge capacity of the secondary battery calculated at the immediately preceding time or the full charge capacity indicated by the estimated function What is different is that the difference between the values does not exceed a predetermined threshold value is used for the estimation of the function.
また、本発明は、運用中の二次電池の充電率を推定する充電率推定方法であって、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算するステップと、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算するステップと、前記第2の時刻における充電率から前記第1の時刻における充電率を減じることで、充電率変化量を演算するステップと、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算するステップと、前記電流の積算値を前記充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算するステップと、異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を定期的に推定するステップと、前記推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定するステップと、前記推定した関数における時間の係数の変化を監視し、当該係数の変化が所定の閾値以上であった場合に、警告を発するステップとを有することを特徴とする。  The present invention is also a charge rate estimation method for estimating a charge rate of a secondary battery in operation, wherein the first current is measured using a measured current and a measured voltage of the secondary battery at a first time. Using the step of calculating the charging rate of the secondary battery at the time, and the measured current and measured voltage of the secondary battery at a second time that is a time after the first time, Calculating a charging rate of the secondary battery at a time; calculating a charging rate change amount by subtracting the charging rate at the first time from the charging rate at the second time; and the first Calculating the integrated value of the measured current due to charging / discharging of the secondary battery from the time to the second time, and dividing the integrated value of the current by the amount of change in the charging rate, The secondary battery is full at the time A step of calculating an electric capacity, a step of periodically estimating a function indicating a relationship between time and a full charge capacity from the full charge capacities of a plurality of secondary batteries calculated at different times, and referring to the estimated function The step of specifying the full charge capacity of the secondary battery at the current time and estimating the charge rate of the secondary battery using the full charge capacity and the integrated value of the measured current due to charge / discharge of the secondary battery And monitoring a change in a coefficient of time in the estimated function, and issuing a warning when the change in the coefficient is equal to or greater than a predetermined threshold value.

また、本発明は、運用中の二次電池の充電率を推定する充電率推定装置のコンピュータを、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部、前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部、前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部、前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部として機能させ、前記充電率推定部は、前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値と前記実測電流の誤差とを用いて前記二次電池の充電率の上限値及び下限値を演算し、前記充電率演算部が演算した充電率が、前記充電率の上限値以上である場合、前記充電率の上限値を前記二次電池の充電率として推定し、前記充電率演算部が演算した充電率が、前記充電率の下限値以下である場合、前記充電率の下限値を前記二次電池の充電率として推定し、前記充電率演算部が演算した充電率が、前記充電率の上限値未満と前記充電率の下限値との間の値を示す場合、前記充電率演算部が演算した前記第2の時刻における充電率を、前記二次電池の充電率として推定することを特徴とするプログラムである。According to the present invention, a computer of a charging rate estimation device that estimates a charging rate of a secondary battery in operation uses the measured current and measured voltage of the secondary battery at a first time, The charging rate of the secondary battery at the time is calculated, and the measured current and the measured voltage of the secondary battery at the second time, which is a time after the first time, are used at the second time. A charging rate calculation unit that calculates the charging rate of the secondary battery, and subtracts the charging rate at the first time calculated by the charging rate calculation unit from the charging rate at the second time calculated by the charging rate calculation unit. Thus, a charge rate change amount calculation unit for calculating the charge rate change amount, a current value integration unit for calculating an integrated value of the measured current due to charging / discharging of the secondary battery from the first time to the second time , The current calculated by the current value integrating unit A full charge capacity calculation unit for calculating a full charge capacity of the secondary battery at the second time by dividing the integrated value by the charge rate change calculated by the charge rate change calculation unit; Using the full charge capacity calculated by the calculation unit and the integrated value of the measured current due to charging / discharging of the secondary battery, the charge rate estimation unit that functions as a charge rate estimation unit that estimates the charge rate of the secondary battery, Is the upper limit value and lower limit of the charging rate of the secondary battery using the full charge capacity calculated by the full charge capacity calculation unit, the integrated value of the measured current due to charging and discharging of the secondary battery, and the error of the measured current When the charging rate calculated by the charging rate calculation unit is equal to or higher than the upper limit value of the charging rate, the upper limit value of the charging rate is estimated as the charging rate of the secondary battery, and the charging rate calculation is performed. The charging rate calculated by the unit is less than or equal to the lower limit value of the charging rate. The lower limit value of the charging rate is estimated as the charging rate of the secondary battery, and the charging rate calculated by the charging rate calculation unit is less than the upper limit value of the charging rate and the lower limit value of the charging rate. Is a program that estimates the charging rate at the second time calculated by the charging rate calculation unit as the charging rate of the secondary battery.

また、本発明は、運用中の二次電池の充電率を推定する充電率推定装置のコンピュータを、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部、前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部、前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部、前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部として機能させ、前記第1の時刻は、前記二次電池の実測温度または実測電流が所定の範囲内に収まっている時刻であり、前記第2の時刻は、前記第1の時刻からその時刻までの間に、前記二次電池の実測温度または実測電流が所定の範囲を超えない時刻であることを特徴とするプログラムである。  According to the present invention, a computer of a charging rate estimation device that estimates a charging rate of a secondary battery in operation uses the measured current and measured voltage of the secondary battery at a first time, The charging rate of the secondary battery at the time is calculated, and the measured current and the measured voltage of the secondary battery at the second time, which is a time after the first time, are used at the second time. A charging rate calculation unit that calculates the charging rate of the secondary battery, and subtracts the charging rate at the first time calculated by the charging rate calculation unit from the charging rate at the second time calculated by the charging rate calculation unit. Thus, a charge rate change amount calculation unit for calculating the charge rate change amount, a current value integration unit for calculating an integrated value of the measured current due to charging / discharging of the secondary battery from the first time to the second time , The current calculated by the current value integrating unit A full charge capacity calculation unit for calculating a full charge capacity of the secondary battery at the second time by dividing the integrated value by the charge rate change calculated by the charge rate change calculation unit; Using the full charge capacity calculated by the calculation unit and the integrated value of the measured current due to charging / discharging of the secondary battery, it functions as a charging rate estimation unit that estimates the charging rate of the secondary battery, and the first time Is the time when the measured temperature or measured current of the secondary battery is within a predetermined range, and the second time is the time between the first time and the time of the secondary battery. The program is characterized in that the measured temperature or measured current is a time that does not exceed a predetermined range.

また、本発明は、運用中の二次電池の充電率を推定する充電率推定装置のコンピュータを、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部、前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部、前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部、前記満充電容量演算部が異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を推定する関数推定部、前記関数推定部が推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部として機能させ、前記関数推定部は、前記満充電容量演算部が異なる時刻に演算した二次電池の満充電容量のうち、直前の時刻に演算した二次電池の満充電容量との差または推定した関数が示す満充電容量との差が所定の閾値を超えないものを前記関数の推定に用いることを特徴とするプログラムである。According to the present invention, a computer of a charging rate estimation device that estimates a charging rate of a secondary battery in operation uses the measured current and measured voltage of the secondary battery at a first time, The charging rate of the secondary battery at the time is calculated, and the measured current and the measured voltage of the secondary battery at the second time, which is a time after the first time, are used at the second time. A charging rate calculation unit that calculates the charging rate of the secondary battery, and subtracts the charging rate at the first time calculated by the charging rate calculation unit from the charging rate at the second time calculated by the charging rate calculation unit. Thus, a charge rate change amount calculation unit for calculating the charge rate change amount, a current value integration unit for calculating an integrated value of the measured current due to charging / discharging of the secondary battery from the first time to the second time , The current calculated by the current value integrating unit A full charge capacity calculation unit for calculating a full charge capacity of the secondary battery at the second time by dividing the integrated value by the charge rate change calculated by the charge rate change calculation unit; A function estimation unit that estimates a function indicating the relationship between time and full charge capacity from the full charge capacities of a plurality of secondary batteries calculated at different times by the calculation unit, and refers to the function estimated by the function estimation unit A charge rate estimation unit that specifies the full charge capacity of the secondary battery at the time and estimates the charge rate of the secondary battery using the full charge capacity and the integrated value of the measured current due to charge and discharge of the secondary battery The function estimation unit is configured to calculate or calculate a difference from a full charge capacity of the secondary battery calculated at the previous time among the full charge capacities of the secondary battery calculated at different times by the full charge capacity calculation unit. The difference from the full charge capacity indicated by the function Those that do not exceed a threshold which is a program, which comprises using the estimate of the function.
また、本発明は、運用中の二次電池の充電率を推定する充電率推定装置のコンピュータを、第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部、前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部、前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部、前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部、前記満充電容量演算部が異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を定期的に推定する関数推定部、前記関数推定部が推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部、前記関数推定部が推定した関数における時間の係数の変化を監視し、当該係数の変化が所定の閾値以上であった場合に、警告を発する警告部として機能させるためのプログラムである。  According to the present invention, a computer of a charging rate estimation device that estimates a charging rate of a secondary battery in operation uses the measured current and measured voltage of the secondary battery at a first time, The charging rate of the secondary battery at the time is calculated, and the measured current and the measured voltage of the secondary battery at the second time, which is a time after the first time, are used at the second time. A charging rate calculation unit that calculates the charging rate of the secondary battery, and subtracts the charging rate at the first time calculated by the charging rate calculation unit from the charging rate at the second time calculated by the charging rate calculation unit. Thus, a charge rate change amount calculation unit for calculating the charge rate change amount, a current value integration unit for calculating an integrated value of the measured current due to charging / discharging of the secondary battery from the first time to the second time , The current calculated by the current value integrating unit A full charge capacity calculation unit for calculating a full charge capacity of the secondary battery at the second time by dividing the integrated value by the charge rate change calculated by the charge rate change calculation unit; A function estimation unit that periodically estimates a function indicating the relationship between time and full charge capacity from the full charge capacities of a plurality of secondary batteries calculated at different times by the calculation unit, see the function estimated by the function estimation unit Charging to estimate the charging rate of the secondary battery by specifying the full charging capacity of the secondary battery at the current time and using the full charging capacity and the integrated value of the measured current by charging and discharging of the secondary battery A rate estimator, a program for monitoring a change in a coefficient of time in a function estimated by the function estimator and functioning as a warning unit that issues a warning when the change in the coefficient is equal to or greater than a predetermined threshold .

本発明によれば、充電率推定装置は、第1の時刻から第2の時刻までの充電率の変化量を求め、当該変化量を用いて二次電池の満充電容量を演算する。これにより充電率推定装置は、二次電池が静定状態であるか否かによらず、二次電池の満充電容量を推定することができる。そして、充電率推定装置は、当該満充電容量と実測電流と電圧と温度とを用いて充電率を推定する。これにより充電率推定装置は、二次電池が静定状態であるか否かによらず、二次電池の劣化による満充電容量変化を加味した充電率の推定を行うことができる。   According to the present invention, the charging rate estimation device calculates a change amount of the charging rate from the first time to the second time, and calculates the full charge capacity of the secondary battery using the change amount. Thereby, the charging rate estimation apparatus can estimate the full charge capacity of the secondary battery regardless of whether or not the secondary battery is in a static state. The charging rate estimation device estimates the charging rate using the full charge capacity, the measured current, the voltage, and the temperature. Thereby, the charging rate estimation apparatus can estimate the charging rate in consideration of a change in full charge capacity due to deterioration of the secondary battery, regardless of whether or not the secondary battery is in a static state.

本発明の第1の実施形態による充電率推定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the charging rate estimation apparatus by the 1st Embodiment of this invention. 開放電圧演算部が記憶する物理モデルの例である。It is an example of the physical model which an open circuit voltage calculating part memorize | stores. 第1の実施形態による充電率推定装置による満充電容量を特定するフェーズを示すフローチャートである。It is a flowchart which shows the phase which specifies the full charge capacity by the charge rate estimation apparatus by 1st Embodiment. 満充電容量の変化率から推定される劣化関数の例を示す図である。It is a figure which shows the example of the deterioration function estimated from the change rate of a full charge capacity. 第1の実施形態による充電率推定装置によるSOCを算出するフェーズを示すフローチャートである。It is a flowchart which shows the phase which calculates SOC by the charging rate estimation apparatus by 1st Embodiment. 充電率推定装置の処理概要を示す図である。It is a figure which shows the process outline | summary of a charging rate estimation apparatus. 本発明の第2の実施形態による充電率推定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the charging rate estimation apparatus by the 2nd Embodiment of this invention. 実測電流値と誤差の一例を示す図である。It is a figure which shows an example of measured current value and an error. 本発明の第3の実施形態による充電率推定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the charging rate estimation apparatus by the 3rd Embodiment of this invention. 除外する満充電容量の例を示す図である。It is a figure which shows the example of the full charge capacity to exclude. 開放電圧とSOCVとの関係の一例を示す図である。It is a figure which shows an example of the relationship between an open circuit voltage and SOCV. 本発明の第4の実施形態による充電率推定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the charging rate estimation apparatus by the 4th Embodiment of this invention. SOC一定制御ロジックの例を示す図である。It is a figure which shows the example of SOC constant control logic. 本発明の第5の実施形態による充電率推定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the charging rate estimation apparatus by the 5th Embodiment of this invention.

《第1の実施形態》
以下、図面を参照しながら本発明の第1の実施形態について詳しく説明する。
図1は、本発明の第1の実施形態による充電率推定装置100の構成を示す概略ブロック図である。
充電率推定装置100は、運用中の二次電池のSOC(充電率)を推定する装置であり、タイミング判定部101、開放電圧演算部102、SOCV演算部103(充電率演算部)、SOC変化量演算部104(充電率変化量演算部)、電流値積算部105、満充電容量演算部106、関数推定部107、前SOC記憶部108、誤差記憶部109、SOCI演算部110、SOC推定部111(充電率推定部)、表示部112を備える。
<< First Embodiment >>
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic block diagram showing a configuration of a charging rate estimation apparatus 100 according to the first embodiment of the present invention.
The charging rate estimation device 100 is a device that estimates the SOC (charging rate) of a secondary battery in operation, and includes a timing determination unit 101, an open-circuit voltage calculation unit 102, an SOCV calculation unit 103 (charging rate calculation unit), and an SOC change. Amount calculation unit 104 (charge rate change amount calculation unit), current value integration unit 105, full charge capacity calculation unit 106, function estimation unit 107, previous SOC storage unit 108, error storage unit 109, SOCI calculation unit 110, SOC estimation unit 111 (charge rate estimation unit) and display unit 112.

タイミング判定部101は、所定の周期(以下、SOC演算周期と呼ぶ)毎に、開放電圧演算部102及び電流値積算部105にSOC演算指示信号を出力する。また、タイミング判定部101は、SOC演算周期の整数倍の周期(以下、容量演算周期と呼ぶ)毎にSOC変化量演算部104に容量演算指示信号を出力する。なお、当該容量演算指示信号の出力により、充電率推定装置100は、SOC算出に用いる満充電容量の修正を行う。また、SOC演算周期は、例えば0.1秒から1秒程度の周期であり、容量演算周期は、例えば3600秒程度の周期である。   Timing determination unit 101 outputs an SOC calculation instruction signal to open-circuit voltage calculation unit 102 and current value integration unit 105 at every predetermined cycle (hereinafter referred to as an SOC calculation cycle). Further, the timing determination unit 101 outputs a capacity calculation instruction signal to the SOC change amount calculation unit 104 every cycle that is an integral multiple of the SOC calculation cycle (hereinafter referred to as a capacity calculation cycle). In addition, the charging rate estimation apparatus 100 corrects the full charge capacity used for the SOC calculation based on the output of the capacity calculation instruction signal. The SOC calculation cycle is, for example, a cycle of about 0.1 to 1 second, and the capacity calculation cycle is, for example, a cycle of about 3600 seconds.

開放電圧演算部102は、二次電池の内部インピーダンスを示す物理モデルを記憶している。図2は、開放電圧演算部102が記憶する物理モデルの例である。図2に示す物理モデルは、抵抗RとコンデンサCを並列に接続した回路に、抵抗R及び電源を直列に接続した回路である。そして、開放電圧演算部102は、タイミング判定部101からSOC演算指示信号を受け付けたときに、二次電池の実測電圧、実測電流及び実測温度と、予め求めておいた二次電池の内部インピーダンス値(R、C及びR)とを用いて、二次電池の開放電圧Vocvを演算する。 The open circuit voltage calculation unit 102 stores a physical model indicating the internal impedance of the secondary battery. FIG. 2 is an example of a physical model stored in the open circuit voltage calculation unit 102. Physical model shown in FIG. 2, the connecting the resistor R a and a capacitor C a in parallel circuit, the resistance R d and the power supply is a circuit connected in series. When the open circuit voltage calculation unit 102 receives the SOC calculation instruction signal from the timing determination unit 101, the measured voltage, measured current, and measured temperature of the secondary battery, and the internal impedance value of the secondary battery obtained in advance. (R a , C a and R d ) are used to calculate the open-circuit voltage V ocv of the secondary battery.

SOCV演算部103は、二次電池の開放電圧とSOCの関係を示すテーブルを記憶しており、当該テーブルを参照して、開放電圧演算部102が演算した二次電池の開放電圧から二次電池のSOCを演算する。なお、以下SOCV演算部103が演算したSOCをSOCVと呼ぶ。
SOC変化量演算部104は、タイミング判定部101からSOC演算指示信号を受け付けた場合、SOCV演算部103が前回SOC演算指示信号を受け付けた時に演算したSOCVと、SOCV演算部103が今回演算したSOCVとの差分を二次電池のSOC変化量として演算する。すなわち、SOC変化量演算部104は、今回の容量演算周期に相当する時刻(第2の時刻)におけるSOCVと、前回の容量演算周期に相当する時刻(第1の時刻)におけるSOCVとの差分を、二次電池のSOC変化量として演算する。
The SOCV calculation unit 103 stores a table indicating the relationship between the open-circuit voltage of the secondary battery and the SOC, and the secondary battery is determined from the open-circuit voltage of the secondary battery calculated by the open-circuit voltage calculation unit 102 with reference to the table. Is calculated. Hereinafter, the SOC calculated by the SOCV calculation unit 103 is referred to as SOCV.
When the SOC change calculation unit 104 receives the SOC calculation instruction signal from the timing determination unit 101, the SOC change calculation unit 104 calculates the SOCV calculated when the SOCV calculation unit 103 received the previous SOC calculation instruction signal and the SOCV calculation unit 103 calculated this time. Is calculated as the SOC change amount of the secondary battery. That is, the SOC change amount calculation unit 104 calculates the difference between the SOCV at the time corresponding to the current capacity calculation cycle (second time) and the SOCV at the time corresponding to the previous capacity calculation cycle (first time). The calculation is made as the SOC change amount of the secondary battery.

電流値積算部105は、タイミング判定部101からSOC演算指示信号を受け付けた場合、実測電流値を取得し、当該実測電流値にSOC演算周期を乗算することで単位時間当たりの電流積算値を算出し、算出した電流積算値を、それまでに算出した電流積算値に加算する。これにより、電流値積算部105は、現在時刻までにおける二次電池の充放電による電流積算値を演算する。なお、電流値積算部105は、満充電容量演算部106が二次電池の満充電容量を算出したときに、算出した電流積算値を0にリセットする。
満充電容量演算部106は、電流値積算部105が演算した電流積算値をSOC変化量演算部104が演算したSOC変化量で除算することで、容量演算周期に対応する時刻における二次電池の満充電容量を演算する。また、満充電容量演算部106は、関数推定部107が推定した関数を用いて、演算した満充電容量を更新する。
関数推定部107は、満充電容量演算部106が異なる時刻において演算した満充電容量を用いて、電池劣化比率を示す関数を推定する。
前SOC記憶部108は、前回の容量演算周期に相当する時刻において演算した二次電池のSOCを記憶する。なお、前SOC記憶部108は予め、二次電池の運用開始前に測定しておいた二次電池のSOCを記憶している。
誤差記憶部109は、実測電流に推定される誤差と満充電容量演算部106が演算する満充電容量に推定される誤差とを記憶する。
When the SOC calculation instruction signal is received from the timing determination unit 101, the current value integration unit 105 acquires an actual measurement current value, and calculates an integrated current value per unit time by multiplying the actual measurement current value by the SOC calculation cycle. Then, the calculated current integrated value is added to the current integrated value calculated so far. Thereby, the current value integration unit 105 calculates the current integration value due to charging / discharging of the secondary battery up to the current time. The current value integration unit 105 resets the calculated current integration value to 0 when the full charge capacity calculation unit 106 calculates the full charge capacity of the secondary battery.
The full charge capacity calculation unit 106 divides the current integration value calculated by the current value integration unit 105 by the SOC change amount calculated by the SOC change amount calculation unit 104, so that the secondary battery at the time corresponding to the capacity calculation cycle is obtained. Calculate the full charge capacity. In addition, the full charge capacity calculation unit 106 updates the calculated full charge capacity using the function estimated by the function estimation unit 107.
The function estimation unit 107 estimates a function indicating the battery deterioration ratio using the full charge capacity calculated at different times by the full charge capacity calculation unit 106.
The previous SOC storage unit 108 stores the SOC of the secondary battery calculated at a time corresponding to the previous capacity calculation cycle. In addition, the pre-SOC storage unit 108 stores the SOC of the secondary battery measured in advance before starting the operation of the secondary battery.
The error storage unit 109 stores an error estimated for the actually measured current and an error estimated for the full charge capacity calculated by the full charge capacity calculation unit 106.

SOCI演算部110は、満充電容量演算部106が演算した満充電容量、電流値積算部105が演算した電流積算値、前SOC記憶部108が記憶するSOC、及び誤差記憶部109が記憶する誤差を用いて現在時刻における二次電池のSOCとして推定されるSOC上限値(以下、SOCImaxと呼ぶ)及びSOC下限値(以下、SOCIminと呼ぶ)を演算する。
なお、二次電池の運用開始から間もない場合など、関数推定部107によって関数が推定されていない場合、SOCI演算部110は、関数を用いた満充電容量の特定を行わず、満充電容量演算部106が演算した満充電容量を用いてSOCIを演算する。
The SOCI calculation unit 110 includes the full charge capacity calculated by the full charge capacity calculation unit 106, the current integration value calculated by the current value integration unit 105, the SOC stored in the previous SOC storage unit 108, and the error stored in the error storage unit 109. Is used to calculate the SOC upper limit (hereinafter referred to as SOCI max ) and the SOC lower limit (hereinafter referred to as SOCI min ) estimated as the SOC of the secondary battery at the current time.
In addition, when the function is not estimated by the function estimation unit 107, such as when the operation of the secondary battery is shortly started, the SOCI calculation unit 110 does not specify the full charge capacity using the function, and the full charge capacity The SOCI is calculated using the full charge capacity calculated by the calculation unit 106.

SOC推定部111は、SOCI演算部110が演算したSOCImax及びSOCIminとSOCV演算部103が演算したSOCVとを比較して二次電池のSOCを推定する。SOC推定部111は、推定したSOCを前SOC記憶部108に記録し、また表示部112に出力する。
表示部112は、SOC推定部111が推定した二次電池のSOCを表示する。
The SOC estimation unit 111 estimates the SOC of the secondary battery by comparing the SOCI max and SOCI min calculated by the SOCI calculation unit 110 with the SOCV calculated by the SOCV calculation unit 103. The SOC estimation unit 111 records the estimated SOC in the previous SOC storage unit 108 and outputs it to the display unit 112.
Display unit 112 displays the SOC of the secondary battery estimated by SOC estimation unit 111.

次に、第1の実施形態による充電率推定装置100の動作について説明する。
図3は、第1の実施形態による充電率推定装置100による満充電容量を特定するフェーズを示すフローチャートである。
充電率推定装置100が二次電池のSOCの推定を開始すると、タイミング判定部101は、SOC演算周期でSOC演算指示信号を出力し、容量演算周期で容量演算指示信号を出力する。なお、容量演算周期は、SOC演算周期の整数倍の周期であるため、容量演算指示信号は、必ずSOC演算指示信号と同時に出力されることとなる。
Next, the operation of the charging rate estimation apparatus 100 according to the first embodiment will be described.
FIG. 3 is a flowchart showing a phase for specifying the full charge capacity by the charging rate estimation apparatus 100 according to the first embodiment.
When the charging rate estimation apparatus 100 starts estimating the SOC of the secondary battery, the timing determination unit 101 outputs an SOC calculation instruction signal at the SOC calculation period and outputs a capacity calculation instruction signal at the capacity calculation period. Since the capacity calculation cycle is an integer multiple of the SOC calculation cycle, the capacity calculation instruction signal is always output at the same time as the SOC calculation instruction signal.

まず、開放電圧演算部102及び電流値積算部105は、タイミング判定部101がSOC演算指示信号を出力したか否かを判定する(ステップS101)。タイミング判定部101がSOC演算指示信号を出力していない場合(ステップS101:NO)、開放電圧演算部102及び電流値積算部105は、タイミング判定部101によるSOC演算指示信号の出力を待機する。   First, open-circuit voltage calculation unit 102 and current value integration unit 105 determine whether or not timing determination unit 101 has output an SOC calculation instruction signal (step S101). When the timing determination unit 101 does not output the SOC calculation instruction signal (step S101: NO), the open circuit voltage calculation unit 102 and the current value integration unit 105 wait for the timing determination unit 101 to output the SOC calculation instruction signal.

他方、タイミング判定部101がSOC演算指示信号を出力した場合(ステップS101:YES)、開放電圧演算部102は、現在時刻における二次電池の実測電圧及び実測電流を取得し、図2に示す物理モデルに当てはめることで二次電池の開放電圧を演算する(ステップS102)。次に、SOCV演算部103は、開放電圧とSOCの関係を示すテーブルを参照して、開放電圧演算部102が演算した開放電圧からSOCVを演算する(ステップS103)。   On the other hand, when the timing determination unit 101 outputs the SOC calculation instruction signal (step S101: YES), the open circuit voltage calculation unit 102 acquires the measured voltage and measured current of the secondary battery at the current time, and performs the physical processing shown in FIG. By applying to the model, the open-circuit voltage of the secondary battery is calculated (step S102). Next, the SOCV calculation unit 103 calculates an SOCV from the open circuit voltage calculated by the open circuit voltage calculation unit 102 with reference to a table indicating the relationship between the open circuit voltage and the SOC (step S103).

他方、電流値積算部105は、タイミング判定部101からSOC演算指示信号を受け付けると、現在時刻における二次電池の実測電流を取得し、当該実測電流をSOC演算周期で乗算し、当該値をそれまで算出した電流積算値に加算することで、現在時刻までにおける電流積算値を算出する(ステップS104)。具体的には、以下に示す式(2)を用いてSOC演算周期における電流積算値Ahを算出する。   On the other hand, when the current value integrating unit 105 receives the SOC calculation instruction signal from the timing determining unit 101, the current value integrating unit 105 acquires the measured current of the secondary battery at the current time, multiplies the measured current by the SOC calculation cycle, and calculates the calculated value. The current integrated value up to the current time is calculated by adding to the current integrated value calculated up to (step S104). Specifically, the current integrated value Ah in the SOC calculation cycle is calculated using the following equation (2).

Figure 0005535968
Figure 0005535968

但し、分母である3600は、電流積算値の単位をAh(アンペア時間)にするための定数である。また、I(n)は、時刻nにおける二次電池の実測電流であり、Tは、SOC演算周期である。
なお、予め二次電池に並列に接続される制御回路電源やセル電圧バランス回路による消費電流ILoss(n)が分かっている場合、式(2)に代えて式(3)を用いて電流積算値Ahを算出することが好ましい。
However, the denominator 3600 is a constant for setting the unit of the current integrated value to Ah (ampere time). In addition, I m (n) is an actually measured current of the secondary battery at time n, and T s is an SOC calculation cycle.
If the current consumption I Loss (n) by the control circuit power supply or cell voltage balance circuit connected in parallel to the secondary battery is known in advance, the current integration is performed using equation (3) instead of equation (2). It is preferable to calculate the value Ah.

Figure 0005535968
Figure 0005535968

次に、SOC変化量演算部104は、タイミング判定部101が容量演算指示信号を出力したか否かを判定する(ステップS105)。タイミング判定部101が容量演算指示信号を出力した場合(ステップS105:YES)、SOC変化量演算部104は、SOCV演算部103が演算したSOCVと、SOCV演算部103が前回容量演算指示信号を受け付けたときに演算したSOCVとの差を求めることでSOC変化量を演算する(ステップS106)。なお、SOCV演算部103が前回容量演算指示信号を受け付けたときに演算したSOCVは、SOC変化量演算部104の内部メモリに記憶されている。また、初回実行時には、前回SOCV演算部103が演算したSOCVが無いため、代わりに予め測定しておいた二次電池の初期状態のSOCを用いてSOC変化量を演算する。   Next, the SOC change amount calculation unit 104 determines whether or not the timing determination unit 101 has output a capacity calculation instruction signal (step S105). When the timing determination unit 101 outputs a capacity calculation instruction signal (step S105: YES), the SOC change amount calculation unit 104 receives the SOCV calculated by the SOCV calculation unit 103 and the SOCV calculation unit 103 receives the previous capacity calculation instruction signal. The SOC change amount is calculated by obtaining the difference from the calculated SOCV (step S106). Note that the SOCV calculated when the SOCV calculation unit 103 received the previous capacity calculation instruction signal is stored in the internal memory of the SOC change amount calculation unit 104. In addition, at the time of the first execution, since there is no SOCV calculated by the previous SOCV calculation unit 103, the SOC change amount is calculated using the SOC of the secondary battery that has been measured in advance instead.

次に、満充電容量演算部106は、電流値積算部105が演算した電流積算値をSOC変化量演算部104が演算したSOC変化量で除算することで、現在時刻における二次電池の満充電容量を演算する(ステップS107)。このとき、電流値積算部105は、現在時刻までの積算電流値を0にリセットする(ステップS108)。   Next, the full charge capacity calculation unit 106 divides the current integration value calculated by the current value integration unit 105 by the SOC change amount calculated by the SOC change amount calculation unit 104, thereby fully charging the secondary battery at the current time. The capacity is calculated (step S107). At this time, the current value integrating unit 105 resets the integrated current value up to the current time to 0 (step S108).

次に、関数推定部107は、満充電容量演算部106が演算した満充電容量を、二次電池の初期満充電容量(公称電池容量)で除算することで、満充電容量の変化率を算出し、当該満充電容量の変化率を、現在時刻に関連付けて内部メモリに記録する(ステップS109)。次に、関数推定部107は、内部メモリに記憶する満充電容量の変化率の数が所定数以上になったか否かを判定する(ステップS110)。   Next, the function estimation unit 107 calculates the change rate of the full charge capacity by dividing the full charge capacity calculated by the full charge capacity calculation unit 106 by the initial full charge capacity (nominal battery capacity) of the secondary battery. Then, the change rate of the full charge capacity is recorded in the internal memory in association with the current time (step S109). Next, the function estimation unit 107 determines whether or not the number of change rates of the full charge capacity stored in the internal memory has become a predetermined number or more (step S110).

関数推定部107は、記憶している満充電容量の変化率の数が所定数以上であると判定した場合(ステップS110:YES)、満充電容量の変化率を用いて、二次電池の満充電容量と時刻(または使用開始からの経過時間)との関係を示す劣化関数を推定する(ステップS111)。   When the function estimation unit 107 determines that the stored change rate of the full charge capacity is equal to or greater than the predetermined number (step S110: YES), the function estimation unit 107 uses the change rate of the full charge capacity to fill the secondary battery. A deterioration function indicating the relationship between the charge capacity and time (or elapsed time from the start of use) is estimated (step S111).

図4は、満充電容量の変化率から推定される劣化関数の例を示す図である。
具体的には、内部メモリに記憶する満充電容量の変化率と時刻の組み合わせに対して回帰分析処理などを行うことで、図4に示すように、時間経過による二次電池の劣化を示す近似曲線を推定し、当該近似曲線の関数を劣化関数とする。なお、他の二次電池の運用により劣化の傾向が予め分かっている場合は、近似曲線の種類(例えば、一次関数、高次関数、対数関数など)を予め指定しておくことが好ましい。
FIG. 4 is a diagram illustrating an example of a deterioration function estimated from the rate of change of the full charge capacity.
Specifically, by performing a regression analysis process on the combination of the rate of change of the full charge capacity stored in the internal memory and the time, an approximation indicating the deterioration of the secondary battery over time as shown in FIG. A curve is estimated, and the function of the approximate curve is used as a deterioration function. In addition, when the tendency of deterioration is known in advance by the operation of another secondary battery, it is preferable to previously specify the type of approximate curve (for example, a linear function, a high-order function, a logarithmic function, etc.).

そして、関数推定部107が劣化関数を推定すると、満充電容量演算部106は、図4に示すように、当該劣化関数から現在時刻における二次電池の電池劣化比率を特定し、初期満充電容量に当該電池劣化比率を乗じることで満充電容量を演算する(ステップS112)。そして、満充電容量演算部106は、ステップS107で演算した満充電容量を、ステップS112で演算した満充電容量に更新する。   When the function estimation unit 107 estimates the deterioration function, the full charge capacity calculation unit 106 specifies the battery deterioration ratio of the secondary battery at the current time from the deterioration function, as shown in FIG. Is multiplied by the battery deterioration ratio to calculate the full charge capacity (step S112). Then, the full charge capacity calculation unit 106 updates the full charge capacity calculated in step S107 to the full charge capacity calculated in step S112.

ここで、劣化関数を用いて満充電容量を演算する理由を説明する。満充電容量演算部106は、満充電容量の演算にSOCVを用いている。また、SOCVの演算には、開放電圧演算部102が演算した開放電圧が用いられている。開放電圧演算部102は、物理モデルを用いて開放電圧を演算するが、当該物理モデルは必ずしも実際の二次電池と一致しないため、演算結果にはモデル誤差が含まれることとなる。そのため、満充電容量演算部106が演算した満充電容量にも少なからずモデル誤差によるばらつきが生じることとなる。そこで、ステップS110において近似曲線の推定によって劣化関数を推定し、当該劣化関数を用いて満充電容量を算出することで、モデル誤差によるばらつきを減少させることができる。   Here, the reason for calculating the full charge capacity using the deterioration function will be described. The full charge capacity calculation unit 106 uses the SOCV for calculation of the full charge capacity. In addition, the open circuit voltage calculated by the open circuit voltage calculation unit 102 is used for the calculation of the SOCV. The open-circuit voltage calculation unit 102 calculates the open-circuit voltage using a physical model. However, since the physical model does not necessarily match an actual secondary battery, the calculation result includes a model error. For this reason, the full charge capacity calculated by the full charge capacity calculation unit 106 is not limited and variations due to model errors occur. Therefore, by estimating the deterioration function by estimating the approximate curve in step S110 and calculating the full charge capacity using the deterioration function, variation due to model error can be reduced.

図5は、第1の実施形態による充電率推定装置100によるSOCを算出するフェーズを示すフローチャートである。
ステップS103で容量演算指示信号が出力されていないと判定した場合(ステップS103:NO)、ステップS110で関数推定部107が、記憶している満充電容量の変化率の数が所定数未満であると判定した場合(ステップS110:NO)、またはステップS113で満充電容量演算部106が満充電容量を更新した場合、SOCI演算部110は、満充電容量演算部106が最後に演算した満充電容量、電流値積算部105が演算した電流積算値、前SOC記憶部108が記憶するSOC、及び誤差記憶部109が記憶する誤差を、以下に示す式(4)及び式(5)に適用することで、SOCImax及びSOCIminを演算する(ステップS114)。
FIG. 5 is a flowchart showing a phase for calculating the SOC by the charging rate estimation apparatus 100 according to the first embodiment.
If it is determined in step S103 that the capacity calculation instruction signal is not output (step S103: NO), the function estimation unit 107 stores the number of change rates of the full charge capacity that is less than the predetermined number in step S110. (Step S110: NO), or when the full charge capacity calculation unit 106 updates the full charge capacity in step S113, the SOCI calculation unit 110 calculates the full charge capacity last calculated by the full charge capacity calculation unit 106. The current integrated value calculated by the current value integrating unit 105, the SOC stored in the previous SOC storage unit 108, and the error stored in the error storage unit 109 are applied to the following equations (4) and (5). Thus, SOCI max and SOCI min are calculated (step S114).

Figure 0005535968
Figure 0005535968

Figure 0005535968
Figure 0005535968

但し、Smax(n)は、時刻nにおける二次電池のSOCImaxを示し、Smin(n)は、時刻nにおける二次電池のSOCIminを示す。また、S(n−1)は、前回のSOC演算周期に対応する時刻における二次電池のSOCである。また、Qは、演算によって求めた満充電容量である。また、I(n)は、時刻nにおける電流値である。
また、係数Aは、式(6)に示す定数である。
Here, S max (n) represents the SOCI max of the secondary battery at time n, and S min (n) represents the SOCI min of the secondary battery at time n. S (n-1) is the SOC of the secondary battery at the time corresponding to the previous SOC calculation cycle. Q e is a full charge capacity obtained by calculation. I m (n) is a current value at time n.
The coefficient A is a constant shown in the equation (6).

Figure 0005535968
Figure 0005535968

Aの分母である3600は、電流積算値の単位をAh(アンペア時間)にするための定数である。また、Aの分子である100は、SOCをパーセント表示にするための定数である。また、Tは、SOC演算周期であり、式(4)、式(5)に含まれるI(n)と乗算することで電流積算値を表す。
また、式(4)、式(5)に含まれるΔSerr(n)は、時刻nにおけるSOC誤差であって、式(7)によって表される。
A denominator 3600 is a constant for setting the unit of the current integrated value to Ah (ampere time). Further, 100, which is the numerator of A, is a constant for displaying the SOC as a percentage. Further, T s is an SOC calculation cycle, and represents a current integrated value by multiplying by I m (n) included in the expressions (4) and (5).
Further, ΔS err (n) included in Expression (4) and Expression (5) is an SOC error at time n, and is expressed by Expression (7).

Figure 0005535968
Figure 0005535968

なお、ΔQは、満充電容量誤差を示し、ΔI(n)は、実測電流誤差を示す。式(7)に示すように、満充電容量誤差の上限値または下限値の何れを用いるか、及び実測電流誤差の上限値または下限値の何れを用いるかによって、SOC誤差として4つの値を演算することができる。このうち、式(4)に含まれるmax(ΔSerr(n))は、SOC誤差の最大値を示し、式(5)に含まれるmin(ΔSerr(n))は、SOC誤差の最小値を示す。 ΔQ e indicates a full charge capacity error, and ΔI m (n) indicates an actually measured current error. As shown in Equation (7), four values are calculated as the SOC error depending on whether the upper limit value or lower limit value of the full charge capacity error is used or the upper limit value or lower limit value of the measured current error is used. can do. Among these, max (ΔS err (n)) included in the equation (4) represents the maximum value of the SOC error, and min (ΔS err (n)) included in the equation (5) represents the minimum value of the SOC error. Indicates.

なお、上記式(4)及び式(5)は、式(1)´のI(n)にI(n)±ΔI(n)を代入し、QにQ±ΔQを代入し、これを展開したものである。 In the above formulas (4) and (5), I m (n) ± ΔI m (n) is substituted for I (n) of formula (1) ′, and Q e ± ΔQ e is substituted for Q. This is an expansion of this.

そして、ステップS109におけるSOCの演算では、前SOC記憶部108が記憶するSOCをS(n−1)とし、電流値積算部105が演算した電流積算値をI(n)Tとし、満充電容量演算部106が最後に演算した満充電容量をQとする。また、誤差記憶部109が記憶する満充電容量の誤差をΔQとし、誤差記憶部109が記憶する実測電流の誤差をΔI(n)とする。 In the calculation of the SOC in step S109, the SOC stored in the previous SOC storage unit 108 is S (n-1), the current integration value calculated by the current value integration unit 105 is I m (n) T s, and The full charge capacity calculated last by the charge capacity calculation unit 106 is defined as Q e . Further, the error of the full charge capacity stored in the error storage unit 109 is represented by ΔQ e , and the error of the actually measured current stored in the error storage unit 109 is represented by ΔI m (n).

ステップS114でSOCI演算部110がSOCImax及びSOCIminを演算すると、SOC推定部111は、ステップS103でSOCV演算部103が演算したSOCVと、SOCI演算部110が演算したSOCImax及びSOCIminとを比較する(ステップS115)。SOC推定部111は、SOCVがSOCImax以上であると判定した場合(ステップS115:SOCV≧SOCImax)、SOCImaxを二次電池のSOCと推定する(ステップS116)。また、SOC推定部111は、SOCVがSOCImin以下であると判定した場合(ステップS115:SOCImin≧SOCV)、SOCIminを二次電池のSOCと推定する(ステップS117)。また、SOC推定部111は、SOCVがSOCIminより大きく、かつSOCImaxより小さいと判定した場合(ステップS115:SOCImax>SOCV>SOCImin)、SOCVを二次電池のSOCと推定する(ステップS118)。 When the SOCI calculation unit 110 calculates SOCI max and SOCI min in step S114, the SOC estimation unit 111 calculates the SOCV calculated by the SOCV calculation unit 103 in step S103, and the SOCI max and SOCI min calculated by the SOCI calculation unit 110. Compare (step S115). When SOC estimation unit 111 determines that SOCV is equal to or greater than SOCI max (step S115: SOCV ≧ SOCI max ), it estimates SOCI max as the SOC of the secondary battery (step S116). In addition, when SOC estimation unit 111 determines that SOCV is equal to or lower than SOCI min (step S115: SOCI min ≧ SOCV), it estimates SOCI min as the SOC of the secondary battery (step S117). When SOC estimation unit 111 determines that SOCV is larger than SOCI min and smaller than SOCI max (step S115: SOCI max >SOCV> SOCI min ), SOCV is estimated as the SOC of the secondary battery (step S118). ).

SOC推定部111は、ステップS116〜ステップS118の何れかによって二次電池のSOCを推定すると、当該SOCを前SOC記憶部108に記録する(ステップS119)。また、SOC推定部111は、推定したSOCを表示部112に出力する(ステップS120)。これにより、表示部112は、現在時刻における二次電池のSOCを表示することができる。   When SOC estimation of the secondary battery is estimated in any of steps S116 to S118, SOC estimation unit 111 records the SOC in previous SOC storage unit 108 (step S119). Moreover, the SOC estimation part 111 outputs the estimated SOC to the display part 112 (step S120). Thereby, display unit 112 can display the SOC of the secondary battery at the current time.

図6は、充電率推定装置100の処理概要を示す図である。
図6に示す時刻nにおいて、タイミング判定部101が容量演算指示信号を出力すると、満充電容量演算部106は、満充電容量を演算する。また、図6に示すように、時刻nにおいて、SOCV演算部103はSOCVを演算し、またSOCI演算部110は、SOCImax及びSOCIminを演算する。時刻nにおいては、SOCVがSOCImax以上であるため、充電率推定装置100は、SOCImaxを時刻nにおける二次電池のSOCと推定する。
また、時刻nから時刻n+1までの間、SOC演算周期毎にSOCV演算部103はSOCVを演算し、またSOCI演算部110は、SOCImax及びSOCIminを演算し、充電率推定装置100は、SOCV、SOCImax及びSOCIminに基づいて、その時刻における二次電池のSOCを推定する。
FIG. 6 is a diagram showing a processing outline of the charging rate estimation apparatus 100.
When the timing determination unit 101 outputs a capacity calculation instruction signal at time n shown in FIG. 6, the full charge capacity calculation unit 106 calculates the full charge capacity. As shown in FIG. 6, at time n, SOCV calculation unit 103 calculates SOCV, and SOCI calculation unit 110 calculates SOCI max and SOCI min . At time n, since SOCV is equal to or higher than SOCI max , charging rate estimation apparatus 100 estimates SOCI max as the SOC of the secondary battery at time n.
In addition, from time n to time n + 1, the SOCV calculation unit 103 calculates SOCV for each SOC calculation cycle, the SOCI calculation unit 110 calculates SOCI max and SOCI min , and the charging rate estimation apparatus 100 performs the SOCV Based on the SOCI max and the SOCI min , the SOC of the secondary battery at that time is estimated.

また、時刻n+1において、タイミング判定部101が容量演算指示信号を出力すると、満充電容量演算部106は、満充電容量を演算する。また、SOCV演算部103はSOCVを演算し、またSOCI演算部110はSOCImax及びSOCIminを演算する。時刻n+1においては、SOCVがSOCImin以下であるため、充電率推定装置100は、SOCIminを時刻n+1における二次電池のSOCと推定する。
また、時刻n+1から時刻n+2までの間、SOC演算周期毎にSOCV演算部103はSOCVを演算し、またSOCI演算部110は、SOCImax及びSOCIminを演算し、充電率推定装置100は、SOCV、SOCImax及びSOCIminに基づいて、その時刻における二次電池のSOCを推定する。
When the timing determination unit 101 outputs a capacity calculation instruction signal at time n + 1, the full charge capacity calculation unit 106 calculates the full charge capacity. The SOCV calculation unit 103 calculates SOCV, and the SOCI calculation unit 110 calculates SOCI max and SOCI min . At time n + 1, since SOCV is equal to or lower than SOCI min , charging rate estimation apparatus 100 estimates SOCI min as the SOC of the secondary battery at time n + 1.
In addition, from time n + 1 to time n + 2, the SOCV calculation unit 103 calculates SOCV at every SOC calculation cycle, the SOCI calculation unit 110 calculates SOCI max and SOCI min , and the charging rate estimation apparatus 100 performs the SOCV Based on the SOCI max and the SOCI min , the SOC of the secondary battery at that time is estimated.

また、時刻n+2において、タイミング判定部101が容量演算指示信号を出力すると、満充電容量演算部106は、満充電容量を演算する。また、SOCV演算部103はSOCVを演算し、またSOCI演算部110はSOCImax及びSOCIminを演算する。時刻n+2においては、SOCVがSOCImaxとSOCIminの間の値であるため、充電率推定装置100は、SOCVを時刻n+2における二次電池のSOCと推定する。 When the timing determination unit 101 outputs a capacity calculation instruction signal at time n + 2, the full charge capacity calculation unit 106 calculates the full charge capacity. The SOCV calculation unit 103 calculates SOCV, and the SOCI calculation unit 110 calculates SOCI max and SOCI min . At time n + 2, since SOCV is a value between SOCI max and SOCI min , charging rate estimation apparatus 100 estimates SOCV as the SOC of the secondary battery at time n + 2.

このように、本実施形態によれば、充電率推定装置100は、容量演算周期の間のSOCの変化量を求め、当該変化量を用いて二次電池の満充電容量を演算する。これにより、二次電池が静定状態であるか否かによらず、二次電池の満充電容量を推定することができる。そして、充電率推定装置100は、当該満充電容量と電流積算値とを用いてSOCIを演算する。これにより、二次電池が静定状態であるか否かによらず、二次電池の劣化による満充電容量の変化を加味したSOCの推定を行うことができる。   As described above, according to the present embodiment, the charging rate estimation apparatus 100 calculates the SOC change amount during the capacity calculation cycle, and calculates the full charge capacity of the secondary battery using the change amount. Thereby, the full charge capacity of the secondary battery can be estimated regardless of whether or not the secondary battery is in a static state. Then, the charging rate estimation apparatus 100 calculates the SOCI using the full charge capacity and the current integrated value. Thereby, regardless of whether or not the secondary battery is in a static state, it is possible to estimate the SOC in consideration of the change in the full charge capacity due to the deterioration of the secondary battery.

また、本実施形態によれば、SOCVの値が信頼できる範囲(実測電流の誤差を反映したSOCmin〜SOCmaxの範囲)内の値である場合には、そのSOCVの値を現在時刻のSOCと推定する。他方、SOCVの値が信頼できる範囲内の値でない場合には、SOCminまたはSOCmaxのうちSOCVに近いものを、現在時刻のSOCと推定する。
したがって、推定した二次電池の開放電圧の値が信頼できないような場合でも、SOCVとSOCImin及びSOCImaxとの関係から、最適であろうと推定できる値を現在のSOCと決定することになる。これにより、演算したSOCの値について、過去の累積的な誤差の混入を防ぐことができ、SOCの推定精度を向上させることができる。
Further, according to the present embodiment, when the SOCV value is within a reliable range (SOC min to SOC max reflecting the error of the measured current), the SOCV value is set to the SOC at the current time. Estimated. On the other hand, if the SOCV value is not within a reliable range, the SOC min or SOC max that is close to the SOCV is estimated as the SOC at the current time.
Therefore, even when the estimated open-circuit voltage value of the secondary battery is unreliable, the current SOC is determined as a value that can be estimated to be optimal from the relationship between SOCV, SOCI min, and SOCI max . Thereby, it is possible to prevent past cumulative errors from being mixed in the calculated SOC value, and to improve the estimation accuracy of the SOC.

なお、本実施形態では、電流値積算部105が電流の積算値を電流値とSOC演算周期の乗算により離散的に求める場合を説明したが、これに限られず、連続的に求めるようにしても良い。   In the present embodiment, the case where the current value integration unit 105 obtains the integrated value of the current discretely by multiplying the current value by the SOC calculation cycle has been described, but the present invention is not limited to this, and it may be obtained continuously. good.

《第2の実施形態》
次に、本発明の第2の実施形態について説明する。
第1の実施形態による充電率推定装置100において電流値積算部105が演算する電流積算値には、電流検出誤差が含まれることがある。電流検出誤差としては、ゲイン、ヒステリシス、オフセットなどによる誤差が挙げられるが、このうち、オフセットによる誤差は、電流積算値への影響が特に大きくなる。第2の実施形態による充電率推定装置100は、電流積算値のオフセット誤差が小さくなるようにすることで、SOC推定精度を向上させるものである。
<< Second Embodiment >>
Next, a second embodiment of the present invention will be described.
The current integration value calculated by the current value integration unit 105 in the charging rate estimation apparatus 100 according to the first embodiment may include a current detection error. Current detection errors include errors due to gain, hysteresis, offset, etc. Among these, errors due to offset have a particularly large effect on the current integrated value. The charging rate estimation apparatus 100 according to the second embodiment improves the SOC estimation accuracy by reducing the offset error of the current integrated value.

図7は、本発明の第2の実施形態による充電率推定装置200の構成を示す概略ブロック図である。
第2の実施形態による充電率推定装置200は、第1の実施形態による充電率推定装置100と、タイミング判定部201、SOC変化量演算部204、電流値積算部205の動作が異なる。
タイミング判定部201は、SOC演算周期毎に、開放電圧演算部102及び電流値積算部205にSOC演算指示信号を出力する。また、タイミング判定部201は、SOC演算周期毎に、実測温度及び実測電流から、SOCの演算準備を行うタイミング(第1の時刻)及びSOCの演算を行うタイミング(第2の時刻)を特定し、SOCの演算準備を行うタイミングにおいて準備指示信号をSOC変化量演算部204に出力し、SOCの演算を行うタイミングにおいて容量演算指示信号をSOC変化量演算部204に出力する。
SOC変化量演算部204は、タイミング判定部101からSOC演算指示信号を受け付けた場合、準備指示信号を受け付けた時(第1の時刻)にSOCV演算部103が演算したSOCVと、SOCV演算部103が今回(第2の時刻)演算したSOCVとの差分を二次電池のSOC変化量として演算する。
電流値積算部205は、準備指示信号を受け付けたときから容量演算指示信号を受け付けたときまでの実測電流を、SOC演算周期毎に積算する。
FIG. 7 is a schematic block diagram showing the configuration of the charging rate estimation apparatus 200 according to the second embodiment of the present invention.
The charging rate estimation apparatus 200 according to the second embodiment differs from the charging rate estimation apparatus 100 according to the first embodiment in operations of the timing determination unit 201, the SOC change amount calculation unit 204, and the current value integration unit 205.
Timing determination unit 201 outputs an SOC calculation instruction signal to open-circuit voltage calculation unit 102 and current value integration unit 205 at every SOC calculation cycle. In addition, the timing determination unit 201 specifies, for each SOC calculation cycle, a timing for performing SOC calculation preparation (first time) and a timing for performing SOC calculation (second time) from the measured temperature and the measured current. Then, the preparation instruction signal is output to the SOC change amount calculation unit 204 at the timing when the SOC calculation preparation is performed, and the capacity calculation instruction signal is output to the SOC change amount calculation unit 204 at the timing when the SOC calculation is performed.
The SOC change amount calculation unit 204 receives the SOC calculation instruction signal from the timing determination unit 101, and the SOCV calculated by the SOCV calculation unit 103 when the preparation instruction signal is received (first time), and the SOCV calculation unit 103. However, the difference from the SOCV calculated this time (second time) is calculated as the SOC change amount of the secondary battery.
Current value integrating section 205 integrates the measured current from when the preparation instruction signal is received to when the capacity calculation instruction signal is received every SOC calculation cycle.

ここで、タイミング判定部201によるタイミングの特定方法について詳しく説明する。
図8は、実測電流値と誤差の一例を示す図である。
図8に示す例では、電流センサの誤差特性は温度と電流値とに依存している。そのため、電流センサ誤差が小さい範囲内において電流値の積算を行うことが好ましい。図7に示す例では、例えば実測電流が15Aから25Aまで、かつ実測温度が20℃から30℃までの場合に、電流値の積算を行うことが好ましい。
Here, the timing specifying method by the timing determination unit 201 will be described in detail.
FIG. 8 is a diagram illustrating an example of measured current values and errors.
In the example shown in FIG. 8, the error characteristic of the current sensor depends on the temperature and the current value. Therefore, it is preferable to integrate the current values within a range where the current sensor error is small. In the example shown in FIG. 7, for example, when the measured current is from 15 A to 25 A and the measured temperature is from 20 ° C. to 30 ° C., the current values are preferably integrated.

そのため、タイミング判定部201は、少なくとも実測温度及び実測電流の移動平均値が所定の範囲内に収まっている時刻に準備指示信号を出力し、準備指示信号を出力した時刻からその時刻までの間に実測温度及び実測電流が所定の範囲を超えないような時刻に容量演算指示信号を出力する必要がある。そこで、本実施形態では、タイミング判定部201は、実測電流及び実測温度が当該範囲外から範囲内に遷移したときに準備指示信号を出力し、実測電流及び実測温度が範囲内から範囲外に遷移したときに容量演算指示信号を出力する。
したがって、本実施形態によれば、充電率推定装置200は、前回実測電流及び実測温度が範囲内から範囲外に遷移した時刻に、前SOC記憶部108が記憶するSOCの修正がなされる。
Therefore, the timing determination unit 201 outputs a preparation instruction signal at a time when at least the moving average values of the measured temperature and the measured current are within a predetermined range, and from the time when the preparation instruction signal is output to the time. It is necessary to output a capacity calculation instruction signal at a time such that the measured temperature and the measured current do not exceed a predetermined range. Therefore, in this embodiment, the timing determination unit 201 outputs a preparation instruction signal when the measured current and the measured temperature transition from outside the range to the range, and the measured current and measured temperature transition from the range to the outside of the range. When this occurs, a capacity calculation instruction signal is output.
Therefore, according to the present embodiment, the charging rate estimation apparatus 200 corrects the SOC stored in the previous SOC storage unit 108 at the time when the previous actually measured current and the actually measured temperature transitioned from within the range to outside the range.

このように、本実施形態によれば、電流値積算部205は、実測電流及び実測温度が当該範囲外から範囲内に遷移した時刻から、実測電流及び実測温度が範囲内から範囲外に遷移した時刻までの電流値を積算する。これにより、電流積算値のオフセット誤差が小さくなるため、SOC推定精度を向上させることができる。 Thus, according to the present embodiment, the current value integration unit 205 determines that the measured current and the measured temperature have transitioned from the range to the outside of the range from the time when the measured current and the measured temperature have transitioned from the outside of the range to the range. Accumulate current values up to the time. Thereby, since the offset error of the current integrated value is reduced, the SOC estimation accuracy can be improved.

なお、本実施形態では、実測電流及び実測温度に基づいて準備指示信号及び容量演算指示信号の出力タイミングを決定する場合を説明したが、これに限られない。例えば、実測温度のみに基づいてタイミングを決定しても良いし、実測電流のみに基づいてタイミングを決定しても良い。   In the present embodiment, the case where the output timing of the preparation instruction signal and the capacity calculation instruction signal is determined based on the measured current and the measured temperature is described, but the present invention is not limited to this. For example, the timing may be determined based only on the actually measured temperature, or the timing may be determined based only on the actually measured current.

《第3の実施形態》
次に、本発明の第3の実施形態について説明する。
第1の実施形態で説明したように、満充電容量演算部106が演算する満充電容量には、誤差が含まれることがある。第1の実施形態では、関数推定部107で劣化関数を推定することで当該誤差を削減する方法を説明したが、第3の実施形態では、当該劣化関数に含まれる誤差を更に削減する方法を説明する。
<< Third Embodiment >>
Next, a third embodiment of the present invention will be described.
As described in the first embodiment, the full charge capacity calculated by the full charge capacity calculation unit 106 may include an error. In the first embodiment, the method for reducing the error by estimating the degradation function by the function estimation unit 107 has been described. In the third embodiment, a method for further reducing the error included in the degradation function. explain.

図9は、本発明の第3の実施形態による充電率推定装置300の構成を示す概略ブロック図である。
第3の実施形態による充電率推定装置300は、第1の実施形態による充電率推定装置100と関数推定部307の動作が異なる。
第3の実施形態による関数推定部307は、満充電容量演算部106が演算した満充電容量のうち誤差が大きいものを除外して劣化関数を推定する。
FIG. 9 is a schematic block diagram showing a configuration of a charging rate estimation apparatus 300 according to the third embodiment of the present invention.
The charging rate estimation apparatus 300 according to the third embodiment is different from the charging rate estimation apparatus 100 according to the first embodiment in the operation of the function estimation unit 307.
The function estimation unit 307 according to the third embodiment estimates a deterioration function by excluding the full charge capacity calculated by the full charge capacity calculation unit 106 and having a large error.

異常があるデータを除外して劣化関数を推定する方法としては、例えば、前回演算した満充電容量との差が所定の閾値以上であった場合に、今回の満充電容量に代えて前回の満充電容量を用いて劣化関数の推定を行う方法が挙げられる。
また、他の方法としては、ある時間区間において関数推定部107が記録した満充電容量の変化率から劣化関数を推定し、当該劣化関数から導き出される満充電容量の変化率との差が所定の閾値以上である変化率を除外して、再度劣化関数を推定する方法が挙げられる。図10は、除外する満充電容量の例を示す図である。また、この場合、劣化関数の再推定処理を繰り返し実行することで、劣化関数の精度を向上させることができる。
このように、本実施形態によれば、関数推定部307は、誤差が大きい満充電容量を除外して劣化関数を推定することで、劣化関数の精度が高くすることができる。
As a method of estimating the deterioration function by excluding abnormal data, for example, when the difference from the previously calculated full charge capacity is equal to or greater than a predetermined threshold, the previous full charge capacity is used instead of the current full charge capacity. A method of estimating a deterioration function using the charge capacity is mentioned.
As another method, the deterioration function is estimated from the change rate of the full charge capacity recorded by the function estimation unit 107 in a certain time interval, and the difference from the change rate of the full charge capacity derived from the deterioration function is a predetermined value. There is a method of excluding a change rate that is equal to or greater than a threshold and estimating a deterioration function again. FIG. 10 is a diagram illustrating an example of the full charge capacity to be excluded. In this case, the accuracy of the deterioration function can be improved by repeatedly executing the re-estimation process of the deterioration function.
Thus, according to the present embodiment, the function estimation unit 307 can increase the accuracy of the deterioration function by estimating the deterioration function by excluding the full charge capacity having a large error.

《第4の実施形態》
次に、本発明の第4の実施形態について説明する。
図11は、開放電圧とSOCVとの関係の一例を示す図である。
SOCV演算部103によるSOCVの演算に用いる、二次電池の開放電圧とSOCVとの関係は、図10に示すように、必ずしも線形であるとは限らない。第4の実施形態では、この点に鑑みて満充電容量の推定精度を向上させる方法について説明する。
<< Fourth Embodiment >>
Next, a fourth embodiment of the present invention will be described.
FIG. 11 is a diagram illustrating an example of the relationship between the open circuit voltage and the SOCV.
The relationship between the open-circuit voltage of the secondary battery and the SOCV used for the SOCV calculation by the SOCV calculation unit 103 is not necessarily linear as shown in FIG. In the fourth embodiment, a method for improving the estimation accuracy of the full charge capacity in view of this point will be described.

図12は、本発明の第4の実施形態による充電率推定装置400の構成を示す概略ブロック図である。
第4の実施形態による充電率推定装置400は、第1の実施形態による充電率推定装置100と満充電容量演算部406の動作が異なる。
第4の実施形態による満充電容量演算部406は、SOC推定部111が出力するSOCを監視する。そして、満充電容量演算部406は、容量演算周期の間、SOCが二次電池の開放電圧との関係において線形性を有する範囲内にあった場合に満充電容量の演算を行い、SOCが線形性を有する範囲内から出た場合に、満充電容量の演算を行わない。図10に示す例では、SOCが50%から60%の間にある場合にのみ、満充電容量の演算を行う。これにより、SOCVと開放電圧との関係の非線形性による誤差を排除することができ、満充電容量の推定精度を向上させることができる。
FIG. 12 is a schematic block diagram showing the configuration of the charging rate estimation apparatus 400 according to the fourth embodiment of the present invention.
The charging rate estimation apparatus 400 according to the fourth embodiment differs from the charging rate estimation apparatus 100 according to the first embodiment in the operation of the full charge capacity calculation unit 406.
The full charge capacity calculation unit 406 according to the fourth embodiment monitors the SOC output from the SOC estimation unit 111. The full charge capacity calculation unit 406 calculates the full charge capacity when the SOC is within a range having linearity in relation to the open-circuit voltage of the secondary battery during the capacity calculation cycle, and the SOC is linear. The full charge capacity is not calculated when it is out of the range having the characteristics. In the example shown in FIG. 10, the full charge capacity is calculated only when the SOC is between 50% and 60%. Thereby, an error due to nonlinearity of the relationship between the SOCV and the open circuit voltage can be eliminated, and the estimation accuracy of the full charge capacity can be improved.

ところで、電気自動車など、通常は二次電池を放電方向に使用し、夜間電力などで二次電池の充電を行う場合、充電時にSOCが線形性を有する範囲を通過することとなるため、充電時を利用して定期的に満充電容量の推定を行うことができる。他方、自然エネルギーの平滑化を行う際に二次電池を用いる場合、必ずしもSOCが線形性を有する範囲を通過するとは限らない。そこで、この場合は所定のSOC一定制御ロジックを用いて、通常一定値(例えば50%)としている平滑化目標値を、電池容量推定時に変化させる(例えば60%に)ことで、SOCに線形性を有する範囲を通過させることができる。   By the way, when a secondary battery is normally used in the discharging direction, such as an electric vehicle, and the secondary battery is charged with nighttime power or the like, the SOC passes through a linear range during charging. Can be used to periodically estimate the full charge capacity. On the other hand, when a secondary battery is used when smoothing natural energy, the SOC does not necessarily pass through a linear range. Therefore, in this case, by using a predetermined SOC constant control logic, the smoothing target value, which is normally a constant value (for example, 50%), is changed at the time of battery capacity estimation (for example, to 60%), thereby linearity to the SOC. A range having

図13は、SOC一定制御ロジックの例を示す図である。
図13(A)に示すように、二次電池の充放電を行う装置は、充放電指令とSOC一定制御ロジックとの指示に基づいて、最終充放電指令を決定する。このとき、SOC一定制御ロジックは、通常はSOC目標値(50%)のみを出力をするが、定期的に、当該SOC目標値に所定のSOC(10%)を上乗せする。これにより、SOC一定制御ロジックから出力されるSOC目標が、図13(B)に示すように、50%と60%との間で変化する。
FIG. 13 is a diagram illustrating an example of the SOC constant control logic.
As shown in FIG. 13A, the device that charges and discharges the secondary battery determines the final charge and discharge command based on the instructions of the charge and discharge command and the SOC constant control logic. At this time, the SOC constant control logic normally outputs only the SOC target value (50%), but periodically adds a predetermined SOC (10%) to the SOC target value. As a result, the SOC target output from the SOC constant control logic changes between 50% and 60% as shown in FIG.

《第5の実施形態》
次に、本発明の第5の実施形態について説明する。
二次電池の劣化は関数推定部107が推定する劣化関数によって近似される。しかし、二次電池に何らかの不具合が発生すると、劣化モードが変化することがある。第5の実施形態では、二次電池の劣化モードが変化した場合に警告を表示する方法について説明する。
<< Fifth Embodiment >>
Next, a fifth embodiment of the present invention will be described.
The deterioration of the secondary battery is approximated by a deterioration function estimated by the function estimation unit 107. However, when some trouble occurs in the secondary battery, the deterioration mode may change. In the fifth embodiment, a method for displaying a warning when the deterioration mode of the secondary battery changes will be described.

図14は、本発明の第5の実施形態による充電率推定装置500の構成を示す概略ブロック図である。
第5の実施形態による充電率推定装置500は、第1の実施形態による充電率推定装置100と関数推定部507及び表示部512(警告部)の動作が異なる。
第5の実施形態による関数推定部507は、ある周期において劣化関数の推定を行う。このとき、関数推定部507は、一次関数を用いて劣化関数の推定を行い、時間の係数の変化を監視する。そして、関数推定部507は、係数の変化が所定の閾値以上となった場合に、何らかの要因によって二次電池の劣化モードが変化したと推定し、表示部512に警告情報を出力する。
表示部512は、関数推定部507から受け付けた警告情報を表示する。
これにより、充電率推定装置500は、二次電池の劣化モードが変化し、何らかの不具合が発生したと想定される場合に、警告を表示することができる。
FIG. 14 is a schematic block diagram showing a configuration of a charging rate estimation apparatus 500 according to the fifth embodiment of the present invention.
The charging rate estimation apparatus 500 according to the fifth embodiment is different from the charging rate estimation apparatus 100 according to the first embodiment in the operations of the function estimation unit 507 and the display unit 512 (warning unit).
The function estimation unit 507 according to the fifth embodiment estimates a deterioration function in a certain period. At this time, the function estimation unit 507 estimates a deterioration function using a linear function and monitors a change in a time coefficient. Then, the function estimation unit 507 estimates that the deterioration mode of the secondary battery has changed due to some factor when the change in the coefficient is equal to or greater than a predetermined threshold, and outputs warning information to the display unit 512.
The display unit 512 displays the warning information received from the function estimation unit 507.
Thereby, the charging rate estimation apparatus 500 can display a warning when it is assumed that the deterioration mode of the secondary battery has changed and some trouble has occurred.

以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
例えば、上述した第1の実施形態〜第5の実施形態では充電率推定装置を、二次電池と別個に備えられた外部装置として説明したが、これに限られない。具体的には、二次電池に設けられ、二次電池の制御・監視を行うBMU(Battery Management Unit)に充電率推定装置が実装されていても良い。
As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
For example, in the first to fifth embodiments described above, the charging rate estimation device has been described as an external device provided separately from the secondary battery, but is not limited thereto. Specifically, a charge rate estimation device may be mounted on a BMU (Battery Management Unit) that is provided in the secondary battery and controls and monitors the secondary battery.

また、第1の実施形態〜第5の実施形態では充電率推定装置が1つの装置に実装されている場合を説明したが、これに限られず、例えば、タイミング判定部101、開放電圧演算部102、SOCV演算部103、SOC変化量演算部104、電流値積算部105、満充電容量演算部106、関数推定部107を外部装置に実装し、前SOC記憶部108、誤差記憶部109、SOCI演算部110、SOC推定部111をBMUに実装するようにしても良い。このとき、外部装置の満充電容量演算部106が演算した満受電容量または関数推定部107が推定した劣化関数から導出される満充電容量に対して、自動または手動によって更新可否の判断を行った上で、満充電容量をBMUに出力するようにしても良い。   Further, in the first to fifth embodiments, the case where the charging rate estimation device is mounted on one device has been described. However, the present invention is not limited to this, and for example, the timing determination unit 101 and the open-circuit voltage calculation unit 102. , SOCV calculation unit 103, SOC change amount calculation unit 104, current value integration unit 105, full charge capacity calculation unit 106, function estimation unit 107 are mounted on an external device, and pre-SOC storage unit 108, error storage unit 109, SOCI calculation The unit 110 and the SOC estimation unit 111 may be mounted on the BMU. At this time, whether the full charge capacity calculated by the full charge capacity calculation unit 106 of the external device or the full charge capacity derived from the deterioration function estimated by the function estimation unit 107 is determined automatically or manually. In the above, the full charge capacity may be output to the BMU.

上述の充電率推定装置は内部に、コンピュータシステムを有している。そして、上述した各処理部の動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。   The above-described charging rate estimation apparatus has a computer system inside. The operation of each processing unit described above is stored in a computer-readable recording medium in the form of a program, and the above processing is performed by the computer reading and executing this program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

100…充電率推定装置 101、201…タイミング判定部 102…開放電圧演算部 103…SOCV演算部 104、204…SOC変化量演算部 105、205…電流値積算部 106、406…満充電容量演算部 107、307、507…関数推定部 108…前SOC記憶部 109…誤差記憶部 110…SOCI演算部 111…SOC推定部 112、512…表示部   DESCRIPTION OF SYMBOLS 100 ... Charging rate estimation apparatus 101, 201 ... Timing determination part 102 ... Open circuit voltage calculating part 103 ... SOCV calculating part 104, 204 ... SOC change amount calculating part 105, 205 ... Current value integrating | accumulating part 106,406 ... Full charge capacity calculating part 107, 307, 507 ... function estimation unit 108 ... previous SOC storage unit 109 ... error storage unit 110 ... SOCI calculation unit 111 ... SOC estimation unit 112, 512 ... display unit

Claims (14)

運用中の二次電池の充電率を推定する充電率推定装置であって、
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部と、
前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部と、
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部と、
前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部と、
前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部と
を備え、
前記充電率推定部は、
前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値と前記実測電流の誤差とを用いて前記二次電池の充電率の上限値及び下限値を演算し、
前記充電率演算部が演算した充電率が、前記充電率の上限値以上である場合、前記充電率の上限値を前記二次電池の充電率として推定し、
前記充電率演算部が演算した充電率が、前記充電率の下限値以下である場合、前記充電率の下限値を前記二次電池の充電率として推定し、
前記充電率演算部が演算した充電率が、前記充電率の上限値未満と前記充電率の下限値との間の値を示す場合、前記充電率演算部が演算した前記第2の時刻における充電率を、前記二次電池の充電率として推定する
ことを特徴とする充電率推定装置。
A charging rate estimation device for estimating a charging rate of a secondary battery in operation,
Using the measured current and measured voltage of the secondary battery at the first time, the charging rate of the secondary battery at the first time is calculated, and a second time that is later than the first time. A charge rate calculator that calculates the charge rate of the secondary battery at the second time using the measured current and measured voltage of the secondary battery at the time of
Charge rate change amount calculation for calculating the charge rate change amount by subtracting the charge rate at the first time calculated by the charge rate calculation unit from the charge rate at the second time calculated by the charge rate calculation unit. And
A current value integrating unit that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time;
The full charge capacity of the secondary battery at the second time is calculated by dividing the integrated value of the current calculated by the current value integrating unit by the charging rate change calculated by the charging rate change calculating unit. A full charge capacity calculator,
A charge rate estimating unit that estimates the charge rate of the secondary battery using the full charge capacity calculated by the full charge capacity calculating unit and the integrated value of the measured current due to charging and discharging of the secondary battery;
The charging rate estimation unit
Using the full charge capacity calculated by the full charge capacity calculation unit, the integrated value of the measured current due to charging / discharging of the secondary battery, and the error of the measured current, the upper limit value and the lower limit value of the charging rate of the secondary battery are calculated. Operate,
When the charging rate calculated by the charging rate calculation unit is equal to or higher than the upper limit value of the charging rate, the upper limit value of the charging rate is estimated as the charging rate of the secondary battery,
When the charging rate calculated by the charging rate calculation unit is equal to or lower than the lower limit value of the charging rate, the lower limit value of the charging rate is estimated as the charging rate of the secondary battery,
When the charge rate calculated by the charge rate calculation unit indicates a value between the charge rate less than the upper limit value and the lower limit value of the charge rate, the charge at the second time calculated by the charge rate calculation unit A charging rate estimation apparatus , wherein a rate is estimated as a charging rate of the secondary battery .
前記充電率推定部は、さらに前記二次電池の満充電容量の測定誤差を用いて、前記二次電池の充電率の下限値及び上限値を演算することを特徴とする請求項1に記載の充電率推定装置。 The charging rate estimating part further using the measurement error of the full charge capacity of the secondary battery, according to claim 1, characterized in that calculating the lower limit and the upper limit of the charging rate of the secondary battery Charge rate estimation device. 運用中の二次電池の充電率を推定する充電率推定装置であって、A charging rate estimation device for estimating a charging rate of a secondary battery in operation,
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部と、  Using the measured current and measured voltage of the secondary battery at the first time, the charging rate of the secondary battery at the first time is calculated, and a second time that is later than the first time. A charge rate calculator that calculates the charge rate of the secondary battery at the second time using the measured current and measured voltage of the secondary battery at the time of
前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部と、  Charge rate change amount calculation for calculating the charge rate change amount by subtracting the charge rate at the first time calculated by the charge rate calculation unit from the charge rate at the second time calculated by the charge rate calculation unit. And
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部と、  A current value integrating unit that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time;
前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部と、  The full charge capacity of the secondary battery at the second time is calculated by dividing the integrated value of the current calculated by the current value integrating unit by the charging rate change calculated by the charging rate change calculating unit. A full charge capacity calculator,
前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部と  A charge rate estimating unit for estimating a charge rate of the secondary battery using a full charge capacity calculated by the full charge capacity calculating unit and an integrated value of an actually measured current due to charging and discharging of the secondary battery;
を備え、  With
前記第1の時刻は、前記二次電池の実測温度または実測電流が所定の範囲内に収まっている時刻であり、  The first time is a time when the measured temperature or measured current of the secondary battery is within a predetermined range;
前記第2の時刻は、前記第1の時刻からその時刻までの間に、前記二次電池の実測温度または実測電流が所定の範囲を超えない時刻である  The second time is a time during which the measured temperature or measured current of the secondary battery does not exceed a predetermined range between the first time and the time.
ことを特徴とする充電率推定装置。  The charge rate estimation apparatus characterized by the above-mentioned.
運用中の二次電池の充電率を推定する充電率推定装置であって、A charging rate estimation device for estimating a charging rate of a secondary battery in operation,
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部と、  Using the measured current and measured voltage of the secondary battery at the first time, the charging rate of the secondary battery at the first time is calculated, and a second time that is later than the first time. A charge rate calculator that calculates the charge rate of the secondary battery at the second time using the measured current and measured voltage of the secondary battery at the time of
前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部と、  Charge rate change amount calculation for calculating the charge rate change amount by subtracting the charge rate at the first time calculated by the charge rate calculation unit from the charge rate at the second time calculated by the charge rate calculation unit. And
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部と、  A current value integrating unit that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time;
前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部と、  The full charge capacity of the secondary battery at the second time is calculated by dividing the integrated value of the current calculated by the current value integrating unit by the charging rate change calculated by the charging rate change calculating unit. A full charge capacity calculator,
前記満充電容量演算部が異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を推定する関数推定部と、  A function estimation unit that estimates a function indicating a relationship between time and full charge capacity from the full charge capacity of a plurality of secondary batteries calculated at different times by the full charge capacity calculation unit;
前記関数推定部が推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部と  Identify the full charge capacity of the secondary battery at the current time with reference to the function estimated by the function estimation unit, using the full charge capacity and the integrated value of the measured current by charging and discharging the secondary battery, A charge rate estimator for estimating the charge rate of the secondary battery;
を備え、  With
前記関数推定部は、前記満充電容量演算部が異なる時刻に演算した二次電池の満充電容量のうち、直前の時刻に演算した二次電池の満充電容量との差または推定した関数が示す満充電容量との差が所定の閾値を超えないものを前記関数の推定に用いる  The function estimation unit indicates a difference between the full charge capacity of the secondary battery calculated at the previous time among the full charge capacities of the secondary battery calculated at different times by the full charge capacity calculation unit or an estimated function. A function whose difference from the full charge capacity does not exceed a predetermined threshold is used for the estimation of the function.
ことを特徴とする充電率推定装置。  The charge rate estimation apparatus characterized by the above-mentioned.
運用中の二次電池の充電率を推定する充電率推定装置であって、A charging rate estimation device for estimating a charging rate of a secondary battery in operation,
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部と、  Using the measured current and measured voltage of the secondary battery at the first time, the charging rate of the secondary battery at the first time is calculated, and a second time that is later than the first time. A charge rate calculator that calculates the charge rate of the secondary battery at the second time using the measured current and measured voltage of the secondary battery at the time of
前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部と、  Charge rate change amount calculation for calculating the charge rate change amount by subtracting the charge rate at the first time calculated by the charge rate calculation unit from the charge rate at the second time calculated by the charge rate calculation unit. And
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部と、  A current value integrating unit that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time;
前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部と、  The full charge capacity of the secondary battery at the second time is calculated by dividing the integrated value of the current calculated by the current value integrating unit by the charging rate change calculated by the charging rate change calculating unit. A full charge capacity calculator,
前記満充電容量演算部が異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を定期的に推定する関数推定部と、  A function estimation unit that periodically estimates a function indicating the relationship between time and full charge capacity from the full charge capacity of a plurality of secondary batteries calculated at different times by the full charge capacity calculation unit;
前記関数推定部が推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部と、  Identify the full charge capacity of the secondary battery at the current time with reference to the function estimated by the function estimation unit, using the full charge capacity and the integrated value of the measured current by charging and discharging the secondary battery, A charge rate estimator for estimating the charge rate of the secondary battery;
前記関数推定部が推定した関数における時間の係数の変化を監視し、当該係数の変化が所定の閾値以上であった場合に、警告を発する警告部と  A warning unit for monitoring a change in a coefficient of time in the function estimated by the function estimation unit and issuing a warning when the change in the coefficient is equal to or greater than a predetermined threshold;
を備えることを特徴とする充電率推定装置。  A charging rate estimation device comprising:
前記充電率演算部は、
前記二次電池の実測電流と実測電圧とから前記二次電池の開放電圧を演算し、前記二次電池の開放電圧と充電率の関係を示すテーブルを参照して、前記演算した開放電圧から前記二次電池の充電率を演算する
ことを特徴とする請求項1から請求項5の何れか1項に記載の充電率推定装置。
The charging rate calculator is
The open circuit voltage of the secondary battery is calculated from the measured current and the measured voltage of the secondary battery, and the table showing the relationship between the open voltage of the secondary battery and the charging rate is used to calculate the open circuit voltage from the calculated open circuit voltage. The charge rate estimation apparatus according to any one of claims 1 to 5 , wherein a charge rate of a secondary battery is calculated.
運用中の二次電池の充電率を推定する充電率推定方法であって、
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算するステップと、
前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算するステップと、
前記第2の時刻における充電率から前記第1の時刻における充電率を減じることで、充電率変化量を演算するステップと、
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算するステップと、
前記電流の積算値を前記充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算するステップと、
前記演算した満充電容量と前記二次電池の充放電による実測電流の積算値と前記実測電流の誤差とを用いて前記二次電池の充電率の上限値及び下限値を演算するステップと、
前記演算した充電率が、前記充電率の上限値以上である場合、前記充電率の上限値を前記二次電池の充電率として推定するステップと、
前記演算した充電率が、前記充電率の下限値以下である場合、前記充電率の下限値を前記二次電池の充電率として推定するステップと、
前記演算した充電率が、前記充電率の上限値未満と前記充電率の下限値との間の値を示す場合、前記演算した前記第2の時刻における充電率を、前記二次電池の充電率として推定するステップと
を有することを特徴とする充電率推定方法。
A charging rate estimation method for estimating a charging rate of a secondary battery in operation,
Using the measured current and measured voltage of the secondary battery at a first time to calculate the charging rate of the secondary battery at the first time;
Calculating the charge rate of the secondary battery at the second time using the measured current and the measured voltage of the secondary battery at a second time that is a time after the first time;
Calculating a charge rate change amount by subtracting the charge rate at the first time from the charge rate at the second time;
Calculating an integrated value of actually measured currents due to charging / discharging of the secondary battery from the first time to the second time;
A step of calculating a full charge capacity of the secondary battery at the second time by dividing the integrated value of the current by the charge rate change amount;
Calculating an upper limit value and a lower limit value of the charging rate of the secondary battery using the calculated full charge capacity, an integrated value of the measured current due to charging / discharging of the secondary battery, and an error of the measured current;
When the calculated charging rate is equal to or higher than the upper limit value of the charging rate, estimating the upper limit value of the charging rate as the charging rate of the secondary battery;
When the calculated charging rate is equal to or lower than the lower limit value of the charging rate, estimating the lower limit value of the charging rate as the charging rate of the secondary battery;
When the calculated charging rate indicates a value between the charging rate less than the upper limit value and the charging rate lower limit value, the calculated charging rate at the second time is determined as the charging rate of the secondary battery. And a step of estimating as a charging rate.
運用中の二次電池の充電率を推定する充電率推定方法であって、A charging rate estimation method for estimating a charging rate of a secondary battery in operation,
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算するステップと、  Using the measured current and measured voltage of the secondary battery at a first time to calculate the charging rate of the secondary battery at the first time;
前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算するステップと、  Calculating the charge rate of the secondary battery at the second time using the measured current and the measured voltage of the secondary battery at a second time that is a time after the first time;
前記第2の時刻における充電率から前記第1の時刻における充電率を減じることで、充電率変化量を演算するステップと、  Calculating a charge rate change amount by subtracting the charge rate at the first time from the charge rate at the second time;
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算するステップと、  Calculating an integrated value of actually measured currents due to charging / discharging of the secondary battery from the first time to the second time;
前記電流の積算値を前記充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算するステップと、  A step of calculating a full charge capacity of the secondary battery at the second time by dividing the integrated value of the current by the charge rate change amount;
前記二次電池の満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定するステップと  Estimating the charging rate of the secondary battery using the full charge capacity of the secondary battery and the integrated value of the measured current due to charging and discharging of the secondary battery;
を有し、  Have
前記第1の時刻は、前記二次電池の実測温度または実測電流が所定の範囲内に収まっている時刻であり、  The first time is a time when the measured temperature or measured current of the secondary battery is within a predetermined range;
前記第2の時刻は、前記第1の時刻からその時刻までの間に、前記二次電池の実測温度または実測電流が所定の範囲を超えない時刻である  The second time is a time during which the measured temperature or measured current of the secondary battery does not exceed a predetermined range between the first time and the time.
ことを特徴とする充電率推定方法。  The charge rate estimation method characterized by the above-mentioned.
運用中の二次電池の充電率を推定する充電率推定方法であって、A charging rate estimation method for estimating a charging rate of a secondary battery in operation,
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算するステップと、  Using the measured current and measured voltage of the secondary battery at a first time to calculate the charging rate of the secondary battery at the first time;
前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算するステップと、  Calculating the charge rate of the secondary battery at the second time using the measured current and the measured voltage of the secondary battery at a second time that is a time after the first time;
前記第2の時刻における充電率から前記第1の時刻における充電率を減じることで、充電率変化量を演算するステップと、  Calculating a charge rate change amount by subtracting the charge rate at the first time from the charge rate at the second time;
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算するステップと、  Calculating an integrated value of actually measured currents due to charging / discharging of the secondary battery from the first time to the second time;
前記電流の積算値を前記充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算するステップと、  A step of calculating a full charge capacity of the secondary battery at the second time by dividing the integrated value of the current by the charge rate change amount;
異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を推定するステップと、  Estimating a function indicating a relationship between time and full charge capacity from full charge capacities of a plurality of secondary batteries calculated at different times;
推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定するステップと  The full charge capacity of the secondary battery at the current time is identified with reference to the estimated function, and charging of the secondary battery is performed using the full charge capacity and the integrated value of the measured current due to charge / discharge of the secondary battery. Estimating the rate and
を有し、  Have
前記関数を推定するステップでは、異なる時刻に演算した二次電池の満充電容量のうち、直前の時刻に演算した二次電池の満充電容量との差または推定した関数が示す満充電容量との差が所定の閾値を超えないものを前記関数の推定に用いる  In the step of estimating the function, the difference between the full charge capacity of the secondary battery calculated at a different time and the full charge capacity of the secondary battery calculated at the previous time or the full charge capacity indicated by the estimated function The difference does not exceed a predetermined threshold is used for the estimation of the function
ことを特徴とする充電率推定方法。  The charge rate estimation method characterized by the above-mentioned.
運用中の二次電池の充電率を推定する充電率推定方法であって、A charging rate estimation method for estimating a charging rate of a secondary battery in operation,
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算するステップと、  Using the measured current and measured voltage of the secondary battery at a first time to calculate the charging rate of the secondary battery at the first time;
前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算するステップと、  Calculating the charge rate of the secondary battery at the second time using the measured current and the measured voltage of the secondary battery at a second time that is a time after the first time;
前記第2の時刻における充電率から前記第1の時刻における充電率を減じることで、充電率変化量を演算するステップと、  Calculating a charge rate change amount by subtracting the charge rate at the first time from the charge rate at the second time;
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算するステップと、  Calculating an integrated value of actually measured currents due to charging / discharging of the secondary battery from the first time to the second time;
前記電流の積算値を前記充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算するステップと、  A step of calculating a full charge capacity of the secondary battery at the second time by dividing the integrated value of the current by the charge rate change amount;
異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を定期的に推定するステップと、  Periodically estimating a function indicating the relationship between time and full charge capacity from the full charge capacity of a plurality of secondary batteries calculated at different times;
前記推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定するステップと  The full charge capacity of the secondary battery at the current time is identified with reference to the estimated function, and using the full charge capacity and the integrated value of the measured current due to charging / discharging of the secondary battery, Estimating the charging rate and
前記推定した関数における時間の係数の変化を監視し、当該係数の変化が所定の閾値以上であった場合に、警告を発するステップと  Monitoring a change in a coefficient of time in the estimated function, and issuing a warning if the change in the coefficient is equal to or greater than a predetermined threshold;
を有することを特徴とする充電率推定方法。  The charging rate estimation method characterized by having.
運用中の二次電池の充電率を推定する充電率推定装置のコンピュータを、
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部、
前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部、
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部、
前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部、
前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部
として機能させ
前記充電率推定部は、
前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値と前記実測電流の誤差とを用いて前記二次電池の充電率の上限値及び下限値を演算し、
前記充電率演算部が演算した充電率が、前記充電率の上限値以上である場合、前記充電率の上限値を前記二次電池の充電率として推定し、
前記充電率演算部が演算した充電率が、前記充電率の下限値以下である場合、前記充電率の下限値を前記二次電池の充電率として推定し、
前記充電率演算部が演算した充電率が、前記充電率の上限値未満と前記充電率の下限値との間の値を示す場合、前記充電率演算部が演算した前記第2の時刻における充電率を、前記二次電池の充電率として推定する
ことを特徴とするプログラム。
A computer for a charging rate estimation device that estimates the charging rate of a secondary battery in operation,
Using the measured current and measured voltage of the secondary battery at the first time, the charging rate of the secondary battery at the first time is calculated, and a second time that is later than the first time. A charge rate calculation unit that calculates the charge rate of the secondary battery at the second time using the measured current and measured voltage of the secondary battery at the time of
Charge rate change amount calculation for calculating the charge rate change amount by subtracting the charge rate at the first time calculated by the charge rate calculation unit from the charge rate at the second time calculated by the charge rate calculation unit. Part,
A current value integrating unit that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time;
The full charge capacity of the secondary battery at the second time is calculated by dividing the integrated value of the current calculated by the current value integrating unit by the charging rate change calculated by the charging rate change calculating unit. Full charge capacity calculator,
Using the full charge capacity calculated by the full charge capacity calculation unit and the integrated value of the measured current due to charge / discharge of the secondary battery, function as a charge rate estimation unit that estimates the charge rate of the secondary battery ,
The charging rate estimation unit
Using the full charge capacity calculated by the full charge capacity calculation unit, the integrated value of the measured current due to charging / discharging of the secondary battery, and the error of the measured current, the upper limit value and the lower limit value of the charging rate of the secondary battery are calculated. Operate,
When the charging rate calculated by the charging rate calculation unit is equal to or higher than the upper limit value of the charging rate, the upper limit value of the charging rate is estimated as the charging rate of the secondary battery,
When the charging rate calculated by the charging rate calculation unit is equal to or lower than the lower limit value of the charging rate, the lower limit value of the charging rate is estimated as the charging rate of the secondary battery,
When the charge rate calculated by the charge rate calculation unit indicates a value between the charge rate less than the upper limit value and the lower limit value of the charge rate, the charge at the second time calculated by the charge rate calculation unit The rate is estimated as the charging rate of the secondary battery
A program characterized by that .
運用中の二次電池の充電率を推定する充電率推定装置のコンピュータを、A computer for a charging rate estimation device that estimates the charging rate of a secondary battery in operation,
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部、  Using the measured current and measured voltage of the secondary battery at the first time, the charging rate of the secondary battery at the first time is calculated, and a second time that is later than the first time. A charge rate calculation unit that calculates the charge rate of the secondary battery at the second time using the measured current and measured voltage of the secondary battery at the time of
前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部、  Charge rate change amount calculation for calculating the charge rate change amount by subtracting the charge rate at the first time calculated by the charge rate calculation unit from the charge rate at the second time calculated by the charge rate calculation unit. Part,
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部、  A current value integrating unit that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time;
前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部、  The full charge capacity of the secondary battery at the second time is calculated by dividing the integrated value of the current calculated by the current value integrating unit by the charging rate change calculated by the charging rate change calculating unit. Full charge capacity calculator,
前記満充電容量演算部が演算した満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部  A charge rate estimation unit that estimates the charge rate of the secondary battery using the full charge capacity calculated by the full charge capacity calculation unit and the integrated value of the measured current due to charging and discharging of the secondary battery
として機能させ、  Function as
前記第1の時刻は、前記二次電池の実測温度または実測電流が所定の範囲内に収まっている時刻であり、  The first time is a time when the measured temperature or measured current of the secondary battery is within a predetermined range;
前記第2の時刻は、前記第1の時刻からその時刻までの間に、前記二次電池の実測温度または実測電流が所定の範囲を超えない時刻である  The second time is a time during which the measured temperature or measured current of the secondary battery does not exceed a predetermined range between the first time and the time.
ことを特徴とするプログラム。  A program characterized by that.
運用中の二次電池の充電率を推定する充電率推定装置のコンピュータを、A computer for a charging rate estimation device that estimates the charging rate of a secondary battery in operation,
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部、  Using the measured current and measured voltage of the secondary battery at the first time, the charging rate of the secondary battery at the first time is calculated, and a second time that is later than the first time. A charge rate calculation unit that calculates the charge rate of the secondary battery at the second time using the measured current and measured voltage of the secondary battery at the time of
前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部、  Charge rate change amount calculation for calculating the charge rate change amount by subtracting the charge rate at the first time calculated by the charge rate calculation unit from the charge rate at the second time calculated by the charge rate calculation unit. Part,
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部、  A current value integrating unit that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time;
前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部、  The full charge capacity of the secondary battery at the second time is calculated by dividing the integrated value of the current calculated by the current value integrating unit by the charging rate change calculated by the charging rate change calculating unit. Full charge capacity calculator,
前記満充電容量演算部が異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を推定する関数推定部、  A function estimation unit that estimates a function indicating the relationship between time and full charge capacity from the full charge capacity of a plurality of secondary batteries calculated at different times by the full charge capacity calculation unit;
前記関数推定部が推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部  Identify the full charge capacity of the secondary battery at the current time with reference to the function estimated by the function estimation unit, using the full charge capacity and the integrated value of the measured current by charging and discharging the secondary battery, Charge rate estimator for estimating the charge rate of secondary batteries
として機能させ、  Function as
前記関数推定部は、前記満充電容量演算部が異なる時刻に演算した二次電池の満充電容量のうち、直前の時刻に演算した二次電池の満充電容量との差または推定した関数が示す満充電容量との差が所定の閾値を超えないものを前記関数の推定に用いる  The function estimation unit indicates a difference between the full charge capacity of the secondary battery calculated at the previous time among the full charge capacities of the secondary battery calculated at different times by the full charge capacity calculation unit or an estimated function. A function whose difference from the full charge capacity does not exceed a predetermined threshold is used for the estimation of the function.
ことを特徴とするプログラム。  A program characterized by that.
運用中の二次電池の充電率を推定する充電率推定装置のコンピュータを、A computer for a charging rate estimation device that estimates the charging rate of a secondary battery in operation,
第1の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第1の時刻における前記二次電池の充電率を演算し、前記第1の時刻より後の時刻である第2の時刻における前記二次電池の実測電流と実測電圧とを用いて、前記第2の時刻における前記二次電池の充電率を演算する充電率演算部、  Using the measured current and measured voltage of the secondary battery at the first time, the charging rate of the secondary battery at the first time is calculated, and a second time that is later than the first time. A charge rate calculation unit that calculates the charge rate of the secondary battery at the second time using the measured current and measured voltage of the secondary battery at the time of
前記充電率演算部が演算した前記第2の時刻における充電率から前記充電率演算部が演算した前記第1の時刻における充電率を減じることで、充電率変化量を演算する充電率変化量演算部、  Charge rate change amount calculation for calculating the charge rate change amount by subtracting the charge rate at the first time calculated by the charge rate calculation unit from the charge rate at the second time calculated by the charge rate calculation unit. Part,
前記第1の時刻から前記第2の時刻までにおける前記二次電池の充放電による実測電流の積算値を演算する電流値積算部、  A current value integrating unit that calculates an integrated value of measured currents due to charging / discharging of the secondary battery from the first time to the second time;
前記電流値積算部が演算した電流の積算値を前記充電率変化量演算部が演算した充電率変化量で除算することで、前記第2の時刻における前記二次電池の満充電容量を演算する満充電容量演算部、  The full charge capacity of the secondary battery at the second time is calculated by dividing the integrated value of the current calculated by the current value integrating unit by the charging rate change calculated by the charging rate change calculating unit. Full charge capacity calculator,
前記満充電容量演算部が異なる時刻に演算した複数の二次電池の満充電容量から、時間と満充電容量との関係を示す関数を定期的に推定する関数推定部、  A function estimation unit that periodically estimates a function indicating the relationship between time and full charge capacity from the full charge capacity of a plurality of secondary batteries calculated at different times by the full charge capacity calculation unit,
前記関数推定部が推定した関数を参照して現在時刻における二次電池の満充電容量を特定し、当該満充電容量と前記二次電池の充放電による実測電流の積算値とを用いて、前記二次電池の充電率を推定する充電率推定部、  Identify the full charge capacity of the secondary battery at the current time with reference to the function estimated by the function estimation unit, using the full charge capacity and the integrated value of the measured current by charging and discharging the secondary battery, A charge rate estimator for estimating the charge rate of the secondary battery,
前記関数推定部が推定した関数における時間の係数の変化を監視し、当該係数の変化が所定の閾値以上であった場合に、警告を発する警告部  A warning unit that monitors a change in a coefficient of time in the function estimated by the function estimation unit and issues a warning when the change in the coefficient is equal to or greater than a predetermined threshold.
として機能させるためのプログラム。  Program to function as.
JP2011050178A 2011-03-08 2011-03-08 CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM Expired - Fee Related JP5535968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050178A JP5535968B2 (en) 2011-03-08 2011-03-08 CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050178A JP5535968B2 (en) 2011-03-08 2011-03-08 CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM

Publications (2)

Publication Number Publication Date
JP2012185124A JP2012185124A (en) 2012-09-27
JP5535968B2 true JP5535968B2 (en) 2014-07-02

Family

ID=47015320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050178A Expired - Fee Related JP5535968B2 (en) 2011-03-08 2011-03-08 CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM

Country Status (1)

Country Link
JP (1) JP5535968B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011265B2 (en) * 2012-11-16 2016-10-19 株式会社デンソー Battery system
JP5461668B1 (en) * 2012-11-28 2014-04-02 三菱重工業株式会社 Secondary battery management device, full charge capacity calculation method, and program
JP6214013B2 (en) * 2013-02-28 2017-10-18 東莞賽微微電子有限公司Dongguan Cellwise Microelectronics Co.,Ltd. Battery coulometric system and battery coulometric method
JP6002606B2 (en) * 2013-03-08 2016-10-05 株式会社日立製作所 Battery system
WO2015072528A1 (en) * 2013-11-14 2015-05-21 日本電気株式会社 Method for ascertaining storage battery state, state-ascertaining system, and computer program
FR3029297B1 (en) * 2014-11-28 2016-12-30 Renault Sa AUTOMATIC METHOD OF ESTIMATING THE CHARGING STATE OF A CELL OF A BATTERY
FR3029298B1 (en) * 2014-11-28 2016-12-30 Renault Sa AUTOMATIC METHOD OF ESTIMATING THE CHARGING STATE OF A CELL OF A BATTERY
JP6819408B2 (en) * 2017-03-29 2021-01-27 スズキ株式会社 Secondary battery charge state estimation device and charge state estimation method
JP6983227B2 (en) * 2017-03-31 2021-12-17 三菱電機株式会社 Storage battery state estimation device
JP6962265B2 (en) * 2018-04-24 2021-11-05 トヨタ自動車株式会社 Control devices, control methods and battery systems, and electric vehicles equipped with them
JP7380440B2 (en) * 2020-06-18 2023-11-15 トヨタ自動車株式会社 Vehicle diagnostic systems and vehicles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767150B2 (en) * 1998-01-09 2006-04-19 日産自動車株式会社 Battery remaining capacity detection device
JP4519523B2 (en) * 2004-06-02 2010-08-04 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP4797640B2 (en) * 2006-01-18 2011-10-19 トヨタ自動車株式会社 Secondary battery life estimation device
JP5273794B2 (en) * 2006-08-29 2013-08-28 日本電気株式会社 Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
JP2008241358A (en) * 2007-03-26 2008-10-09 Sanyo Electric Co Ltd Full capacity detection method of battery
JP2010271288A (en) * 2009-05-25 2010-12-02 Mitsubishi Heavy Ind Ltd Battery charging rate calculation device, battery charging rate calculation method, and program

Also Published As

Publication number Publication date
JP2012185124A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5535968B2 (en) CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM
EP3413067B1 (en) Method and apparatus for estimating a state of health of a battery pack
US10312699B2 (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery
US10712395B2 (en) Apparatus and method for detecting battery state of health
JP6734784B2 (en) How to estimate battery health
KR102080632B1 (en) Battery management system and its operating method
CN103797374B (en) System and method for battery monitoring
EP2700964B1 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
US8234087B2 (en) Apparatus and method for detecting a status of a secondary battery connected to a load
KR100970841B1 (en) Apparatus and Method for estimating battery&#39;s state of health based on battery voltage variation pattern
EP3410137B1 (en) Cell state estimation device, cell control device, cell system, and cell state estimation method
US8203305B1 (en) Enhanced voltage-based fuel gauges and methods
EP3106892B1 (en) State estimation device and state estimation method
US8502504B1 (en) Model-based battery fuel gauges and methods
CN109856548B (en) Power battery capacity estimation method
CN109031133B (en) SOC correction method of power battery
TWI628453B (en) Method for estimated battery capacity
US20120290237A1 (en) Battery condition detecting apparatus and battery condition detecting method
JP2014025738A (en) Residual capacity estimation device
US20170254857A1 (en) Control device, control method, and recording medium
US10578675B2 (en) Estimation method for battery capacity
KR20160011701A (en) Method for evaluating the charge status of a battery
JP2013108919A (en) Soc estimator
JP5535959B2 (en) CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM
CN110988701B (en) Battery available energy determination method, device, management system and storage medium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R151 Written notification of patent or utility model registration

Ref document number: 5535968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees