JP2003168489A - Detecting method of charging/discharging state of alkaline storage battery - Google Patents

Detecting method of charging/discharging state of alkaline storage battery

Info

Publication number
JP2003168489A
JP2003168489A JP2001366161A JP2001366161A JP2003168489A JP 2003168489 A JP2003168489 A JP 2003168489A JP 2001366161 A JP2001366161 A JP 2001366161A JP 2001366161 A JP2001366161 A JP 2001366161A JP 2003168489 A JP2003168489 A JP 2003168489A
Authority
JP
Japan
Prior art keywords
battery
charging
voltage
circuit voltage
open circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001366161A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Otani
佳克 大谷
Takashi Ito
伊藤  隆
Toshiki Tanaka
俊樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2001366161A priority Critical patent/JP2003168489A/en
Publication of JP2003168489A publication Critical patent/JP2003168489A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detecting method of charging/discharging state of a battery with high accuracy and high reliability, after the battery has gone through complicated operational processes in which complicated charging and discharging have been mingled, when detecting the charging/discharging state of an alkaline storage battery having a nickel electrode as a positive electrode. <P>SOLUTION: It is a method of detecting the charging/discharging state of the battery based on the correlation between an open-circuit voltage of the battery and the charging/discharging state. The estimated value of the open- circuit voltage is calculated by removing the voltage change value resulting from the hysteresis phenomenon of the nickel electrode, which has been produced by power conduction history, from the measured voltage of the battery. Moreover, the detect is carried out based on correlation between the charging or discharging state and the open-circuit voltage of the battery in the charging process, or the open-circuit voltage of the battery in the discharging state. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素蓄電
池やニッケルカドミウム蓄電池などのニッケル電極を正
極に適用したアルカリ蓄電池の充放電状態の検知方法で
あって、特に複雑な充電や放電を繰り返す電池に対して
もその充放電状態を精度良く検知するための方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the charge / discharge state of an alkaline storage battery, such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, in which a nickel electrode is applied to a positive electrode. On the other hand, the present invention relates to a method for accurately detecting the charge / discharge state.

【0002】[0002]

【従来の技術】従来、電池の充放電状態を検知する方法
としては、初期の充放電状態を基準にしてその後に流れ
た通電電気量から求める方法(以下通電電気量法とい
う)がある。この方法の場合、通電電気量と電池の充放
電状態変化量との間には、電池の充電効率が100%に
満たないことおよび自己放電によって消失する電気量を
無視している等により誤差が生じる。従って、サイクル
を重ねたり時間を経過するにつれその誤差が積算される
ため、検知された充放電状態に大きな狂いが生じる問題
があった。
2. Description of the Related Art Conventionally, as a method for detecting the charge / discharge state of a battery, there is a method for obtaining the charge / discharge state based on the initial charge / discharge state (hereinafter, referred to as a flow rate). In the case of this method, there is an error between the amount of electricity supplied and the amount of change in the charging / discharging state of the battery due to the fact that the charging efficiency of the battery is less than 100% and the amount of electricity lost by self-discharge is ignored. Occurs. Therefore, there is a problem in that the errors are accumulated as the cycles are repeated or the time elapses, so that the detected charging / discharging state is greatly deviated.

【0003】電池の使用方法が100%充電状態または
100%放電状態を経過するような場合には、その都度
充放電状態算定値に修正を加えることが可能である。従
って、通電電気量法を適用しても生じる誤差は小さくて
済む。しかし、全ての電池が100%充電状態または1
00%放電状態を経過する使われ方をするわけではな
い。むしろ、100%充電状態あるいは100%放電状
態に至らない複雑な充放電を繰り返すような状況下で使
われる例が多い。このような状況下に於いては、通電電
気量法によって充放電状態を正確に検知することが困難
であった。
When the usage of the battery goes through a 100% charged state or a 100% discharged state, it is possible to correct the charge / discharge state calculated value each time. Therefore, even if the energization method is applied, the error caused is small. However, all batteries are 100% charged or 1
It does not mean that it is used after the state of 100% discharge. Rather, it is often used in a situation in which complicated charging / discharging that does not reach a 100% charged state or a 100% discharged state is repeated. Under such circumstances, it was difficult to accurately detect the charge / discharge state by the electrification method.

【0004】他方、電池の電圧と電池の充放電状態の相
関性を利用して充放電状態を検知する方法が考えられ、
例えば電池の開回路電圧(以下Voと記す)を実測(実
測値を以下Vomと記す)して充放電状態を検知しようと
する試みが行われている。しかし、Vomは、電池の充放
電状態以外にVom測定以前の履歴によっても影響を受け
るため、単にVomをその時点でのVoとして充放電状態
を検知しようとすると誤差が大きい欠点があった。
On the other hand, a method of detecting the charging / discharging state by utilizing the correlation between the battery voltage and the charging / discharging state of the battery can be considered.
For example, attempts have been made to detect the charging / discharging state by actually measuring the open circuit voltage (hereinafter referred to as V o ) of the battery (the measured value is hereinafter referred to as V om ). However, since V om is affected not only by the charging / discharging state of the battery but also by the history before the V om measurement, there is a large error when trying to detect the charging / discharging state by simply using V om as V o at that time. there were.

【0005】特開平11−346444号公報には電池
の動作履歴から開回路電圧の修正量を算出し、該算出量
によって前記開回路電圧を修正して修正電圧を求め、該
修正電圧から電池の充電状態(SOC)を検知する方法
が提案されている。本公報でいう動作履歴とは前回使用
終了時から今回使用開始時までの自己放電履歴であっ
て、該履歴から前記修正量を算出するものである。しか
し本公報に提案された方法によっても検知の正確さは十
分ではなかった。
In Japanese Patent Laid-Open No. 11-346444, an open circuit voltage correction amount is calculated from the operation history of the battery, the open circuit voltage is corrected by the calculated amount to obtain a correction voltage, and the battery voltage is calculated from the correction voltage. A method of detecting the state of charge (SOC) has been proposed. The operation history referred to in this publication is a self-discharge history from the end of the previous use to the start of the current use, and the correction amount is calculated from the history. However, the accuracy of detection is not sufficient even by the method proposed in this publication.

【0006】また、特開平11−135159号公報に
は所定時間以上放電電流および充電電流が実質的に流れ
ない時の端子電圧(開回路電圧)から残存容量を推定す
る方法が記載されている。本方法によれば、開回路電圧
に対する通電履歴の影響を極力排除することができる。
しかし、本方法の場合所定の時間以上無通電状態に置い
た後でないと充放電状態を検知出来ない。従って、任意
の時点で電池の充放電状態を検知するという要求に応え
られない欠点があった。
Further, Japanese Laid-Open Patent Publication No. 11-135159 describes a method of estimating the remaining capacity from the terminal voltage (open circuit voltage) when the discharge current and the charging current do not substantially flow for a predetermined time or longer. According to this method, the influence of the energization history on the open circuit voltage can be eliminated as much as possible.
However, in the case of this method, the charging / discharging state cannot be detected until it is left in the non-energized state for a predetermined time or longer. Therefore, there is a drawback that the demand for detecting the charge / discharge state of the battery at any given time cannot be met.

【0007】特開平6−59003号公報や特開平9−
96665号公報には電池のV−I特性から電池の残存
容量を推測する方法が提案されている。この方法は通電
状態にある電池の充放電状態を検知しようとするもので
あるが、対象とする電池は放電状態にあり、かつ放電電
流値が所定値以上でかつその値が増加しているものに限
定される欠点があった。
JP-A-6-59003 and JP-A-9-
Japanese Patent No. 96665 proposes a method of estimating the remaining capacity of a battery from the VI characteristics of the battery. This method attempts to detect the charging / discharging state of the battery in the energized state, but the target battery is in the discharging state, and the discharge current value is equal to or higher than a predetermined value and the value increases. There was a drawback limited to.

【0008】[0008]

【発明が解決しようとする課題】従来法の中、電池電圧
から充放電状態を検知する方法の多くは、予め作成され
た電池の充放電状態とVoとの相関性を示す曲線に基づ
いて行われるが、前述の如くVoを正確に推定すること
が困難であった。電池を過充電または過放電すると電池
特性の低下を来す他、電解液が分解してガスが発生する
ため電池の内圧が上昇し漏液等を起こす虞がある。従っ
て、電池の充放電状態を検知して充電および放電を制御
することは極めて重要である。本発明は、前記のように
100%充電状態あるいは100%放電状態に至らない
複雑な充放電を繰り返すような状況下にあり、かつ充電
時もしくは放電時の何れの場合にあっても電池の充放電
状態を精度良く検知する方法を提供するものである。
Among the conventional methods, most of the methods for detecting the charging / discharging state from the battery voltage are based on a curve showing the correlation between the charging / discharging state of the battery and V o, which is prepared in advance. However, as described above, it was difficult to accurately estimate V o . When the battery is overcharged or over-discharged, the battery characteristics are deteriorated, and the electrolytic solution is decomposed to generate gas, which may increase the internal pressure of the battery and cause liquid leakage. Therefore, it is extremely important to detect the charging / discharging state of the battery and control the charging / discharging. INDUSTRIAL APPLICABILITY As described above, the present invention is in a situation in which complicated charging / discharging that does not reach a 100% charged state or a 100% discharged state is repeated, and the battery is charged during charging or discharging. It is intended to provide a method for accurately detecting a discharge state.

【0009】[0009]

【課題を解決するための手段】本発明は、ニッケル電極
を正極とするアルカリ蓄電池の充放電状態を、充放電状
態と電池の開回路電圧(Vo)との相関により検知する
方法であって、電池電圧の実測値(Vm)を元にして算
定によって求めた開回路電圧(Voe)によって前記開回
路電圧(Vo)を推定する方法において、開回路電圧
(Voe)を算定するに当たり、通電履歴に伴って生じる
開回路電圧のヒステリシスに起因する誤差を除去するこ
とを特徴とするアルカリ蓄電池の充放電状態の検知方法
である。
The present invention is a method for detecting the charge / discharge state of an alkaline storage battery having a nickel electrode as a positive electrode by the correlation between the charge / discharge state and the open circuit voltage (V o ) of the battery. In the method of estimating the open circuit voltage (V o ) by the open circuit voltage (V oe ) obtained by the calculation based on the measured value (V m ) of the battery voltage, the open circuit voltage (V oe ) is calculated. At this time, the method for detecting the charge / discharge state of an alkaline storage battery is characterized by removing an error caused by a hysteresis of an open circuit voltage caused by a history of energization.

【0010】本発明は、ニッケル電極を正極とするアル
カリ蓄電池の充放電状態を、当該電池の充放電状態と充
電過程にある電池の開回路電圧(Vocs)または放電過
程にある電池の開回路電圧(Vods)の相関関係から求
めることを特徴とするアルカリ蓄電池の充放電状態の検
知方法である。ここでいうところのVocsおよびVods
は、電池に定電流を継続して通電し、それぞれ電池をD
OD100%の状態から充電した時の開回路電圧および
DOD100%の状態から放電したときの開回路電圧を
指す。
The present invention relates to the charging / discharging state of an alkaline storage battery having a nickel electrode as a positive electrode, the charging / discharging state of the battery and the open circuit voltage (V ocs ) of the battery in the charging process or the open circuit of the battery in the discharging process. It is a method for detecting a charge / discharge state of an alkaline storage battery, which is characterized in that it is obtained from a correlation of voltage (V ods ). Here, V ocs and V ods mean that a constant current is continuously applied to the battery and the battery
It refers to the open circuit voltage when charged from the OD 100% state and the open circuit voltage when discharged from the DOD 100% state.

【0011】[0011]

【発明の実施の形態】(電池電圧のヒステリシス挙動)以
下、本発明の実施の形態を、図に従って説明する。図1
は、温度20℃において測定したニッケル水素電池の充
放電状態(以下電池の充放電状態を示す尺度として放電
深度を採用し、DODと記す)と開回路電圧の測定結果
を示すグラフである。図で実線で示した上側の曲線は、
定電流を連続して通電し、電池をDODが100%の状
態から充電した時の開回路電圧{以下充電過程の開回路
電圧(Vocs)という}を示す。下側の曲線は、定電流
を連続して通電し、電池をDODが0%の状態から放電
したときの開回路電圧{以下放電過程の開回路電圧(V
ods)という}を示す。
BEST MODE FOR CARRYING OUT THE INVENTION (Hysteresis behavior of battery voltage)
An embodiment of the present invention will be described below with reference to the drawings. Figure 1
Is the charge of the nickel hydrogen battery measured at a temperature of 20 ° C.
Discharged state (Discharged as a measure of the charge / discharge state of the battery below
Measured results of open circuit voltage and adopting depth, noted as DOD)
It is a graph which shows. The upper curve shown by the solid line in the figure is
Continuously energize the battery with a constant current and a DOD of 100%.
Open circuit voltage when charging from the state
Voltage (Vocs)) Is shown. The lower curve is the constant current
Is continuously energized to discharge the battery from the state where the DOD is 0%
Open circuit voltage at the time of {open circuit voltage (V
ods)) Is shown.

【0012】前記開回路電圧VocおよびVodは、それぞ
れ充電または放電の温度が一定であれば一つの曲線で表
示される。図に示したようにVocとVodは、重ならず、
ヒステリシスを示す。該ヒステリシスはニッケル電極を
正極とするアルカリ蓄電池に特有の現象である。当該電
池の開回路電圧は、全てヒステリシス曲線で囲まれた領
域に存在する。
The open circuit voltages V oc and V od are represented by one curve if the charge or discharge temperature is constant. As shown in the figure, V oc and V od do not overlap,
Shows hysteresis. The hysteresis is a phenomenon peculiar to an alkaline storage battery having a nickel electrode as a positive electrode. The open circuit voltage of the battery is all in the region surrounded by the hysteresis curve.

【0013】図の破線は、電池を各DODに長期間放置
した時に最終的に取り得る電圧値であって、通電履歴に
影響されない開回路電圧(Vo)を示す。該開回路電圧
は、DODと相関性を有し、温度が一定であればDOD
によって一義的に決まる値である。従って、このVo
迅速に且つ正確に推定できれば精度が高くかつ正確なD
OD検知が可能となる。
The broken line in the figure shows the voltage value that can be finally obtained when the battery is left in each DOD for a long period of time, and shows the open circuit voltage (V o ) which is not affected by the energization history. The open circuit voltage has a correlation with the DOD, and if the temperature is constant, the DOD
It is a value that is uniquely determined by Therefore, if this V o can be estimated quickly and accurately, D will be highly accurate and accurate.
OD detection becomes possible.

【0014】電池の実測電圧は(Vm)は、下記の式で
表示でき、図2にVmの構成を示した。 Vm=Vo+(R×I)+Vh 、 Vo≒Voeh=Va+Vcoe: Voの推定値(V) R:電池の内部インピーダンス(Ω) I:電圧実測時点の充電または放電電流(A)(充電電
流は正、放電電流は負の値) Voh:ヒシテリシスおよび温度依存性による変動分を含
む電池の開回路電圧 Va:ヒステリシスに由来する開回路電圧の変動値
(V) Vc:開回路電圧の温度依存性に由来する変動値(V)
The measured voltage (V m ) of the battery can be expressed by the following formula, and FIG. 2 shows the structure of V m . V m = V o + (R × I) + V h , V o ≈V oe V h = V a + V c V oe : Estimated value of V o (V) R: Internal impedance of battery (Ω) I: Actual voltage measurement Charge or discharge current (A) at time (charge current is positive, discharge current is negative) V oh : Open circuit voltage V a of battery including fluctuation due to hysteresis and temperature dependence: Open circuit voltage derived from hysteresis Fluctuation value (V) V c : fluctuation value (V) derived from temperature dependence of open circuit voltage

【0015】実際にはVoeを求めてDODの検知に必要
なVoを推定することになる。従って、前記式のVmから
(R×I)+Vhを差し引いて補正する必要がある。
Actually, V oe is obtained to estimate V o required for DOD detection. Therefore, it is necessary to correct by subtracting (R × I) + V h from V m in the above equation.

【0016】〔電池の電圧実測以前のDODが判明して
いるかまたは推定できている場合にVmからVoeを算定
する方法〕本方法は、電圧実測以前のある時点でのDO
Dが推定できている場合に適用できる方法である。図2
に、通電による開回路電圧(Vh:通電によるヒステリ
シスの変動を含む)のDODに対する変動の様子を模式
的に示した。
[Method of Calculating V oe from V m When DOD Before Battery Voltage Measurement is Known or Estimated] This method uses DO at a certain point before voltage measurement.
This method can be applied when D can be estimated. Figure 2
FIG. 3 schematically shows how the open circuit voltage (V h : including hysteresis variation due to energization) with respect to DOD fluctuates with respect to DOD.

【0017】充電過程にある対象電池のVocは、図2の
oc1の曲線に沿って変動する。また、放電過程にある
対象電池のVodは、Vod1に沿って変動する。従って、
ocもしくはVodの挙動は、対象電池のVhによって挙
動が異なる。
The V oc of the target battery during the charging process varies along the curve of V oc1 in FIG. Further, V od of the target battery in the discharging process changes along V od1 . Therefore,
The behavior of V oc or V od differs depending on V h of the target battery.

【0018】例えば、対象とする電池のVhがの領域
にある時、充電過程にある電池のVo cは、図の矢印で示
した如くDODに対して緩やかに変化する。一方放電過
程にある電池のVodは、図の矢印に示した如くDODに
対して急激に変化する。
[0018] For example, when in the region of V h of the battery in question, the V o c battery in the charging process, changes slowly with respect to the as DOD indicated by the arrows in FIG. On the other hand, V od of the battery in the process of discharging changes abruptly with respect to DOD as shown by the arrow in the figure.

【0019】対象とする電池のVhがの領域にある時
は、通電によってDODが等量変化したとしても、電池
のVocの変化は、Vodの変化に比べて小さい。
When the V h of the battery of interest is in the region of, even if the DOD changes by an equal amount due to energization, the change of V oc of the battery is smaller than the change of V od .

【0020】対象とする電池のVhがの領域にある時
は、通電によってDODが等量変化したとしても、電池
のVocの変化は、Vodの変化に比べて大きい。
When the V h of the target battery is in the range of, even if the DOD changes by an equal amount due to energization, the change of V oc of the battery is larger than the change of V od .

【0021】対象とする電池のVhがの領域にある時
は、充電時の電池のVocは、〜の領域にある場合に
比べて急激に上昇し、図のVocの曲線に沿って変動す
る。また、放電時の電池のVodは、Vodに沿って変動す
るので領域〜の領域にある場合に比べて緩やかに低
下する。
When V h of the target battery is in the region of, V oc of the battery during charging rises sharply as compared with the case of in the region of ~, and along the curve of V oc in the figure. fluctuate. In addition, since V od of the battery at the time of discharging fluctuates along V od , the V od decreases more slowly than in the case of the regions 1 to 4.

【0022】本方法においては、図2に示した電池電圧
とDODの関係を示す図を縦軸、横軸共に小区分に分割
し各々の区分について通電履歴とVohの変動値およびV
aの関係について予めデータを取得しておき、適用しよ
うとする電池の実測データを照合してVaを算定する方
法である。
In this method, the diagram showing the relationship between the battery voltage and the DOD shown in FIG. 2 is divided into small sections on both the vertical axis and the horizontal axis, and the energization history, the variation value of V oh and the V oh value are divided for each section.
In this method, data is acquired in advance regarding the relationship of a and the measured data of the battery to be applied is collated to calculate V a .

【0023】前記のようにVohの変動は、当初のVoh
位置によって異なるので、縦軸に対してはなるべく小さ
く分割する方が精度を高くすることができる。同様の理
由で横軸に対してもなるべく小さな区分に分割すること
が望ましい。具体的には、縦軸に関しては、0.01〜
0.04Vを1区分として、横軸に関しては1〜3%を
1区分として分割することが望ましい。
Since the fluctuation of V oh varies depending on the initial position of V oh as described above, it is possible to improve the accuracy by dividing the ordinate as small as possible. For the same reason, it is desirable that the horizontal axis be divided into as small sections as possible. Specifically, 0.01 to about the vertical axis.
It is desirable to divide 0.04V as one division and 1 to 3% as one division on the horizontal axis.

【0024】(通電履歴の記録)通電電気量を以下のよ
うに記録する。 Vs:電池の測定電圧(Vm)から電池の内部インピー
ダンに基づく電圧変動値を差し引いた値。 ΔDOD:通電前と通電後のDODの変化量(通電電気
量によって決まる値)。但し、この変数の絶対値が所定
値を超えたた時は、この変数はリセットされ0%と記録
する。
(Recording of energization history) The amount of energized electricity is recorded as follows. Vs: A value obtained by subtracting the voltage fluctuation value based on the internal impedance of the battery from the measured voltage (V m ) of the battery. ΔDOD: Amount of change in DOD before and after energization (value determined by energization amount). However, when the absolute value of this variable exceeds a predetermined value, this variable is reset and recorded as 0%.

【0025】今対象とする電池のDODが図3に示すよ
うに変化した場合を例にとると、例えばΔDODが1%
を超えた時にリセットされるとすると、通電履歴は下記
のように記録される。 ΔDOD [1]= +1 ΔDOD [2]= −1 ΔDOD [3]= +1 ΔDOD [4]= +1 ΔDOD [5]= −1 ΔDOD [6]= −1 ΔDOD [7]= −1 上記においてΔDOD[m]の値は+1か−1の何れか
になる。
Taking the case where the DOD of the target battery changes as shown in FIG. 3, for example, ΔDOD is 1%.
If it is reset when the value exceeds, the energization history is recorded as follows. ΔDOD [1] = + 1 ΔDOD [2] = − 1 ΔDOD [3] = + 1 ΔDOD [4] = + 1 ΔDOD [5] = − 1 ΔDOD [6] = − 1 ΔDOD [7] = − 1 In the above, ΔDOD [ The value of [m] is either +1 or -1.

【0026】(通電履歴による電圧変動値の算定)図4
に履歴電圧を算定する手順を示す流れ図を示す。先ずス
テップ1においてΔDODの絶対値が所定値を超えたか
否かが確認される。精度を高めるためには、所定値を小
さく設定する方が良い。この所定値は、ΔDODにして
0.1から1.0%が望ましい。
(Calculation of voltage fluctuation value by energization history) FIG. 4
A flow chart showing the procedure for calculating the hysteresis voltage is shown in FIG. First, in step 1, it is confirmed whether or not the absolute value of ΔDOD exceeds a predetermined value. In order to improve accuracy, it is better to set the predetermined value smaller. This predetermined value is preferably 0.1 to 1.0% in terms of ΔDOD.

【0027】ΔDODが所定値を超えていない場合は、
前記ヒステリシスによるVocとVodとの差が小さく無視
できる。
When ΔDOD does not exceed the predetermined value,
The difference between V oc and V od due to the hysteresis is small and can be ignored.

【0028】ステップ2においてΔDODが0%にリセ
ットされ、ΔDOD[m]に所定の値が記録される。こ
の際、所定値を1%に設定したとするとδDODが1%
を超えた時+1か−1の何れかが入る。
In step 2, ΔDOD is reset to 0% and a predetermined value is recorded in ΔDOD [m]. At this time, if the predetermined value is set to 1%, δDOD is 1%.
When it exceeds, either +1 or -1 is entered.

【0029】ステップ4〜6により、電池の内部インピ
ーダンスによる電圧変動値(R×I)、温度による変動
値Vcを差し引いて前記ヒステリシスによる誤差を含ん
だVo hを算定する。
In steps 4 to 6, the voltage fluctuation value (R × I) due to the internal impedance of the battery and the temperature fluctuation value V c are subtracted to calculate V o h including the error due to the hysteresis.

【0030】ステップ7〜9で電池電圧測定時またはそ
の直前において電池が充電状態にあるか放電状態にある
かを検知して、それによってVocとVodの何れかを算定
し、その値を差し引く。ステップ7でステップ6で求め
られた電池のVohと既知のDODに通電履歴を加算して
求めたDODに相当するVocsとVodsとの電圧差aを求
める。この際に適用する既知のDODは、ΔDODが初
めて所定値を超えた場合は、初期のDODの値を、そう
でない場合は1ルーチン前の結果で算定されたDODの
値を適用する。
In steps 7 to 9, it is detected whether the battery is in a charged state or a discharged state at the time of measuring the battery voltage or immediately before, and either V oc or V od is calculated according to the detected value, and the value is calculated. Subtract. In step 7, the voltage difference a between V ocs and V ods corresponding to the DOD obtained by adding the energization history to the V oh of the battery obtained in step 6 and the known DOD is obtained. As the known DOD to be applied at this time, the initial DOD value is applied when ΔDOD exceeds the predetermined value for the first time, and the DOD value calculated by the result of one routine before is applied otherwise.

【0031】さらに、ステップ8においてδDOD
[m]の履歴、ステップ7で求めた電圧差aからヒステ
リシスに基づくVoの変動値Vhを算定する。
Further, in step 8, δDOD
From the history of [m] and the voltage difference a obtained in step 7, the fluctuation value V h of V o based on hysteresis is calculated.

【0032】ΔDOD[m]の履歴とは、例えば図4の
例ではΔDOD[1]=+1〜ΔDOD[7]=−1ま
での総和即ち−1である。この履歴によってヒステリシ
スによる電圧変動値Vaは変化する。
The history of ΔDOD [m] is the sum total of ΔDOD [1] = + 1 to ΔDOD [7] = − 1 in the example of FIG. 4, that is, −1. This history changes the voltage fluctuation value V a due to hysteresis.

【0033】前記ΔDOD[m]の履歴は、大きく下記
の4つに分類される。 (1)ΔDOD[m](mは電圧測定時点を指す)の符
号が+であり、その前のΔDOD[m−1]の符号が+
である場合。 (2)ΔDOD[m]の符号が+であり、ΔDOD[m
−1]の符号が−である場合。 (3)ΔDOD[m]の符号が−であり、ΔDOD[m
−1]の符号が+である場合。 (4)ΔDOD[m]の符号が−であり、ΔDOD[m
−1]の符号が−である場合。
The history of ΔDOD [m] is roughly classified into the following four. (1) The sign of ΔDOD [m] (m indicates the voltage measurement time point) is +, and the sign of ΔDOD [m−1] before that is +.
If it is. (2) The sign of ΔDOD [m] is +, and ΔDOD [m]
The sign of -1] is-. (3) The sign of ΔDOD [m] is −, and ΔDOD [m]
The sign of −1] is +. (4) The sign of ΔDOD [m] is-and ΔDOD [m]
The sign of -1] is-.

【0034】ヒステリシスによるVoの変動は、通常Δ
DOD[m]の符号とΔDOD[m−1]の符号が切り
替わる場合に大きくなる。よって前記4つの分類の中、
(2)と(3)の場合には(1)と(4)の場合に比べ
てVoの変動が大きくなる。
The fluctuation of V o due to hysteresis is usually Δ
It becomes large when the sign of DOD [m] and the sign of ΔDOD [m-1] are switched. Therefore, among the above four categories,
In the case of (2) and (3) variations in V o becomes greater than that of (1) and (4).

【0035】従って、さらに精度を高めるには、ΔDO
D[m]の分類毎のVoの変動データを予め蓄積してお
き、それを活用することが望ましい。
Therefore, to further improve the accuracy, ΔDO
It is desirable to previously store the variation data of V o for each classification of D [m] and utilize it.

【0036】次いでステップ10で図2の破線で示した
oの温度依存性に起因する電圧変動分(Vc)を差し
引き、Voe≒Voとして充放電状態の検知に適用する最
終的なVoを推定する。本Vaにより補正することによっ
て、本発明の主たる目的であるヒステリシスの影響を除
いたVoeを算定することができ、精度の高い充放電状態
の検知が可能となる。
Next, in step 10, the voltage variation (Vc) due to the temperature dependence of V o shown by the broken line in FIG. 2 is subtracted, and V oe ≈V o is set to the final V applied to the detection of the charging / discharging state. Estimate o . By correcting with the present V a, it is possible to calculate V oe excluding the influence of hysteresis, which is the main object of the present invention, and it is possible to detect the charge / discharge state with high accuracy.

【0037】また、Vaは、通電を打ち切ってから電圧
実測時点までの時間的経過に伴って減衰するので、通電
履歴とVaの相関性に関するデータには、Vaの時間的経
過に伴う減衰のデータも取得しておき補正するほうが望
ましい。
Further, since V a is attenuated with the lapse of time from the time when the energization is stopped until the time when the voltage is actually measured, the data regarding the correlation between the energization history and V a is accompanied by the lapse of time of V a. It is desirable to obtain the attenuation data and correct it.

【0038】〔VocsまたはVodsからDODを検知する
方法その1〕図1に示したようにDODと充電過程にあ
る電池の開回路電圧(Vocs)または放電過程にある電
池の開回路電圧(Vods)は相関性を有する。本方法
は、前記の対象電池のVoを推定してVoとDODの相関
性を利用してDODを検知する方法において、Voに替
えてVocsまたはVodsを適用する方法である。
[Method 1 for Detecting DOD from V ocs or V ods ] As shown in FIG. 1, the open circuit voltage (V ocs ) of the battery in the charging process or the open circuit voltage of the battery in the discharging process as shown in FIG. (V ods ) has a correlation. The method is a method of estimating V o of the target battery and detecting DOD by utilizing the correlation between V o and DOD, and applying V ocs or V ods instead of V o .

【0039】電池の実測電圧(Vm)は、次式で表現さ
れる。 Vm=Vocse(またはVodse)−R×I+Vhe ocs(またはVods)≒Vocse(またはVodse) Vhe=Vb+Vc 前記式中、 Vocse(またはVodse):充電(または放電)過程の開
回路電圧Vocs(またはVods)の推定値(V)、 Vm:電池電圧(実測値)(V) Vb:通電履歴に起因する回路電圧のVocs(またはV
ods)からの変動値(V) Vc:Voc(またはVod)の温度依存性に起因するVo
変動値(V) R:電池の内部インピーダンス(Ω) I=電圧測定時の電池の通電電流値(A) である。
Actual voltage of battery (Vm) Is expressed as
Be done. Vm= Vocse(Or Vodse) -RxI + Vhe Vocs(Or Vods) ≒ Vocse(Or Vodse) Vhe= Vb+ Vc In the above formula, Vocse(Or Vodse): Opening the charging (or discharging) process
Circuit voltage Vocs(Or Vods) Estimated value (V), Vm: Battery voltage (measured value) (V) Vb: V of circuit voltage caused by energization historyocs(Or V
odsValue from () Vc: Voc(Or VodV due to the temperature dependence ofoof
Variation value (V) R: Internal impedance of battery (Ω) I = current value of battery when measuring voltage (A) Is.

【0040】本方法によりVocse(またはVodse)を求
める手順は前記の対象電池のVoeを求める手順と同じで
あり、詳細な記述を省略する。
The procedure for determining V ocse (or V odse ) by this method is the same as the procedure for determining V oe of the target battery, and detailed description thereof will be omitted.

【0041】〔VocsまたはVodsからDODを検知する
方法その2〕本方法は、電圧測定時点またはその直前ま
で電池が継続して充電または放電状態にある場合にV
ocse(またはVodse)の算定が容易で弁理な方法であ
る。図2に示した如く、電池を充電または放電した場合
その開回路電圧は、少なくとも5%程度のDOD変化に
よってVocs(またはVods)に漸近する。従って、図6
に示した如く電圧測定時の通電によって生じるR×I
(V)および温度補正することにより容易にVocse(ま
たはVodse)を算定することができる。
[Method 2 for Detecting DOD from V ocs or V ods ] This method is used when the battery is continuously charged or discharged until or immediately before the voltage measurement time.
The calculation of ocse (or V odse ) is an easy and plausible method. As shown in FIG. 2, when a battery is charged or discharged, its open circuit voltage asymptotically approaches V ocs (or V ods ) with a DOD change of at least about 5%. Therefore, FIG.
As shown in, R × I caused by energization during voltage measurement
V ocse (or V odse ) can be easily calculated by (V) and temperature correction.

【発明の効果】【The invention's effect】

【0042】本発明の請求項1によれば、ニッケル電極
を正極とするアルカリ蓄電池の充放電状態を精度良く検
知することができる。
According to the first aspect of the present invention, it is possible to accurately detect the charge / discharge state of the alkaline storage battery having the nickel electrode as the positive electrode.

【0043】本発明の請求項2によれば、請求項1と同
様ニッケル電極を正極とするアルカリ蓄電池の充放電状
態を精度良く検知できる。また、充電もしくは放電が継
続している電池に対しては簡単なステップで充放電状態
を検知することができる。
According to the second aspect of the present invention, the charging / discharging state of the alkaline storage battery having the nickel electrode as the positive electrode can be detected with high accuracy as in the first aspect. In addition, for a battery that is continuously charged or discharged, the charge / discharge state can be detected in simple steps.

【0044】本発明の請求項3によれば請求項2におい
てヒステリシスに起因する開回路電圧の変動値を容易に
算定することができる。
According to the third aspect of the present invention, the variation value of the open circuit voltage due to the hysteresis in the second aspect can be easily calculated.

【0045】[0045]

【図面の簡単な説明】[Brief description of drawings]

【図1】ニッケル電極を正極とするニッケル水素蓄電池
の充電時と放電時の開回路電圧を示すグラフである。
FIG. 1 is a graph showing an open circuit voltage during charging and discharging of a nickel-hydrogen storage battery having a nickel electrode as a positive electrode.

【図2】ニッケル電極を正極とするアルカリ蓄電池の開
回路電圧のヒステリシスに起因する変動値を説明するた
めの模式図である。
FIG. 2 is a schematic diagram for explaining a variation value due to hysteresis of an open circuit voltage of an alkaline storage battery having a nickel electrode as a positive electrode.

【図3】電池の動作に伴うDOD[m]の変化を説明す
るためのグラフである。
FIG. 3 is a graph for explaining a change in DOD [m] with the operation of a battery.

【図4】開回路電圧(算定値)の算定の手順を示す流れ
図である。
FIG. 4 is a flowchart showing a procedure for calculating an open circuit voltage (calculated value).

【図5】開回路電圧(Vo)および充電時の開回路電圧
(Vocse)または放電時の開回路電圧(Vodse)と実測
電圧の差の算定方法を説明するための説明図である。
FIG. 5 is an explanatory diagram for explaining a method of calculating a difference between an open circuit voltage (V o ) and an open circuit voltage (V ocse ) during charging or an open circuit voltage (V odse ) during discharging and an actually measured voltage. .

【図6】充電または放電が継続している電池のVocse
たはVodseを算定する方法を模式的に示した図である。
FIG. 6 is a diagram schematically showing a method for calculating V ocse or V odse of a battery that is continuously charged or discharged.

【符号の説明】[Explanation of symbols]

0 電池の開回路電圧 Va ヒステリシスに起因する電池の開回路電圧の
0からの変動値 Vocs 電池の充電過程の開回路電圧 Vods 電池の放電過程の開回路電圧 Vb ヒステリシスに起因する電池の開回路電圧の
ocseまたはVodse からの変動値
V0Battery open circuit voltage VaOf the open circuit voltage of the battery due to hysteresis
V0Fluctuation value from Vocs    Open circuit voltage during battery charging process Vods    Open circuit voltage during battery discharge process VbOf the open circuit voltage of the battery due to hysteresis
VocseOr Vodse Fluctuation value from

フロントページの続き Fターム(参考) 2G016 CB02 CB03 CB04 CB11 CB12 CC01 CC03 CC04 CC23 5G003 BA01 DA07 EA05 GC05 5H028 BB11 5H030 AA03 AA04 BB01 BB21 FF43 FF44 Continued front page    F term (reference) 2G016 CB02 CB03 CB04 CB11 CB12                       CC01 CC03 CC04 CC23                 5G003 BA01 DA07 EA05 GC05                 5H028 BB11                 5H030 AA03 AA04 BB01 BB21 FF43                       FF44

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル電極を正極とするアルカリ蓄電
池の充放電状態を、充放電状態と電池の開回路電圧(V
o)との相関により検知する方法であって、電池の実測
電圧(Vm)を基にして算定によって求めた開回路電圧
(Voe)によって前記開回路電圧(Vo)を推定する方
法において、開回路電圧(Voe)を算定するに当たり、
通電履歴に伴って生じる開回路電圧のヒステリシスに起
因する開回路電圧(Vo)からの電圧変動値(Va)を実
測電圧(Vm)から除去することを特徴とするアルカリ
蓄電池の充放電状態の検知方法。
1. A charging / discharging state of an alkaline storage battery having a nickel electrode as a positive electrode, a charging / discharging state and an open circuit voltage (V
A method of detecting the correlation with o), a method for estimating the open circuit voltage (V o) by the battery of the actual measurement voltage (V m) open-circuit voltage determined by the calculation based on (V oe) In calculating the open circuit voltage (V oe ),
Charging / discharging an alkaline storage battery, characterized in that a voltage fluctuation value (V a ) from an open circuit voltage (V o ) caused by a hysteresis of an open circuit voltage caused by energization history is removed from an actually measured voltage (V m ). State detection method.
【請求項2】 ニッケル電極を正極とするアルカリ蓄電
池の充放電状態を、当該電池の充放電状態と充電過程に
ある電池の開回路電圧(Vocs)または放電過程にある
電池の開回路電圧(Vods)の相関関係から求めること
を特徴とするアルカリ蓄電池の充放電状態の検知方法。
2. The charging / discharging state of an alkaline storage battery having a nickel electrode as a positive electrode is defined as the charging / discharging state of the battery and the open circuit voltage (V ocs ) of the battery in the charging process or the open circuit voltage of the battery in the discharging process ( A method for detecting the charging / discharging state of an alkaline storage battery, which is obtained from a correlation of Vods ).
【請求項3】 前記充電過程にある電池の開回路電圧
(Vocs)または放電過程にある電池の開回路電圧(V
ods)と当該電池の実測電圧(Vm)に基づいて求めた開
回路電圧との電圧の差(Vb)を電圧(Vm)測定以前の
通電履歴に基づいて電圧変動値を求めることを特徴とす
る請求項2記載のアルカリ蓄電池の充放電状態の検知方
法。
3. The open circuit voltage (V ocs ) of the battery in the process of charging or the open circuit voltage (V) of the battery in the process of discharging.
to seek voltage variation value based voltage difference ods) and the measured voltage (V m) the open circuit voltage calculated based on of the batteries (V b) to the voltage (V m) measured earlier energization history The method for detecting the charge / discharge state of an alkaline storage battery according to claim 2, which is characterized in that.
JP2001366161A 2001-11-30 2001-11-30 Detecting method of charging/discharging state of alkaline storage battery Pending JP2003168489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366161A JP2003168489A (en) 2001-11-30 2001-11-30 Detecting method of charging/discharging state of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366161A JP2003168489A (en) 2001-11-30 2001-11-30 Detecting method of charging/discharging state of alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2003168489A true JP2003168489A (en) 2003-06-13

Family

ID=19176098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366161A Pending JP2003168489A (en) 2001-11-30 2001-11-30 Detecting method of charging/discharging state of alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2003168489A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154693A (en) * 2005-02-22 2011-08-11 Sharp Corp Battery exchange service system and charging method, and portable device
JP2013025903A (en) * 2011-07-16 2013-02-04 Toyota Industries Corp Method for detecting amount of foreign material in battery
CN103412264A (en) * 2013-08-19 2013-11-27 国网电力科学研究院 Method for evaluating consistency of single cells in storage battery pack
WO2014045706A1 (en) * 2012-09-18 2014-03-27 株式会社豊田自動織機 State-of-charge estimation device and state-of-charge estimation method
WO2014132491A1 (en) * 2013-02-27 2014-09-04 株式会社豊田自動織機 Method and device for estimating battery state of charge
CN104698253A (en) * 2015-03-16 2015-06-10 绍兴安卡汽车配件有限公司 Determination method of lithium battery open circuit voltage
CN106030325A (en) * 2014-02-25 2016-10-12 三菱电机株式会社 Soc estimation device for secondary battery
CN107607874A (en) * 2017-08-10 2018-01-19 上海交通大学 The bikini screening technique of quick charge/discharge lithium ion battery
US9977087B2 (en) 2014-04-23 2018-05-22 Mitsubishi Electric Corporation Device and method for estimating remaining battery capacity
CN110618389A (en) * 2019-09-25 2019-12-27 宝能汽车有限公司 Method and device for testing battery SOC-OCV curve
US10914788B2 (en) 2018-02-28 2021-02-09 Kabushiki Kaisha Toshiba Battery system, remaining capacity estimation device, and remaining capacity estimation method
DE102014214010B4 (en) 2013-07-23 2022-09-15 Ford Global Technologies, Llc Apparatus for estimating open circuit battery voltage based on transient resistance effects
CN117452235A (en) * 2023-12-22 2024-01-26 南昌大学 Lithium ion battery electrolyte leakage early warning method and system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154693A (en) * 2005-02-22 2011-08-11 Sharp Corp Battery exchange service system and charging method, and portable device
JP2013025903A (en) * 2011-07-16 2013-02-04 Toyota Industries Corp Method for detecting amount of foreign material in battery
WO2014045706A1 (en) * 2012-09-18 2014-03-27 株式会社豊田自動織機 State-of-charge estimation device and state-of-charge estimation method
US9714982B2 (en) 2013-02-27 2017-07-25 Kabushiki Kaisha Toyota Jidoshokki Method and device for estimating remaining capacity of battery
WO2014132491A1 (en) * 2013-02-27 2014-09-04 株式会社豊田自動織機 Method and device for estimating battery state of charge
JP2014163861A (en) * 2013-02-27 2014-09-08 Toyota Industries Corp Method and apparatus for battery residual capacity estimation
CN105190338A (en) * 2013-02-27 2015-12-23 株式会社丰田自动织机 Method and device for estimating battery state of charge
DE102014214010B4 (en) 2013-07-23 2022-09-15 Ford Global Technologies, Llc Apparatus for estimating open circuit battery voltage based on transient resistance effects
CN103412264A (en) * 2013-08-19 2013-11-27 国网电力科学研究院 Method for evaluating consistency of single cells in storage battery pack
CN106030325A (en) * 2014-02-25 2016-10-12 三菱电机株式会社 Soc estimation device for secondary battery
US10254346B2 (en) 2014-02-25 2019-04-09 Mitsubishi Electric Corporation SOC estimation device for secondary battery
US9977087B2 (en) 2014-04-23 2018-05-22 Mitsubishi Electric Corporation Device and method for estimating remaining battery capacity
CN104698253A (en) * 2015-03-16 2015-06-10 绍兴安卡汽车配件有限公司 Determination method of lithium battery open circuit voltage
CN107607874A (en) * 2017-08-10 2018-01-19 上海交通大学 The bikini screening technique of quick charge/discharge lithium ion battery
CN107607874B (en) * 2017-08-10 2019-08-02 上海交通大学 The bikini screening technique of quick charge/discharge lithium ion battery
US10914788B2 (en) 2018-02-28 2021-02-09 Kabushiki Kaisha Toshiba Battery system, remaining capacity estimation device, and remaining capacity estimation method
CN110618389A (en) * 2019-09-25 2019-12-27 宝能汽车有限公司 Method and device for testing battery SOC-OCV curve
CN117452235A (en) * 2023-12-22 2024-01-26 南昌大学 Lithium ion battery electrolyte leakage early warning method and system
CN117452235B (en) * 2023-12-22 2024-04-19 南昌大学 Lithium ion battery electrolyte leakage early warning method and system

Similar Documents

Publication Publication Date Title
CN108445400B (en) Method for estimating residual charging time of battery pack
US8918300B2 (en) Apparatus and method for battery state of charge estimation
JP5051661B2 (en) Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
JP4884404B2 (en) Method and apparatus for detecting internal information of secondary battery
JP5273794B2 (en) Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
JP3873623B2 (en) Battery charge state estimation means and battery deterioration state estimation method
US8639460B2 (en) Apparatus for estimating open circuit voltage of battery, apparatus for estimating state of charge of battery, and method for controlling the same
US9537325B2 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
KR101809838B1 (en) Deterioration degree calculating method, control method, and control device for lithium ion secondary battery
US6392415B2 (en) Method for determining the state of charge of lead-acid rechargeable batteries
CN109856548B (en) Power battery capacity estimation method
KR20140082750A (en) System and method for battery monitoring
WO2004046742A1 (en) Battery capacity calculating method, battery capacity calculating apparatus, and battery capacity calculating program
WO2019225032A1 (en) Method for ascertaining capacity of storage battery, and capacity-monitoring device
JP4817647B2 (en) Secondary battery life judgment method.
JP7444846B2 (en) Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method
JP2003168489A (en) Detecting method of charging/discharging state of alkaline storage battery
JP2009236919A (en) Method for estimating charge amount of motor vehicle battery
JP2007017357A (en) Method and device for detecting remaining capacity of battery
JP2013250071A (en) Full charge capacity detection device and storage battery system
JPH0659003A (en) Remaining capacity meter for battery
JP2018022650A (en) Method for controlling secondary battery
JP5886225B2 (en) Battery control device and battery control method
JP2979938B2 (en) Lead-acid battery life judgment method
JP4076211B2 (en) Secondary battery internal resistance detection device and charge control system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081030