JP7444846B2 - Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method - Google Patents

Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method Download PDF

Info

Publication number
JP7444846B2
JP7444846B2 JP2021215110A JP2021215110A JP7444846B2 JP 7444846 B2 JP7444846 B2 JP 7444846B2 JP 2021215110 A JP2021215110 A JP 2021215110A JP 2021215110 A JP2021215110 A JP 2021215110A JP 7444846 B2 JP7444846 B2 JP 7444846B2
Authority
JP
Japan
Prior art keywords
rechargeable battery
open circuit
circuit voltage
electrolyte
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021215110A
Other languages
Japanese (ja)
Other versions
JP2022044621A (en
Inventor
季実子 藤澤
泰司 光山
悦藏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2021215110A priority Critical patent/JP7444846B2/en
Publication of JP2022044621A publication Critical patent/JP2022044621A/en
Application granted granted Critical
Publication of JP7444846B2 publication Critical patent/JP7444846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、充電可能電池減液検出装置および充電可能電池減液検出方法に関するものである。 The present invention relates to a rechargeable battery fluid loss detection device and a rechargeable battery fluid loss detection method.

充電可能電池の異常を検出する技術としては、例えば、特許文献1に開示される技術がある。 As a technique for detecting an abnormality in a rechargeable battery, for example, there is a technique disclosed in Patent Document 1.

特許文献1には、鉛蓄電池の開路電圧から電解液比重を求め、電解液比重から残存容量を推定する残存容量測定法において、満充電された電池内の空間容積を求めておき、所定残存容量時における電池内の空間容積を求め、これら容積の差から求めた電解液の減量により、開路電圧から求めた電解液比重を補正して残存容量を求める技術が開示されている。 Patent Document 1 describes a remaining capacity measurement method in which the specific gravity of an electrolyte is determined from the open circuit voltage of a lead-acid battery and the remaining capacity is estimated from the specific gravity of the electrolyte. A technique has been disclosed in which the remaining capacity is determined by determining the spatial volume within the battery at a given time, and correcting the electrolyte specific gravity determined from the open circuit voltage by the amount of electrolyte solution determined from the difference in these volumes.

特開平09-211090号公報Japanese Patent Application Publication No. 09-211090

ところで、特許文献1に開示された技術では、電解液の比重から減液量を推定するためには、測定する鉛蓄電池の容積を事前に測定し、減液量と比重の関係を調査する必要がある。このため、異なる容積の鉛蓄電池に対応することが困難という問題点がある。 By the way, in the technique disclosed in Patent Document 1, in order to estimate the amount of liquid loss from the specific gravity of the electrolyte, it is necessary to measure the volume of the lead-acid battery to be measured in advance and investigate the relationship between the amount of liquid loss and specific gravity. There is. For this reason, there is a problem in that it is difficult to accommodate lead-acid batteries of different capacities.

本発明は、以上のような状況に鑑みてなされたものであり、様々な充電可能電池の減液を検出することが可能な充電可能電池減液検出装置および充電可能電池減液検出方法を提供することを目的としている。 The present invention has been made in view of the above circumstances, and provides a rechargeable battery fluid loss detection device and a rechargeable battery fluid loss detection method that are capable of detecting fluid loss in various rechargeable batteries. It is intended to.

上記課題を解決するために、本発明は、充電可能電池の電解液の減液を検出する充電可能電池減液検出装置において、前記充電可能電池の開回路電圧を特定する特定手段と、前記充電可能電池の充電率が所定の値である場合に、前記特定手段によって特定された前記開回路電圧が所定の閾値よりも大きいときは、前記充電可能電池の前記電解液に異常減液が生じていると判定する判定手段と、前記判定手段の判定結果を提示する提示手段と、を有することを特徴とする。
このような構成によれば、様々な充電可能電池の減液を検出することが可能となる。
In order to solve the above-mentioned problems, the present invention provides a rechargeable battery fluid loss detection device that detects fluid loss of electrolyte of a rechargeable battery, including a identifying means for identifying the open circuit voltage of the rechargeable battery, and a When the charging rate of the rechargeable battery is a predetermined value and the open circuit voltage identified by the identifying means is greater than a predetermined threshold, abnormal liquid loss has occurred in the electrolyte of the rechargeable battery. The present invention is characterized by comprising a determining means for determining that there is a presence, and a presenting means for presenting the determination result of the determining means.
According to such a configuration, it becomes possible to detect fluid loss in various rechargeable batteries.

また、本発明は、前記判定手段は、前記充電可能電池の前記充電率が満充電である場合に、前記特定手段によって特定された前記開回路電圧が所定の閾値よりも大きいときは、前記充電可能電池の前記電解液に前記異常減液が生じていると判定する、ことを特徴とする。
このような構成によれば、満充電は比較的容易に検出できることから、満充電時を基準として、異常減液を確実に検出することができる。
Further, in the present invention, when the charging rate of the rechargeable battery is a full charge and the open circuit voltage specified by the specifying means is larger than a predetermined threshold value, the determining means determines whether the charging It is characterized in that it is determined that the abnormal liquid loss has occurred in the electrolyte of the battery.
According to such a configuration, since full charge can be detected relatively easily, abnormal liquid reduction can be reliably detected using the time of full charge as a reference.

また、本発明は、前記判定手段は、前記特定手段によって特定された前記開回路電圧と、前記充電可能電池の新品時、交換時、または、補液時における前記開回路電圧との差分値が所定の閾値よりも大きいときは、前記充電可能電池の前記電解液に前記異常減液が生じていると判定する、ことを特徴とする。
このような構成によれば、特性が異なる充電可能電池であっても、個体差の影響を受けずに、異常減液を確実に検出することができる。
Further, in the present invention, the determining means determines that a difference value between the open circuit voltage specified by the specifying means and the open circuit voltage when the rechargeable battery is new, when it is replaced, or when the rechargeable battery is replaced is determined by a predetermined value. is larger than a threshold value, it is determined that the abnormal liquid loss has occurred in the electrolytic solution of the rechargeable battery.
According to such a configuration, even if rechargeable batteries have different characteristics, abnormal fluid loss can be reliably detected without being influenced by individual differences.

また、本発明は、前記特定手段によって特定された前記開回路電圧を、前記電解液の温度または前記充電可能電池の周囲の温度に応じて補正する補正手段を有する、ことを特徴とする。
このような構成によれば、温度による影響を低減することで異常減液を確実に検出することができる。
Further, the present invention is characterized in that it includes a correction means for correcting the open circuit voltage specified by the identification means in accordance with the temperature of the electrolytic solution or the temperature around the rechargeable battery.
According to such a configuration, abnormal liquid reduction can be reliably detected by reducing the influence of temperature.

また、本発明は、前記充電可能電池の内部抵抗の値を計算する計算手段を有し、前記判定手段は、前記計算手段によって計算されたある一定時間における前記内部抵抗の増加率の値が所定の閾値よりも大きい場合は、前記充電可能電池の極板が前記電解液から露出していると判定する、ことを特徴とする。
このような構成によれば、電槽の破損等が原因の電解液漏れによる異常減液によって極板が電解液から露出していることを検出することができる。
Further, the present invention includes calculation means for calculating a value of internal resistance of the rechargeable battery, and the determination means is configured to determine that the value of the increase rate of the internal resistance over a certain period of time calculated by the calculation means is a predetermined value. If the rechargeable battery is larger than a threshold value, it is determined that the electrode plates of the rechargeable battery are exposed from the electrolyte.
According to such a configuration, it is possible to detect that the electrode plate is exposed from the electrolyte due to abnormal liquid reduction due to electrolyte leakage caused by damage to the battery case or the like.

また、本発明は、充電可能電池の電解液の減液を検出する充電可能電池減液検出方法において、前記充電可能電池の開回路電圧を測定する測定ステップと、前記充電可能電池の充電率が所定の値である場合に、前記測定ステップにおいて測定された前記開回路電圧が所定の閾値よりも大きいときは、前記充電可能電池の電解液に異常減液が生じていると判定する判定ステップと、前記判定ステップの判定結果を提示する提示ステップと、を有することを特徴とする。
このような方法によれば、様々な充電可能電池の減液を検出することが可能となる。
The present invention also provides a rechargeable battery fluid loss detection method for detecting fluid loss of electrolyte in a rechargeable battery, including a measuring step of measuring an open circuit voltage of the rechargeable battery, and a charging rate of the rechargeable battery. If the open circuit voltage measured in the measuring step is larger than a predetermined threshold when the value is a predetermined value, a determining step of determining that abnormal liquid reduction has occurred in the electrolyte of the rechargeable battery; , and a presentation step of presenting the determination result of the determination step.
According to such a method, it becomes possible to detect fluid loss in various rechargeable batteries.

本発明によれば、様々な充電可能電池の減液を検出することが可能な充電可能電池減液検出装置および充電可能電池減液検出方法を提供することが可能となる。 According to the present invention, it is possible to provide a rechargeable battery fluid loss detection device and a rechargeable battery fluid loss detection method that are capable of detecting fluid loss in various rechargeable batteries.

本発明の実施形態に係る充電可能電池減液検出装置の構成例を示す図である。1 is a diagram illustrating a configuration example of a rechargeable battery liquid loss detection device according to an embodiment of the present invention. 図1の制御部の詳細な構成例を示すブロック図である。FIG. 2 is a block diagram showing a detailed configuration example of a control section in FIG. 1. FIG. 電解液の液面高さとOCVの関係を示す図である。FIG. 3 is a diagram showing the relationship between the liquid level height of an electrolytic solution and OCV. 電解液の減液量(極板の露出率)と内部抵抗の増加率との関係を示す図である。FIG. 3 is a diagram showing the relationship between the amount of electrolytic solution reduction (exposure rate of electrode plates) and the rate of increase in internal resistance. 内部抵抗の測定方法を示す図である。FIG. 3 is a diagram showing a method for measuring internal resistance. 図1に示す実施形態において実行される処理の一例を示すフローチャートである。2 is a flowchart showing an example of a process executed in the embodiment shown in FIG. 1. FIG. 図1に示す実施形態において実行される他の処理の一例を示すフローチャートである。2 is a flowchart showing an example of other processing executed in the embodiment shown in FIG. 1. FIG.

次に、本発明の実施形態について説明する。 Next, embodiments of the present invention will be described.

(A)本発明の実施形態の構成の説明
図1は、本発明の実施形態に係る充電可能電池減液検出装置を有する車両の電源系統を示す図である。この図において、充電可能電池減液検出装置1は、制御部10、電圧センサ11、電流センサ12、および、温度センサ13を主要な構成要素としており、充電可能電池14の内部における異常の発生を検出する。なお、温度センサ13は含まない構成としてもよい。
(A) Description of the configuration of the embodiment of the present invention FIG. 1 is a diagram showing a power supply system of a vehicle having a rechargeable battery liquid loss detection device according to an embodiment of the present invention. In this figure, a rechargeable battery liquid loss detection device 1 has a control unit 10, a voltage sensor 11, a current sensor 12, and a temperature sensor 13 as main components, and detects the occurrence of abnormality inside a rechargeable battery 14. To detect. Note that the configuration may be such that the temperature sensor 13 is not included.

ここで、制御部10は、電圧センサ11、電流センサ12、および、温度センサ13からの出力を参照し、充電可能電池14の状態を検出するとともに、オルタネータ15の発電電圧を制御することで充電可能電池14の充電状態を制御する。電圧センサ11は、充電可能電池14の端子電圧を検出し、制御部10に通知する。電流センサ12は、充電可能電池14に流れる電流を検出し、制御部10に通知する。温度センサ13は、充電可能電池14の電解液または充電可能電池14の周囲の温度を検出し、制御部10に通知する。なお、制御部10がオルタネータ15の発電電圧を制御することで充電可能電池14の充電状態を制御するのではなく、例えば、図示しないECU(Electric Control Unit)が充電状態を制御するようにしてもよい。 Here, the control unit 10 refers to outputs from the voltage sensor 11, current sensor 12, and temperature sensor 13, detects the state of the rechargeable battery 14, and controls the generated voltage of the alternator 15 to charge the battery. The state of charge of the battery 14 is controlled. Voltage sensor 11 detects the terminal voltage of rechargeable battery 14 and notifies control unit 10 of the detected terminal voltage. Current sensor 12 detects the current flowing through rechargeable battery 14 and notifies control unit 10 of the current. The temperature sensor 13 detects the temperature of the electrolyte of the rechargeable battery 14 or the temperature around the rechargeable battery 14 and notifies the control unit 10 of the temperature. Note that instead of the control unit 10 controlling the charging state of the rechargeable battery 14 by controlling the generated voltage of the alternator 15, for example, an ECU (Electric Control Unit) (not shown) may control the charging state. good.

充電可能電池14は、電解液を有する充電可能電池、例えば、鉛蓄電池、ニッケルカドミウム電池、または、ニッケル水素電池等によって構成され、オルタネータ15によって充電され、スタータモータ17を駆動してエンジンを始動するとともに、負荷18に電力を供給する。なお、充電可能電池14は、複数のセルを直列接続して構成されている。オルタネータ15は、エンジン16によって駆動され、交流電力を発生して整流回路によって直流電力に変換し、充電可能電池14を充電する。オルタネータ15は、制御部10によって制御され、発電電圧を調整することが可能とされている。 The rechargeable battery 14 is constituted by a rechargeable battery having an electrolytic solution, such as a lead-acid battery, a nickel-cadmium battery, or a nickel-metal hydride battery, and is charged by the alternator 15 to drive the starter motor 17 to start the engine. At the same time, power is supplied to the load 18. Note that the rechargeable battery 14 is configured by connecting a plurality of cells in series. Alternator 15 is driven by engine 16 , generates alternating current power, converts it into direct current power through a rectifier circuit, and charges rechargeable battery 14 . The alternator 15 is controlled by the control unit 10 and is capable of adjusting the generated voltage.

エンジン16は、例えば、ガソリンエンジンおよびディーゼルエンジン等のレシプロエンジンまたはロータリーエンジン等によって構成され、スタータモータ17によって始動され、トランスミッションを介して駆動輪を駆動し、車両に推進力を与えるとともに、オルタネータ15を駆動して電力を発生させる。スタータモータ17は、例えば、直流電動機によって構成され、充電可能電池14から供給される電力によって回転力を発生し、エンジン16を始動する。負荷18は、例えば、電動ステアリングモータ、デフォッガ、シートヒータ、イグニッションコイル、カーオーディオ、および、カーナビゲーション等によって構成され、充電可能電池14から供給される電力によって動作する。 The engine 16 is configured by, for example, a reciprocating engine or a rotary engine such as a gasoline engine or a diesel engine, and is started by a starter motor 17 and drives the drive wheels via a transmission to provide propulsive force to the vehicle. to generate electricity. The starter motor 17 is configured by, for example, a DC motor, generates rotational force using electric power supplied from the rechargeable battery 14, and starts the engine 16. The load 18 includes, for example, an electric steering motor, a defogger, a seat heater, an ignition coil, a car audio system, a car navigation system, and the like, and is operated by electric power supplied from the rechargeable battery 14 .

図2は、図1に示す制御部10の詳細な構成例を示す図である。この図に示すように、制御部10は、CPU(Central Processing Unit)10a、ROM(Read Only Memory)10b、RAM(Random Access Memory)10c、通信部10d、I/F(Interface)10e、および、バス10fを有している。ここで、CPU10aは、ROM10bに格納されているプログラム10baに基づいて各部を制御する。ROM10bは、半導体メモリ等によって構成され、プログラム10ba等を格納している。RAM10cは、半導体メモリ等によって構成され、プログラム10baを実行する際に生成されるデータや、後述するテーブル等のデータ10caを格納する。通信部10dは、上位の装置であるECU(Electronic Control Unit)等との間で通信を行い、検出した情報または制御情報を上位装置に通知する。I/F10eは、電圧センサ11、電流センサ12、および、温度センサ13から供給される信号をデジタル信号に変換して取り込むとともに、オルタネータ15、および、スタータモータ17等に駆動電流を供給してこれらを制御する。バス10fは、CPU10a、ROM10b、RAM10c、通信部10d、および、I/F10eを相互に接続し、これらの間で情報の授受を可能とするための信号線群である。 FIG. 2 is a diagram showing a detailed configuration example of the control section 10 shown in FIG. 1. As shown in FIG. As shown in this figure, the control unit 10 includes a CPU (Central Processing Unit) 10a, a ROM (Read Only Memory) 10b, a RAM (Random Access Memory) 10c, a communication unit 10d, an I/F (Interface) 10e, and It has a bus 10f. Here, the CPU 10a controls each section based on a program 10ba stored in the ROM 10b. The ROM 10b is composed of a semiconductor memory or the like, and stores a program 10ba and the like. The RAM 10c is constituted by a semiconductor memory or the like, and stores data generated when executing the program 10ba and data 10ca such as a table to be described later. The communication unit 10d communicates with an ECU (Electronic Control Unit), which is a higher-level device, and notifies the higher-level device of detected information or control information. The I/F 10e converts signals supplied from the voltage sensor 11, current sensor 12, and temperature sensor 13 into digital signals and takes them in, and also supplies drive current to the alternator 15, starter motor 17, etc. control. The bus 10f is a group of signal lines that connects the CPU 10a, ROM 10b, RAM 10c, communication unit 10d, and I/F 10e to each other and enables information to be exchanged between them.

(B)本発明の実施形態の動作の説明
つぎに、本発明の実施形態の動作について説明する。なお、以下では、本発明の実施形態の動作原理について説明した後、詳細な動作について説明する。
(B) Description of operation of embodiment of the present invention Next, operation of the embodiment of the present invention will be explained. Note that, after explaining the operating principle of the embodiment of the present invention, the detailed operation will be explained below.

まず、本発明の実施形態の動作原理について説明する。本発明の実施形態では、充電可能電池14のOCV(Open Circuit Voltage)に基づいて、電解液の減液を検出する。図3は、充電可能電池14の電解液の液面高さと、充電率SOCが100%におけるOCV(V)との関係を示す図である。減液が進むことで、Upper Line(電解液の適正上限を示すライン)からLower Line(電解液の適正下限を示すライン)、極板上端付近と電解液面が変化している状態を示している。 First, the operating principle of the embodiment of the present invention will be explained. In the embodiment of the present invention, a decrease in electrolyte solution is detected based on the OCV (Open Circuit Voltage) of the rechargeable battery 14. FIG. 3 is a diagram showing the relationship between the liquid level of the electrolyte of the rechargeable battery 14 and the OCV (V) when the charging rate SOC is 100%. As the liquid reduction progresses, the electrolyte level changes from the Upper Line (the line indicating the appropriate upper limit of the electrolyte) to the Lower Line (the line indicating the appropriate lower limit of the electrolyte) near the top of the electrode plate. There is.

図3の例では、ハッチングを施した菱形が測定結果を示している。また、横方向の破線は、下から新品時OCV、および、異常減液時のOCVを示している。図3に示すように、減液が進行するに従ってOCVが増加する。 In the example of FIG. 3, hatched diamonds indicate measurement results. Further, the horizontal broken line indicates the OCV when new and the OCV when the liquid is abnormally reduced from the bottom. As shown in FIG. 3, OCV increases as liquid reduction progresses.

図4は、極板の露出率(極板上面から液面までの高さ、すなわち極板の露出した高さを極板全体の高さで除した値×100)(%)に対する内部抵抗増加率(減液前の内部抵抗値からの変化量を減液前の内部抵抗値で除した値×100)(%)との関係性を示す図である。この図4に示すように、電解液の減液に伴う極板の露出面積の増加に応じて内部抵抗が増加する。なお、図4に実線で示す内部抵抗増加率(%)は極板が40%程度露出した異常減液状態での増加率であり、例えば、これを超えた場合には、減液によって極板が電解液から露出している可能性がある閾値とすることができる。さらに、ある一定時間内にこのような変化が生じることを確認することで、電解液の液漏れによって極板が露出したことを確認することができる。また、液漏れによる減液が原因となって発生する内部抵抗値の増大は、充放電反応が行われていないときにおいても生じることが特徴の一つである。したがって、車両停止状態においても、例えば、定期的な放電パルスの印加によって算出される内部抵抗値の変化によって精度よく異常減液状態を検出することができる。また、内部抵抗を用いた判定に用いる指標は、内部抵抗増加率でなくても、内部抵抗変化量(絶対値)など、ある一定時間内で内部抵抗値が変化している状態を検出することができる指標であれば他の指標を用いることができる。ある一定時間とは、30分または1時間等、液漏れによって極板が露出するまでの減液が要する適度な時間を設定することができる。 Figure 4 shows the internal resistance increase with respect to the exposure rate of the electrode plate (height from the top surface of the electrode plate to the liquid level, that is, the value obtained by dividing the exposed height of the electrode plate by the height of the entire electrode plate x 100) (%). It is a figure showing the relationship between the ratio (the value obtained by dividing the amount of change from the internal resistance value before liquid reduction by the internal resistance value before liquid reduction x 100) (%). As shown in FIG. 4, the internal resistance increases as the exposed area of the electrode plate increases as the electrolyte decreases. Note that the internal resistance increase rate (%) shown by the solid line in Figure 4 is the increase rate in an abnormal liquid reduction state where about 40% of the electrode plate is exposed. may be exposed from the electrolyte. Furthermore, by confirming that such a change occurs within a certain period of time, it is possible to confirm that the electrode plate has been exposed due to electrolyte leakage. Further, one of the characteristics is that an increase in internal resistance value caused by liquid loss due to liquid leakage occurs even when no charge/discharge reaction is taking place. Therefore, even when the vehicle is stopped, an abnormal liquid reduction state can be detected with high accuracy based on, for example, a change in the internal resistance value calculated by applying periodic discharge pulses. In addition, the index used for determination using internal resistance is not necessarily the rate of increase in internal resistance, but also the amount of change in internal resistance (absolute value), which detects the state in which the internal resistance value changes within a certain period of time. Other indicators can be used as long as they can be used. The certain period of time can be set to an appropriate amount of time, such as 30 minutes or 1 hour, during which the liquid must be reduced until the electrode plate is exposed due to liquid leakage.

そこで、本実施形態では、図3に破線で示す異常減液時のOCVを閾値Th1とし、図4に実線で示す異常減液時の内部抵抗増加率を閾値Th2とする。そして、充電率SOCが100%(満充電状態)になった場合に、開回路電圧OCVを測定し、OCV>Th1の場合には異常減液が発生していると判定する。また、内部抵抗Rを算出し、内部抵抗増加率>Th2の場合には極板が電解液から外部に露出している可能性があると判定する。このような手段によれば、OCVの変化を伴わない減液、つまりは、電解液の濃度変化のない液漏れ等による異常減液についても検知することが可能である。 Therefore, in this embodiment, the OCV at the time of abnormal liquid reduction shown by the broken line in FIG. 3 is set as the threshold value Th1, and the internal resistance increase rate at the time of abnormal liquid reduction shown by the solid line in FIG. 4 is set as the threshold value Th2. Then, when the charging rate SOC becomes 100% (fully charged state), the open circuit voltage OCV is measured, and if OCV>Th1, it is determined that abnormal liquid reduction has occurred. Further, the internal resistance R is calculated, and if the internal resistance increase rate>Th2, it is determined that there is a possibility that the electrode plate is exposed to the outside from the electrolytic solution. According to such a means, it is possible to detect even a liquid reduction that does not involve a change in OCV, that is, an abnormal liquid reduction due to liquid leakage or the like that does not cause a change in the concentration of the electrolytic solution.

より詳細には、充電可能電池減液検出装置1の制御部10は、充電可能電池14が安定状態である場合(例えば、エンジン16を停止してから数時間が経過した場合)には、電圧センサ11によって開回路電圧OCVを測定する。 More specifically, when the rechargeable battery 14 is in a stable state (for example, when several hours have passed since the engine 16 was stopped), the control unit 10 of the rechargeable battery liquid loss detection device 1 controls the voltage The sensor 11 measures the open circuit voltage OCV.

つぎに、制御部10は、温度センサ13の出力を参照して充電可能電池14の周囲温度を測定し、得られた周囲温度から電解液の温度を推定する。そして、得られた電解液の温度に基づいて、開回路電圧OCVを基準温度(例えば、25℃)における開回路電圧OCVになるように温度補正する。例えば、電解液の温度と、開回路電圧OCVとの関係を示すテーブルを準備し、当該テーブルに基づいて基準温度における開回路電圧OCVに補正する。 Next, the control unit 10 measures the ambient temperature of the rechargeable battery 14 with reference to the output of the temperature sensor 13, and estimates the temperature of the electrolytic solution from the obtained ambient temperature. Then, based on the temperature of the obtained electrolytic solution, temperature correction is performed so that the open circuit voltage OCV becomes the open circuit voltage OCV at a reference temperature (for example, 25° C.). For example, a table showing the relationship between the temperature of the electrolytic solution and the open circuit voltage OCV is prepared, and the open circuit voltage OCV at the reference temperature is corrected based on the table.

つぎに、制御部10は、開回路電圧OCVと充電率SOCとの関係に基づいて、充電率SOCを算出する。例えば、開回路電圧OCVと充電率SOCとの関係を示すテーブルを準備し、当該テーブルに基づいて開回路電圧OCVから充電率SOCを算出する。 Next, the control unit 10 calculates the charging rate SOC based on the relationship between the open circuit voltage OCV and the charging rate SOC. For example, a table showing the relationship between open circuit voltage OCV and charging rate SOC is prepared, and charging rate SOC is calculated from open circuit voltage OCV based on the table.

つづいて、制御部10は、充電率SOCを参照して、充電可能電池14が満充電状態か否かを判定し、満充電状態である場合には、開回路電圧OCVが所定の閾値Th1(例えば、図3に示す異常減液時のOCVの値)よりも大きいか否かを判定し、大きい場合には異常減液状態と判定し、上位装置に対して通知する。 Next, the control unit 10 refers to the charging rate SOC to determine whether the rechargeable battery 14 is in a fully charged state, and if it is in a fully charged state, the open circuit voltage OCV is set to a predetermined threshold Th1 ( For example, it is determined whether the OCV value is larger than the OCV value at the time of abnormal liquid reduction shown in FIG.

つぎに、制御部10は、充電可能電池14の内部抵抗Rを算出する。図5(A)は、充電可能電池14の電圧と電流の変化を示す図である。なお、図5(A)において、横軸は測定開始からの経過時間(s)を示し、縦軸は電圧(V)および電流(A)を示している。図5(B)は、図5(A)の一部を拡大して示す図である。本実施形態では、例えば、1ms毎に変化電圧ΔVと、変化電流ΔIとを測定して、例えば、10秒間に亘って累積加算してΔVaとΔIaを求め、これらの値からΔVa/ΔIaによって内部抵抗R(=ΔVa/ΔIa)の値を算出する。 Next, the control unit 10 calculates the internal resistance R of the rechargeable battery 14. FIG. 5(A) is a diagram showing changes in voltage and current of the rechargeable battery 14. Note that in FIG. 5(A), the horizontal axis indicates elapsed time (s) from the start of measurement, and the vertical axis indicates voltage (V) and current (A). FIG. 5(B) is an enlarged view of a part of FIG. 5(A). In this embodiment, for example, the changing voltage ΔV and changing current ΔI are measured every 1 ms, and cumulatively added over a period of 10 seconds to obtain ΔVa and ΔIa. From these values, the internal Calculate the value of resistance R (=ΔVa/ΔIa).

つぎに、制御部10は、一定時間内における内部抵抗増加率が所定の閾値Th2(例えば、図4に示す異常減液時の一定時間における内部抵抗増加率の値)よりも大きいか否かを判定し、大きい場合には極板が電解液から露出している可能性があると判定し、上位装置に対して通知する。 Next, the control unit 10 determines whether the internal resistance increase rate within a certain period of time is larger than a predetermined threshold Th2 (for example, the value of the internal resistance increase rate during a certain period of time during abnormal liquid reduction shown in FIG. 4). If it is large, it is determined that there is a possibility that the electrode plate is exposed from the electrolyte, and the higher-level device is notified.

以上の処理によれば、満充電時の開回路電圧OCVと閾値Th1とを比較することで、減液の可能性の有無を簡易に検出することができるとともに、内部抵抗増加率と閾値Th2とを比較することで、極板が電解液から露出している可能性の有無を検出することができる。また、以上の処理では、充電可能電池14の電解液の容積については知る必要はないことから、様々な種類の充電可能電池14の減液を検出することができる。 According to the above process, by comparing the open circuit voltage OCV at full charge with the threshold Th1, it is possible to easily detect the possibility of liquid reduction, and also to compare the internal resistance increase rate and the threshold Th2. By comparing the results, it is possible to detect whether or not the electrode plate is exposed to the electrolyte. Further, in the above process, since it is not necessary to know the volume of the electrolyte in the rechargeable battery 14, it is possible to detect a decrease in the electrolyte in various types of rechargeable batteries 14.

つぎに、図6を参照して、本発明の実施形態の詳細な動作について説明する。図6に示すフローチャートの処理が開始されると、以下のステップが実行される。 Next, detailed operation of the embodiment of the present invention will be described with reference to FIG. When the process of the flowchart shown in FIG. 6 is started, the following steps are executed.

ステップS10では、制御部10のCPU10aは、充電可能電池14が安定状態か否かを判定し、安定状態と判定した場合(ステップS10:Y)にはステップS11に進み、それ以外の場合(ステップS10:N)には処理を終了する。例えば、エンジン16が停止されてから数時間が経過し、分極および成層化が解消された場合には、Yと判定してステップS11に進む。 In step S10, the CPU 10a of the control unit 10 determines whether or not the rechargeable battery 14 is in a stable state. If it is determined that the rechargeable battery 14 is in a stable state (step S10: Y), the process proceeds to step S11; otherwise (step At S10:N), the process ends. For example, if several hours have passed since the engine 16 was stopped and polarization and stratification have been eliminated, the determination is Y and the process proceeds to step S11.

ステップS11では、CPU10aは、電圧センサ11の出力を参照し、充電可能電池14の開回路電圧OCVを測定する。 In step S11, the CPU 10a refers to the output of the voltage sensor 11 and measures the open circuit voltage OCV of the rechargeable battery 14.

ステップS12では、CPU10aは、電解液の温度を推定する。より詳細には、CPU10aは、温度センサ13の出力を参照して充電可能電池14の周囲温度を測定し、周囲温度から電解液温度を推定する。推定の方法としては、例えば、充電可能電池14の熱等価回路(熱抵抗および熱容量等からなる回路)を求め、この熱等価回路に対して周囲温度を電圧として印加した場合に、電解液の温度を出力として求めることで、電解液の温度を推定することができる。 In step S12, the CPU 10a estimates the temperature of the electrolyte. More specifically, the CPU 10a measures the ambient temperature of the rechargeable battery 14 with reference to the output of the temperature sensor 13, and estimates the electrolyte temperature from the ambient temperature. As an estimation method, for example, a thermal equivalent circuit (a circuit consisting of thermal resistance, heat capacity, etc.) of the rechargeable battery 14 is obtained, and when the ambient temperature is applied as a voltage to this thermal equivalent circuit, the temperature of the electrolyte is The temperature of the electrolyte can be estimated by determining the output.

ステップS13では、CPU10aは、ステップS12で求めた電解液温度に基づいて、ステップS11で測定した開回路電圧OCVを温度補正する。より詳細には、CPU10aは、ステップS12で推定した電解液温度が、基準温度である25℃である場合における開回路電圧OCVを求める。 In step S13, the CPU 10a temperature-corrects the open circuit voltage OCV measured in step S11 based on the electrolyte temperature determined in step S12. More specifically, the CPU 10a determines the open circuit voltage OCV when the electrolyte temperature estimated in step S12 is the reference temperature of 25°C.

ステップS14では、CPU10aは、ステップS13で温度補正した開回路電圧OCVから充電率SOCを算出する。より詳細には、開回路電圧OCVとSOCの関係を示すテーブルをRAM10cにデータ10caとして予め格納しておき、このテーブルをCPU10aが参照することで、開回路電圧OCVから充電率SOCを求めることができる。 In step S14, the CPU 10a calculates the charging rate SOC from the open circuit voltage OCV temperature-corrected in step S13. More specifically, a table showing the relationship between the open circuit voltage OCV and the SOC is stored in advance in the RAM 10c as data 10ca, and the CPU 10a refers to this table to determine the charging rate SOC from the open circuit voltage OCV. can.

ステップS15では、CPU10aは、ステップS14で求めた充電率SOCを参照し、満充電状態(SOC=100%)であるか否かを判定し、満充電状態であると判定した場合(ステップS15:Y)にはステップS16に進み、それ以外の場合(ステップS15:N)には処理を終了する。 In step S15, the CPU 10a refers to the charging rate SOC determined in step S14, and determines whether the state is fully charged (SOC=100%), and if it is determined that the state is fully charged (step S15: If Y), the process advances to step S16, and otherwise (step S15: N), the process ends.

ステップS16では、CPU10aは、ステップS13で温度補正された開回路電圧OCVと所定の閾値Th1を比較し、OCV>Th1を満たす場合(ステップS16:Y)にはステップS17に進み、それ以外の場合(ステップS16:N)には処理を終了する。例えば、開回路電圧OCVが図3に示す異常減液時のOCVよりも大きい場合にはYと判定してステップS17に進む。 In step S16, the CPU 10a compares the open circuit voltage OCV temperature-corrected in step S13 with a predetermined threshold Th1, and if OCV>Th1 is satisfied (step S16: Y), the process proceeds to step S17; otherwise, (Step S16: N), the process ends. For example, if the open circuit voltage OCV is larger than the OCV at the time of abnormal liquid reduction shown in FIG. 3, the determination is Y and the process proceeds to step S17.

ステップS17では、CPU10aは、異常減液が発生している可能性があることを、通信部10dを介して上位装置(例えば、図示しないECU)に通知する。 In step S17, the CPU 10a notifies the host device (for example, an ECU, not shown) via the communication unit 10d that abnormal liquid reduction may have occurred.

ステップS18では、CPU10aは、充電可能電池14の内部抵抗Rを算出する。より詳細には、CPU10aは、所定のタイミング(例えば、エンジン16を始動したタイミング)において、図5を参照して説明したように、例えば、1ms毎に変化電圧ΔVと、変化電流ΔIとを測定して、例えば、10秒間に亘って累積加算してΔVaとΔIaを求め、これらの値からΔVa/ΔIaによって内部抵抗R(=ΔVa/ΔIa)の値を算出する。なお、1msおよび10秒は一例であって、これら以外の時間に設定してもよい。また、ステップS12で推定した電解液温度を参照して、内部抵抗Rの値を基準温度25℃における値に温度補正するようにしてもよい。 In step S18, the CPU 10a calculates the internal resistance R of the rechargeable battery 14. More specifically, at a predetermined timing (for example, the timing when the engine 16 is started), the CPU 10a measures the changing voltage ΔV and changing current ΔI every 1 ms, for example, as explained with reference to FIG. Then, for example, ΔVa and ΔIa are cumulatively added over 10 seconds, and from these values, the value of the internal resistance R (=ΔVa/ΔIa) is calculated by ΔVa/ΔIa. Note that 1 ms and 10 seconds are just examples, and times other than these may be set. Further, the value of the internal resistance R may be temperature-corrected to the value at the reference temperature of 25° C. with reference to the electrolyte temperature estimated in step S12.

ステップS19では、CPU10aは、ステップS18で算出した一定時間内での内部抵抗増加率の値が、所定の閾値Th2よりも大きいか否かを判定し、内部抵抗増加率>Th2を満たす場合(ステップS19:Y)にはステップS20に進み、それ以外の場合(ステップS19:N)には処理を終了する。例えば、内部抵抗増加率の値が、所定の閾値(例えば、図4に示す異常減液時の内部抵抗増加率)よりも大きい場合にはYと判定してステップS20に進む。 In step S19, the CPU 10a determines whether the value of the internal resistance increase rate within a certain period of time calculated in step S18 is larger than a predetermined threshold Th2, and if the internal resistance increase rate>Th2 is satisfied (step If S19:Y), the process proceeds to step S20, and otherwise (step S19:N), the process ends. For example, if the value of the internal resistance increase rate is larger than a predetermined threshold value (for example, the internal resistance increase rate at the time of abnormal liquid reduction shown in FIG. 4), the determination is Y and the process proceeds to step S20.

ステップS20では、CPU10aは、充電可能電池14の極板が電解液から露出している可能性があることを上位装置に通知する。 In step S20, the CPU 10a notifies the host device that the electrode plates of the rechargeable battery 14 may be exposed from the electrolyte.

以上の処理によれば、前述した動作を実現することができる。 According to the above processing, the above-described operation can be realized.

(C)変形実施形態の説明
以上の実施形態は一例であって、本発明が上述したような場合のみに限定されるものでないことはいうまでもない。例えば、以上の実施形態では、異常減液の可能性の有無については、図6に示すステップS16において、開回路電圧OCVと、所定の閾値(図3に示す異常減液時のOCV)とを比較して判定するようにした。しかしながら、初期時(例えば、充電可能電池14が新品時)における開回路電圧は、充電可能電池14毎に異なる場合がある。そこで、図7に示すように、充電可能電池14の初期時開回路電圧をOCV0として記憶し、判断時における開回路電圧OCVおよび初期時開回路電圧OCV0との差分と、閾値Th3とを比較するようにしてもよい。
(C) Description of Modified Embodiments The above embodiments are merely examples, and it goes without saying that the present invention is not limited to only the cases described above. For example, in the above embodiment, in step S16 shown in FIG. 6, the open circuit voltage OCV and a predetermined threshold value (OCV at the time of abnormal liquid reduction shown in FIG. 3) are used to determine whether there is a possibility of abnormal liquid reduction. I decided to compare and judge. However, the open circuit voltage at the initial time (for example, when the rechargeable battery 14 is new) may differ depending on the rechargeable battery 14. Therefore, as shown in FIG. 7, the initial open circuit voltage of the rechargeable battery 14 is stored as OCV0, and the difference between the open circuit voltage OCV at the time of determination and the initial open circuit voltage OCV0 is compared with the threshold Th3. You can do it like this.

より詳細には、図7に示す例では、図6に比較すると、ステップS16が除外され、ステップS30およびステップS31が追加されている。その他の部分は図6と同様であるので、以下では、異なる部分を中心に説明する。 More specifically, in the example shown in FIG. 7, compared to FIG. 6, step S16 is excluded, and step S30 and step S31 are added. Since the other parts are the same as those in FIG. 6, the following description will focus on the different parts.

ステップS30では、CPU10aは、充電可能電池14の初期時に測定し、例えば、RAM10cに格納されている初期時開回路電圧OCV0を取得する。なお、初期時開回路電圧OCV0は、車両が工場で組み立てられ、充電可能電池14が搭載された際に測定し、RAM10cに記憶することができる。あるいは、工場出荷後に、充電可能電池14が交換された際に測定し、RAM10cに記憶することができる。 In step S30, the CPU 10a acquires the initial open circuit voltage OCV0 that is measured at the initial stage of the rechargeable battery 14 and stored in the RAM 10c, for example. Note that the initial open circuit voltage OCV0 can be measured when the vehicle is assembled at the factory and the rechargeable battery 14 is installed, and can be stored in the RAM 10c. Alternatively, it can be measured when the rechargeable battery 14 is replaced after shipment from the factory and stored in the RAM 10c.

ステップS31では、CPU10aは、ステップS11で測定され、ステップS13で温度補正がされた開回路電圧OCVと、初期時開回路電圧OCV0との差分値(OCV-OCV0)を計算し、差分値が所定の閾値(Th3)よりも大きいか否かを判定し、大きいと判定した場合(ステップS31:Y)にはステップS17に進み、それ以外の場合(ステップS31:N)には処理を終了する。 In step S31, the CPU 10a calculates the difference value (OCV-OCV0) between the open circuit voltage OCV measured in step S11 and subjected to temperature correction in step S13 and the initial open circuit voltage OCV0, and the difference value is determined to be a predetermined value. It is determined whether or not it is larger than a threshold value (Th3), and when it is determined that it is larger (step S31: Y), the process proceeds to step S17, and in other cases (step S31: N), the process ends.

図7に示す処理によれば、様々な種類の充電可能電池14の異常減液を検出することが可能になる。 According to the process shown in FIG. 7, it becomes possible to detect abnormal fluid loss in various types of rechargeable batteries 14.

なお、図7では、初期時開回路電圧OCV0として、充電可能電池14が新品時の開回路電圧を用いるようにしたが、例えば、充電可能電池14に対して蒸留水等が補充された場合(補液された場合)には、その時点の開回路電圧を、例えば、補液時開回路電圧OCV1として測定して記憶し、ステップS31では差分値(OCV-OCV1)と閾値Th4に基づいて判断するようにしてもよい。すなわち、本実施形態において初期時とは、(1)新品時、(2)交換時、(3)補液時等を言うものとする。 In FIG. 7, the open circuit voltage when the rechargeable battery 14 is new is used as the initial open circuit voltage OCV0. However, for example, when the rechargeable battery 14 is replenished with distilled water, etc. If the fluid is replaced), the open circuit voltage at that time is measured and stored as, for example, the open circuit voltage during fluid replacement OCV1, and in step S31, the determination is made based on the difference value (OCV-OCV1) and the threshold Th4. You may also do so. That is, in this embodiment, the initial time refers to (1) when new, (2) when replaced, (3) when fluid is replaced, etc.

また、前述したステップS31の処理では、差分値(OCV-OCV0)と閾値Th3に基づいて異常減液の有無を判定するようにしたが、差分値を初期時開回路電圧OCV0で除して得られる値(OCV-OCV0)/OCV0と閾値Th5に基づいて判定するようにしてもよい。同様に、差分値を補液時開回路電圧OCV1で除して得られる値(OCV-OCV1)/OCV1と閾値Th6に基づいて判定するようにしてもよい。 In addition, in the process of step S31 described above, the presence or absence of abnormal liquid reduction was determined based on the difference value (OCV-OCV0) and the threshold value Th3, but the difference value is divided by the initial open circuit voltage OCV0. The determination may be made based on the value (OCV-OCV0)/OCV0 and the threshold Th5. Similarly, the determination may be made based on the value (OCV-OCV1)/OCV1 obtained by dividing the difference value by the open circuit voltage OCV1 during fluid replacement and the threshold Th6.

また、以上の実施形態では、開回路電圧は充電可能電池14が安定している場合に実測するようにしたが、推定値に基づいて求めるようにしてもよい。例えば、開回路電圧の時間的な変動を近似できる電圧特性式を用いることで、充電可能電池14の安定時の開回路電圧を推定することができる。電圧特性式として、高次(例えば、4次以上)の指数減衰関数を含む近似式を用いることで、開回路電圧の時間変動を高精度に推定することができる。 Further, in the above embodiment, the open circuit voltage is actually measured when the rechargeable battery 14 is stable, but it may be determined based on an estimated value. For example, by using a voltage characteristic equation that can approximate temporal fluctuations in the open circuit voltage, the open circuit voltage of the rechargeable battery 14 when it is stable can be estimated. By using an approximation formula including a high-order (for example, fourth-order or higher) exponential attenuation function as the voltage characteristic formula, it is possible to estimate the time fluctuation of the open circuit voltage with high accuracy.

また、以上の実施形態では、内部抵抗Rについては、極板が電解液から露出していることを検出するために参照するようにしたが、図6のステップS16および図7のステップS31の処理と併せて、内部抵抗Rの変化を参照して判断するようにしてもよい。例えば、開回路電圧OCVと内部抵抗Rとのそれぞれに対して重み係数W1,W2を乗算して加算し、得られた値(W1×OCV+W2×R)と閾値Th7とを比較して判断するようにしてもよい。もちろん、前述した式のOCVは、(OCV-OCV0)または(OCV-OCV1)としたり、あるいは、(OCV-OCV0)/OCV0または(OCV-OCV1)/OCV1としたりしてもよい。 Further, in the above embodiment, the internal resistance R is referred to in order to detect that the electrode plate is exposed from the electrolyte, but the process in step S16 in FIG. 6 and step S31 in FIG. In addition, the determination may be made with reference to the change in the internal resistance R. For example, the open circuit voltage OCV and internal resistance R may be multiplied by weighting coefficients W1 and W2, respectively, and added, and the resulting value (W1×OCV+W2×R) is compared with the threshold Th7 to make a decision. You may also do so. Of course, OCV in the above formula may be (OCV-OCV0) or (OCV-OCV1), or (OCV-OCV0)/OCV0 or (OCV-OCV1)/OCV1.

また、以上の実施形態では、測定した開回路電圧OCVを電解液の温度によって補正するようにしたが、これ以外にも、例えば、経年変化等も加味して補正するようにしてもよい。 Furthermore, in the above embodiments, the measured open circuit voltage OCV is corrected based on the temperature of the electrolytic solution, but in addition to this, for example, changes over time may be taken into account for correction.

また、以上の実施形態では、充電可能電池14が満充電の場合の開回路電圧OCVを用いて異常減液を検出するようにしたが、例えば、所定の充電率(例えば、90%、80%等)の場合の開回路電圧OCVを用いて判定するようにしてもよい。また、満充電か否かについては、必ずしも測定する必要はなく、所定時間以上連続して充電が継続されている場合には満充電状態と推定するようにしてもよい。 Further, in the embodiments described above, abnormal liquid reduction is detected using the open circuit voltage OCV when the rechargeable battery 14 is fully charged. etc.), the determination may be made using the open circuit voltage OCV. Further, whether or not the battery is fully charged does not necessarily need to be measured, and it may be assumed that the battery is fully charged if charging continues for a predetermined period of time or more.

図6および図7のステップS18において、内部抵抗Rは、図5に示す処理によって求めるようにしたが、これ以外の方法によって内部抵抗Rの値を求めるようにしてもよい。例えば、負荷に電流が流れる場合の電圧と電流を求め、これらの電圧と電流から内部抵抗を求めるようにしてもよい。あるいは、充電可能電池14の等価回路を設定し、充電可能電池14の電圧と電流を測定し、これらの電圧と電流に基づいて等価回路を学習処理によって求めるようにしてもよい。 In step S18 of FIGS. 6 and 7, the internal resistance R is determined by the process shown in FIG. 5, but the value of the internal resistance R may be determined by other methods. For example, the voltage and current when current flows through the load may be determined, and the internal resistance may be determined from these voltages and currents. Alternatively, an equivalent circuit of the rechargeable battery 14 may be set, the voltage and current of the rechargeable battery 14 may be measured, and the equivalent circuit may be determined by learning processing based on these voltages and currents.

また、図6および図7に示すフローチャートは一例であって、本発明がこれらのフローチャートの処理のみに限定されるものではない。 Furthermore, the flowcharts shown in FIGS. 6 and 7 are just examples, and the present invention is not limited to the processing in these flowcharts.

1 充電可能電池減液検出装置
10 制御部
10a CPU
10b ROM
10c RAM
10d 通信部
10e I/F
11 電圧センサ
12 電流センサ
13 温度センサ
14 充電可能電池
15 オルタネータ
16 エンジン
17 スタータモータ
18 負荷
1 Rechargeable battery fluid loss detection device 10 Control unit 10a CPU
10b ROM
10c RAM
10d Communication department 10e I/F
11 Voltage sensor 12 Current sensor 13 Temperature sensor 14 Rechargeable battery 15 Alternator 16 Engine 17 Starter motor 18 Load

Claims (5)

充電可能電池の電解液の減液を検出する充電可能電池減液検出装置において、
前記充電可能電池の充電率が満充電時の開回路電圧を特定する特定手段と、
前記特定手段によって特定された前記開回路電圧を所定の閾値と比較することにより、前記充電可能電池の前記電解液に異常減液が生じているか否かを判定する判定手段と、
前記判定手段の判定結果を提示する提示手段と、
前記充電可能電池の内部抵抗の値を計算する計算手段と、
を有し、
前記特定手段は、所定時間以上連続して充電が継続されている前記充電可能電池の開回路電圧を前記満充電時の前記開回路電圧として特定し、
前記満充電時の前記開回路電圧は、前記充電可能電池の内部抵抗の成分が含まれていない前記充電可能電池の端子電圧であり、
前記判定手段は、前記計算手段によって計算されたある一定時間における前記内部抵抗の増加率が所定の閾値よりも大きい場合は、前記充電可能電池の極板が前記電解液から露出していると判定することを特徴とする充電可能電池減液検出装置。
In a rechargeable battery liquid loss detection device that detects liquid electrolyte loss in a rechargeable battery,
identification means for identifying an open circuit voltage when the charging rate of the rechargeable battery is fully charged;
determining means for determining whether abnormal liquid reduction has occurred in the electrolyte of the rechargeable battery by comparing the open circuit voltage specified by the specifying means with a predetermined threshold;
Presentation means for presenting the determination result of the determination means;
Calculation means for calculating the value of internal resistance of the rechargeable battery;
has
The identifying means identifies an open circuit voltage of the rechargeable battery that has been continuously charged for a predetermined period of time or more as the open circuit voltage at the time of full charge,
The open circuit voltage at the time of full charge is a terminal voltage of the rechargeable battery that does not include an internal resistance component of the rechargeable battery ,
The determining means determines that the electrode plates of the rechargeable battery are exposed from the electrolyte when the rate of increase in the internal resistance over a certain period of time calculated by the calculating means is greater than a predetermined threshold. A rechargeable battery liquid loss detection device characterized by :
前記判定手段は、前記特定手段によって特定された前記開回路電圧が所定の閾値よりも大きいときは、前記充電可能電池の前記電解液に前記異常減液が生じていると判定する、
ことを特徴とする請求項1に記載の充電可能電池減液検出装置。
The determining means determines that the abnormal liquid reduction has occurred in the electrolyte of the rechargeable battery when the open circuit voltage specified by the specifying means is greater than a predetermined threshold.
The rechargeable battery liquid loss detection device according to claim 1.
前記判定手段は、前記特定手段によって特定された前記開回路電圧と、前記充電可能電池の新品時、交換時、または、補液時における前記開回路電圧との差分値が所定の閾値よりも大きいときは、前記充電可能電池の前記電解液に前記異常減液が生じていると判定する、
ことを特徴とする請求項1に記載の充電可能電池減液検出装置。
The determining means determines that when a difference value between the open circuit voltage specified by the identifying means and the open circuit voltage when the rechargeable battery is new, when it is replaced, or when fluid is replaced is larger than a predetermined threshold value. determines that the abnormal liquid loss has occurred in the electrolyte of the rechargeable battery;
The rechargeable battery liquid loss detection device according to claim 1.
前記特定手段によって特定された前記開回路電圧を、前記電解液の温度または前記充電可能電池の周囲の温度に応じて補正する補正手段を有する、
ことを特徴とする請求項1乃至3のいずれか1項に記載の充電可能電池減液検出装置。
comprising a correction means for correcting the open circuit voltage specified by the identification means according to the temperature of the electrolytic solution or the temperature around the rechargeable battery;
The rechargeable battery fluid loss detection device according to any one of claims 1 to 3.
充電可能電池の電解液の減液を検出する充電可能電池減液検出方法において、
前記充電可能電池の充電率が満充電時の開回路電圧を測定する測定ステップと、
前記測定ステップにおいて測定された前記開回路電圧を所定の閾値と比較することにより、前記充電可能電池の電解液に異常減液が生じているか否かを判定する判定ステップと、
前記判定ステップの判定結果を提示する提示ステップと、
前記充電可能電池の内部抵抗の値を計算する計算ステップと、
を有し、
前記測定ステップでは、所定時間以上連続して充電が継続されている前記充電可能電池の開回路電圧を前記満充電時の前記開回路電圧として測定し、
前記満充電時の前記開回路電圧は、前記充電可能電池の内部抵抗の成分が含まれていない前記充電可能電池の端子電圧であり、
前記判定ステップでは、前記計算ステップで計算されたある一定時間における前記内部抵抗の増加率が所定の閾値よりも大きい場合は、前記充電可能電池の極板が前記電解液から露出していると判定することを特徴とする充電可能電池減液検出方法。
In a rechargeable battery fluid loss detection method for detecting fluid loss of electrolyte in a rechargeable battery,
a measuring step of measuring an open circuit voltage when the charging rate of the rechargeable battery is fully charged;
a determination step of determining whether abnormal liquid reduction has occurred in the electrolyte of the rechargeable battery by comparing the open circuit voltage measured in the measurement step with a predetermined threshold;
a presentation step of presenting the determination result of the determination step;
a calculating step of calculating a value of internal resistance of the rechargeable battery;
has
In the measuring step, the open circuit voltage of the rechargeable battery that has been continuously charged for a predetermined period of time or more is measured as the open circuit voltage at the time of full charge,
The open circuit voltage at the time of full charge is a terminal voltage of the rechargeable battery that does not include an internal resistance component of the rechargeable battery ,
In the determination step, if the rate of increase in the internal resistance over a certain period of time calculated in the calculation step is greater than a predetermined threshold, it is determined that the electrode plate of the rechargeable battery is exposed from the electrolyte. A method for detecting fluid loss in a rechargeable battery, characterized by :
JP2021215110A 2017-12-27 2021-12-28 Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method Active JP7444846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021215110A JP7444846B2 (en) 2017-12-27 2021-12-28 Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017250449A JP7007902B2 (en) 2017-12-27 2017-12-27 Rechargeable battery low liquid detection device and rechargeable battery low liquid detection method
JP2021215110A JP7444846B2 (en) 2017-12-27 2021-12-28 Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017250449A Division JP7007902B2 (en) 2017-12-27 2017-12-27 Rechargeable battery low liquid detection device and rechargeable battery low liquid detection method

Publications (2)

Publication Number Publication Date
JP2022044621A JP2022044621A (en) 2022-03-17
JP7444846B2 true JP7444846B2 (en) 2024-03-06

Family

ID=67305391

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017250449A Active JP7007902B2 (en) 2017-12-27 2017-12-27 Rechargeable battery low liquid detection device and rechargeable battery low liquid detection method
JP2021215110A Active JP7444846B2 (en) 2017-12-27 2021-12-28 Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017250449A Active JP7007902B2 (en) 2017-12-27 2017-12-27 Rechargeable battery low liquid detection device and rechargeable battery low liquid detection method

Country Status (1)

Country Link
JP (2) JP7007902B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132690A1 (en) * 2019-12-27 2021-07-01 京セラ株式会社 Secondary battery
JP7486995B2 (en) 2020-03-31 2024-05-20 日産自動車株式会社 Apparatus and method for determining reduction in electrolyte amount in secondary battery
CN113075571A (en) * 2021-03-24 2021-07-06 湖北亿纬动力有限公司 Lithium ion battery OCV determining method, device and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042799A (en) 2002-07-12 2004-02-12 Shin Kobe Electric Mach Co Ltd Battery residual capacity estimating method
JP2005172785A (en) 2003-11-19 2005-06-30 Yazaki Corp Method of estimating potential discharge capacity for battery, and method of calculating degree of deterioration thereof
JP2006344468A (en) 2005-06-08 2006-12-21 Auto Network Gijutsu Kenkyusho:Kk Battery liquid reduction detecting apparatus
JP2009241633A (en) 2008-03-28 2009-10-22 Shin Kobe Electric Mach Co Ltd Battery state detection system, and automobile having the same
JP2017181207A (en) 2016-03-29 2017-10-05 古河電気工業株式会社 Device and method for estimating secondary battery deterioration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162172A (en) * 1994-12-06 1996-06-21 Mitsubishi Motors Corp Detecting device for electrolyte shortage of battery
JP3649904B2 (en) * 1998-03-24 2005-05-18 三洋電機株式会社 Characteristics evaluation method of alkaline zinc storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042799A (en) 2002-07-12 2004-02-12 Shin Kobe Electric Mach Co Ltd Battery residual capacity estimating method
JP2005172785A (en) 2003-11-19 2005-06-30 Yazaki Corp Method of estimating potential discharge capacity for battery, and method of calculating degree of deterioration thereof
JP2006344468A (en) 2005-06-08 2006-12-21 Auto Network Gijutsu Kenkyusho:Kk Battery liquid reduction detecting apparatus
JP2009241633A (en) 2008-03-28 2009-10-22 Shin Kobe Electric Mach Co Ltd Battery state detection system, and automobile having the same
JP2017181207A (en) 2016-03-29 2017-10-05 古河電気工業株式会社 Device and method for estimating secondary battery deterioration

Also Published As

Publication number Publication date
JP2022044621A (en) 2022-03-17
JP7007902B2 (en) 2022-01-25
JP2019117711A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP7444846B2 (en) Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
EP3171187B1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
CN108885242B (en) Secondary battery degradation estimation device and secondary battery degradation estimation method
EP3171186B1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
US10393814B2 (en) Secondary battery state detection device and secondary battery state detection method
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
CN109073708B (en) Secondary battery degradation estimation device and secondary battery degradation estimation method
JP7167062B2 (en) Rechargeable battery abnormality detection device and rechargeable battery abnormality detection method
JP6520124B2 (en) Deterioration state estimation device for secondary battery
US20170254857A1 (en) Control device, control method, and recording medium
CN105247378A (en) Secondary battery state detection method and state detection device
US11175347B2 (en) Device and method for diagnosing battery deterioration
JP2013205125A (en) Device and method for detecting state of secondary battery
KR20190041360A (en) Method and apparatus for estimating state of health of battery
JP2020079723A (en) Secondary battery system
KR101680324B1 (en) Apparatus for assessing lifetime of battery
JP5554310B2 (en) Internal resistance measuring device and internal resistance measuring method
US20220385095A1 (en) Fast Charging Method
JP2020148566A (en) Lead acid battery state detector and lead acid battery state detection method
JP7269147B2 (en) Rechargeable battery status detection device and rechargeable battery status detection method
JP6460859B2 (en) Method for estimating and readjusting the state of charge of a battery cell
JP2000133322A (en) Charge/discharge system for secondary battery
JP5929711B2 (en) Charging system and voltage drop calculation method
JP2005265682A (en) Battery status detecting apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R151 Written notification of patent or utility model registration

Ref document number: 7444846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151