JP2004042799A - Battery residual capacity estimating method - Google Patents

Battery residual capacity estimating method Download PDF

Info

Publication number
JP2004042799A
JP2004042799A JP2002203450A JP2002203450A JP2004042799A JP 2004042799 A JP2004042799 A JP 2004042799A JP 2002203450 A JP2002203450 A JP 2002203450A JP 2002203450 A JP2002203450 A JP 2002203450A JP 2004042799 A JP2004042799 A JP 2004042799A
Authority
JP
Japan
Prior art keywords
battery
remaining capacity
engine
internal resistance
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002203450A
Other languages
Japanese (ja)
Other versions
JP4066732B2 (en
Inventor
Tetsuo Ogoshi
大越 哲郎
Keizo Yamada
山田 惠造
Kenichi Maeda
前田 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002203450A priority Critical patent/JP4066732B2/en
Publication of JP2004042799A publication Critical patent/JP2004042799A/en
Application granted granted Critical
Publication of JP4066732B2 publication Critical patent/JP4066732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery residual capacity estimating method for estimating the residual capacity of a battery with high accuracy. <P>SOLUTION: The open circuit voltage of a lead battery when an IGN switch is on is measured to calculate the residual capacity Q<SB>OCV</SB>of the lead battery, the internal resistance r of the lead battery is calculated from the change of the current and the voltage when an engine is started and the residual capacity Q<SB>r</SB>of the lead battery is calculated, and the residual capacity Q<SB>int</SB>of the lead battery is calculated from the average value of the residual capacity Q<SB>OCV</SB>and the residual capacity Q<SB>r</SB>(S104). The residual capacity Q<SB>res</SB>is corrected by integrating the charge and discharge current running in the lead battery before the engine is re-started (S106). The internal resistance r of the lead battery is calculated from the change in the current and the voltage when the engine is re-started, and the residual capacity Q<SB>C</SB>of the lead battery is calculated (S134). The residual capacity Q<SB>res</SB>is corrected to the residual capacity Q<SB>C</SB>(S136). Respective characteristics of the open circuit voltage and the internal resistance when the engine is started are reflected in the residual capacity Q<SB>int</SB>, and accumulation of errors for each re-start of the engine is prevented. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、バッテリ残容量推定方法に係り、特に、アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量をエンジン始動時に算出されるバッテリの内部抵抗と、バッテリに流れる積算電流との組合せにより推定するバッテリ残容量推定方法に関する。
【0002】
【従来の技術】
従来、車両に搭載された鉛電池等のバッテリは、走行中、常にオルタネータによりフロート充電され、また負荷もランプ類などに限られていたため、深い放電はされず、ほぼ常時満充電状態付近に保持されていた。しかし、近年環境意識の高まりから、車両からの二酸化炭素ガスの排出を低減する必要が生じ、特に大型バス、トラックなどの車両側では信号待ちなどの停止時にエンジンを停止するアイドルストップ機能を有したシステム車が増加している。
【0003】
アイドルストップ機能を有したシステム車では、エンジン停止中のエアコン、カーステレオなどの負荷は、すべてバッテリからの電力で賄われる。このため、従来に比べバッテリの深い放電が増加し、バッテリの残容量が小さくなる場合の増加が予想される。バッテリの出力はバッテリの残容量に依存するため、エンジン停止中にバッテリの残容量が小さくなると、エンジンを始動する充分な出力が得られなくなり、エンジン停止後再始動(アイドルストップスタート、ISS)することができなくなるおそれがある。従って、ISS可能な状態を保つために、バッテリの残容量を推定してエンジン始動に必要な出力の有無を監視し、エンジン始動に必要な出力がある場合には、アイドルストップ可能、エンジン始動に必要な出力がない場合には、アイドルストップを止めバッテリを充電するなどの信号を車両側のコンピュータに送信する必要がある。
【0004】
一方、バッテリの残容量を推定する方法として、電池の初期の充電状態(SOC)に対して、充放電電流の積分値を加えていく方法が知られている。また、例えば、特開平第6−59003号及び特開平第9−96665号公報には、電気自動車などに搭載されたバッテリの電流、電圧波形から測定される電流−電圧特性と、予め電池特性を測定することによって作成されたバッテリの残容量及び電流−電圧特性テーブルの関係とを比較することでバッテリの残容量を推定する方法が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記公報の技術では、充放電電気量の誤差を補正する処理がないため充放電電流の積分誤差が蓄積されると共に、電池の未使用状態での(駐車からエンジン始動までの)自己放電による電池の残容量の変化等もあり、電池の残容量を正確に推定することが難しい。また、電流−電圧特性テーブルを用いる方式においても、電池の履歴により、電圧が変化することで残容量を正確に推定することが困難であった。
【0006】
本発明は上記事案に鑑み、高精度にバッテリの残容量を推定可能なバッテリ残容量推定方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の態様は、アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量をエンジン始動時に算出される前記バッテリの内部抵抗と、前記バッテリに流れる積算電流との組合せにより推定するバッテリ残容量推定方法であって、キーオン時の前記バッテリの開路電圧を測定して予め定められたバッテリの残容量と開路電圧との関係から前記バッテリの残容量QOCVを算出し、前記エンジン始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して予め定められたバッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qを算出し、前記残容量QOCV及び残容量Qの平均値から前記バッテリの残容量Qintを算出し、エンジン再始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して前記バッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qを算出し、前記エンジン再始動前に前記バッテリに流れた充放電電流を前記残容量Qint又は残容量Qに積算することで補正した補正残容量Qresを前記残容量Qに修正する、ステップを含む。
【0008】
本態様では、キーオン時のバッテリの残容量QOCV及びエンジン始動時のバッテリの残容量Qの平均値からバッテリの残容量Qintが算出され、開路電圧及び内部抵抗のそれぞれの特性が残容量Qintに反映されるので、エンジン始動時に残容量Qintの精度を高めることができると共に、エンジン再始動時毎に補正残容量Qresが残容量Qに修正され、誤差の蓄積が防止されるので、高精度にバッテリの残容量を算出することができる。
【0009】
本発明の第2の態様は、アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量をエンジン始動時に算出される前記バッテリの内部抵抗と、前記バッテリに流れる積算電流との組合せにより推定するバッテリ残容量推定方法であって、キーオン時の前記バッテリの開路電圧を測定して予め定められたバッテリの残容量と開路電圧との関係から前記バッテリの残容量QOCVを算出し、エンジン再始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して予め定められたバッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qを算出し、前記エンジン再始動前に前記バッテリに流れた充放電電流を前記残容量QOCV又は残容量Qに積算することで補正した補正残容量Qresを前記残容量Qに修正する、ステップを含む。
【0010】
第1及び第2の態様において、予め定められたバッテリの温度と開路電圧との関係から、測定したバッテリの開路電圧を所定温度における開路電圧に補正すれば、バッテリの開路電圧の温度依存性を排除できるので、一層高精度にバッテリの残容量を算出することができる。また、エンジン始動時前に、残容量QOCVがバッテリのエンジン始動を許容する最小残容量Qminより大きいときにエンジン始動可能と判定するステップを更に含むようにしてもよい。
【0011】
本発明の第3の態様は、アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量をエンジン始動時に算出される前記バッテリの内部抵抗と、前記バッテリに流れる積算電流との組合せにより推定するバッテリ残容量推定方法であって、前記エンジン始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して予め定められたバッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qintを算出し、エンジン再始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して前記バッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qを算出し、前記エンジン再始動前に前記バッテリに流れた充放電電流を前記残容量Qint又は残容量Qに積算することで補正した補正残容量Qresを前記残容量Qに修正する、ステップを含む。
【0012】
上記第1〜第3の態様において、内部抵抗は、エンジン始動前又はエンジン再始動時前のバッテリの電圧とエンジン始動電流通電開始後又はエンジン再始動電流通電開始後所定時間経過時のバッテリの電圧との電圧差を、エンジン始動前又はエンジン再始動時前のバッテリの電流とエンジン始動電流通電開始後又はエンジン再始動電流通電開始後所定時間経過時のバッテリの電流との電流差でそれぞれ除して得ることが好ましい。また、所定時間がエンジン始動電流通電開始時又はエンジン再始動電流通電開始時から50msを超えると、バッテリに流れる電流及び電圧の誤差が大きくなるので、所定時間をエンジン始動電流通電開始時又はエンジン再始動電流通電開始時から50ms以内とすることが更に好ましい。更に、バッテリの温度を測定し予め定められたバッテリの温度と内部抵抗補正値との関係から、算出したバッテリの内部抵抗を所定温度における内部抵抗に補正すれば、バッテリの内部抵抗の温度依存性を排除できるので、より高精度にバッテリの残容量を算出することができる。また更に、エンジン再始動時前に、補正残容量Qresがバッテリのエンジン始動を許容する最小残容量Qminより大きいときにエンジン再始動可能と判定するステップを更に含むようにしてもよい。更に、最小残容量Qminは、エンジン始動用スタータの特性から決定される最低電圧値と要求電流値とから予め定められたバッテリのエンジン始動を許容する最大内部抵抗に対応してバッテリの残容量と内部抵抗との関係から設定されており、補正残容量Qresが最小残容量minよりも小さいときにエンジン再始動が不能と判定するようにしてもよい。
【0013】
【発明の実施の形態】
(第1実施形態)
以下、図面を参照して、本発明を電池状態検知システムに適用した実施の形態について説明する。
【0014】
(構成)
図1に示すように、本実施形態の電池状態検知システム10は、鉛電池1の内部抵抗r、開回路電圧(OCV)、放電電圧等を測定乃至算出し鉛電池1の電池状態を検知してエンジン等の車両側の制御を行う車両制御システムの下位システムとして機能する。電池状態検知システム10は、中央演算処理装置として機能するCPU、電池状態検知システム10の基本制御プログラム及び後述するように種々の設定値等が格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM、A/Dコンバータ、車両制御システム11との通信を行うためのインタフェース、これらを接続するバス等を含んで構成されている。
【0015】
鉛電池1は容器となる角形の電槽を有しており、電槽の材質には成形性、電気的絶縁性、耐腐食性及び耐久性等の点で優れる、例えば、アクリルブタジエンスチレン(ABS)、ポリプロピレン(PP)、ポリエチレン(PE)等の高分子樹脂が用いられている。電槽の中央部の隔壁にはセンサ挿入孔が形成されている。センサ挿入孔にはサーミスタ等の温度センサ2が挿入されており、温度センサ2は接着剤でセンサ挿入孔内に固定されている。
【0016】
また、鉛電池1の電槽は、例えば、外周壁の内部を縦横に仕切る隔壁によって2行9列の合計18個のセル室に画定され、一体成形されたモノブロック電槽として構成されている。電槽内の各セル室には極板群(セル)がそれぞれ1組ずつ収容されており、電槽全体には合計18組の極板群が収容されている。各極板群は、未化成負極板6枚及び未化成正極板5枚がガラス繊維からなるリテーナ(セパレータ)を介して積層されており、化成(初充電)後の公称電圧(セル電圧)は2.0Vとされている。従って、鉛電池1の群電圧は36Vである。
【0017】
電槽の上部は、電槽の上部開口部を密閉するABS等の高分子樹脂製の上蓋に接着(又は溶着)されている。上蓋には、各セル室の中央に対応する位置に各セル室の内圧を所定値以下に制御するための制御弁が配設されていると共に、対角隅部に鉛電池1を電源として外部へ電力を供給するためのロッド状正極外部出力端子及び負極外部出力端子が立設されている。
【0018】
鉛電池1の正極外部出力端子は、イグニッションスイッチ(以下、IGNスイッチという。)5の中央端子に接続されている。IGNスイッチ5は、中央端子とは別に、OFF端子、ON/ACC端子及びSTART端子を有しており、中央端子とこれらOFF、ON/ACC及びSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。一方、鉛電池1の負極外部出力端子は、ホール素子等の電流センサ4を介してグランドに接続されている。電流センサ4は、ホール素子に流れる電流に応じて変化するホール電圧により電流を検出することが可能である。
【0019】
鉛電池1の正極、負極外部出力端子、温度センサ2の両端端子及び電流センサ4の出力端子は、それぞれ電池状態検知システム10内のA/Dコンバータに接続されている。このため、電池状態検知システム10のCPUは、鉛電池1の電圧、電流及び温度をデジタル値として取り込むことが可能である。
【0020】
IGNスイッチ5のON/ACC端子は、ランプ、ワイパー、ラジオ等の補機6の一端に接続されていると共に、レギュレータRG及び一方向への電流の流れを許容する整流素子Dを介してエンジン8の回転駆動力で発電する発電機(オルタネータ)7の一端に接続されている。なお、整流素子Dは、アノード側が発電機7の一端に、カソード側がレギュレータRGに接続されている。また、IGNスイッチ5のSTART端子は、エンジン始動用スタータ9の一端に接続されている。
【0021】
スタータ9の回転軸とエンジン8の回転軸との間にはスタータ9の回転力をエンジン8に伝達する図示を省略したギヤプーリや無端ベルトが介在しており、エンジン8の回転軸と発電機7の回転軸との間にはエンジン8の回転駆動力を発電機7に伝達する電動クラッチが介在している。このため、エンジン8が駆動しているときは、エンジン8及び発電機7間の電動クラッチを接続状態としてエンジン8の回転駆動力を発電機7に伝達する。なお、IGNスイッチ5がON/ACC位置にあり、発電機7が作動しているときは、鉛電池1は電池状態検知システム10で算出された鉛電池1の残容量Qres又は充電状態(SOC)に応じて充電される。
【0022】
車両制御システム11は、CPU、ROM、RAM、エンジン8を制御するエンジン制御部や電動クラッチを制御するクラッチ制御部、インターフェース等を有して構成されており、エンジン制御部はエンジン8に、クラッチ制御部は電動クラッチに接続されている。車両制御システム11は電池状態検知システム10と通信線で接続されており、両者は相互間で通信が可能である。また、補機6、発電機7、スタータ9の他端、電池状態検知システム10、車両制御システム11は、それぞれグランドに接続されている。なお、IGNスイッチ5のOFF端子はいずれにも接続されていない。
【0023】
(動作)
次に、フローチャートを参照して、本実施形態の電池状態検知システム10の動作について説明する。なお、電池状態検知システム10に電源が投入されると、初期設定処理において、ROMに格納された設定値等はRAMに展開され、図2に示す電池状態検知ルーチンが実行される。
【0024】
電池状態検知ルーチンでは、まず、ステップ102において電流センサ4に流れる電流値を取り込んで、鉛電池1に対して入出力する電気量(Ah)の積算(電流積算)を開始する。次にステップ104において、鉛電池1の初期残容量Qintを推定する初期残容量演算処理サブルーチンを実行する。
【0025】
図3に示すように、初期残容量演算処理サブルーチンでは、ステップ202で車両制御システム11からIGNスイッチ5がオン位置に位置した旨の通知があるまで待機し、通知があると、ステップ204において、鉛電池1の開回路電圧(OCV)及び温度(T)を取り込む。ステップ206では、ステップ204で取り込んだ開回路電圧を、温度25°Cにおける開回路電圧に温度補正し、温度補正後の開回路電圧から鉛電池1の残容量QOCVを推定する。すなわち、図6に示すように、RAMにはOCV−T補正値マップが展開されており、例えば、鉛電池1の温度が10°Cのときの開回路電圧補正値は、0°Cの開回路電圧補正値0.05(V)と25°Cの開回路電圧補正値0(V)とから比例計算により、(25−10)×0.05/25=0.03(V)として算出される。温度補正後の開回路電圧は、ステップ204で取り込んだ開回路電圧に補正値(0.03(V))を加えたものである。そして、ステップ208では、図7に示すように、OCV−Qresマップ上で温度補正後の開回路電圧に対応する鉛電池1の残容量QOCVを比例計算等を用いて取得する。
【0026】
次にステップ210において、ステップ208で取得した残容量QOCVよりスタータ9などの仕様(特性)から決定されるエンジン始動を許容する最小残存容量Qminが小さいか否かを判断することで、エンジン始動が可能か否かを判定する(図9参照)。
【0027】
このような最小残存容量Qminは、初期設定処理でRAMに展開されている。エンジン始動を許容する最低電圧値Vmin及び要求電流値Ireqはスタータ9などの仕様(特性)から決定されており、鉛電池1の開回路電圧OCV、最低電圧値Vmin、要求電流値Ireq及びエンジン始動を許容する鉛電池1の最大内部抵抗値rmaxの間には、最低電圧値Vmin=開回路電圧OCV−最大内部抵抗値rmax×要求電流値Ireqの関係がある。この関係を利用して設定された最大内部抵抗値rmaxは、鉛電池1がエンジン始動を許容する限界値の意味を有しており、鉛電池1の内部抵抗rが最大内部抵抗rmaxより大きいとエンジン始動が不能となる。また、鉛電池1の残容量Qresと内部抵抗rとの関係から最大内部抵抗値rmaxに対応する鉛電池1の最小残容量Qminも設定されている(図9参照)。
【0028】
ステップ210で肯定判断のときは、次のステップ212で車両制御システム11にエンジン始動が可能な旨を報知し、否定判断のときは、ステップ214で車両制御システム11にエンジン始動が不能な旨を報知してステップ202へ戻る。車両制御システム11のCPUは、電池状態検知システム10からエンジン始動が不能な旨の報知を受けたときは、例えば、鉛電池1の外部からの充電が必要なことを示すバッテリランプを点灯させる。
【0029】
次のステップ216では、鉛電池1に流れる電流値及び電圧値を取り込み、ステップ218では、ステップ208で推定した残容量QOCVに積算された電気量を加算して残容量QOCVを補正する。
【0030】
次にステップ220において、IGNスイッチ5がON位置からSTART位置に位置したか否かを、電流センサ4に流れる電流値が所定値(例えば、0.1A)を越えるか否かにより判断する。図4に示すように、エンジン始動時の鉛電池1の電流波形は、IGNスイッチ5がSTART位置に位置したエンジン始動電流通電開始時(時刻t)の後、スタータ9への急激な1段目のパルス放電が行われ、約50ms経過時(時刻t)に最初のピークが現われる。その後、減衰する数回のピークを経てエンジン始動が完了する。電流波形は、エンジン8の構造、エンジン8とスタータ9とを繋ぐベルトやギヤプーリの摩擦等に影響されるが、概ね図4に示すような波形となる。
【0031】
次のステップ222では、エンジン始動電流通電開始時(時刻t)の後、所定時間(例えば、50ms)が経過するまで待機する。ステップ224では、1段目のパルス放電時の電流(始動電流)、鉛電池1の電圧、温度を取り込む。次にステップ226において、ステップ224で実測した電圧、電流を用いて(実測)内部抵抗rを演算する。すなわち、ステップ216で取り込んで温度補正したエンジン始動前の鉛電池1の開回路電圧(OCV)とステップ224で取り込んで温度補正したエンジン始動時の電圧との電圧差ΔVを、ステップ216で取り込んだエンジン始動前の電流値とステップ224で取り込んだエンジン始動時の電流値との電流差ΔIで除した内部抵抗r(=電圧差ΔV/電流差ΔI)の絶対値を演算する。次いでステップ228では、ステップ226で演算した内部抵抗rを、温度25°Cにおける内部抵抗に温度補正し、ステップ230では温度補正後の内部抵抗rから鉛電池1の残容量Qを推定する。次のステップ232では、ステップ208で推定した残容量QOCVとステップ230で推定した残容量Qとの平均値から鉛電池1の初期残容量Qintを推定し(Qint=1/2(QOCV+Q))、初期残容量演算処理サブルーチンを終了して図2のステップ106へ進む。
【0032】
ステップ106では、鉛電池1に流れた充放電電流をステップ232で推定した残容量Qintに積算して残容量Qresを補正し、次のステップ108において、残容量Qresが最小残容量Qminより大きいか否かを判断することで、エンジン始動が可能か否か、すなわち、アイドルストップ(IS)可能か否かを判定する(図9参照)。肯定判断のときは、次のステップ110で車両制御システム11にアイドルストップが可能な旨を報知し、否定判断のときは、ステップ112で車両制御システム11にアイドルストップが不能な旨を報知してステップ106へ戻る。車両制御システム11のCPUは、アイドルストップが可能な旨の報知を受けている間に車速が0となったときは、エンジン制御部を介してエンジン8の駆動を停止させ、アイドルストップ状態となった旨を電池状態検知システム10に報知する。一方、車両制御システム11のCPUは、電池状態検知システム10からアイドルストップが不能な旨の報知を受けたときは、エンジン8をアイドルストップ後に再始動することができないので、車速が0となってもエンジン8の駆動を続行させる。
【0033】
次にステップ114において、車両制御システム11からアイドルストップ状態となった旨の報知を受けたか否かを判断し、否定判断のときはステップ106へ戻り、肯定判断のときは、次のステップ116において、積算した電気量をステップ106で補正した残容量Qresに加えることによって残容量Qresを再補正する。
【0034】
次いでステップ118において、ステップ116で推定した残容量Qresが最小残容量Qminより大きいか否かを判断することで、アイドルストップが継続可能か否か、すなわちエンジン始動が可能か否かを判定する(図9参照)。否定判断のときは、ステップ122で、車両制御システム11にエンジン8の始動が必要な旨を報知してステップ126へ進む。この報知を受けた車両制御システム11のCPUは、エンジン制御部及びクラッチ制御部を制御してエンジン8を始動させてその回転駆動力を発電機7に伝達する。これにより、鉛電池1は充電され、その結果として残容量Qresは最小残容量Qminより大きくなる。
【0035】
一方、ステップ118で肯定判断のときは、ステップ120で電流、及び電圧を取り込み、次のステップ124において、ステップ220と同様にIGNスタート5がSTART位置に位置したか否かを判断し、否定判断のときはステップ116へ戻り、肯定判断のときは、ステップ126〜ステップ134でステップ222〜ステップ230と同様に、鉛電池1の残容量Qを推定する。次のステップ136では、ステップ106又はステップ116で補正した残容量Qresをステップ134で推定した残容量Qで修正(リセット)して、ステップ106に戻る。
【0036】
以降、エンジン再始動時前に、鉛電池1に流れた充放電電流を残容量Qに積算して残容量Qresを補正し、エンジン始動時と同様に、ステップ118において、エンジン再始動が可能か否かを判定し、肯定判定のときに、エンジン始動時の鉛電池1の残容量Qを推定し、エンジン始動時毎に、ステップ106で補正した残容量Qresを残容量Qで修正(リセット)する(図5参照)。
【0037】
(作用等)
次に、本実施形態の電池状態検知システム10の作用等について説明する。
【0038】
本実施形態の電池状態検知システム10は、IGNスイッチ5オン時の鉛電池1の残容量QOCVを推定し(ステップ208等)、エンジン始動時の電流、電圧変化から鉛電池1の残容量Qを推定し(ステップ230等)、残容量QOC 及び残容量Qの平均値から鉛電池1の初期残容量Qintを算出する(ステップ232)。このため、鉛電池1の開回路電圧及び内部抵抗のそれぞれの特性(OCV−Qresマップ及びr−Qresマップ)が初期残容量Qintに反映されるので、エンジン始動時に初期残容量Qintの精度を高めることができる。
【0039】
また、本実施形態の電池状態検知システム10は、エンジン始動時毎に、補正した残容量Qres(ステップ106)を残容量Qに修正(リセット)するので(ステップ136)、電流センサ4の測定誤差の蓄積を防止することができるため、高精度に鉛電池1の残容量Qres算出することができる。従って、本実施形態の電池状態検知システム10によれば、鉛電池1の電池状態が高精度に検出されるので、アイドルストップ・スタート時にエンジン8を停止してもエンジン8の再始動が確保でき、また、エンジン8の停止前にアイドルストップが可能かを予め把握することができる。このため、車両制御システム11は、下位システムの電池状態検知システム10から報知を受けてエンジン8の停止・再始動(アイドルストップ・スタート)の制御が確保可能であり、車両停止中の排ガス削減に寄与することができる。
【0040】
更に、本実施形態の電池状態検知システム10では、エンジン始動時の電流(放電)波形に再現性があり、アイドルストップ・スタート機能を有する車両においては、エンジン再始動が繰り返されリセットの回数が多いので、エンジン始動時毎に高精度に残容量Qを推定することができる。
【0041】
また、本実施形態の電池状態検知システム10では、バッテリとして鉛電池1を用いることで、鉛電池1の開回路電圧OCV及び残容量Qres(図7参照)、内部抵抗値r及び残容量Qres(図9参照)間の高い相関関係が得られ、仮に粗いマップを用いても高精度に鉛電池1の残容量Qresの算出及びエンジン始動判定をすることができる。
【0042】
更にまた、本実施形態の電池状態検知システム10では、鉛電池1の温度Tを測定し、鉛電池1のOCV−T補正マップから鉛電池1の開回路電圧OCVの温度補正をしたので(図6参照)、温度に依存する鉛電池1の残容量Qresを温度依存性を排除して算出することができ、作成されるマップの数を少なくすることができる。
【0043】
また更に、本実施形態の電池状態検知システム10では、エンジン始動時前に、ステップ208で推定した残容量QOCVが鉛電池1のエンジン始動を許容する最小残容量Qminより大きいときにエンジン始動可能と判定したので、エンジン始動の可否を車両側制御システム11に報知することができる。
【0044】
また、本実施形態の電池状態検知システム10では、エンジン始動時又はエンジン再始動時の鉛電池1の内部抵抗rを算出するときに、エンジン始動前又はエンジン再始動時前とエンジン始動電流通電開始後又は又はエンジン再電流通電開始後50ms以内の1段目の電流値及び電圧値から内部抵抗rを算出したので、測定誤差の大きい電流波形の減衰部分を排除して鉛電池1の充電、放電分極の影響の有無に拘わらず鉛電池1の残容量Qresを推定することができる。
【0045】
更に、本実施形態の電池状態検知システム10では、鉛電池1の温度Tを測定し、鉛電池1のr−T補正値マップから鉛電池1の内部抵抗rの温度補正をしたので(図8参照)、温度依存性を排除して鉛電池1の残容量Qresを算出することができる。
【0046】
また更に、本実施形態の電池状態検知システム10では、エンジン再始動時前に、補正した残容量Qresが鉛電池1のエンジン始動を許容する最小残容量Qminより大きいときにエンジン再始動可能と判定したので、エンジン再始動の可否を車両側制御システム11に報知することができる。
【0047】
そして、本実施形態の電池状態検知システム10では、最低電圧値及び要求電流値はエンジン始動用スタータ9の特性から決定されており、最小残容量Qminは、最低電圧値及び要求電流値から予め定められた鉛電池1のエンジン始動を許容する最大内部抵抗に対応して鉛電池1の残容量と内部抵抗との関係から設定されており、補正した残容量Qresが最小残容量minよりも小さいときにエンジン再始動が不能と判定するので、エンジン再始動不能判定のときは、エンジン停止前に発電機7から鉛電池1を充電することで、エンジン8を停止しても次のエンジン始動を確保することができる。
【0048】
なお、本実施形態では、IGNスイッチがON位置に位置したときに、エンジン始動前の開回路電圧OCVを取り込む例を示したが、車両が停止して長時間経過し鉛電池1が平衡状態になっているときに、開回路電圧OCVを取り込むようにしてもよい。このようにすれば、測定誤差の少ない鉛電池1の開回路電圧OCVからより高精度に鉛電池1の残容量Qresを算出(推定)することができる。
【0049】
また、本実施形態では、ISS機能を有する車両に搭載されたバッテリとして鉛電池1を例示したが、例えば、鉛電池1とリチウムイオン二次電池とを並列接続したり、鉛電池1とニッケル水素電池を並列接続したハイブリッド電池に適用してもよい。
【0050】
更に、本実施形態では、エンジン始動時毎に、鉛電池1の温度Tを測定する例を示したが、温度Tは短い時間では大きく変化しないので、所定時間(例えば、10分)毎に温度Tを測定するようにしてもよい。このようにすれば、電池状態検知システム10の演算負荷を小さくすることができる。
【0051】
また、本実施形態では、エンジン8を始動するスタータ9を例示したが、鉛電池1は36Vの群電圧を有するので(42V系システムを構成するので)、アイドルストップ後の車両始動にモータ駆動を利用することが可能となる。このため、図1のスタータ9及び発電機7に代えて、図10に示すように、モータ機能と発電機(ジェネレータ)機能とを有するモータジェネレータ12を用いるようにしてもよい。このような車両システムでは、IGNスイッチのSTART端子をモータジェネレータ12の一端に接続し、モータジェネレータ12を車両制御システム11内のモータジェネレータ制御部で制御するようにすればよい。この車両システムによれば、モータジェネレータ12のモータ機能により車両始動を行うことができるので、アイドルストップ・スタート時に生じる排ガスの発生を防止することができる。
【0052】
更に、本実施形態では、36Vの群電圧を有する鉛電池1を例示したが、本発明はこれに限定されることなく、例えば、現在車両に一般的に用いられている12Vの鉛電池の電池状態を検知する電池状態検知システムに適用するようにしてもよい。
【0053】
また、本実施形態では、鉛電池1にセル室間の距離が短くセル室間を直列接続する導電部材の抵抗の小さいモノブロック電槽を用いた例を示したが、導電部材の抵抗やその劣化を考慮することで、更に高精度に鉛電池1全体の電池状態を検知することが可能となる。
【0054】
また更に、本実施形態では、ステップ202で車両制御システム11からIGNスイッチがON位置となった旨を受信する例を示したが、車両制御システム11からの報知を受けることなく、電流センサ4で電流を検出し、その範囲が所定範囲(例えば、0.05A〜0.1A)にあるときに、IGNスイッチがオン位置に位置した、と電池状態検知システム10が独自に判断するようにしてもよい。
【0055】
また、本実施形態では、IS可能なときは可能報知を、不能なときは不能報知をそれぞれ車両制御システム11に出力する例を示したが、IS不能なときにはエンジン停止不許可信号を出力して警報を出すようにしてもよい。
【0056】
(第2実施形態)
次に、本発明を電池状態検知システムに適用した第2の実施の形態について説明する。本実施形態の電池状態検知システムは、鉛電池1の初期残容量QintをIGNスイッチON時の残容量QOCVから得るものである。なお、本実施形態以降の実施形態において、第1実施形態と同一の構成要素及びステップには同一の符号を付してその説明を省略し、異なる箇所のみ説明する。
【0057】
本実施形態では、図11に示すように、初期残容量演算処理サブルーチンにおいて、図3に示したステップ216〜ステップ232を欠いている。本実施形態の初期残容量演算処理サブルーチンでは、ステップ208でOCV−Qresマップから推定した残容量を初期残容量Qintとする。
【0058】
本実施形態の電池状態検知システムでは、OCV−Qresマップのみから初期残容量Qintを算出するが、鉛電池1では開回路電圧(OCV)と残容量Qresとの相関関係が高いので、残容量Qresを精度よく推定することができると共に、上述した第1実施形態と比較しステップ数を減らすことができる。
【0059】
(第3実施形態)
次に、本発明を電池状態検知システムに適用した第3の実施の形態について説明する。本実施形態の電池状態検知システムは、鉛電池1の初期残容量Qintをエンジン始動時の内部抵抗rから算出した残容量Qで得るものである。
【0060】
本実施形態では、図12に示すように、初期残容量演算処理サブルーチンにおいて、図3に示したステップ232を欠いている。本実施形態の初期残容量演算処理サブルーチンでは、ステップ230でエンジン始動時の電流、電圧変化から算出した内部抵抗rから推定した残容量を初期残容量Qintとする。
【0061】
本実施形態の電池状態検知システムでは、r−Qresマップのみから初期残容量Qintを算出すが、鉛電池1では内部抵抗rと残容量Qresとの相関関係が高いので、残容量Qresを精度よく推定することができると共に、第2実施形態と同様にステップ数を減らすことができる。
【0062】
【発明の効果】
以上説明したように、本発明によれば、キーオン時のバッテリの残容量QOCV及びエンジン始動時のバッテリの残容量Qの平均値からバッテリの残容量Qintが算出され、開路電圧及び内部抵抗のそれぞれの特性が残容量Qintに反映されるので、エンジン始動時に残容量Qintの精度を高めることができると共に、エンジン再始動時毎に補正残容量Qresが残容量Qに修正され、誤差の蓄積が防止されるので、高精度にバッテリの残容量を算出することができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の電池状態検知システムを含む車両システムのブロック回路図である。
【図2】第1実施形態の電池状態検知システムの電池状態検知ルーチンを示すフローチャートである。
【図3】電池状態検知ルーチンのステップ104の詳細を示す初期残容量演算処理サブルーチンのフローチャートである。
【図4】エンジン始動時の鉛電池の電流波形を示すグラフである。
【図5】鉛電池の充放電パターンを模式的に示すグラフである。
【図6】鉛電池の温度と開回路電圧補正値との関係を示すグラフである。
【図7】鉛電池の残容量と開回路電圧との関係を示すグラフである。
【図8】鉛電池の温度と内部抵抗補正値との関係を示すグラフである。
【図9】鉛電池の残容量と内部抵抗値との関係を示すグラフである。
【図10】本発明が適用可能な実施形態の電池状態検知システムを含む他の車両システムのブロック回路図である。
【図11】第2実施形態の電池状態検知ルーチンのステップ104の詳細を示す初期残容量演算処理サブルーチンの詳細を示すフローチャートである。
【図12】第3実施形態の電池状態検知ルーチンのステップ104の詳細を示す初期残容量演算処理サブルーチンの詳細を示すフローチャートである。
【符号の説明】
1 鉛電池(バッテリ)
4 エンジン
5 イグニッションスイッチ(キー)
9 スタータ
10 電池状態検知システム
12 モータジェネレータ(エンジン始動用スタータ)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for estimating a remaining battery charge, and in particular, relates to a method of calculating a remaining charge of a battery mounted on a vehicle having an idle stop / start function by calculating an internal resistance of the battery when the engine is started and an integrated current flowing through the battery. The present invention relates to a remaining battery capacity estimating method for estimating a remaining capacity by a combination.
[0002]
[Prior art]
Conventionally, batteries such as lead batteries mounted on vehicles are float-charged by an alternator during traveling and the load is limited to lamps, etc., so they are not deeply discharged and are almost always kept near a fully charged state It had been. However, in recent years, due to increasing environmental awareness, it has become necessary to reduce the emission of carbon dioxide gas from vehicles. Particularly, vehicles such as large buses and trucks have an idle stop function that stops the engine when stopping at signal waiting times. System vehicles are increasing.
[0003]
In a system vehicle having an idle stop function, loads such as an air conditioner and a car stereo while the engine is stopped are all covered by electric power from a battery. For this reason, deep discharge of the battery is increased as compared with the related art, and an increase in a case where the remaining capacity of the battery is reduced is expected. Since the output of the battery depends on the remaining capacity of the battery, if the remaining capacity of the battery decreases while the engine is stopped, a sufficient output for starting the engine cannot be obtained, and the engine is restarted (idle stop start, ISS) after the engine is stopped. May not be possible. Therefore, in order to maintain the ISS-capable state, the remaining capacity of the battery is estimated to monitor the presence or absence of the output necessary for starting the engine. If there is no required output, it is necessary to send a signal such as stopping the idle stop and charging the battery to the computer on the vehicle side.
[0004]
On the other hand, as a method of estimating the remaining capacity of a battery, a method of adding an integrated value of a charge / discharge current to an initial state of charge (SOC) of the battery is known. Also, for example, Japanese Patent Application Laid-Open Nos. 6-59003 and 9-96665 describe a current-voltage characteristic measured from a current and a voltage waveform of a battery mounted on an electric vehicle or the like, and a battery characteristic in advance. A method has been proposed for estimating the remaining capacity of the battery by comparing the remaining capacity of the battery created by measurement and the relationship of the current-voltage characteristic table.
[0005]
[Problems to be solved by the invention]
However, in the technique disclosed in the above publication, since there is no process for correcting the error in the amount of charge / discharge electricity, the integration error of the charge / discharge current is accumulated, and the self-discharge (from parking to start of the engine) when the battery is not used. It is difficult to accurately estimate the remaining capacity of the battery due to the change in the remaining capacity of the battery due to the above. Also in the method using the current-voltage characteristic table, it is difficult to accurately estimate the remaining capacity due to the change in voltage due to the history of the battery.
[0006]
The present invention has been made in view of the above circumstances, and has as its object to provide a battery remaining capacity estimation method capable of accurately estimating a remaining battery capacity.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, a first aspect of the present invention provides an internal resistance of the battery which is calculated at the time of engine start by calculating a remaining capacity of a battery mounted on a vehicle having an idle stop / start function. A battery remaining capacity estimating method for estimating the remaining battery charge based on a combination of a flowing integrated current and a battery remaining capacity estimation method based on a relationship between a predetermined remaining battery capacity and a predetermined open circuit voltage by measuring an open circuit voltage of the battery at key-on. QOCVIs calculated, and the internal resistance of the battery is calculated from the current and voltage changes at the time of starting the engine, and the remaining capacity Q of the battery is calculated from the relationship between the predetermined remaining capacity and the internal resistance of the battery.rAnd the remaining capacity QOCVAnd remaining capacity QrFrom the average value ofintAnd the internal resistance of the battery is calculated from changes in current and voltage when the engine is restarted, and the remaining capacity Q of the battery is calculated from the relationship between the remaining capacity and the internal resistance of the battery.CAnd the charge / discharge current flowing to the battery before restarting the engine is calculated as the remaining capacity QintOr remaining capacity QCRemaining capacity Q corrected by integratingresIs the remaining capacity QCTo include the steps.
[0008]
In this embodiment, the remaining battery charge Q at the time of key-onOCVAnd the remaining battery charge Q at the start of the enginerFrom the average value of the remaining battery capacity QintIs calculated, and the respective characteristics of the open circuit voltage and the internal resistance are changed to the remaining capacity Q.intAt the start of the engine,intAccuracy can be improved, and the corrected remaining capacity Q every time the engine is restarted.resIs the remaining capacity QCAnd the accumulation of errors is prevented, so that the remaining capacity of the battery can be calculated with high accuracy.
[0009]
According to a second aspect of the present invention, a remaining capacity of a battery mounted on a vehicle having an idle stop / start function is estimated by a combination of an internal resistance of the battery calculated at the time of engine start and an integrated current flowing through the battery. A battery remaining capacity estimating method for measuring the open circuit voltage of the battery at the time of key-on, and determining the remaining battery capacity Q of the battery from a predetermined relationship between the remaining battery capacity and the open circuit voltage.OCVAnd the internal resistance of the battery is calculated from the current and voltage changes at the time of engine restart, and the remaining capacity Q of the battery is calculated from a predetermined relationship between the remaining capacity of the battery and the internal resistance.CAnd the charge / discharge current flowing to the battery before restarting the engine is calculated as the remaining capacity QOCVOr remaining capacity QCRemaining capacity Q corrected by integratingresIs the remaining capacity QCTo include the steps.
[0010]
In the first and second aspects, if the measured open circuit voltage of the battery is corrected to the open circuit voltage at a predetermined temperature from the relationship between the predetermined battery temperature and open circuit voltage, the temperature dependency of the open circuit voltage of the battery can be reduced. Since it can be excluded, the remaining capacity of the battery can be calculated with higher accuracy. Before starting the engine, the remaining capacity QOCVIs the minimum remaining capacity Q that allows the battery to start the engine.minThe method may further include a step of determining that the engine can be started when it is larger.
[0011]
According to a third aspect of the present invention, a remaining capacity of a battery mounted on a vehicle having an idle stop / start function is estimated by a combination of an internal resistance of the battery calculated at the time of starting the engine and an integrated current flowing through the battery. A battery remaining capacity estimating method, wherein an internal resistance of the battery is calculated from a current and a voltage change at the time of starting the engine, and a remaining capacity of the battery is calculated based on a predetermined relationship between the remaining battery capacity and the internal resistance.intAnd the internal resistance of the battery is calculated from changes in current and voltage when the engine is restarted, and the remaining capacity Q of the battery is calculated from the relationship between the remaining capacity and the internal resistance of the battery.CAnd the charge / discharge current flowing to the battery before restarting the engine is calculated as the remaining capacity QintOr remaining capacity QCRemaining capacity Q corrected by integratingresIs the remaining capacity QCTo include the steps.
[0012]
In the first to third aspects, the internal resistance is the battery voltage before the engine is started or before the engine is restarted and the battery voltage after a predetermined time has elapsed after the start of the engine start current or after the start of the engine restart current. Is divided by the current difference between the battery current before the engine start or before the engine restart and the battery current after a predetermined time has elapsed after the start of the engine start current or after the start of the engine restart current. It is preferable to obtain it. Further, if the predetermined time exceeds 50 ms from the start of energization of the engine start current or the start of energization of the engine restart current, the error in the current and voltage flowing to the battery increases. More preferably, it is within 50 ms from the start of energization of the starting current. Furthermore, by measuring the temperature of the battery and correcting the calculated internal resistance of the battery to the internal resistance at a predetermined temperature from the relationship between the predetermined battery temperature and the internal resistance correction value, the temperature dependence of the internal resistance of the battery can be obtained. Can be eliminated, so that the remaining capacity of the battery can be calculated with higher accuracy. Further, before the engine restarts, the corrected remaining capacity QresIs the minimum remaining capacity Q that allows the battery to start the engine.minIt may further include a step of determining that the engine can be restarted when it is larger. Furthermore, the minimum remaining capacity QminIs determined from the relationship between the remaining capacity of the battery and the internal resistance in accordance with the predetermined maximum internal resistance that allows the battery to start the engine from the minimum voltage value and the required current value determined from the characteristics of the engine starter. Is set and the remaining correction capacity QresIs the minimum remaining capacityminWhen it is smaller than the above, it may be determined that the engine cannot be restarted.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, an embodiment in which the present invention is applied to a battery state detection system will be described with reference to the drawings.
[0014]
(Constitution)
As shown in FIG. 1, the battery state detection system 10 of the present embodiment detects or calculates the internal resistance r, open circuit voltage (OCV), discharge voltage, and the like of the lead battery 1 and detects the battery state of the lead battery 1. And functions as a lower system of a vehicle control system that controls a vehicle such as an engine. The battery state detection system 10 functions as a CPU that functions as a central processing unit, a ROM in which a basic control program of the battery state detection system 10 and various setting values are stored as described later, and serves as a work area for the CPU. It is configured to include a RAM for temporarily storing data, an A / D converter, an interface for communicating with the vehicle control system 11, a bus for connecting these, and the like.
[0015]
The lead battery 1 has a rectangular battery case serving as a container, and the material of the battery case is excellent in moldability, electrical insulation, corrosion resistance, durability, and the like. For example, acrylic butadiene styrene (ABS) ), Polypropylene (PP), and polyethylene (PE). A sensor insertion hole is formed in a central partition wall of the battery case. A temperature sensor 2 such as a thermistor is inserted into the sensor insertion hole, and the temperature sensor 2 is fixed in the sensor insertion hole with an adhesive.
[0016]
In addition, the battery case of the lead battery 1 is defined as a monoblock battery case integrally formed by, for example, a total of 18 cell chambers arranged in two rows and nine columns by partitions partitioning the inside of the outer peripheral wall vertically and horizontally. . One set of electrode plates (cells) is accommodated in each cell chamber in the battery case, and a total of 18 electrode plate groups are housed in the entire battery case. In each electrode plate group, six unformed negative electrode plates and five unformed positive electrode plates are laminated via a retainer (separator) made of glass fiber, and the nominal voltage (cell voltage) after formation (first charge) is 2.0V. Therefore, the group voltage of the lead battery 1 is 36V.
[0017]
The upper part of the battery case is adhered (or welded) to an upper lid made of a polymer resin such as ABS which seals the upper opening of the battery case. A control valve for controlling the internal pressure of each cell chamber to a predetermined value or less is provided at a position corresponding to the center of each cell chamber at the upper lid, and a lead battery 1 is used at a diagonal corner as an external power source using a lead battery 1 as a power supply. A rod-shaped positive external output terminal and a negative external output terminal for supplying power to the battery are provided upright.
[0018]
The positive electrode external output terminal of the lead battery 1 is connected to a center terminal of an ignition switch (hereinafter, referred to as an IGN switch) 5. The IGN switch 5 has an OFF terminal, an ON / ACC terminal, and a START terminal separately from the center terminal, and the center terminal and any of these OFF, ON / ACC, and START terminals are switched by rotary switching. It is possible. On the other hand, a negative electrode external output terminal of the lead battery 1 is connected to the ground via a current sensor 4 such as a Hall element. The current sensor 4 can detect a current by a Hall voltage that changes according to a current flowing through the Hall element.
[0019]
The positive and negative external output terminals of the lead battery 1, both end terminals of the temperature sensor 2, and the output terminal of the current sensor 4 are connected to an A / D converter in the battery state detection system 10. For this reason, the CPU of the battery state detection system 10 can take in the voltage, current, and temperature of the lead battery 1 as digital values.
[0020]
The ON / ACC terminal of the IGN switch 5 is connected to one end of an auxiliary device 6 such as a lamp, a wiper, a radio, etc., and is connected to a regulator RG and a rectifying element D that allows a current to flow in one direction. Is connected to one end of a generator (alternator) 7 that generates electric power by the rotational driving force. The rectifying element D has an anode connected to one end of the generator 7 and a cathode connected to the regulator RG. The START terminal of the IGN switch 5 is connected to one end of the starter 9 for starting the engine.
[0021]
A gear pulley or an endless belt (not shown) for transmitting the torque of the starter 9 to the engine 8 is interposed between the rotation axis of the starter 9 and the rotation axis of the engine 8. An electric clutch for transmitting the rotational driving force of the engine 8 to the generator 7 is interposed between the rotating shaft and the rotating shaft. Therefore, when the engine 8 is operating, the electric clutch between the engine 8 and the generator 7 is connected to transmit the rotational driving force of the engine 8 to the generator 7. When the IGN switch 5 is in the ON / ACC position and the generator 7 is operating, the lead battery 1 has a remaining capacity Q calculated by the battery state detection system 10.resAlternatively, the battery is charged according to the state of charge (SOC).
[0022]
The vehicle control system 11 includes a CPU, a ROM, a RAM, an engine control unit that controls the engine 8, a clutch control unit that controls an electric clutch, an interface, and the like. The control unit is connected to the electric clutch. The vehicle control system 11 is connected to the battery state detection system 10 via a communication line, and the two can communicate with each other. The accessory 6, the generator 7, the other end of the starter 9, the battery state detection system 10, and the vehicle control system 11 are connected to the ground. Note that the OFF terminal of the IGN switch 5 is not connected to any of them.
[0023]
(motion)
Next, an operation of the battery state detection system 10 of the present embodiment will be described with reference to a flowchart. When the battery state detection system 10 is turned on, the set values and the like stored in the ROM are expanded in the RAM in the initial setting process, and the battery state detection routine shown in FIG. 2 is executed.
[0024]
In the battery state detection routine, first, in step 102, a current value flowing through the current sensor 4 is taken in, and integration (current integration) of the amount of electricity (Ah) input / output to / from the lead battery 1 is started. Next, at step 104, the initial remaining capacity Q of the lead battery 1 is calculated.intIs executed, the initial remaining capacity calculation processing subroutine for estimating the remaining capacity is executed.
[0025]
As shown in FIG. 3, in the initial remaining capacity calculation processing subroutine, in step 202, the process waits until there is a notification from the vehicle control system 11 that the IGN switch 5 is located at the ON position. The open circuit voltage (OCV) and the temperature (T) of the lead battery 1 are captured. In step 206, the open circuit voltage taken in step 204 is temperature corrected to an open circuit voltage at a temperature of 25 ° C., and the remaining capacity Q of the lead battery 1 is calculated from the temperature corrected open circuit voltage.OCVIs estimated. That is, as shown in FIG. 6, an OCV-T correction value map is developed in the RAM. For example, when the temperature of the lead battery 1 is 10 ° C., the open-circuit voltage correction value is 0 ° C. Calculated as (25−10) × 0.05 / 25 = 0.03 (V) by proportional calculation from the circuit voltage correction value 0.05 (V) and the open circuit voltage correction value 0 (V) at 25 ° C. Is done. The open circuit voltage after the temperature correction is obtained by adding a correction value (0.03 (V)) to the open circuit voltage taken in step 204. Then, in step 208, as shown in FIG.resRemaining capacity Q of lead battery 1 corresponding to open circuit voltage after temperature correction on mapOCVIs obtained using a proportional calculation or the like.
[0026]
Next, in step 210, the remaining capacity Q acquired in step 208OCVThe minimum remaining capacity Q that allows the engine to start determined by the specifications (characteristics) of the starter 9 and the like.minIt is determined whether or not the engine can be started by determining whether or not is smaller (see FIG. 9).
[0027]
Such a minimum remaining capacity QminAre loaded on the RAM in the initial setting process. Minimum voltage value V that allows engine startminAnd required current value IreqIs determined from the specifications (characteristics) of the starter 9 and the like, and the open circuit voltage OCV and the minimum voltage value Vmin, Required current value IreqAnd the maximum internal resistance value r of the lead battery 1 that allows the engine to startmaxBetween the minimum voltage value Vmin= Open circuit voltage OCV-maximum internal resistance value rmax× Requested current value IreqThere is a relationship. Maximum internal resistance value r set using this relationshipmaxHas a meaning of a limit value at which the lead battery 1 allows the engine to start, and the internal resistance r of the lead battery 1 is the maximum internal resistance r.maxIf it is larger, the engine cannot be started. Also, the remaining capacity Q of the lead battery 1resFrom the relationship between the internal resistance r and the maximum internal resistance rmaxRemaining capacity Q of the lead battery 1 corresponding tominIs also set (see FIG. 9).
[0028]
If an affirmative determination is made in step 210, the next step 212 notifies the vehicle control system 11 that the engine can be started. If a negative determination is made, the vehicle control system 11 notifies the vehicle control system 11 in step 214 that the engine cannot be started. Then, the process returns to step 202. When the CPU of the vehicle control system 11 receives a notification from the battery state detection system 10 that the engine cannot be started, for example, it turns on a battery lamp indicating that external charging of the lead battery 1 is required.
[0029]
In the next step 216, the current value and the voltage value flowing through the lead battery 1 are fetched, and in step 218, the remaining capacity Q estimated in step 208OCVTo the remaining capacity QOCVIs corrected.
[0030]
Next, at step 220, it is determined whether or not the IGN switch 5 has been moved from the ON position to the START position based on whether or not the value of the current flowing through the current sensor 4 exceeds a predetermined value (for example, 0.1 A). As shown in FIG. 4, the current waveform of the lead battery 1 at the time of starting the engine is such that when the IGN switch 5 is located at the START position, the engine starting current is supplied (at time t).s), A rapid first-stage pulse discharge to the starter 9 is performed, and when about 50 ms has elapsed (time tp) Shows the first peak. After that, the engine start is completed through several peaks that attenuate. The current waveform is affected by the structure of the engine 8, the friction of the belt and the gear pulley connecting the engine 8 and the starter 9, and the like, and generally has a waveform as shown in FIG.
[0031]
In the next step 222, at the start of energization of the engine starting current (at time ts), Wait until a predetermined time (for example, 50 ms) elapses. In step 224, the current (starting current) at the time of the first-stage pulse discharge, the voltage and the temperature of the lead battery 1 are captured. Next, in step 226, the (actually measured) internal resistance r is calculated using the voltage and current actually measured in step 224. That is, the voltage difference ΔV between the open circuit voltage (OCV) of the lead battery 1 before the engine, which is taken in step 216 and whose temperature is corrected, and the voltage at the time of starting the engine, which is taken in step 224 and whose temperature is corrected, is taken in step 216. The absolute value of the internal resistance r (= voltage difference ΔV / current difference ΔI) divided by the current difference ΔI between the current value before starting the engine and the current value at the time of starting the engine taken in step 224 is calculated. Next, at step 228, the internal resistance r calculated at step 226 is temperature-corrected to the internal resistance at a temperature of 25 ° C. At step 230, the remaining capacity Q of the lead battery 1 is calculated from the temperature-corrected internal resistance r.rIs estimated. In the next step 232, the remaining capacity Q estimated in step 208OCVAnd the remaining capacity Q estimated in step 230rAnd the initial remaining capacity Q of the lead battery 1intIs estimated (Qint= 1/2 (QOCV+ Qr)), End the initial remaining capacity calculation processing subroutine, and proceed to step 106 in FIG.
[0032]
In step 106, the charge / discharge current flowing through the lead battery 1 is calculated as the remaining capacity Q estimated in step 232.intTo the remaining capacity QresIs corrected, and in the next step 108, the remaining capacity QresIs the minimum remaining capacity QminIt is determined whether the engine can be started, that is, whether or not idle stop (IS) is possible by determining whether or not it is larger (see FIG. 9). If the determination is affirmative, the vehicle control system 11 is notified in step 110 that the idle stop is possible, and if the determination is negative, the vehicle control system 11 is notified in step 112 that the idle stop is not possible. Return to step 106. The CPU of the vehicle control system 11 stops the driving of the engine 8 via the engine control unit when the vehicle speed becomes 0 while receiving the notification that the idle stop is possible, and enters the idle stop state. The battery state detection system 10 is notified of the fact. On the other hand, when the CPU of the vehicle control system 11 receives the notification from the battery state detection system 10 that the idle stop cannot be performed, the engine 8 cannot be restarted after the idle stop, so that the vehicle speed becomes zero. Also causes the engine 8 to continue driving.
[0033]
Next, in step 114, it is determined whether or not a notification that the vehicle has entered the idle stop state has been received from the vehicle control system 11. If the determination is negative, the process returns to step 106; , The remaining capacity Q obtained by correcting the integrated quantity of electricity in step 106resTo the remaining capacity QresIs re-corrected.
[0034]
Next, at step 118, the remaining capacity Q estimated at step 116resIs the minimum remaining capacity QminBy judging whether or not it is larger than it is determined whether or not the idle stop can be continued, that is, whether or not the engine can be started (see FIG. 9). If a negative determination is made, at step 122, the vehicle control system 11 is notified that the engine 8 needs to be started, and the routine proceeds to step 126. The CPU of the vehicle control system 11 having received the notification controls the engine control unit and the clutch control unit to start the engine 8 and transmits the rotational driving force to the generator 7. Thereby, the lead battery 1 is charged, and as a result, the remaining capacity QresIs the minimum remaining capacity QminBe larger.
[0035]
On the other hand, if an affirmative determination is made in step 118, the current and voltage are fetched in step 120, and in the next step 124, it is determined whether or not the IGN start 5 is located at the START position as in step 220, and a negative determination is made. Returns to step 116, and when the determination is affirmative, the remaining capacity Q of the lead battery 1 is determined in steps 126 to 134 as in steps 222 to 230.CIs estimated. In the next step 136, the remaining capacity Q corrected in step 106 or step 116resIs the remaining capacity Q estimated in step 134CAnd the process returns to step 106.
[0036]
Thereafter, before the engine restarts, the charge / discharge current flowing through the lead battery 1 is changed to the remaining capacity Q.CTo the remaining capacity QresIs corrected, and it is determined in step 118 whether or not the engine can be restarted. When the determination is affirmative, the remaining capacity Q of the lead battery 1 at the time of engine startup is determined.CAnd the remaining capacity Q corrected in step 106 every time the engine is started.resIs the remaining capacity QCTo correct (reset) (see FIG. 5).
[0037]
(Action, etc.)
Next, the operation of the battery state detection system 10 of the present embodiment will be described.
[0038]
The battery state detection system 10 according to the present embodiment is configured such that the remaining capacity Q of the lead battery 1 when the IGN switch 5 is turned on.OCV(Step 208, etc.), and the remaining capacity Q of the lead battery 1 isr(Step 230 etc.) and the remaining capacity QOC VAnd remaining capacity QrFrom the average value of the initial remaining capacity Q of the lead battery 1intIs calculated (step 232). Therefore, the respective characteristics (OCV-Q) of the open circuit voltage and the internal resistance of the lead battery 1resMap and rQresMap) is the initial remaining capacity QintAt the time of starting the engine, the initial remaining capacity QintAccuracy can be improved.
[0039]
Further, the battery state detection system 10 of the present embodiment is configured such that the corrected remaining capacity Qres(Step 106) is replaced with remaining capacity QC(Step 136), the accumulation of measurement errors of the current sensor 4 can be prevented, and the remaining capacity Q of the lead battery 1 can be accurately determined.resCan be calculated. Therefore, according to the battery state detection system 10 of the present embodiment, since the battery state of the lead battery 1 is detected with high accuracy, the restart of the engine 8 can be ensured even when the engine 8 is stopped at the time of idle stop / start. Further, it is possible to grasp in advance whether the idle stop is possible before the engine 8 is stopped. Therefore, the vehicle control system 11 can receive the notification from the battery state detection system 10 of the lower system, and can control the stop / restart (idle stop / start) of the engine 8 to reduce the exhaust gas while the vehicle is stopped. Can contribute.
[0040]
Furthermore, in the battery state detection system 10 of the present embodiment, the current (discharge) waveform at the time of engine start has reproducibility, and in a vehicle having an idle stop / start function, the engine restart is repeated and the number of resets is large. So, every time the engine starts, the remaining capacity QCCan be estimated.
[0041]
Further, in the battery state detection system 10 of the present embodiment, by using the lead battery 1 as the battery, the open circuit voltage OCV and the remaining capacity Q of the lead battery 1 areres(See FIG. 7), internal resistance value r and remaining capacity Qres(See FIG. 9), a high correlation is obtained, and even if a coarse map is used, the remaining capacity Q of the lead battery 1 can be accurately determined.resAnd the start of the engine can be determined.
[0042]
Furthermore, in the battery state detection system 10 of the present embodiment, the temperature T of the lead battery 1 is measured, and the temperature of the open circuit voltage OCV of the lead battery 1 is corrected from the OCV-T correction map of the lead battery 1 (see FIG. 6), the remaining capacity Q of the lead battery 1 depending on the temperature.resCan be calculated without temperature dependence, and the number of maps created can be reduced.
[0043]
Further, in the battery state detection system 10 of the present embodiment, the remaining capacity QOCVIs the minimum remaining capacity Q that allows the lead-acid battery 1 to start the engineminWhen it is larger, it is determined that the engine can be started, so that it is possible to notify the vehicle control system 11 of whether or not the engine can be started.
[0044]
In addition, in the battery state detection system 10 of the present embodiment, when calculating the internal resistance r of the lead battery 1 at the time of starting the engine or restarting the engine, the current before starting the engine or before restarting the engine and the start of energizing the engine starting current are started. Since the internal resistance r is calculated from the current value and the voltage value of the first stage within 50 ms after or after the start of the re-current supply of the engine, the charge and discharge of the lead battery 1 are eliminated by eliminating the attenuated portion of the current waveform having a large measurement error. Remaining capacity Q of lead battery 1 regardless of the influence of polarizationresCan be estimated.
[0045]
Furthermore, in the battery state detection system 10 of the present embodiment, the temperature T of the lead battery 1 was measured, and the temperature of the internal resistance r of the lead battery 1 was corrected from the r-T correction value map of the lead battery 1 (FIG. 8). ), The remaining capacity Q of the lead battery 1 by eliminating the temperature dependency.resCan be calculated.
[0046]
Further, in the battery state detection system 10 of the present embodiment, the corrected remaining capacity QresIs the minimum remaining capacity Q that allows the lead-acid battery 1 to start the engineminSince it is determined that the engine can be restarted when it is greater than the above, it is possible to notify the vehicle-side control system 11 of whether or not the engine can be restarted.
[0047]
In the battery state detection system 10 of the present embodiment, the minimum voltage value and the required current value are determined from the characteristics of the starter 9 for starting the engine.minIs set based on the relationship between the remaining capacity and the internal resistance of the lead battery 1 corresponding to the maximum internal resistance that allows the engine start of the lead battery 1 predetermined from the minimum voltage value and the required current value. Remaining capacity QresIs the minimum remaining capacityminWhen the engine restart is not possible, the lead battery 1 is charged from the generator 7 before the engine is stopped. Engine start can be ensured.
[0048]
In the present embodiment, an example is described in which the open circuit voltage OCV before the engine is started is taken in when the IGN switch is located at the ON position. , The open circuit voltage OCV may be taken in. In this way, the remaining capacity Q of the lead battery 1 can be more accurately determined from the open circuit voltage OCV of the lead battery 1 having a small measurement error.resCan be calculated (estimated).
[0049]
In this embodiment, the lead battery 1 is exemplified as a battery mounted on a vehicle having an ISS function. However, for example, the lead battery 1 and a lithium ion secondary battery are connected in parallel, You may apply to the hybrid battery which connected the battery in parallel.
[0050]
Further, in the present embodiment, an example is shown in which the temperature T of the lead battery 1 is measured every time the engine is started. However, since the temperature T does not greatly change in a short time, the temperature T is changed every predetermined time (for example, every 10 minutes). T may be measured. By doing so, the calculation load of the battery state detection system 10 can be reduced.
[0051]
Further, in the present embodiment, the starter 9 for starting the engine 8 is exemplified. However, since the lead battery 1 has a group voltage of 36 V (since it constitutes a 42 V system), the motor drive is performed to start the vehicle after the idle stop. It can be used. Therefore, instead of the starter 9 and the generator 7 of FIG. 1, a motor generator 12 having a motor function and a generator (generator) function may be used as shown in FIG. In such a vehicle system, the START terminal of the IGN switch may be connected to one end of the motor generator 12, and the motor generator 12 may be controlled by the motor generator control unit in the vehicle control system 11. According to this vehicle system, since the vehicle can be started by the motor function of the motor generator 12, it is possible to prevent generation of exhaust gas generated at the time of idling stop / start.
[0052]
Further, in the present embodiment, the lead battery 1 having a group voltage of 36 V has been exemplified. However, the present invention is not limited to this, and for example, a battery of a 12 V lead battery generally used in a vehicle at present. You may make it apply to the battery state detection system which detects a state.
[0053]
Further, in the present embodiment, the lead battery 1 has been described as an example in which the distance between the cell chambers is short and the monoblock battery case having the small resistance of the conductive member that connects the cell chambers in series is used. By considering the deterioration, it is possible to detect the battery state of the entire lead battery 1 with higher accuracy.
[0054]
Furthermore, in the present embodiment, an example has been described in which the fact that the IGN switch has been turned to the ON position is received from the vehicle control system 11 in step 202. However, without receiving a notification from the vehicle control system 11, the current sensor 4 Even when the current is detected and the range is within a predetermined range (for example, 0.05 A to 0.1 A), the battery state detection system 10 may independently determine that the IGN switch is located at the ON position. Good.
[0055]
Further, in the present embodiment, an example has been described in which the possible notification is output to the vehicle control system 11 when the IS is possible, and the disable notification is output to the vehicle control system 11 when the IS is not possible. An alarm may be issued.
[0056]
(2nd Embodiment)
Next, a second embodiment in which the present invention is applied to a battery state detection system will be described. The battery state detection system according to the present embodiment uses the initial remaining capacity Q of the lead battery 1.intIs the remaining capacity Q when the IGN switch is ON.OCVWhat you get from In the embodiments after this embodiment, the same components and steps as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Only different points will be described.
[0057]
In the present embodiment, as shown in FIG. 11, in the initial remaining capacity calculation processing subroutine, steps 216 to 232 shown in FIG. 3 are omitted. In the initial remaining capacity calculation processing subroutine of the present embodiment, the OCV-QresThe remaining capacity estimated from the map is the initial remaining capacity QintAnd
[0058]
In the battery state detection system of the present embodiment, the OCV-QresInitial remaining capacity Q from map onlyintIn the lead battery 1, the open circuit voltage (OCV) and the remaining capacity Q are calculated.resAnd the remaining capacity QresCan be accurately estimated, and the number of steps can be reduced as compared with the above-described first embodiment.
[0059]
(Third embodiment)
Next, a third embodiment in which the present invention is applied to a battery state detection system will be described. The battery state detection system according to the present embodiment uses the initial remaining capacity Q of the lead battery 1.intIs the remaining capacity Q calculated from the internal resistance r when the engine is started.rIs what you get.
[0060]
In the present embodiment, as shown in FIG. 12, in the initial remaining capacity calculation processing subroutine, step 232 shown in FIG. 3 is omitted. In the initial remaining capacity calculation processing subroutine of this embodiment, the remaining capacity estimated from the internal resistance r calculated from the current and voltage changes at the time of starting the engine in step 230 is calculated as the initial remaining capacity Q.intAnd
[0061]
In the battery state detection system of the present embodiment, r−QresInitial remaining capacity Q from map onlyintIn the lead battery 1, the internal resistance r and the remaining capacity Q are calculated.resAnd the remaining capacity QresCan be accurately estimated, and the number of steps can be reduced as in the second embodiment.
[0062]
【The invention's effect】
As described above, according to the present invention, the remaining battery charge Q at the time of key-onOCVAnd the remaining battery charge Q at the start of the enginerFrom the average value of the remaining battery capacity QintIs calculated, and the respective characteristics of the open circuit voltage and the internal resistance are changed to the remaining capacity Q.intAt the start of the engine,intAccuracy can be improved, and the corrected remaining capacity Q every time the engine is restarted.resIs the remaining capacity QCSince the error is prevented from being accumulated, the remaining battery capacity can be calculated with high accuracy.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram of a vehicle system including a battery state detection system according to an embodiment to which the present invention can be applied.
FIG. 2 is a flowchart illustrating a battery state detection routine of the battery state detection system according to the first embodiment.
FIG. 3 is a flowchart of an initial remaining capacity calculation processing subroutine showing details of step 104 of a battery state detection routine.
FIG. 4 is a graph showing a current waveform of a lead battery when the engine is started.
FIG. 5 is a graph schematically showing a charge / discharge pattern of a lead battery.
FIG. 6 is a graph showing a relationship between a lead battery temperature and an open circuit voltage correction value.
FIG. 7 is a graph showing a relationship between a remaining capacity of a lead battery and an open circuit voltage.
FIG. 8 is a graph showing a relationship between a lead battery temperature and an internal resistance correction value.
FIG. 9 is a graph showing the relationship between the remaining capacity and the internal resistance of a lead battery.
FIG. 10 is a block circuit diagram of another vehicle system including a battery state detection system according to an embodiment to which the present invention can be applied.
FIG. 11 is a flowchart showing details of an initial remaining capacity calculation processing subroutine showing details of step 104 of the battery state detection routine of the second embodiment.
FIG. 12 is a flowchart showing details of an initial remaining capacity calculation processing subroutine showing details of step 104 of the battery state detection routine of the third embodiment.
[Explanation of symbols]
1 Lead battery (battery)
4 engine
5 Ignition switch (key)
9 Starter
10 Battery status detection system
12 motor generator (starter for engine start)

Claims (10)

アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量をエンジン始動時に算出される前記バッテリの内部抵抗と、前記バッテリに流れる積算電流との組合せにより推定するバッテリ残容量推定方法であって、
キーオン時の前記バッテリの開路電圧を測定して予め定められたバッテリの残容量と開路電圧との関係から前記バッテリの残容量QOCVを算出し、
前記エンジン始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して予め定められたバッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qを算出し、前記残容量QOCV及び残容量Qの平均値から前記バッテリの残容量Qintを算出し、
エンジン再始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して前記バッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qを算出し、前記エンジン再始動前に前記バッテリに流れた充放電電流を前記残容量Qint又は残容量Qに積算することで補正した補正残容量Qresを前記残容量Qに修正する、
ステップを含むバッテリ残容量推定方法。
A battery remaining capacity estimating method for estimating a remaining capacity of a battery mounted on a vehicle having an idle stop / start function based on a combination of an internal resistance of the battery calculated at the time of engine start and an integrated current flowing through the battery. ,
Measuring the open circuit voltage of the battery at the time of key-on, calculating the remaining capacity Q OCV of the battery from a predetermined relationship between the remaining capacity of the battery and the open circuit voltage,
Current when the engine is started, calculates the remaining capacity Q r of the battery from the relationship between the calculated internal resistance internal resistance and the remaining capacity of the battery is predetermined for the battery from the voltage change, the remaining capacity Q OCV And the remaining capacity Q int of the battery is calculated from the average value of the remaining capacity Q r and
Engine restart when the current, calculates the remaining capacity Q C of the battery from the relationship between the calculated and the remaining capacity and the internal resistance of the battery internal resistance of the battery from the voltage variation, the battery before the engine is restarted modifying the corrected remaining capacity Q res the flow charge and discharge currents were corrected by accumulating the remaining capacity Q int or remaining capacity Q C to the remaining capacity Q C,
A battery remaining capacity estimation method including a step.
アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量をエンジン始動時に算出される前記バッテリの内部抵抗と、前記バッテリに流れる積算電流との組合せにより推定するバッテリ残容量推定方法であって、
キーオン時の前記バッテリの開路電圧を測定して予め定められたバッテリの残容量と開路電圧との関係から前記バッテリの残容量QOCVを算出し、
エンジン再始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して予め定められたバッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qを算出し、前記エンジン再始動前に前記バッテリに流れた充放電電流を前記残容量QOCV又は残容量Qに積算することで補正した補正残容量Qresを前記残容量Qに修正する、
ステップを含むバッテリ残容量推定方法。
A battery remaining capacity estimating method for estimating a remaining capacity of a battery mounted on a vehicle having an idle stop / start function based on a combination of an internal resistance of the battery calculated at the time of engine start and an integrated current flowing through the battery. ,
Measuring the open circuit voltage of the battery at the time of key-on, calculating the remaining capacity Q OCV of the battery from a predetermined relationship between the remaining capacity of the battery and the open circuit voltage,
Engine restart when the current, calculates the remaining capacity Q C of the battery from the relationship between the internal resistance calculated internal resistance and the remaining capacity of the battery is predetermined for the battery from the voltage change, the engine is restarted before the discharge current flowing in the battery to modify the correction remaining capacity Q res corrected by accumulating the remaining capacity Q OCV or the remaining capacity Q C to the remaining capacity Q C in,
A battery remaining capacity estimation method including a step.
前記バッテリの温度を測定し、予め定められたバッテリの温度と開路電圧との関係から前記測定したバッテリの開路電圧を所定温度における開路電圧に補正することを特徴とする請求項1又は請求項2に記載のバッテリ残容量推定方法。3. The battery according to claim 1, wherein the temperature of the battery is measured, and the measured open circuit voltage of the battery is corrected to an open circuit voltage at a predetermined temperature from a predetermined relationship between the battery temperature and the open circuit voltage. The method for estimating the remaining battery charge according to the above. アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量をエンジン始動時に算出される前記バッテリの内部抵抗と、前記バッテリに流れる積算電流との組合せにより推定するバッテリ残容量推定方法であって、
前記エンジン始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して予め定められたバッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qintを算出し、
エンジン再始動時の電流、電圧変化から前記バッテリの内部抵抗を算出して前記バッテリの残容量と内部抵抗との関係から前記バッテリの残容量Qを算出し、前記エンジン再始動前に前記バッテリに流れた充放電電流を前記残容量Qint又は残容量Qに積算することで補正した補正残容量Qresを前記残容量Qに修正する、
ステップを含むバッテリ残容量推定方法。
A battery remaining capacity estimating method for estimating a remaining capacity of a battery mounted on a vehicle having an idle stop / start function based on a combination of an internal resistance of the battery calculated at the time of engine start and an integrated current flowing through the battery. ,
Calculating the internal resistance of the battery from the current and voltage change at the time of starting the engine, and calculating the remaining capacity Q int of the battery from a predetermined relationship between the remaining capacity and the internal resistance of the battery;
Engine restart when the current, calculates the remaining capacity Q C of the battery from the relationship between the calculated and the remaining capacity and the internal resistance of the battery internal resistance of the battery from the voltage variation, the battery before the engine is restarted modifying the corrected remaining capacity Q res the flow charge and discharge currents were corrected by accumulating the remaining capacity Q int or remaining capacity Q C to the remaining capacity Q C,
A battery remaining capacity estimation method including a step.
前記内部抵抗は、エンジン始動前又はエンジン再始動時前のバッテリの電圧とエンジン始動電流通電開始後又はエンジン再始動電流通電開始後所定時間経過時のバッテリの電圧との電圧差を、前記エンジン始動前又はエンジン再始動時前のバッテリの電流と前記エンジン始動電流通電開始後又はエンジン再始動電流通電開始後所定時間経過時のバッテリの電流との電流差でそれぞれ除して得たことを特徴とする請求項1乃至請求項4のいずれか1項に記載のバッテリ残容量推定方法。The internal resistance is defined as a voltage difference between the battery voltage before the engine is started or before the engine is restarted and the battery voltage after a lapse of a predetermined time after the start of the engine start current or after the start of the engine restart current. The current of the battery before or before the restart of the engine and the current of the battery after a lapse of a predetermined time after the start of energization of the engine start current or after the start of energization of the engine restart current, respectively. The battery remaining capacity estimating method according to any one of claims 1 to 4. 前記所定時間は、前記エンジン始動電流通電開始時又はエンジン再始動電流通電開始時から50ms以内であることを特徴とする請求項5に記載のバッテリ残容量推定方法。6. The remaining battery capacity estimation method according to claim 5, wherein the predetermined time is within 50 ms from the start of energization of the engine start current or the start of energization of the engine restart current. 前記バッテリの温度を測定し、予め定められたバッテリの温度と内部抵抗補正値との関係から前記算出したバッテリの内部抵抗を所定温度における内部抵抗に補正することを特徴とする請求項1乃至請求項6のいずれか1項に記載のバッテリ残容量推定方法。The battery temperature is measured, and the calculated internal resistance of the battery is corrected to an internal resistance at a predetermined temperature based on a relationship between a predetermined battery temperature and an internal resistance correction value. Item 7. The remaining battery capacity estimation method according to any one of Items 6. 前記エンジン始動時前に、前記残容量QOCVが前記バッテリのエンジン始動を許容する最小残容量Qminより大きいときにエンジン始動可能と判定するステップを更に含むことを特徴とする請求項1又は請求項2に記載のバッテリ残容量推定方法。2. The method according to claim 1, further comprising, before the engine start, determining that the engine can be started when the remaining capacity Q OCV is larger than a minimum remaining capacity Q min that allows the battery to start the engine. Item 3. The battery remaining capacity estimation method according to Item 2. 前記エンジン再始動時前に、前記補正残容量Qresが前記バッテリのエンジン始動を許容する最小残容量Qminより大きいときにエンジン再始動可能と判定するステップを更に含むことを特徴とする請求項1乃至請求項8のいずれか1項に記載のバッテリ残容量推定方法。Before the time of the engine restart, claims, characterized in that the corrected remaining capacity Q res further comprises a minimum remaining capacity Q min engine restartable and determining when greater than to allow the engine start of the battery The remaining battery capacity estimation method according to any one of claims 1 to 8. 前記最小残容量Qminは、エンジン始動用スタータの特性から決定される最低電圧値と要求電流値とから予め定められた前記バッテリのエンジン始動を許容する最大内部抵抗に対応して前記バッテリの残容量と内部抵抗との関係から設定されており、前記補正残容量Qresが最小残容量Qminよりも小さいときに前記エンジン再始動が不能と判定することを特徴とする請求項8又は請求項9に記載のバッテリ残容量推定方法。The minimum remaining capacity Qmin is determined from a minimum voltage value and a required current value determined from characteristics of the engine starter and corresponds to a predetermined maximum internal resistance that allows the battery to start the engine. capacity and internal resistance is set from the relationship between claim 8 or claim, wherein the correction residual capacity Q res is determined impossible the engine restart when less than the minimum remaining capacity Q min 10. The method for estimating a remaining battery charge according to claim 9.
JP2002203450A 2002-07-12 2002-07-12 Battery remaining capacity estimation method Expired - Lifetime JP4066732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203450A JP4066732B2 (en) 2002-07-12 2002-07-12 Battery remaining capacity estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203450A JP4066732B2 (en) 2002-07-12 2002-07-12 Battery remaining capacity estimation method

Publications (2)

Publication Number Publication Date
JP2004042799A true JP2004042799A (en) 2004-02-12
JP4066732B2 JP4066732B2 (en) 2008-03-26

Family

ID=31709313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203450A Expired - Lifetime JP4066732B2 (en) 2002-07-12 2002-07-12 Battery remaining capacity estimation method

Country Status (1)

Country Link
JP (1) JP4066732B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089014A (en) * 2004-08-26 2006-04-06 Auto Network Gijutsu Kenkyusho:Kk Battery state management device and battery state management method
WO2007069595A1 (en) * 2005-12-14 2007-06-21 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging method, and battery state judging device
JP2007238001A (en) * 2006-03-10 2007-09-20 Shin Kobe Electric Mach Co Ltd Battery state judging device
WO2007105595A1 (en) * 2006-03-10 2007-09-20 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging device
JP2007280776A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state evaluation device
JP2007278853A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state determining apparatus
WO2008032809A1 (en) * 2006-09-11 2008-03-20 Mitsubishi Heavy Industries, Ltd. Battery control apparatus and hybrid forklift having the same
JP2008064496A (en) * 2006-09-05 2008-03-21 Panasonic Ev Energy Co Ltd Battery control apparatus, electric vehicle, and program for making computer execute processing for estimation for charged condition of secondary battery
JP2008089417A (en) * 2006-10-02 2008-04-17 Shin Kobe Electric Mach Co Ltd Battery state detection system and automobile having it
CN100399621C (en) * 2005-11-18 2008-07-02 上海燃料电池汽车动力系统有限公司 Remanent electric quantity closed-loop controlling method for vehicle-carried auxiliary power accumulator set
JP2008230433A (en) * 2007-03-21 2008-10-02 Auto Network Gijutsu Kenkyusho:Kk Startability forecasting device and power source control device
WO2009050997A1 (en) * 2007-10-16 2009-04-23 Toyota Jidosha Kabushiki Kaisha Electric power source device, car provided with same, control method of electric power source device and computer readable recording medium that records program for computer to execute the control method
JP2009099430A (en) * 2007-10-18 2009-05-07 Shin Kobe Electric Mach Co Ltd Battery
JP2009227189A (en) * 2008-03-25 2009-10-08 Mazda Motor Corp Battery monitoring device and battery control device using the monitoring device
JP2010035327A (en) * 2008-07-29 2010-02-12 Mitsubishi Motors Corp Power generation control device
WO2010053326A3 (en) * 2008-11-10 2010-08-19 주식회사 엘지화학 Apparatus and method for synchronizing and measuring the current and voltage of a secondary battery pack
KR100987606B1 (en) 2007-12-03 2010-10-13 어드밴스 스마트 인더스트리얼 리미티드 Apparatus and method for correcting measurements of remaining capacity of battery pack
US7869911B2 (en) 2006-01-20 2011-01-11 Fujitsu Ten Limited Vehicle control unit and vehicle control method
WO2011161781A1 (en) * 2010-06-23 2011-12-29 トヨタ自動車株式会社 Control device for vehicle and control method for vehicle
JP2012037337A (en) * 2010-08-05 2012-02-23 Mitsubishi Heavy Ind Ltd Battery deterioration detection apparatus, battery deterioration detection method and program therefor
WO2015059873A1 (en) * 2013-10-21 2015-04-30 パナソニックIpマネジメント株式会社 Power management apparatus
JP2016077133A (en) * 2014-10-09 2016-05-12 古河電気工業株式会社 Secondary battery charging control device and method of controlling charging of secondary battery
US9606186B2 (en) 2014-09-05 2017-03-28 Hyundai Motor Company System for managing a battery and method thereof
JP2017229183A (en) * 2016-06-23 2017-12-28 ダイハツ工業株式会社 Battery residual amount calculation device
JP2018205188A (en) * 2017-06-06 2018-12-27 カルソニックカンセイ株式会社 Battery state estimation device and battery controller
JP2019117711A (en) * 2017-12-27 2019-07-18 古河電気工業株式会社 Rechargeable battery liquid reduction detecting device and rechargeable battery liquid reduction detecting method
CN110753849A (en) * 2017-10-11 2020-02-04 株式会社Lg化学 Battery capacity estimating apparatus and method, and battery management apparatus and method having battery capacity estimating apparatus

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641181B2 (en) * 2004-08-26 2011-03-02 株式会社オートネットワーク技術研究所 Battery state management device and battery state management method
JP2006089014A (en) * 2004-08-26 2006-04-06 Auto Network Gijutsu Kenkyusho:Kk Battery state management device and battery state management method
CN100399621C (en) * 2005-11-18 2008-07-02 上海燃料电池汽车动力系统有限公司 Remanent electric quantity closed-loop controlling method for vehicle-carried auxiliary power accumulator set
WO2007069595A1 (en) * 2005-12-14 2007-06-21 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging method, and battery state judging device
US7962300B2 (en) 2005-12-14 2011-06-14 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging method, and battery state judging apparatus
JP5061907B2 (en) * 2005-12-14 2012-10-31 新神戸電機株式会社 Battery state determination method and battery state determination device
US7869911B2 (en) 2006-01-20 2011-01-11 Fujitsu Ten Limited Vehicle control unit and vehicle control method
JP4702115B2 (en) * 2006-03-10 2011-06-15 新神戸電機株式会社 Battery status judgment device
US8036839B2 (en) 2006-03-10 2011-10-11 Shin-Kobe Electric Machinery Co., Ltd. Battery state determining apparatus
WO2007105595A1 (en) * 2006-03-10 2007-09-20 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging device
JP2007238001A (en) * 2006-03-10 2007-09-20 Shin Kobe Electric Mach Co Ltd Battery state judging device
JP2007278853A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state determining apparatus
JP4626559B2 (en) * 2006-04-07 2011-02-09 新神戸電機株式会社 Battery status determination device
JP2007280776A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state evaluation device
JP4626558B2 (en) * 2006-04-07 2011-02-09 新神戸電機株式会社 Battery status determination device
JP2008064496A (en) * 2006-09-05 2008-03-21 Panasonic Ev Energy Co Ltd Battery control apparatus, electric vehicle, and program for making computer execute processing for estimation for charged condition of secondary battery
JP2008062904A (en) * 2006-09-11 2008-03-21 Mitsubishi Heavy Ind Ltd Battery controller, and hybrid type forklift equipped therewith
WO2008032809A1 (en) * 2006-09-11 2008-03-20 Mitsubishi Heavy Industries, Ltd. Battery control apparatus and hybrid forklift having the same
US7990100B2 (en) 2006-09-11 2011-08-02 Mitsubishi Heavy Industries, Ltd. Battery control device and hybrid forklift truck equipped with the device
JP2008089417A (en) * 2006-10-02 2008-04-17 Shin Kobe Electric Mach Co Ltd Battery state detection system and automobile having it
JP2008230433A (en) * 2007-03-21 2008-10-02 Auto Network Gijutsu Kenkyusho:Kk Startability forecasting device and power source control device
WO2009050997A1 (en) * 2007-10-16 2009-04-23 Toyota Jidosha Kabushiki Kaisha Electric power source device, car provided with same, control method of electric power source device and computer readable recording medium that records program for computer to execute the control method
US8292009B2 (en) 2007-10-16 2012-10-23 Toyota Jidosha Kabushiki Kaisha Power supply device and vehicle including the same, control method for power supply device, and computer-readable recording medium having program for causing computer to execute that control method recorded thereon
JP2009099430A (en) * 2007-10-18 2009-05-07 Shin Kobe Electric Mach Co Ltd Battery
KR100987606B1 (en) 2007-12-03 2010-10-13 어드밴스 스마트 인더스트리얼 리미티드 Apparatus and method for correcting measurements of remaining capacity of battery pack
JP2009227189A (en) * 2008-03-25 2009-10-08 Mazda Motor Corp Battery monitoring device and battery control device using the monitoring device
JP2010035327A (en) * 2008-07-29 2010-02-12 Mitsubishi Motors Corp Power generation control device
WO2010053326A3 (en) * 2008-11-10 2010-08-19 주식회사 엘지화학 Apparatus and method for synchronizing and measuring the current and voltage of a secondary battery pack
US8803528B2 (en) 2008-11-10 2014-08-12 Lg Chem, Ltd. Apparatus and method for measuring current and voltage of secondary battery pack in synchronization manner
JP5500250B2 (en) * 2010-06-23 2014-05-21 トヨタ自動車株式会社 VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
WO2011161781A1 (en) * 2010-06-23 2011-12-29 トヨタ自動車株式会社 Control device for vehicle and control method for vehicle
JP2012037337A (en) * 2010-08-05 2012-02-23 Mitsubishi Heavy Ind Ltd Battery deterioration detection apparatus, battery deterioration detection method and program therefor
WO2015059873A1 (en) * 2013-10-21 2015-04-30 パナソニックIpマネジメント株式会社 Power management apparatus
JPWO2015059873A1 (en) * 2013-10-21 2017-03-09 パナソニックIpマネジメント株式会社 Power management equipment
US9606186B2 (en) 2014-09-05 2017-03-28 Hyundai Motor Company System for managing a battery and method thereof
JP2016077133A (en) * 2014-10-09 2016-05-12 古河電気工業株式会社 Secondary battery charging control device and method of controlling charging of secondary battery
JP2017229183A (en) * 2016-06-23 2017-12-28 ダイハツ工業株式会社 Battery residual amount calculation device
JP2018205188A (en) * 2017-06-06 2018-12-27 カルソニックカンセイ株式会社 Battery state estimation device and battery controller
CN110753849A (en) * 2017-10-11 2020-02-04 株式会社Lg化学 Battery capacity estimating apparatus and method, and battery management apparatus and method having battery capacity estimating apparatus
CN110753849B (en) * 2017-10-11 2021-12-14 株式会社Lg化学 Battery capacity estimating apparatus and method, and battery management apparatus and method having battery capacity estimating apparatus
US11391779B2 (en) 2017-10-11 2022-07-19 Lg Energy Solution, Ltd. Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
JP2019117711A (en) * 2017-12-27 2019-07-18 古河電気工業株式会社 Rechargeable battery liquid reduction detecting device and rechargeable battery liquid reduction detecting method
JP7007902B2 (en) 2017-12-27 2022-01-25 古河電気工業株式会社 Rechargeable battery low liquid detection device and rechargeable battery low liquid detection method
JP2022044621A (en) * 2017-12-27 2022-03-17 古河電気工業株式会社 Rechargeable battery liquid decrease detection device and rechargeable battery liquid decrease detection method
JP7444846B2 (en) 2017-12-27 2024-03-06 古河電気工業株式会社 Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method

Also Published As

Publication number Publication date
JP4066732B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4066732B2 (en) Battery remaining capacity estimation method
JP4032854B2 (en) Battery state detection system and automobile equipped with the system
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
US7570021B2 (en) Rechargeable battery controller and method for controlling output of rechargeable battery
KR100439144B1 (en) Control device for hybrid vehicle
US7800345B2 (en) Battery management system and method of operating same
US7443139B2 (en) Battery state-of-charge estimator
JP4288958B2 (en) Degradation estimation method
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
US7880442B2 (en) Charging control device for a storage battery
JP2007323999A (en) Battery control device of automobile
JP2004032871A (en) Power supply system for traveling vehicle
JP6603888B2 (en) Battery type determination device and battery type determination method
JP2005037230A (en) Battery degradation detection device and method
KR100696665B1 (en) Method for resetting soc of secondary battery module
JP6428086B2 (en) Power supply system and automobile
CN104827990A (en) Vehicle battery system
JP2004025982A (en) Method of estimating remaining capacity of battery
KR100906872B1 (en) Method for battery performance improvement and SOC reset of HEV
JP6607353B2 (en) Vehicle and its battery state detection system
JP4178898B2 (en) Battery status detection system
JP6658314B2 (en) Vehicle power supply system and automobile
KR19980017339A (en) How to determine when to discharge the battery by measuring internal resistance
JP3687628B2 (en) Charge state detection system and automobile equipped with the system
KR100391421B1 (en) Method for estimating residual energy of battery of electric car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term