JP2005037230A - Battery degradation detection device and method - Google Patents

Battery degradation detection device and method Download PDF

Info

Publication number
JP2005037230A
JP2005037230A JP2003274169A JP2003274169A JP2005037230A JP 2005037230 A JP2005037230 A JP 2005037230A JP 2003274169 A JP2003274169 A JP 2003274169A JP 2003274169 A JP2003274169 A JP 2003274169A JP 2005037230 A JP2005037230 A JP 2005037230A
Authority
JP
Japan
Prior art keywords
current
difference
battery
discharge current
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003274169A
Other languages
Japanese (ja)
Inventor
Takehito Yoda
武仁 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003274169A priority Critical patent/JP2005037230A/en
Publication of JP2005037230A publication Critical patent/JP2005037230A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly accurate battery degradation detection device and a method. <P>SOLUTION: When a degradation determination device is switched to the ON state (S400), a current sensor 16 measures a battery current i<SB>n</SB>(S402), and an estimated charge/discharge current I<SB>n</SB>is operated (S404). Measured SOC:s<SB>n</SB>is determined by integrating the battery current i<SB>n</SB>(S406). Estimated SOC:S<SB>n</SB>is determined by integrating the estimated charge/discharge current I<SB>n</SB>(S408). The SOC difference (S<SB>n</SB>-s<SB>n</SB>) which is a difference between the estimated SOC and the measured SOC is determined (S410). An integrated SOC value is determined by integrating the change with age of the SOC difference (S<SB>n</SB>-s<SB>n</SB>) (S412). A primary integration quantity of the difference quantity between the estimated SOC:S<SB>n</SB>and the measured SOC:s<SB>n</SB>which is a standard of capacity degradation of the battery 10 is compared with the integrated SOC value (S414). When the integrated SOC value becomes higher than a prescribed value by comparison with the primary difference quantity, the battery 10 is degraded (S420), namely, degradation of the battery is detected (S418). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電池劣化検出装置および方法に関する。   The present invention relates to a battery deterioration detection apparatus and method.

従来より、エンジンによる駆動や回生により発電を行う発電機と、バッテリからの電力により作動し駆動輪を駆動するモータとを有するハイブリッド電気自動車やこのハイブリッド自動車を含む電気自動車には、ニッケル水素電池やリチウムイオン電池などのモータ駆動用二次電池(すなわち、バッテリ)が用いられている。バッテリは使用を続ける上で電解液の劣化その容量が低下する(容量劣化)。容量劣化の際は、迅速にバッテリを交換するなどの諸対応が必要であり、容量劣化を正確に検出することは大きな課題である。   Conventionally, a hybrid electric vehicle having a generator that generates electric power by driving or regenerating by an engine and a motor that is driven by electric power from a battery and drives driving wheels, and an electric vehicle including the hybrid vehicle include a nickel metal hydride battery, A secondary battery for driving a motor (that is, a battery) such as a lithium ion battery is used. As the battery continues to be used, the electrolyte deteriorates and its capacity decreases (capacity deterioration). When the capacity is deteriorated, various measures such as quickly replacing the battery are necessary, and it is a big problem to accurately detect the capacity deterioration.

容量劣化を判定するには、SOC(充電状態:State Of Charge)を利用する方法がある。SOCはバッテリの充電状態を表す量の一つである。ここでSOCについて説明する。一般に満充電状態をSOCが100%であるとし、一方SOCが0%の場合は充電量がゼロの状態であることを表す。また、バッテリは、開放電圧VocvとSOCとは一対一の対応関係が成り立っている。そこで、バッテリの開放電圧Vocvを計測または推定して、Vocv−SOC相関から開放電圧Vocv対応するSOCを求めることができる。   In order to determine capacity deterioration, there is a method using SOC (State of Charge). The SOC is one of the quantities representing the state of charge of the battery. Here, the SOC will be described. Generally, it is assumed that the SOC is 100% in the fully charged state, while the SOC is 0% indicates that the charged amount is zero. In the battery, the open-circuit voltage Vocv and the SOC have a one-to-one correspondence. Therefore, the open circuit voltage Vocv of the battery is measured or estimated, and the SOC corresponding to the open circuit voltage Vocv can be obtained from the Vocv-SOC correlation.

また、一方で、バッテリの電流(充放電電流)値を積算し、SOCを推定することも知られている。車両の走行状態(例えば、アイドルストップ、発進、通常走行、加速、減速など)や車両用負荷(ストップランプ、ヘッドランプ、ワイパ、電動ファンなど)によってSOCは変動するため、バッテリの使用中にSOCを推定することが必要となる。   On the other hand, it is also known that the SOC (charge / discharge current) value is integrated to estimate the SOC. Since the SOC varies depending on the vehicle running state (for example, idle stop, start, normal running, acceleration, deceleration, etc.) and vehicle load (stop lamp, headlamp, wiper, electric fan, etc.), Need to be estimated.

例えば、特許文献1には、バッテリの実測の充放電電流を検出する電流センサが正常な場合には、電池ECUにて検出された充放電電流値を積算してSOCを求め、一方電流センサが異常な場合、充放電電流の積算ではSOCの検出が不可能なため、電圧検出器が検出したバッテリ電圧に基づき電池ECUにてバッテリのSOCを推定するSOC推定装置が提案されている。   For example, in Patent Document 1, when a current sensor that detects an actual charging / discharging current of a battery is normal, the SOC is obtained by integrating the charging / discharging current values detected by the battery ECU, while the current sensor In the case of an abnormality, since it is impossible to detect the SOC by integrating the charge / discharge current, an SOC estimation device has been proposed in which the battery ECU estimates the SOC of the battery based on the battery voltage detected by the voltage detector.

このようにして得られたSOCからバッテリの容量劣化を判定する装置が、特許文献2に記載されている。該文献には、バッテリの上限しきい値電圧と下限しきい値電圧を設定し、実測電圧がそのどちらかのしきい値に達したときの残容量と、もう一方のしきい値に達した時の残容量の容量差を求め、バッテリの容量劣化判定を行うバッテリ劣化判断装置が提案されている。
特開2000−166105号公報 特開2000−224701号公報
An apparatus that determines battery capacity deterioration from the SOC obtained in this way is described in Patent Document 2. In this document, the upper threshold voltage and the lower threshold voltage of the battery are set, the remaining capacity when the measured voltage reaches one of the threshold values, and the other threshold value is reached. There has been proposed a battery deterioration determination device that obtains a capacity difference between remaining capacity and determines battery capacity deterioration.
JP 2000-166105 A JP 2000-224701 A

しかしながら、上記特開2000−224701号公報に記載のバッテリ充電劣化判断装置では、バッテリの上限しきい値電圧(例えばSOC80%に対応する電圧)と下限しきい値電圧(例えばSOC20%に対応する電圧)の両方のしきい値に達しなければバッテリの容量劣化を判定することができない。該装置で電気自動車のバッテリの劣化判定するには、バッテリの上限しきい値電圧と下限しきい値電圧の両方に達する車両走行態様などに限られ不便な場合がある。   However, in the battery charge deterioration determination device described in Japanese Patent Application Laid-Open No. 2000-224701, the battery upper limit threshold voltage (for example, a voltage corresponding to SOC 80%) and the lower limit threshold voltage (for example, a voltage corresponding to SOC 20%). The battery capacity deterioration cannot be determined unless both of the threshold values are reached. Determining the deterioration of the battery of an electric vehicle with this apparatus is limited to the vehicle running mode that reaches both the upper threshold voltage and the lower threshold voltage of the battery, and may be inconvenient.

該公報に記載されるように上限しきい値電圧をSOC80%に対応する電圧と下限しきい値電圧をSOC20%に対応する電圧とした場合を例示して説明する。一般には、電気自動車はバッテリのSOCが所定の小幅の一定幅(例えばSOC40%〜60%)で制御されるようになっているのが原則であり、このようにSOC20%の低SOCまたはSOC80%の高SOCに達することは希である。さらに、両方のしきい値に達することは一段と希である。特開2000−224701号公報に記載のバッテリ充電劣化判断装置が使用できるケースを想定すると、山の頂上から麓まで回生発電によってバッテリを充電し、SOCを上昇させることでバッテリの上限しきい値電圧に達させた後、次にフル加速で山の頂上まで走行してバッテリを放電し、SOCを低下させることでバッテリの下限しきい値電圧に達させる場合などである。そのような使用態様はユーザにとって希な態様であり、このような使用態様を要件とするバッテリ劣化判断方法は実用的であるとは言えない場合がある。   An example will be described in which the upper threshold voltage is a voltage corresponding to SOC 80% and the lower threshold voltage is a voltage corresponding to SOC 20% as described in the publication. In general, an electric vehicle is basically controlled so that the SOC of a battery is a predetermined small constant width (for example, SOC 40% to 60%). Thus, a low SOC of SOC 20% or SOC 80% A high SOC is rarely reached. Furthermore, reaching both thresholds is even more rare. Assuming a case where the battery charge deterioration judging device described in Japanese Patent Application Laid-Open No. 2000-224701 can be used, the battery is charged by regenerative power generation from the top of the mountain to the foot of the mountain, and the SOC is increased to raise the SOC. Then, the vehicle travels to the top of the mountain at full acceleration and discharges the battery, and the SOC is lowered to reach the lower threshold voltage of the battery. Such a usage mode is a rare mode for the user, and a battery deterioration determination method that requires such a usage mode may not be practical.

本発明は、上記課題等に鑑みてなされたものであり、より高精度な電池劣化検出装置および方法を提供することを目的とする。   The present invention has been made in view of the above-described problems and the like, and an object thereof is to provide a more accurate battery deterioration detection device and method.

本発明の二次電池の容量劣化を検出する電池劣化検出装置は、前記二次電池の実測電圧を検出する実測電圧検出手段と、前記実測電圧に基づいて推定充放電電流を演算する推定充放電電流演算手段と、前記二次電池の充電電流および放電電流の少なくとも一方である実測充放電電流を検出する電流検出手段と、前記推定充放電電流と前記実測充放電電流とを比較する電流比較手段と、前記電流比較手段により得られた比較結果に基づいて二次電池の劣化を検出する劣化検出手段と、を有することを特徴とする。   The battery deterioration detecting device for detecting the capacity deterioration of the secondary battery according to the present invention includes an actual voltage detecting means for detecting an actual voltage of the secondary battery, and an estimated charge / discharge for calculating an estimated charge / discharge current based on the actual voltage. Current calculating means; current detecting means for detecting an actual charging / discharging current that is at least one of a charging current and a discharging current of the secondary battery; and a current comparing means for comparing the estimated charging / discharging current with the actual charging / discharging current. And deterioration detecting means for detecting deterioration of the secondary battery based on the comparison result obtained by the current comparing means.

上記装置において、前記電流比較手段は、前記推定充放電電流と前記実測充放電電流との電流差を演算し、前記電流差と予め設定された所定電流差を比較すると好適である。   In the above apparatus, it is preferable that the current comparison unit calculates a current difference between the estimated charge / discharge current and the actually measured charge / discharge current, and compares the current difference with a predetermined current difference set in advance.

上記装置において、前記電流比較手段は、前記推定充放電電流の積算値と前記実測充放電電流の積算値との積算値差を演算し、前記積算値差と予め設定された所定積算値差とを比較すると好適である。   In the above apparatus, the current comparing means calculates an integrated value difference between the integrated value of the estimated charge / discharge current and the integrated value of the actually measured charge / discharge current, and the integrated value difference and a predetermined integrated value difference set in advance are calculated. Is preferable.

上記装置において、前記電流比較手段は、前記推定充放電電流の積算値と前記実測充放電電流の積算値との積算値差を演算し、前記積算値差の変化量と予め設定された所定積算値差変化量とを比較すると好適である。   In the above apparatus, the current comparing means calculates an integrated value difference between the integrated value of the estimated charging / discharging current and the integrated value of the actually measured charging / discharging current, and a change amount of the integrated value difference and a preset predetermined integrated value It is preferable to compare the value difference change amount.

上記装置において、前記電流比較手段は、前記推定充放電電流と前記実測充放電電流との電流差の電流差積算値を演算し、前記電流差積算値と予め設定された所定電流差積算値とを比較すると好適である。   In the above apparatus, the current comparing means calculates a current difference integrated value of a current difference between the estimated charge / discharge current and the measured charge / discharge current, and the current difference integrated value and a predetermined current difference integrated value set in advance. Is preferable.

上記装置において、前記電流比較手段は、前記推定充放電電流と前記実測充放電電流との電流差の電流差積算値を演算し、前記電流差積算値の変化量と予め設定された所定電流差積算値とを比較すると好適である。   In the above apparatus, the current comparison means calculates a current difference integrated value of a current difference between the estimated charge / discharge current and the actually measured charge / discharge current, and a change amount of the current difference integrated value and a preset predetermined current difference It is preferable to compare the integrated value.

上記装置において、前記電流比較手段は、前記推定充放電電流と前記実測充放電電流との電流比を演算し、前記電流比と予め設定された所定電流比とを比較すると好適である。   In the above apparatus, it is preferable that the current comparison unit calculates a current ratio between the estimated charge / discharge current and the actually measured charge / discharge current, and compares the current ratio with a preset predetermined current ratio.

上記装置において、前記推定充放電電流演算手段は以下の数式(1)により推定充放電電流を演算する電池劣化検出装置。
n=(V−VOCVn-1)/Rn・・・(1)
(ここでInは推定充放電電流、Vは実測電圧、VOCVn-1は開放電圧、Rnは内部抵抗を示す。)
In the above apparatus, the estimated charge / discharge current calculating means calculates the estimated charge / discharge current according to the following formula (1).
I n = (V−V OCVn−1 ) / R n (1)
(Where I n represents the estimated charge-discharge current, V is the measured voltage, V OCVn-1 are open circuit voltage, the R n internal resistance.)

本発明の二次電池の容量劣化を検出する電池劣化検出方法は、前記二次電池の実測電圧を検出する実測電圧検出工程と、前記実測電圧に基づいて推定充放電電流を演算する推定充放電電流演算工程と、前記二次電池の充電電流および放電電流の少なくとも一方である実測充放電電流を検出する電流検出工程と、前記推定充放電電流と前記実測充放電電流とを比較する電流比較工程と、前記電流比較工程により得られた比較結果に基づいて二次電池の劣化を検出する劣化検出工程と、を有することを特徴とする。   A battery deterioration detection method for detecting capacity deterioration of a secondary battery according to the present invention includes an actual voltage detection step for detecting an actual voltage of the secondary battery, and an estimated charge / discharge for calculating an estimated charge / discharge current based on the actual voltage. A current calculation step; a current detection step for detecting an actual charge / discharge current that is at least one of a charge current and a discharge current of the secondary battery; and a current comparison step for comparing the estimated charge / discharge current with the actual charge / discharge current. And a deterioration detection step of detecting deterioration of the secondary battery based on the comparison result obtained by the current comparison step.

上記方法において、前記電流比較工程は、前記推定充放電電流と前記実測充放電電流との電流差を演算し、前記電流差と予め設定された所定電流差とを比較すると好適である。   In the above method, it is preferable that the current comparison step calculates a current difference between the estimated charging / discharging current and the actually measured charging / discharging current, and compares the current difference with a predetermined current difference set in advance.

上記方法において、前記電流比較工程は、前記推定充放電電流の積算値と前記実測充放電電流の積算値との積算値差を演算し、前記積算値差と予め設定された所定積算値差とを比較すると好適である。   In the above method, the current comparing step calculates an integrated value difference between the integrated value of the estimated charge / discharge current and the integrated value of the actually measured charge / discharge current, and the integrated value difference and a predetermined integrated value difference set in advance are calculated. Is preferable.

上記方法において、前記電流比較工程は、前記推定充放電電流の積算値と前記実測充放電電流の積算値との積算値差を演算し、前記積算値差の変化量と予め設定された所定積算値差変化量とを比較すると好適である。   In the above method, the current comparison step calculates an integrated value difference between the integrated value of the estimated charge / discharge current and the integrated value of the actually measured charge / discharge current, and a change amount of the integrated value difference and a predetermined predetermined integrated value are calculated. It is preferable to compare the value difference change amount.

上記方法において、前記電流比較工程は、前記推定充放電電流と前記実測充放電電流との電流差の電流差積算値を演算し、前記電流差積算値と予め設定された所定電流値積算値とを比較すると好適である。   In the above method, the current comparison step calculates a current difference integrated value of a current difference between the estimated charge / discharge current and the measured charge / discharge current, and the current difference integrated value and a predetermined current value integrated value set in advance Is preferable.

上記方法において、前記電流比較工程は、前記推定充放電電流と前記実測充放電電流との電流差の電流差積算値を演算し、前記電流差積算値の変化量と予め設定された所定電流差積算値変化量とを比較すると好適である。   In the above method, the current comparison step calculates a current difference integrated value of a current difference between the estimated charge / discharge current and the actually measured charge / discharge current, and a change amount of the current difference integrated value and a preset predetermined current difference It is preferable to compare the integrated value change amount.

上記方法において、前記電流比較工程は、前記推定充放電電流と前記実測充放電電流との電流比を演算し、前記電流比と予め設定された所定電流比とを比較すると好適である。   In the above method, the current comparison step preferably calculates a current ratio between the estimated charge / discharge current and the actually measured charge / discharge current, and compares the current ratio with a predetermined current ratio set in advance.

上記方法において、前記推定充放電電流演算工程は以下の数式(1)により推定充放電電流を演算すると好適である。
n=(V−VOCVn-1)/Rn・・・(1)
(ここでInは推定充放電電流、Vは実測電圧、VOCVn-1は開放電圧、Rnは内部抵抗を示す。)
In the above method, it is preferable that the estimated charging / discharging current calculating step calculates the estimated charging / discharging current by the following formula (1).
I n = (V−V OCVn−1 ) / R n (1)
(Where I n represents the estimated charge-discharge current, V is the measured voltage, V OCVn-1 are open circuit voltage, the R n internal resistance.)

本発明は、より高精度な電池劣化検出装置および方法を提供できる。   The present invention can provide a more accurate battery deterioration detection apparatus and method.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施の形態1.
<第1の装置構成例:推定充放電電流とバッテリ電流の差による劣化検出>
[バッテリ劣化検出装置をハイブリッド電気自動車に適用した構成]
図1は、本実施の形態のバッテリ劣化検出装置をハイブリッド電気自動車のバッテリに適用したシステムの構成を示すブロック図である。バッテリ10は、多数のバッテリセルを直列接続した組電池であり、例えば、Ni系電池(例えばニッケル水素(Ni−MH)電池)、リチウムイオン電池など、二次電池のセルからなる。
Embodiment 1 FIG.
<First device configuration example: detection of deterioration due to difference between estimated charge / discharge current and battery current>
[Configuration in which the battery deterioration detection device is applied to a hybrid electric vehicle]
FIG. 1 is a block diagram showing the configuration of a system in which the battery deterioration detection device of the present embodiment is applied to a battery of a hybrid electric vehicle. The battery 10 is an assembled battery in which a large number of battery cells are connected in series, and includes, for example, a secondary battery cell such as a Ni-based battery (for example, a nickel metal hydride (Ni-MH) battery) or a lithium ion battery.

バッテリ10の現時点の電圧である実測電圧(以下バッテリ電圧とする)は、実測電圧検出手段である電圧検出器12で計測され、電池ECU14に供給される。また、この電池ECU14には、バッテリの現時点の電流である実測充放電電流(以下バッテリ電流とする)を検出する実測充放電電流検出手段である電流センサ16も接続されており、検出されたバッテリ電流値が電池ECU14に供給される。また、バッテリ10には、バッテリ温度を検出する温度計26が設けられ、検出されたバッテリ温度の値も電池ECU14に供給される。ここで、温度計26は、バッテリ10の内部あるいはバッテリ10の表面又は表面近傍に配置される。また、バッテリ10と電流センサ16との間には、初期の開放電圧測定用のリレー1が設けられ、一方バッテリ10とDC/DCコンバータ32との間にも初期の開放電圧測定用のリレー2が設けられている。DC/DCコンバータ32には、12Vバッテリ36を介して車両用負荷38に接続されている。なお、車両用負荷38としては、例えばストップランプ、電動ファン、ブロワ、ヘッドライト、フォグランプ、デフォッガ、ワイパなどが挙げられる。HVECU18は、アクセルセンサ等30からの信号を受け、さらにエンジン24の出力等の制御するE/GECU28へエンジンの出力指令を出すと共に、E/GECU28からのエンジン出力制御情報を受ける。さらに、HVECU18は、モータへトルク指令などをモータECU38に出力するとともに、モータECU38からのモータ制御情報を入力する。また、モータECU38は,インバータ20におけるスイッチング制御を行う。これにより、モータジェネレータ22への入力が決定され、駆動輪を出力に応じて駆動させることができる。なお、本実施の形態では、電圧検出手段、電流検出手段、温度計がそれぞれ1つづつ配置された構成について説明したが、これに限るものではなく、検出精度を上げるために、電圧検出手段、電流検出手段、温度計はそれぞれ複数個複数個所、例えば各セル毎に配置されていてもよい。また、図1に示す上記電流検出手段としての電流センサ16が、例えば磁気検出式の電流センサであってもよい。   An actual measurement voltage (hereinafter referred to as a battery voltage) which is the current voltage of the battery 10 is measured by the voltage detector 12 which is an actual voltage detection means and supplied to the battery ECU 14. The battery ECU 14 is also connected to a current sensor 16 which is an actual charging / discharging current detecting means for detecting an actual charging / discharging current (hereinafter referred to as a battery current) which is a current current of the battery. The current value is supplied to the battery ECU 14. Further, the battery 10 is provided with a thermometer 26 for detecting the battery temperature, and the detected battery temperature value is also supplied to the battery ECU 14. Here, the thermometer 26 is arranged inside the battery 10 or on the surface of the battery 10 or in the vicinity of the surface. An initial open-circuit voltage measuring relay 1 is provided between the battery 10 and the current sensor 16, while an initial open-circuit voltage measuring relay 2 is also provided between the battery 10 and the DC / DC converter 32. Is provided. The DC / DC converter 32 is connected to a vehicle load 38 via a 12V battery 36. Examples of the vehicle load 38 include a stop lamp, an electric fan, a blower, a headlight, a fog lamp, a defogger, and a wiper. The HVECU 18 receives a signal from the accelerator sensor 30 and the like, further issues an engine output command to the E / GECU 28 that controls the output of the engine 24 and the like, and receives engine output control information from the E / GECU 28. Further, the HVECU 18 outputs a torque command or the like to the motor to the motor ECU 38 and inputs motor control information from the motor ECU 38. Further, the motor ECU 38 performs switching control in the inverter 20. Thereby, the input to the motor generator 22 is determined, and the driving wheels can be driven according to the output. In the present embodiment, the configuration in which the voltage detection means, the current detection means, and the thermometer are arranged one by one has been described. However, the present invention is not limited to this, and the voltage detection means, A plurality of current detection means and thermometers may be arranged at a plurality of locations, for example, for each cell. Further, the current sensor 16 as the current detection means shown in FIG. 1 may be, for example, a magnetic detection type current sensor.

そして、この電池ECU14は、供給されるバッテリ電圧及びバッテリ電流の両方に基づいて、内部抵抗を演算する。そしてバッテリ電圧、バッテリの開放電圧、内部抵抗から得られる後述の推定充放電電流を演算する。そしてこの推定充放電電流を積算することでSOCを求める。電池ECU14には求められたSOCと開放電圧との関係が記憶されており、SOCから開放電圧を求めることができる。そして、電池ECU14は、いずれかのSOC検出手段で検出されたSOCをHVECU18に供給する。   The battery ECU 14 calculates the internal resistance based on both the supplied battery voltage and battery current. And the below-mentioned estimated charging / discharging electric current obtained from a battery voltage, the open circuit voltage of a battery, and internal resistance is calculated. Then, the SOC is obtained by integrating the estimated charge / discharge current. The battery ECU 14 stores the relationship between the obtained SOC and the open circuit voltage, and the open circuit voltage can be obtained from the SOC. Then, the battery ECU 14 supplies the SOC detected by any of the SOC detection means to the HVECU 18.

このHVECU18は、アクセル開度、ブレーキ踏み込み量、車速などの情報に基づいてトルク指令を決定し、モータジェネレータ22の出力がトルク指令に合致するように制御する。すなわち、HVECU18は、インバータ20におけるスイッチングを制御すると共に、エンジン24の出力を制御する。これによって、モータジェネレータ22への入力が決定され、モータジェネレータ22の出力がトルク指令に合致したものに制御される。   The HVECU 18 determines a torque command based on information such as the accelerator opening, the brake depression amount, the vehicle speed, and performs control so that the output of the motor generator 22 matches the torque command. That is, the HVECU 18 controls switching in the inverter 20 and controls the output of the engine 24. Thereby, the input to the motor generator 22 is determined, and the output of the motor generator 22 is controlled to match the torque command.

また、バッテリ10は、例えば、車両の走行状態(例えば、発進、通常走行、加速、減速など)や車両用負荷(ストップランプ、ヘッドランプ、ワイパ、電動ファンなど)とバッテリ充電状態とによって充電または放電される。   Further, the battery 10 is charged or charged depending on, for example, the vehicle running state (for example, start, normal running, acceleration, deceleration, etc.), the vehicle load (stop lamp, headlamp, wiper, electric fan, etc.) and the battery charging state. Discharged.

[推定充放電電流の演算]
次に、図2を用いて、本発明における推定充放電電流および開放電圧の演算の一例について説明する。なお、これら演算は電池ECU14にて一般的に行われる。なお、本発明は以下の推定充放電電流の演算に限られるものではない。
[Calculation of estimated charge / discharge current]
Next, an example of the calculation of the estimated charge / discharge current and the open circuit voltage according to the present invention will be described with reference to FIG. These calculations are generally performed by the battery ECU 14. The present invention is not limited to the following calculation of estimated charge / discharge current.

すなわち、図1の構成の電気自動車のIG(イグニッション)がONされると、電圧検出器12において、リレー1、リレー2がオンする前に初回バッテリ電圧V0が測定される(S100)。次に、この初回バッテリ電圧V0を開放電圧VOCV1とする(S102)。次いで、電圧検出器12においてリレー1、リレー2のオン後の負荷状態下での現状のバッテリ電圧Vn(nは1〜nで0を含まない。以下同様)が、また電流センサ16においてリレー1、リレー2のオン後の負荷状態下での現状のバッテリ充放電電流inが測定される(S104)。そして、バッテリ電圧Vnと実測のバッテリ電流inに基づき、バッテリ内部抵抗Rnを求める(S106)。次いで、実測のバッテリ電圧Vnと、前回推定の充電状態(SOC)に基づき求められたバッテリの開放電圧VOCVn-1と、演算により求められたバッテリ内部抵抗Rnと、を用いて推定充放電電流Inを求めることができる(S108)。但し、このS108において、推定充放電電流Inの演算の初回時には、上記バッテリの開放電圧VOCVn-1としてバッテリの実測電圧V0を用いる。次いで、推定充放電電流Inを電流積算してSOCnを推定する(S110)。なお、予め記憶されているSOCと開放電圧Vocvとの相関関係のマップを用いて、求められたSOCnに基づきVOCVn-1を求め(S112)、このVOCVn-1を基に次回の推定充放電電流Inを求めることができる。なお、内部抵抗Rnは上記例のように求められることなく予め決められた値を用いてもよい。その場合、後に必要となるバッテリ充放電電流inを除き、内部抵抗Rnを求める経緯を省略できる。 That is, when the IG (ignition) of the electric vehicle having the configuration shown in FIG. 1 is turned on, the voltage detector 12 measures the initial battery voltage V 0 before the relays 1 and 2 are turned on (S100). Next, the initial battery voltage V 0 is set as the open circuit voltage V OCV1 (S102). Next, the current battery voltage V n (n is 1 to n and does not include 0; the same applies hereinafter) under the load state after the relay 1 and the relay 2 are turned on in the voltage detector 12 is also relayed in the current sensor 16. 1. The current battery charge / discharge current i n under the load state after the relay 2 is turned on is measured (S104). Based on the battery voltage V n and the actually measured battery current i n , the battery internal resistance R n is obtained (S106). Next, the estimated charging voltage is estimated using the measured battery voltage V n , the battery open-circuit voltage V OCVn−1 obtained based on the previously estimated state of charge (SOC), and the battery internal resistance R n obtained by the calculation. it can be determined discharge current I n (S108). However, in this S108, the estimated the first time of operation of the charge and discharge current I n, using the measured voltage V 0 which battery as the open circuit voltage V OCVn-1 of the battery. Next, SOC n is estimated by integrating the estimated charge / discharge current I n (S110). It should be noted that V OCVn-1 is obtained based on the obtained SOC n using a map of the correlation between the SOC stored in advance and the open circuit voltage V ocv (S112), and the next time based on this V OCVn-1. You can obtain the estimated charge-discharge current I n. The internal resistance R n may be a predetermined value without being obtained as in the above example. In this case, the process of obtaining the internal resistance R n can be omitted except for the battery charge / discharge current i n that is required later.

[バッテリの劣化検出]
次に、図3に基づいて推定充放電電流Inとバッテリ電流inの電流差からバッテリの劣化を検出してバッテリの劣化を判定する方法について説明する。なお、この劣化判定は電池ECU14にて一般的に行われる。
[Battery deterioration detection]
Then, by detecting the battery deterioration from the current difference of the estimated charge-discharge current I n and the battery current i n described method for determining deterioration of the battery on the basis of FIG. This deterioration determination is generally performed by the battery ECU 14.

劣化判定装置がONとなると(S200)、電流センサ16はバッテリ電流inを測定する(S202)。それと共に推定充放電電流Inが演算される(図2:S306)。次にバッテリ電流inと推定充放電電流Inの差である電流差(In−in)を求める(S206)。バッテリ10の容量劣化が生じた時の基準となる推定充放電電流Inとバッテリ電流inの所定電流差(初期差分量)は予め記憶されている(S210)。この初期差分量と前記電流差を比較する(S208)。この電流差を初期差分量と比較して電流差が初期差分量以上である場合にはバッテリ10が劣化している(S214)と後述のバッテリ劣化検出原理に基づき判定される(S212)。所定の初期差分量より小さかった場合には再びバッテリ電流inと推定充放電電流Inの測定が行われ、S202〜S212の工程が繰り返される。また、ここで電流差(In−in)のかわりに電流比(In/in)を用いて劣化検出することことも可能である。 When the deterioration determination device is ON (S200), the current sensor 16 measures the battery current i n (S202). Estimated discharge current I n is calculated therewith (FIG. 2: S306). Then current difference which is a difference between the estimated charge-discharge current I n the battery current i n Request (I n -i n) (S206 ). Predetermined current difference of the estimated charge-discharge current I n and the battery current i n that serves as a reference when the capacity deterioration of the battery 10 has occurred (initial difference amount) is stored in advance (S210). The initial difference amount is compared with the current difference (S208). When the current difference is compared with the initial difference amount and the current difference is equal to or greater than the initial difference amount, it is determined that the battery 10 has deteriorated (S214) based on the battery deterioration detection principle described later (S212). If smaller than the predetermined initial difference amount measurement is made again battery current i n and the estimated charge-discharge current I n, S202~S212 steps are repeated. Further, where it is also possible to detect deterioration by using the current ratio (I n / i n) instead of the current difference (I n -i n).

[バッテリの劣化検出原理]
次に、推定充放電電流Inとバッテリ電流inからバッテリの劣化を検出する原理について説明する。バッテリの容量劣化が発生し、例えば、容量が充放電量100Ahから充放電量50Ahと劣化したとする。そうするとバッテリは100AhをSOC100%(満充電容量)と判定していたのに対し、50AhがSOC100%(満充電容量)と判定することとなる。すなわち、同じSOCであってもそれに対応するバッテリ容量が変化する。バッテリ容量は実測電圧に対応しているので容量劣化が生じると実測電圧Vnに、その容量劣化が反映されることとなる。そうすると容量劣化前と容量劣化後では実測電圧Vnが変化することになる。そうするとこの実測電圧Vnを内部抵抗Rnで除して得られる推定充放電電流In(図2では(式:In=(Vn−VOCVn-1)/Rn))は容量劣化前と容量劣化後では変化することとなる。
[Battery deterioration detection principle]
Next, a description is given of a principle of detecting the estimated charge-discharge current I n and the battery current i n the battery deterioration. Assume that the capacity of the battery has deteriorated, for example, the capacity has deteriorated from a charge / discharge amount of 100 Ah to a charge / discharge amount of 50 Ah. Then, the battery determines that 100 Ah is SOC 100% (full charge capacity), whereas 50 Ah is determined to be SOC 100% (full charge capacity). That is, even if it is the same SOC, the battery capacity corresponding to it changes. Since the battery capacity corresponds to the actually measured voltage, when the capacity is deteriorated, the capacity deterioration is reflected in the actually measured voltage V n . Then, the measured voltage V n changes before and after the capacity deterioration. Then, the estimated charge / discharge current I n (in FIG. 2, (formula: I n = (V n −V OCVn−1 ) / R n )) obtained by dividing the actually measured voltage V n by the internal resistance R n is a capacity deterioration. It will change before and after capacity degradation.

ところが、推定充放電電流Inが変化するのに対して実測充放電電流inはほぼ同一である。したがって、実測充放電電流inと推定充放電電流Inとを比較し、その値に基づいてバッテリの劣化を判定することができることとなる。比較する方法には、例えば実測充放電電流inと推定充放電電流Inとの電流差(In−in)、電流比(In/in)を予め記憶された所定値と比較することが挙げられる。 However, the measured charging and discharging current i n respect of the estimated charge-discharge current I n changes are nearly identical. Therefore, comparing with the measured charging and discharging current i n the estimated charge-discharge current I n, and thus capable of determining the deterioration of the battery based on the value. Comparative Comparative Methods of, for example, the current difference between the measured charging and discharging current i n and the estimated charge-discharge current I n (I n -i n) , current ratio (I n / i n) and the previously stored predetermined value To do.

「電流差」:
電流差(In−in)が容量劣化前には一定量であったのに対し、容量劣化発生によりIn値が変化したことにより、そうすると推定充放電電流Inが大きな値となるのにつれて実測充放電電流inの電流差(In−in)が変化する。したがって、この電流差(In−in)を予め記憶された初期差分量と比較することで、これらが所定電流差以上になった場合はバッテリ10が劣化していることを検出できる。
"Current difference":
While current difference (I n -i n) is constant weight before capacity deterioration, by I n value changes by capacity deterioration occurs, Then the estimated charge-discharge current I n is a large value Accordingly, the current difference (I n −i n ) of the actually measured charge / discharge current i n changes. Therefore, by comparing the current difference (I n −i n ) with the initial difference amount stored in advance, it is possible to detect that the battery 10 has deteriorated when the current difference exceeds a predetermined current difference.

「電流比」:
容量劣化前にInとinの電流比(In/in)は一定範囲内であるが、容量劣化後は、それに伴うInの変化によりInとinの比率は変化する。例えば、容量劣化前にIn=5.5A、in=5.0Aであり、その電流比(In/in)=1.1であったとする。ここで容量劣化が生じ、Inの値が変化しIn=10.0Aとなったとする。そうすると電流比(In/in)=2.0と変化する。ここで予め記憶された所定電流比In/in=1.8以上で容量劣化とすると設定したとすればこの比以上という要件を満たし、バッテリに容量劣化が生じていることを検出できる。この電流比を用いた方法は、突発的な大電流がバッテリに流れたときであっても誤判定が生じることを防止できる。
"Current ratio":
Although current ratio of I n and i n before capacity deterioration (I n / i n) is within the predetermined range, after the capacity deterioration, the ratio of I n and i n varies by a change in I n associated therewith. For example, it is assumed that I n = 5.5 A and i n = 5.0 A before the capacity deterioration, and the current ratio (I n / i n ) = 1.1. Here capacity deterioration occurs, the value of I n becomes altered I n = 10.0A. Then it changes to the current ratio (I n / i n) = 2.0. Here, if the capacity deterioration is set at a predetermined current ratio I n / i n = 1.8 or more stored in advance, it is possible to detect that the capacity deterioration occurs in the battery by satisfying the requirement of this ratio or more. The method using this current ratio can prevent erroneous determination even when a sudden large current flows through the battery.

また、上記、電流差、電流比を用いて劣化検出するかわりとして、求めた上記電流差の経時変化量を電流差を積算した積算電流差に基づいて、その変化量が予め記憶された所定積算電流差変化量と比較して大きいときに、バッテリの容量劣化が生じていると容量劣化を検出することも可能である。   In addition, instead of detecting deterioration using the current difference and current ratio, a predetermined integration in which the change amount is stored in advance based on the integrated current difference obtained by integrating the current difference with the obtained change amount of the current difference with time. It is also possible to detect the capacity deterioration when the battery capacity is deteriorated when it is larger than the current difference change amount.

実施の形態2.
<第2の装置構成例:推定充放電電流に基づく推定SOCとバッテリ電流に基づく実測SOCの差による劣化検出>
[バッテリ劣化検出装置をハイブリッド電気自動車に適用した構成および推定充放電電流Inの演算]
実施の形態1の装置構成(図1)と推定充放電電流Inの演算(図2)は同様である。
Embodiment 2. FIG.
<Second Device Configuration Example: Deterioration Detection Based on Difference between Estimated SOC Based on Estimated Charge / Discharge Current and Actually Determined SOC Based on Battery Current>
Configuration was applied battery degradation detection device in a hybrid electric vehicle and the estimated charge-discharge operation of the current I n]
Device configuration of the first embodiment (FIG. 1) and calculation of the estimated charge-discharge current I n (FIG. 2) are similar.

[バッテリの劣化検出]
次に、図4に基づいて実施の形態2における推定充放電電流Inとバッテリ電流inとをそれぞれ電流積算し、推定SOC、実測SOCを求め、バッテリの劣化を検出してバッテリの劣化を判定する方法について説明する。なお、この劣化判定は電池ECU14にて一般的に行われる。
[Battery deterioration detection]
Next, based on FIG. 4 respectively current integration estimation charge-discharge current I n and the battery current i n and the in the second embodiment, the estimated SOC, obtains the measured SOC, the deterioration of the battery by detecting the deterioration of the battery A determination method will be described. This deterioration determination is generally performed by the battery ECU 14.

劣化判定装置がONとなると(S300)、電流センサ16はバッテリ電流inを測定する(S302)。それと共に推定充放電電流Inが演算される(図2:S304)。バッテリ電流inを積算することでその積算値である実測SOC:snを求める(S306)。推定充放電電流Inを積算することでその積算値である推定SOC:Snを求める(S308)。これら積算値の差、すなわち推定SOCと実測SOCの差となるSOC差(Sn−sn)を求める(S310)。バッテリ10の容量劣化が生じた時の基準となる推定SOC:Snと実測SOC:snの差分量(初期差分量)は予め記憶されている(S314)。この初期差分量と前記SOC差を比較する(S312)。このSOC差が初期差分量との比較で所定SOC差以上になった場合はバッテリ10が劣化していると(S318)後述の劣化検出原理に基づき判定される(S316)。所定SOC差より小さかった場合には再びバッテリ電流inと推定充放電電流Inの測定が行われ、S302〜S316の工程が繰り返される。ここでSOC差(Sn−sn)のかわりにSOC比率Sn/snを用いて劣化検出することことも可能である。 When the deterioration determination device is ON (S300), the current sensor 16 measures the battery current i n (S302). Estimated discharge current I n is calculated therewith (FIG. 2: S304). By accumulating the battery current i n , an actual measured SOC: s n which is the accumulated value is obtained (S306). Estimated discharge current is the integrated value by integrating the I n estimated SOC: Request S n (S308). The difference between these integrated values, that is, the SOC difference (S n −s n ) that is the difference between the estimated SOC and the actually measured SOC is obtained (S310). Estimated SOC serving as a reference when the capacity deterioration of the battery 10 occurs: S n and the measured SOC: the amount of difference s n (initial difference amount) is stored in advance (S314). The initial difference amount is compared with the SOC difference (S312). When the SOC difference is equal to or larger than the predetermined SOC difference compared with the initial difference amount, it is determined that the battery 10 is deteriorated (S318) based on a deterioration detection principle described later (S316). If smaller than the predetermined SOC difference measurement is made again battery current i n and the estimated charge-discharge current I n, S302~S316 steps are repeated. Here, it is also possible to detect the deterioration using the SOC ratio S n / s n instead of the SOC difference (S n −s n ).

[バッテリの劣化検出原理]
次に、推定充放電電流に基づくSOCとバッテリ電流に基づくSOCの差からバッテリの劣化を検出する原理について説明する。
[Battery deterioration detection principle]
Next, the principle of detecting the deterioration of the battery from the difference between the SOC based on the estimated charge / discharge current and the SOC based on the battery current will be described.

図5(a)は容量劣化後のバッテリのSOC経時変化を示したグラフである。ここで(1)は推定充放電電流Inを積算して得られる推定SOCの経時変化を示すものであり、(2)は実測充放電電流inを積算した実測SOCの経時変化を示す。推定充放電電流Inは容量劣化を反映している。そのため、この推定充放電電流Inで積算される推定SOCの増減は容量劣化後は大きなものとなる。それに対して実測充放電電流inは容量劣化前と容量劣化後でほとんど変化しない。よって実測充放電電流inで積算した実測SOCの増減は容量劣化前とほとんど変化しない。よって推定SOCと実測SOCのSOC差(Sn−sn)が容量劣化前と比較して大きな値となる。したがって、このSOC差(Sn−sn)を容量劣化が生じたことの基準となる予め記憶された初期差分量と比較することで、SOC差が初期差分量以上になった場合はバッテリ10が劣化していることを検出できる。 FIG. 5A is a graph showing a change with time in the SOC of the battery after capacity deterioration. Wherein (1) shows the time course of the estimated SOC obtained by integrating the estimated charge-discharge current I n, (2) shows the time course of the measured SOC obtained by integrating the measured charging and discharging current i n. Estimated discharge current I n reflects the capacity deterioration. Therefore, changes in the estimated SOC to be integrated in the estimated charge-discharge current I n after the capacity deterioration becomes large. On the other hand, the measured charge / discharge current i n hardly changes before and after the capacity deterioration. Increases or decreases of the measured charge-discharge current measured SOC obtained by integrating at i n hardly changed before and capacity degradation. Therefore, the SOC difference (S n −s n ) between the estimated SOC and the actually measured SOC becomes a larger value than before the capacity deterioration. Therefore, when this SOC difference (S n −s n ) is compared with an initial difference amount stored in advance as a reference for the occurrence of the capacity deterioration, the battery 10 is detected when the SOC difference becomes equal to or larger than the initial difference amount. Can be detected.

本実施形態2では、推定SOC、実測SOCはそれぞれ推定充放電電流In、実測充放電電流inを積算して求めることができる。容量劣化の際には、電流差(In−in)が生じているので積算によりこの差も拡大されることになる。そうするとSOC差(Sn−sn)は電流差(In−in)より大きな値の変化として検出することができ、より確実に容量劣化を検出できる。また、積算処理によりノイズの影響を受けにくい利点がある。 In Embodiment 2, the estimated SOC, measured SOC can be obtained respectively the estimated charge-discharge current I n, by integrating the measured charging and discharging current i n. When the capacity is deteriorated, a current difference (I n −i n ) is generated, and this difference is enlarged by integration. Then, the SOC difference (S n −s n ) can be detected as a change in value larger than the current difference (I n −i n ), and the capacity deterioration can be detected more reliably. Further, there is an advantage that the integration process is less susceptible to noise.

実施の形態3.
<第3の装置構成例:推定充放電電流に基づく推定SOCとバッテリ電流に基づく実測SOCの経時変化の積算値による劣化検出>
[バッテリ劣化検出装置をハイブリッド電気自動車に適用した構成および推定充放電電流Inの演算]
実施の形態1、2と装置構成(図1)と推定充放電電流Inの演算(図2)は本実施形態において同様である。
Embodiment 3 FIG.
<Third apparatus configuration example: Deterioration detection based on an integrated value of changes over time of estimated SOC based on estimated charge / discharge current and measured SOC based on battery current>
Configuration was applied battery degradation detection device in a hybrid electric vehicle and the estimated charge-discharge operation of the current I n]
Embodiments 1 and 2 and device configuration according (Figure 1) and calculation of the estimated charge-discharge current I n (FIG. 2) is the same in this embodiment.

[バッテリの劣化検出]
次に、図6に基づいて実施の形態3における推定充放電電流Inとバッテリ電流inからそれぞれ推定SOC、実測SOCを求め、推定SOCと実測SOCの差を積算した積算SOC値に基づいてバッテリの劣化を検出し、バッテリの劣化を判定する方法について説明する。なお、この劣化判定は電池ECU14にて一般的に行われる。
[Battery deterioration detection]
Then, based on the estimated charge-discharge current I n and each estimated SOC from the battery current i n, obtains a measured SOC, integration SOC value obtained by integrating the difference between the estimated SOC and the measured SOC in the third embodiment with reference to FIG. 6 A method for detecting battery deterioration and determining battery deterioration will be described. This deterioration determination is generally performed by the battery ECU 14.

劣化判定装置がONとなると(S400)、電流センサ16はバッテリ電流inを測定する(S402)。それと共に推定充放電電流Inが演算される(図2:S404)。バッテリ電流inを積算することで実測SOC:snを求める(S406)。推定充放電電流Inを積算することで推定SOC:Snを求める(S408)。推定SOCと実測SOCの差であるSOC差(Sn−sn)を求める(S410)。SOC差(Sn−sn)の経時変化量を積算して積算SOC値を求める(S412)。バッテリ10の容量劣化の基準となる推定SOC:Snと実測SOC:snの差分量の積算値(初期積算量)は予め記憶されている(S416)。この初期積算量と前記積算SOC値を比較する(S414)。この積算SOC値が初期差分量との比較で所定値以上になった場合はバッテリ10が劣化していると(S420)後述の劣化検出原理に基づき判定される(S418)。所定の比率より小さかった場合には再びバッテリ電流inと推定充放電電流Inの測定が行われ、S402〜S418の工程が繰り返される。SOC比率Sn/snを用いて劣化検出することことも可能である。 When the deterioration determination device is ON (S400), the current sensor 16 measures the battery current i n (S402). Estimated discharge current I n is calculated therewith (FIG. 2: S404). Found by integrating the battery current i n SOC: Request s n (S406). Estimated by integrating the estimated charge-discharge current I n SOC: Request S n (S408). An SOC difference (S n −s n ) that is a difference between the estimated SOC and the actually measured SOC is obtained (S410). An accumulated SOC value is obtained by integrating the amount of change with time of the SOC difference (S n −s n ) (S 412). The integrated value (initial integrated amount) of the difference amount between the estimated SOC: S n and the actually measured SOC: s n that serves as a reference for the capacity deterioration of the battery 10 is stored in advance (S416). The initial integrated amount is compared with the integrated SOC value (S414). When the integrated SOC value is equal to or greater than a predetermined value in comparison with the initial difference amount, it is determined that the battery 10 has deteriorated (S420) based on a deterioration detection principle described later (S418). If smaller than the predetermined ratio measurement is made again battery current i n and the estimated charge-discharge current I n, S402~S418 steps are repeated. It is also possible to detect deterioration with SOC ratio S n / s n.

[バッテリの劣化検出原理]
次に、推定充放電電流に基づくSOCとバッテリ電流に基づくSOCの差の積算値からバッテリの劣化を検出する原理について説明する。
[Battery deterioration detection principle]
Next, the principle of detecting the deterioration of the battery from the integrated value of the difference between the SOC based on the estimated charge / discharge current and the SOC based on the battery current will be described.

バッテリの容量劣化が生じると推定SOC:Snと実測SOC:snのSOC差(Sn−sn)の差異が生じる(図5(a))。SOC差(Sn−sn)を積算した積算SOC値を初期積算値と比較することでバッテリ10が劣化していることを検出できる。図5(b)は図5(a)のSOC差((1)と(2)の差分:Sn−sn)を積算した積算SOCと時間の関係が示される。 When the capacity of the battery is deteriorated, a difference in the SOC difference (S n −s n ) between the estimated SOC: S n and the actually measured SOC: s n occurs (FIG. 5A). It is possible to detect that the battery 10 is deteriorated by comparing the integrated SOC value obtained by integrating the SOC difference (S n −s n ) with the initial integrated value. FIG. 5B shows the relationship between the accumulated SOC obtained by integrating the SOC difference (difference between (1) and (2): S n −s n ) of FIG. 5A and time.

本実施形態3では、推定SOC、実測SOCのSOC差(Sn−sn)を積算することによってこの差も拡大されることになり、より確実に劣化を検出できる。また、積算処理によりノイズの影響を受けにくい利点がある。 In the third embodiment, by integrating the SOC difference (S n −s n ) between the estimated SOC and the actually measured SOC, this difference is also enlarged, and deterioration can be detected more reliably. Further, there is an advantage that the integration process is less susceptible to noise.

本発明は、二次電池の容量劣化が生じると推定充放電電流Inが変化するという関係を利用することによって、電池の容量劣化を判定する。この関係を利用して二次電池の容量劣化を判定する劣化検出であれば様々な態様、数式が推考できる。例えば、二次電池の劣化を検出して、バッテリ容量を補正する補正装置なども考えられる。 The present invention, by utilizing the relationship that the estimated charge-discharge current I n capacity deterioration of the secondary battery occurs changes, determines the capacity deterioration of the battery. Various aspects and mathematical formulas can be inferred as long as deterioration detection is performed to determine the capacity deterioration of the secondary battery using this relationship. For example, a correction device that detects the deterioration of the secondary battery and corrects the battery capacity is also conceivable.

本発明は二次電池のバッテリを有する電気自動車全般(例えば燃料電池自動車、燃料電池と内燃機関を併用するハイブリッド電気自動車)の電池劣化検出装置およb方法として使用できる。本発明は自動車は軽自動車、乗用車、大型・小型特殊車、大型車(バス、トラック)等様々なバッテリに本発明の電池劣化検出装置および方法を適用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as a battery deterioration detection apparatus and b method for all electric vehicles having secondary battery batteries (for example, fuel cell vehicles, hybrid electric vehicles using both fuel cells and internal combustion engines). In the present invention, the battery deterioration detecting device and method of the present invention can be applied to various batteries such as mini vehicles, passenger cars, large / small special vehicles, large vehicles (buses, trucks).

また、本発明は、自動車に捕らわれず、二次電池(例えばリチウムイオン二次電池、Ni系電池(例えばNi−MH電池、Ni−Cd電池)、鉛蓄電池)を有している機器全般に用いることができ、その機器に備えられた二次電池の劣化を検出することができる。例えば家庭用・業務用発電燃料電池の蓄電に要する二次電池の劣化検出としても適用できる。また、航空機、船舶、パーソナルコンピュータ関連機器全般、携帯電話等の移動体に備えられた二次電池の劣化検出にも適用できる。   In addition, the present invention is used in all devices having secondary batteries (for example, lithium ion secondary batteries, Ni-based batteries (for example, Ni-MH batteries, Ni-Cd batteries), lead storage batteries) without being caught by automobiles. And deterioration of the secondary battery provided in the device can be detected. For example, the present invention can also be applied to detection of secondary battery deterioration required for power storage of household / commercial power generation fuel cells. In addition, the present invention can also be applied to detection of deterioration of a secondary battery provided in a moving body such as an aircraft, a ship, personal computer related devices, and a mobile phone.

本発明の実施の形態1〜3のバッテリ充電状態推定装置をハイブリッド電気自動車に適用したシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the system which applied the battery charge condition estimation apparatus of Embodiment 1-3 of this invention to the hybrid electric vehicle. 本発明の実施の形態1〜3の推定充放電電流および推定SOCを求めるフロー図である。It is a flowchart which calculates | requires the estimated charging / discharging current and estimated SOC of Embodiment 1-3 of this invention. 本発明の実施の形態1の電池劣化検出方法を説明するフローチャートである。It is a flowchart explaining the battery deterioration detection method of Embodiment 1 of this invention. 本発明の実施の形態2の電池劣化検出方法を説明するフローチャートである。It is a flowchart explaining the battery degradation detection method of Embodiment 2 of this invention. (a)容量劣化後のバッテリのSOC経時変化を示す関係図である。(b)積算SOCと時間の関係を示す関係図である。(A) It is a related figure which shows the SOC time-dependent change of the battery after capacity deterioration. (B) It is a relationship figure which shows the relationship between integration SOC and time. 本発明の実施の形態3の電池劣化検出方法を説明するフローチャートである。It is a flowchart explaining the battery degradation detection method of Embodiment 3 of this invention.

符号の説明Explanation of symbols

1,2 リレー、10 バッテリ、12 電圧検出器、14 電池ECU、16 電流センサ、18 HVECU、20 インバータ、22 モータジェネレータ、24 エンジン、26 温度計、28 E/GECU、30 アクセルセンサ等、32 DC/DCコンバータ、36 12Vバッテリ、38 車両用負荷。   1, 2 relay, 10 battery, 12 voltage detector, 14 battery ECU, 16 current sensor, 18 HVECU, 20 inverter, 22 motor generator, 24 engine, 26 thermometer, 28 E / GECU, 30 accelerator sensor, etc. 32 DC / DC converter, 36 12V battery, 38 vehicle load.

Claims (16)

二次電池の容量劣化を検出する電池劣化検出装置であって、
前記二次電池の実測電圧を検出する実測電圧検出手段と、
前記実測電圧に基づいて推定充放電電流を演算する推定充放電電流演算手段と、
前記二次電池の充電電流および放電電流の少なくとも一方である実測充放電電流を検出する電流検出手段と、
前記推定充放電電流と前記実測充放電電流とを比較する電流比較手段と、
前記電流比較手段により得られた比較結果に基づいて二次電池の劣化を検出する劣化検出手段と、
を有する電池劣化検出装置。
A battery deterioration detection device that detects a capacity deterioration of a secondary battery,
An actual voltage detecting means for detecting an actual voltage of the secondary battery;
Estimated charge / discharge current calculating means for calculating an estimated charge / discharge current based on the measured voltage;
Current detection means for detecting an actual charge / discharge current which is at least one of a charge current and a discharge current of the secondary battery;
Current comparison means for comparing the estimated charge / discharge current and the measured charge / discharge current;
A deterioration detecting means for detecting deterioration of the secondary battery based on the comparison result obtained by the current comparing means;
A battery deterioration detecting device having
請求項1に記載の電池劣化検出装置であって、
前記電流比較手段は、前記推定充放電電流と前記実測充放電電流との電流差を演算し、前記電流差と予め設定された所定電流差とを比較する電池劣化検出装置。
The battery deterioration detection device according to claim 1,
The current comparison means calculates a current difference between the estimated charge / discharge current and the measured charge / discharge current, and compares the current difference with a predetermined current difference set in advance.
請求項1に記載の電池劣化検出装置であって、
前記電流比較手段は、前記推定充放電電流の積算値と前記実測充放電電流の積算値との積算値差を演算し、前記積算値差と予め設定された所定積算値差とを比較する電池劣化検出装置。
The battery deterioration detection device according to claim 1,
The current comparing means calculates an integrated value difference between the integrated value of the estimated charge / discharge current and the integrated value of the actually measured charge / discharge current, and compares the integrated value difference with a preset predetermined integrated value difference. Deterioration detection device.
請求項1または3に記載の電池劣化検出装置であって、
前記電流比較手段は、前記推定充放電電流の積算値と前記実測充放電電流の積算値との積算値差を演算し、前記積算値差の変化量と予め設定された所定積算値変化量とを比較する電池劣化検出装置。
The battery deterioration detection device according to claim 1 or 3,
The current comparison means calculates an integrated value difference between the integrated value of the estimated charge / discharge current and the integrated value of the actually measured charge / discharge current, and a change amount of the integrated value difference and a predetermined integrated value change amount set in advance. A battery deterioration detection device for comparing the two.
請求項1に記載の電池劣化検出装置であって、
前記電流比較手段は、前記推定充放電電流と前記実測充放電電流との電流差の電流差積算値を演算し、前記電流差積算値に基づいて予め設定された所定電流差積算値を比較する電池劣化検出装置。
The battery deterioration detection device according to claim 1,
The current comparing means calculates a current difference integrated value of a current difference between the estimated charge / discharge current and the measured charge / discharge current, and compares a predetermined current difference integrated value set in advance based on the current difference integrated value. Battery deterioration detection device.
請求項1または5に記載の電池劣化検出装置であって、
前記電流比較手段は、前記推定充放電電流と前記実測充放電電流との電流差の電流差積算値を演算し、前記電流差積算値の変化に基づいて予め設定された所定電流差積算値とを比較する電池劣化検出装置。
The battery deterioration detection device according to claim 1 or 5,
The current comparison means calculates a current difference integrated value of a current difference between the estimated charge / discharge current and the measured charge / discharge current, and a predetermined current difference integrated value preset based on a change in the current difference integrated value, A battery deterioration detection device for comparing the two.
請求項1に記載の電池劣化検出装置であって、
前記電流比較手段は、前記推定充放電電流と前記実測充放電電流との電流比を演算し、前記電流比と予め設定された所定電流比とを比較する電池劣化検出装置。
The battery deterioration detection device according to claim 1,
The current comparison means calculates a current ratio between the estimated charge / discharge current and the measured charge / discharge current, and compares the current ratio with a predetermined current ratio set in advance.
請求項1から7のいずれか1つに記載の電池劣化検出装置であって、
前記推定充放電電流演算手段は以下の数式(1)により推定充放電電流を演算する電池劣化検出装置。
n=(V−VOCVn-1)/Rn・・・(1)
(ここでInは推定充放電電流、Vは実測電圧、VOCVn-1は開放電圧、Rnは内部抵抗を示す。)
The battery deterioration detection device according to any one of claims 1 to 7,
The estimated charge / discharge current calculation means is a battery deterioration detection device that calculates an estimated charge / discharge current according to the following mathematical formula (1).
I n = (V−V OCVn−1 ) / R n (1)
(Where I n represents the estimated charge-discharge current, V is the measured voltage, V OCVn-1 are open circuit voltage, the R n internal resistance.)
二次電池の容量劣化を検出する電池劣化検出方法であって、
前記二次電池の実測電圧を検出する実測電圧検出工程と、
前記実測電圧に基づいて推定充放電電流を演算する推定充放電電流演算工程と、
前記二次電池の充電電流および放電電流の少なくとも一方である実測充放電電流を検出する電流検出工程と、
前記推定充放電電流と前記実測充放電電流とを比較する電流比較工程と、
前記電流比較工程により得られた比較結果に基づいて二次電池の劣化を検出する劣化検出工程と、
を有する電池劣化検出方法。
A battery deterioration detection method for detecting capacity deterioration of a secondary battery,
An actual voltage detection step of detecting an actual voltage of the secondary battery;
An estimated charge / discharge current calculation step of calculating an estimated charge / discharge current based on the measured voltage;
A current detection step of detecting an actual charge / discharge current that is at least one of a charge current and a discharge current of the secondary battery;
A current comparison step of comparing the estimated charge / discharge current and the measured charge / discharge current;
A deterioration detecting step of detecting deterioration of the secondary battery based on the comparison result obtained by the current comparing step;
A method for detecting battery deterioration.
請求項9に記載の電池劣化検出方法であって、
前記電流比較工程は、前記推定充放電電流と前記実測充放電電流との電流差を演算し、前記電流差と予め設定された所定電流差を比較する電池劣化検出方法。
The battery deterioration detection method according to claim 9,
The current comparison step calculates a current difference between the estimated charge / discharge current and the measured charge / discharge current, and compares the current difference with a predetermined current difference set in advance.
請求項1に記載の電池劣化検出方法であって、
前記電流比較工程は、前記推定充放電電流の積算値と前記実測充放電電流の積算値との積算値差を演算し、前記積算値差と予め設定された所定積算値差とを比較する電池劣化検出方法。
The battery deterioration detection method according to claim 1,
In the current comparison step, a battery that calculates an integrated value difference between the integrated value of the estimated charge / discharge current and the integrated value of the actually measured charge / discharge current and compares the integrated value difference with a preset predetermined integrated value difference Degradation detection method.
請求項9または11に記載の電池劣化検出方法であって、
前記電流比較工程は、前記推定充放電電流の積算値と前記実測充放電電流の積算値との積算値差を演算し、前記積算値差の変化量と予め設定された所定積算値差変化量を比較する電池劣化検出方法。
The battery deterioration detection method according to claim 9 or 11,
The current comparison step calculates an integrated value difference between the integrated value of the estimated charge / discharge current and the integrated value of the actually measured charge / discharge current, and a change amount of the integrated value difference and a preset predetermined integrated value difference change amount The battery deterioration detection method which compares.
請求項9に記載の電池劣化検出方法であって、
前記電流比較工程は、前記推定充放電電流と前記実測充放電電流との電流差の電流差積算値を演算し、前記電流差積算値と予め設定された所定電流差積算値とを比較する電池劣化検出方法。
The battery deterioration detection method according to claim 9,
The current comparing step calculates a current difference integrated value of a current difference between the estimated charge / discharge current and the measured charge / discharge current, and compares the current difference integrated value with a predetermined current difference integrated value set in advance. Degradation detection method.
請求項9または13に記載の電池劣化検出装置であって、
前記電流比較工程は、前記推定充放電電流と前記実測充放電電流との電流差の電流差積算値を演算し、前記電流差積算値と予め設定された所定電流差積算値とを比較する電池劣化検出方法。
The battery deterioration detection device according to claim 9 or 13,
The current comparing step calculates a current difference integrated value of a current difference between the estimated charge / discharge current and the measured charge / discharge current, and compares the current difference integrated value with a predetermined current difference integrated value set in advance. Degradation detection method.
請求項9に記載の電池劣化検出方法であって、
前記電流比較工程は、前記推定充放電電流と前記実測充放電電流との電流比を演算し、前記電流比予め設定された所定電流比とを比較する電池劣化検出方法。
The battery deterioration detection method according to claim 9,
The current comparison step is a battery deterioration detection method in which a current ratio between the estimated charge / discharge current and the measured charge / discharge current is calculated, and the current ratio is compared with a predetermined current ratio set in advance.
請求項9から15のいずれか1つに記載の電池劣化検出方法であって、
前記推定充放電電流演算工程は以下の数式(1)により推定充放電電流を演算する電池劣化検出方法。
n=(V−VOCVn-1)/Rn・・・(1)
(ここでInは推定充放電電流、Vは実測電圧、VOCVn-1は開放電圧、Rnは内部抵抗を示す。)
The battery deterioration detection method according to any one of claims 9 to 15,
The estimated charge / discharge current calculation step is a battery deterioration detection method in which an estimated charge / discharge current is calculated by the following formula (1).
I n = (V−V OCVn−1 ) / R n (1)
(Where I n represents the estimated charge-discharge current, V is the measured voltage, V OCVn-1 are open circuit voltage, the R n internal resistance.)
JP2003274169A 2003-07-14 2003-07-14 Battery degradation detection device and method Pending JP2005037230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274169A JP2005037230A (en) 2003-07-14 2003-07-14 Battery degradation detection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274169A JP2005037230A (en) 2003-07-14 2003-07-14 Battery degradation detection device and method

Publications (1)

Publication Number Publication Date
JP2005037230A true JP2005037230A (en) 2005-02-10

Family

ID=34211199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274169A Pending JP2005037230A (en) 2003-07-14 2003-07-14 Battery degradation detection device and method

Country Status (1)

Country Link
JP (1) JP2005037230A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317299B2 (en) 2005-11-18 2008-01-08 Hyundai Motor Company Method of calculating aging factor of battery for hybrid vehicle
WO2008126631A1 (en) 2007-03-23 2008-10-23 Toyota Jidosha Kabushiki Kaisha State estimating device for secondary battery
WO2010026930A1 (en) 2008-09-02 2010-03-11 株式会社豊田中央研究所 Secondary battery status estimating device
US20100247988A1 (en) * 2009-03-26 2010-09-30 Panasonic Ev Energy Co., Ltd. State judging device and control device of secondary battery
US20110071781A1 (en) * 2009-09-18 2011-03-24 Mitsubishi Heavy Industries, Ltd. Battery system
JP2012005314A (en) * 2010-06-21 2012-01-05 Denso Corp Battery failure warning device
US8380452B2 (en) 2009-03-31 2013-02-19 Panasonic Ev Energy Co., Ltd. Control device of secondary battery and map correction method
JP2013518272A (en) * 2010-01-27 2013-05-20 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ How to diagnose battery deterioration
JP2013147170A (en) * 2012-01-20 2013-08-01 Toyota Motor Corp Control apparatus for hybrid vehicle
JP2014013210A (en) * 2012-07-05 2014-01-23 Toyota Industries Corp Charge controller, battery pack, and charge control method
JP2014032021A (en) * 2012-08-01 2014-02-20 Primearth Ev Energy Co Ltd Current value computing device and cooling device of power storage device
CN103921794A (en) * 2013-01-16 2014-07-16 日产自动车株式会社 Idle Speed Stopped Vehicle
FR3011084A1 (en) * 2013-09-25 2015-03-27 St Microelectronics Grenoble 2 METHOD FOR DETERMINING THE CHARGING STATE OF A BATTERY OF AN ELECTRONIC DEVICE
KR101509897B1 (en) * 2013-07-02 2015-04-06 현대자동차주식회사 Method for Battery SOC Control for Vehicle
WO2016017040A1 (en) * 2014-07-30 2016-02-04 株式会社東芝 Vehicle system and control method therefor
KR101610507B1 (en) 2014-09-18 2016-04-07 현대자동차주식회사 Apparatus and method for diagnosing degradation of high voltage battery of vehicle
WO2016099744A1 (en) * 2014-12-16 2016-06-23 Intel Corporation Mechanism for extending cycle life of a battery
KR101776761B1 (en) 2016-07-19 2017-09-08 현대자동차 주식회사 Method and appratus of determining performance of battery for mild hybrid electric vehicle
JP2020024935A (en) * 2019-10-24 2020-02-13 株式会社Gsユアサ Power storage system and computer program
JP2020053202A (en) * 2018-09-26 2020-04-02 株式会社Gsユアサ Power storage element management device, power storage device, and power storage element management method
JP2020191779A (en) * 2018-03-28 2020-11-26 東洋システム株式会社 Deterioration state determination device and deterioration state determination method
CN116338460A (en) * 2023-04-11 2023-06-27 杭州禾美汽车科技有限公司 New energy automobile battery allowance identification system based on multi-parameter analysis

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317299B2 (en) 2005-11-18 2008-01-08 Hyundai Motor Company Method of calculating aging factor of battery for hybrid vehicle
US8093902B2 (en) 2007-03-23 2012-01-10 Toyota Jidosha Kabushiki Kaisha Device estimating a state of a secondary battery
WO2008126631A1 (en) 2007-03-23 2008-10-23 Toyota Jidosha Kabushiki Kaisha State estimating device for secondary battery
EP2107385A1 (en) * 2007-03-23 2009-10-07 Toyota Jidosha Kabushiki Kaisha State estimating device for secondary battery
EP2107385A4 (en) * 2007-03-23 2014-01-01 Toyota Motor Co Ltd State estimating device for secondary battery
CN102144169A (en) * 2008-09-02 2011-08-03 丰田自动车株式会社 Secondary battery status estimating device
US8615372B2 (en) 2008-09-02 2013-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho State estimating device for secondary battery
WO2010026930A1 (en) 2008-09-02 2010-03-11 株式会社豊田中央研究所 Secondary battery status estimating device
US8741459B2 (en) * 2009-03-26 2014-06-03 Panasonic Ev Energy Co., Ltd. State judging device and control device of secondary battery
US20100247988A1 (en) * 2009-03-26 2010-09-30 Panasonic Ev Energy Co., Ltd. State judging device and control device of secondary battery
US8380452B2 (en) 2009-03-31 2013-02-19 Panasonic Ev Energy Co., Ltd. Control device of secondary battery and map correction method
US20110071781A1 (en) * 2009-09-18 2011-03-24 Mitsubishi Heavy Industries, Ltd. Battery system
US8566049B2 (en) * 2009-09-18 2013-10-22 Mitsubishi Heavy Industries, Ltd. Battery system
JP2013518272A (en) * 2010-01-27 2013-05-20 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ How to diagnose battery deterioration
JP2012005314A (en) * 2010-06-21 2012-01-05 Denso Corp Battery failure warning device
JP2013147170A (en) * 2012-01-20 2013-08-01 Toyota Motor Corp Control apparatus for hybrid vehicle
JP2014013210A (en) * 2012-07-05 2014-01-23 Toyota Industries Corp Charge controller, battery pack, and charge control method
JP2014032021A (en) * 2012-08-01 2014-02-20 Primearth Ev Energy Co Ltd Current value computing device and cooling device of power storage device
CN103921794A (en) * 2013-01-16 2014-07-16 日产自动车株式会社 Idle Speed Stopped Vehicle
KR101509897B1 (en) * 2013-07-02 2015-04-06 현대자동차주식회사 Method for Battery SOC Control for Vehicle
FR3011084A1 (en) * 2013-09-25 2015-03-27 St Microelectronics Grenoble 2 METHOD FOR DETERMINING THE CHARGING STATE OF A BATTERY OF AN ELECTRONIC DEVICE
US10073144B2 (en) 2013-09-25 2018-09-11 Stmicroelectronics (Grenoble 2) Sas Method of determining the state of charge of a battery of an electronic appliance
JP2016034171A (en) * 2014-07-30 2016-03-10 株式会社東芝 Vehicle system and method for controlling the same
WO2016017040A1 (en) * 2014-07-30 2016-02-04 株式会社東芝 Vehicle system and control method therefor
US10259327B2 (en) 2014-07-30 2019-04-16 Kabushiki Kaisha Toshiba Vehicle system and control method therefor
KR101610507B1 (en) 2014-09-18 2016-04-07 현대자동차주식회사 Apparatus and method for diagnosing degradation of high voltage battery of vehicle
US9853471B2 (en) 2014-12-16 2017-12-26 Intel Corporation Mechanism for extending cycle life of a battery
US11682908B2 (en) 2014-12-16 2023-06-20 Tahoe Research, Ltd. Mechanism for extending cycle life of a battery
JP2018504875A (en) * 2014-12-16 2018-02-15 インテル コーポレイション Mechanisms for extending battery cycle life
CN106937534B (en) * 2014-12-16 2020-11-24 英特尔公司 Mechanism for extending cycle life of a battery
WO2016099744A1 (en) * 2014-12-16 2016-06-23 Intel Corporation Mechanism for extending cycle life of a battery
CN106937534A (en) * 2014-12-16 2017-07-07 英特尔公司 Mechanism for extending the cycle life of battery
US10086824B2 (en) 2016-07-19 2018-10-02 Hyundai Motor Company Method and apparatus of determining performance for battery for mild hybrid electric vehicle
KR101776761B1 (en) 2016-07-19 2017-09-08 현대자동차 주식회사 Method and appratus of determining performance of battery for mild hybrid electric vehicle
JP7201254B2 (en) 2018-03-28 2023-01-10 東洋システム株式会社 Deterioration state determination device and deterioration state determination method
JP2020191779A (en) * 2018-03-28 2020-11-26 東洋システム株式会社 Deterioration state determination device and deterioration state determination method
JP2020191780A (en) * 2018-03-28 2020-11-26 東洋システム株式会社 Deterioration state determination device and deterioration state determination method
JP2020198780A (en) * 2018-03-28 2020-12-10 東洋システム株式会社 Degradation state determination device and degradation state determination method
JP7201253B2 (en) 2018-03-28 2023-01-10 東洋システム株式会社 Deterioration state determination device and deterioration state determination method
JP7160370B2 (en) 2018-03-28 2022-10-25 東洋システム株式会社 Deterioration state determination device and deterioration state determination method
JP2020053202A (en) * 2018-09-26 2020-04-02 株式会社Gsユアサ Power storage element management device, power storage device, and power storage element management method
JP7099224B2 (en) 2018-09-26 2022-07-12 株式会社Gsユアサ Power storage element management device and power storage device
JP2020024935A (en) * 2019-10-24 2020-02-13 株式会社Gsユアサ Power storage system and computer program
CN116338460A (en) * 2023-04-11 2023-06-27 杭州禾美汽车科技有限公司 New energy automobile battery allowance identification system based on multi-parameter analysis
CN116338460B (en) * 2023-04-11 2024-04-09 宁波禾旭汽车科技有限公司 New energy automobile battery allowance identification system based on multi-parameter analysis

Similar Documents

Publication Publication Date Title
JP2005037230A (en) Battery degradation detection device and method
JP4228760B2 (en) Battery charge state estimation device
US9263909B2 (en) Control device and control method for nonaqueous secondary battery
US7800345B2 (en) Battery management system and method of operating same
EP2700966B1 (en) Apparatus and method for estimating battery state
JP4649101B2 (en) Secondary battery status detection device and status detection method
US7355411B2 (en) Method and apparatus for estimating state of charge of secondary battery
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
JP3879598B2 (en) Battery capacity adjustment apparatus and method
JP3960241B2 (en) Secondary battery remaining capacity estimation device, secondary battery remaining capacity estimation method, and computer-readable recording medium storing a program for causing a computer to execute processing by the secondary battery remaining capacity estimation method
US8854010B2 (en) Control apparatus and control method for electric storage apparatus
WO2014083856A1 (en) Battery management device, power supply, and soc estimation method
US7880442B2 (en) Charging control device for a storage battery
US20120133332A1 (en) Storage capacity management system
US8180508B2 (en) Electricity storage control apparatus and method of controlling electricity storage
JP6603888B2 (en) Battery type determination device and battery type determination method
KR20070006953A (en) Method for resetting soc of secondary battery module
JP2004271445A (en) Internal resistance detector and degradation judging device, internal resistance detection method and degradation judging method for secondary battery
JP4145448B2 (en) Power storage device remaining capacity detection device
JP6135898B2 (en) Charge control device for power storage element, power storage device, and charge control method
JP2003068370A (en) Detector of charged state of battery
KR20180031413A (en) Vehicle and control method thereof
JP2004325263A (en) Self-discharge amount detection device of battery
JP3966810B2 (en) Storage battery full charge determination device, remaining capacity estimation device, full charge determination method, and remaining capacity estimation method
JP7100151B2 (en) Battery control device