JP2007278853A - Battery state determining apparatus - Google Patents

Battery state determining apparatus Download PDF

Info

Publication number
JP2007278853A
JP2007278853A JP2006105803A JP2006105803A JP2007278853A JP 2007278853 A JP2007278853 A JP 2007278853A JP 2006105803 A JP2006105803 A JP 2006105803A JP 2006105803 A JP2006105803 A JP 2006105803A JP 2007278853 A JP2007278853 A JP 2007278853A
Authority
JP
Japan
Prior art keywords
region
regions
battery
lead battery
ocv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006105803A
Other languages
Japanese (ja)
Other versions
JP4626559B2 (en
Inventor
Yoshiaki Machiyama
美昭 町山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2006105803A priority Critical patent/JP4626559B2/en
Priority to EP07738043.4A priority patent/EP1995123B1/en
Priority to PCT/JP2007/054553 priority patent/WO2007105595A1/en
Priority to US12/282,347 priority patent/US8036839B2/en
Publication of JP2007278853A publication Critical patent/JP2007278853A/en
Application granted granted Critical
Publication of JP4626559B2 publication Critical patent/JP4626559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery state determining apparatus capable of accurately determining the state of degradation of lead batteries. <P>SOLUTION: The battery state determining apparatus measures an open-circuit voltage OCV of a lead battery and a lowest voltage Vst when an engine is started and determines which region the voltages belong to in a property map determining the relation between OCV and Vst and divided into five regions indicating the state of degradation to determine the state of degradation of the lead battery. The property map is divided into the five regions of a first region of high OCV and high Vst; a second region located on the left side of the first region and of low OCV; a third region located below the first region and of high OCV and low Vst; a fourth region between the first and third regions; and a fifth region between the second and third regions. Each of the boundaries between the first and fourth regions; the second and fifth regions; the fourth and third regions; and the fifth and third regions is a curve having a positive gradient in logarithmic-curve form. The boundaries between the first and second regions and between the fourth and fifth regions are straight lines of 50% SOC of a new lead battery. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電池状態判定装置に係り、特に、車両に搭載された鉛電池の劣化状態を判定する電池状態判定装置に関する。   The present invention relates to a battery state determination device, and more particularly to a battery state determination device that determines a deterioration state of a lead battery mounted in a vehicle.

内燃機関の始動用鉛電池(以下、鉛電池という。)は、内燃機関システムを搭載するガソリンエンジン車、ディーゼルエンジン車等(以下、車両という。)において、エンジンの確実な始動を確保するという点から、極めて重要な部品である。また、近年、カーナビゲーション等の車載情報機器の普及や電動パワーステアリング等の補機の電気化により、車載電装品は増加しており、鉛電池は増大する電力供給に対応することも求められている。一方、環境問題への配慮から電動モータとエンジンを組み合わせたハイブリッド電気自動車や信号停止時等にエンジンを停止させ発進時に再始動させる(ISSシステムを備えた)自動車等が開発されてきている。   A lead battery for starting an internal combustion engine (hereinafter referred to as a lead battery) ensures a reliable start of the engine in a gasoline engine vehicle, a diesel engine vehicle or the like (hereinafter referred to as a vehicle) equipped with an internal combustion engine system. Therefore, it is an extremely important part. In recent years, due to the popularization of in-vehicle information devices such as car navigation systems and the electrification of auxiliary equipment such as electric power steering, in-vehicle electrical components are increasing, and lead batteries are also required to respond to the increasing power supply. Yes. On the other hand, in consideration of environmental problems, hybrid electric vehicles combining an electric motor and an engine, vehicles that are stopped when a signal is stopped, and restarted when the vehicle is started (equipped with an ISS system) have been developed.

このような鉛電池の使用環境下では、鉛電池の劣化状態を正確に検知し、現在の充電状態を把握することで車両走行への支障をなくすため(例えば、エンジン停止中に各種電気機器の負荷により鉛電池の残容量が小さくなると、エンジンを始動する充分な出力が得られなくなり、エンジン停止後再始動することができなくなるおそれがあるため)、エンジン始動性能を予測するという意味で、鉛電池の充電状態(SOC)や健康状態(SOH)を検知する技術が重要となってくる。   In such a lead battery usage environment, the deterioration state of the lead battery is accurately detected, and the current state of charge is grasped so as to eliminate any obstacles to driving the vehicle (for example, when various electric devices are If the remaining capacity of the lead battery is reduced by the load, sufficient output to start the engine will not be obtained, and it may not be possible to restart the engine after it has stopped)). Technology for detecting the state of charge (SOC) and the state of health (SOH) of a battery is important.

これまで、鉛電池の開回路電圧測定、交流を用いた内部抵抗測定、充電電流、放電電流測定等、種々の技術により鉛電池のSOCやSOHを検知する試みがなされてきた。例えば、スタータモータを始動する際の鉛電池の電圧を測定して状態検知しようとする技術が提案されている(特許文献1参照)。   Until now, attempts have been made to detect the SOC and SOH of lead batteries by various techniques such as open circuit voltage measurement of lead batteries, internal resistance measurement using alternating current, charging current, and discharge current measurement. For example, a technique for measuring the voltage of a lead battery when starting a starter motor to detect a state has been proposed (see Patent Document 1).

特開2001−163129号公報JP 2001-163129 A

しかしながら、従来の鉛電池のSOC、SOH検知技術では、SOH判定の根拠は明示されていないことが多かった。すなわち、鉛電池がどういった状態を示した場合にSOHが低下していると判定するかの根拠に乏しいものが多かった。これは鉛電池の各SOHでの特性についてのデータを採取することが一般に大変な手間が掛かることから、鉛電池の特性に対する知見が不足していることによるものと考えられる。   However, in the conventional lead battery SOC and SOH detection technologies, the basis for the SOH determination is often not clearly indicated. That is, there are many cases where the grounds for determining that the state of the lead battery indicates that the SOH is lowered are poor. This is considered to be due to the lack of knowledge about the characteristics of the lead battery because it generally takes a lot of time to collect data on the characteristics of each lead battery in each SOH.

本発明は上記事案に鑑み、鉛電池のSOHと開回路電圧及び最低電圧との関係を定めた特性マップを用いて鉛電池の劣化状態を正確に判定可能な電池状態判定装置を提供することを課題とする。   The present invention provides a battery state determination device that can accurately determine the deterioration state of a lead battery using a characteristic map that defines the relationship between the SOH of the lead battery, the open circuit voltage, and the minimum voltage. Let it be an issue.

上記課題を解決するために、本発明は、車両に搭載された鉛電池の劣化状態を判定する電池状態判定装置において、前記鉛電池の開回路電圧(OCV)を測定する開回路電圧測定手段と、前記鉛電池のエンジン始動時の最低電圧(Vst)を測定する最低電圧測定手段と、前記鉛電池のOCVとVstとの関係を定めた特性マップであって前記鉛電池の劣化状態を表す複数の領域に分割された特性マップを予め記憶した記憶手段と、前記開路電圧測定手段で測定されたOCV及び前記最低電圧測定手段で測定されたVstが前記記憶手段に記憶された特性マップの複数の領域のいずれに属するかを判断することで、前記鉛電池の劣化状態を判定する劣化状態判定手段と、を備え、前記記憶手段に記憶された特性マップは、OCVを横軸、Vstを縦軸にとったときに、OCVとVstとが共に高い第1領域、前記第1領域の左側に位置しOCVの低い第2領域、前記第1領域の下側に位置しOCVが高くVstの低い第3領域、前記第1及び第3領域の間の第4領域、及び、前記第2及び第3領域の間の第5領域の5つの領域に分割されており、前記第1及び第4領域の境界、前記第2及び第5領域の境界、前記第4及び第3領域の境界、並びに、前記第5及び第3領域の境界は、正の傾きを持ち、かつ、対数曲線状の曲線であることを特徴とする。   In order to solve the above-mentioned problems, the present invention provides an open circuit voltage measuring means for measuring an open circuit voltage (OCV) of the lead battery in a battery state determination device for determining a deterioration state of a lead battery mounted on a vehicle. A minimum voltage measuring means for measuring a minimum voltage (Vst) at the time of starting the engine of the lead battery, and a characteristic map defining a relationship between the OCV and Vst of the lead battery, and a plurality of characteristics maps representing a deterioration state of the lead battery A plurality of characteristic maps stored in the storage means, the storage means storing in advance the characteristic map divided into the regions of the above, the OCV measured by the open circuit voltage measurement means, and the Vst measured by the minimum voltage measurement means A deterioration state determination unit that determines a deterioration state of the lead battery by determining which of the regions belongs, and the characteristic map stored in the storage unit includes OCV on the horizontal axis and Vs Is the first region where both OCV and Vst are high, the second region is located on the left side of the first region and has a low OCV, and the OCV is high and Vst is located below the first region. Is divided into five regions, a third region having a low height, a fourth region between the first and third regions, and a fifth region between the second and third regions. The boundary of the four regions, the boundary of the second and fifth regions, the boundary of the fourth and third regions, and the boundary of the fifth and third regions have a positive slope and are logarithmic curves It is a curve.

本発明の電池状態判定装置は、鉛電池の開回路電圧(OCV)と鉛電池のエンジン始動時の最低電圧(Vst)との関係を定めた特性マップであって鉛電池の劣化状態を表す複数の領域に分割された特性マップを予め記憶した記憶手段を備えている。この特性マップは、OCVを横軸、Vstを縦軸にとったときに、OCVとVstとが共に高い第1領域、第1領域の左側に位置しOCVの低い第2領域、第1領域の下側に位置しOCVが高くVstの低い第3領域、第1及び第3領域の間の第4領域、及び、第2及び第3領域の間の第5領域の5つの領域に分割されており、第1及び第4領域の境界、第2及び第5領域の境界、第4及び第3領域の境界、並びに、第5及び第3領域の境界は、正の傾きを持ち、かつ、対数曲線状の曲線であり、鉛電池の各SOHでの実使用状態に基づいて作成される。開回路電圧測定手段により鉛電池のOCVが測定され、最低電圧測定手段により鉛電池のエンジン始動時のVstが測定される。そして、劣化状態判定手段により、開路電圧測定手段で測定されたOCV及び最低電圧測定手段で測定されたVstが記憶手段に記憶された特性マップの5つの領域のいずれに属するかを判断することで、鉛電池の劣化状態が判定される。   The battery state determination apparatus according to the present invention is a characteristic map that defines the relationship between the open circuit voltage (OCV) of a lead battery and the minimum voltage (Vst) at the time of engine start of the lead battery, and represents a plurality of deterioration states of the lead battery. Storage means for storing in advance a characteristic map divided into these areas. When the OCV is taken on the horizontal axis and Vst is taken on the vertical axis, this characteristic map is located in the first area where OCV and Vst are both high, the second area where the OCV is low and the first area is located on the left side of the first area. It is divided into five regions, a third region located on the lower side and having a high OCV and a low Vst, a fourth region between the first and third regions, and a fifth region between the second and third regions. The boundary between the first and fourth regions, the boundary between the second and fifth regions, the boundary between the fourth and third regions, and the boundary between the fifth and third regions have a positive slope and are logarithmic. It is a curved curve, and is created based on the actual use state of each lead battery in each SOH. The OCV of the lead battery is measured by the open circuit voltage measuring means, and the Vst at the start of the lead battery engine is measured by the minimum voltage measuring means. Then, the deterioration state determination means determines which of the five regions of the characteristic map stored in the storage means the OCV measured by the open circuit voltage measurement means and the Vst measured by the minimum voltage measurement means belongs. The deterioration state of the lead battery is determined.

本発明において、記憶手段に記憶された特性マップの第1及び第2領域の境界、並びに、第4及び第5領域の境界を直線とするようにしてもよい。このような直線には、例えば、鉛電池の新品状態でのSOCが所定%の直線を用いることができる。また、劣化状態判定手段は、開路電圧測定手段で測定されたOCV及び最低電圧測定手段で測定されたVstが特性マップの第4乃至第5の領域に属すると判断したときに鉛電池が劣化したと判定し、第3領域に属すると判断したときに鉛電池の交換が必要であると判定するようにしてもよい。更に、鉛電池による充放電分極による電圧測定の不正確さを排除するために、開回路電圧測定手段は、エンジン停止後所定時間経過後に、鉛電池のOCVを測定することが望ましい。   In the present invention, the boundary between the first and second regions and the boundary between the fourth and fifth regions of the characteristic map stored in the storage unit may be a straight line. As such a straight line, for example, a straight line having a predetermined percentage SOC in a new state of the lead battery can be used. Further, when the deterioration state determining means determines that the OCV measured by the open circuit voltage measuring means and the Vst measured by the minimum voltage measuring means belong to the fourth to fifth regions of the characteristic map, the lead battery has deteriorated. It may be determined that the lead battery needs to be replaced when it is determined that it belongs to the third region. Furthermore, in order to eliminate the inaccuracy of voltage measurement due to charge / discharge polarization by the lead battery, it is desirable that the open circuit voltage measuring means measures the OCV of the lead battery after a predetermined time has elapsed after the engine is stopped.

本発明によれば、劣化状態判定手段により、鉛電池の各SOHでの実使用状態に基づいて作成された特性マップを用いて劣化状態を判定するので、鉛電池の劣化判定を正確に行うことができる、という効果を得ることができる。   According to the present invention, since the deterioration state is determined using the characteristic map created based on the actual use state of each lead battery in each SOH by the deterioration state determination means, the deterioration determination of the lead battery can be accurately performed. The effect of being able to be obtained can be obtained.

以下、図面を参照して、本発明に係る電池状態判定装置の最良の実施の形態について説明する。   Hereinafter, the best mode of a battery state determination device according to the present invention will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の電池状態判定装置1は、差動増幅回路等を有し鉛電池2の端子間電圧を測定する電圧センサ3及び鉛電池2の電池状態を判定するマイクロコンピュータ(以下、マイコンという。)10を備えている。
(Constitution)
As shown in FIG. 1, the battery state determination device 1 of this embodiment includes a differential amplifier circuit and the like, a voltage sensor 3 that measures the voltage between terminals of the lead battery 2 and a micro that determines the battery state of the lead battery 2. A computer (hereinafter referred to as a microcomputer) 10 is provided.

鉛電池2は電池容器となる略角型の電槽を有しており、電槽内には合計6組の極板群が収容されている。電槽の材質には、成形性、電気的絶縁性、耐腐食性及び耐久性等の点で優れる、例えば、アクリルブタジエンスチレン(ABS)、ポリプロピレン(PP)、ポリエチレン(PE)等の高分子樹脂を選択することができる。各極板群は、複数枚の負極板及び正極板がセパレータを介して積層されており、セル電圧は2.0Vとされている。従って、鉛電池2の公称電圧は12Vである。電槽の上部は、電槽の上部開口部を密閉するABS、PP、PE等の高分子樹脂製の上蓋に接着ないし溶着されている。上蓋には、鉛電池を電源として外部へ電力を供給するための正極外部出力端子及び負極外部出力端子が立設されている。   The lead battery 2 has a substantially rectangular battery case serving as a battery container, and a total of six electrode plate groups are accommodated in the battery case. The battery case material is excellent in terms of moldability, electrical insulation, corrosion resistance and durability, for example, polymer resins such as acrylic butadiene styrene (ABS), polypropylene (PP), polyethylene (PE), etc. Can be selected. In each electrode plate group, a plurality of negative electrodes and positive electrodes are laminated via a separator, and the cell voltage is 2.0V. Therefore, the nominal voltage of the lead battery 2 is 12V. The upper part of the battery case is bonded or welded to an upper lid made of a polymer resin such as ABS, PP, PE or the like that seals the upper opening of the battery case. The upper lid is provided with a positive external output terminal and a negative external output terminal for supplying electric power to the outside using a lead battery as a power source.

鉛電池2の正極外部出力端子は、イグニッションスイッチ(以下、IGNスイッチという。)5の中央端子に接続されている。IGNスイッチ5は、中央端子とは別に、OFF端子、ON/ACC端子及びSTART端子を有しており、中央端子とこれらOFF、ON/ACC及びSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。   A positive external output terminal of the lead battery 2 is connected to a central terminal of an ignition switch (hereinafter referred to as IGN switch) 5. The IGN switch 5 has an OFF terminal, an ON / ACC terminal, and a START terminal in addition to the central terminal, and the central terminal and any of these OFF, ON / ACC, and START terminals can be switched in a rotary manner. Is possible.

START端子はエンジン始動用セルモータ(スタータ)9に接続されている。セルモータ9は、図示しないクラッチ機構を介してエンジン8の回転軸に回転駆動力の伝達が可能である。   The START terminal is connected to an engine starting cell motor (starter) 9. The cell motor 9 can transmit a rotational driving force to the rotating shaft of the engine 8 via a clutch mechanism (not shown).

また、ON/ACC端子は、エアコン、ラジオ、ランプ等の補機6及び一方向への電流の流れを許容し電圧を平滑化するレギュレータを介してエンジン8の回転により発電する発電機7の一端に接続されている。すなわち、レギュレータの一端側(アノード側)は発電機7の一端に、他端(カソード側)はON/ACC端子に接続されている。エンジン8の回転軸は、不図示のクラッチ機構を介して発電機7に動力の伝達が可能である。このため、エンジン8が回転状態にあるときは、不図示のクラッチ機構を介して発電機7が作動し発電機7からの電力が補機6や鉛電池2に供給(充電)される。なお、OFF端子はいずれにも接続されていない。発電機7、セルモータ9及び補機6の他端、鉛電池2の負極外部出力端子及びマイコンは、それぞれグランドに接続されている。   Further, the ON / ACC terminal is one end of a generator 7 that generates electricity by the rotation of the engine 8 through an auxiliary device 6 such as an air conditioner, a radio, a lamp, and a regulator that allows current flow in one direction and smoothes the voltage. It is connected to the. That is, one end side (anode side) of the regulator is connected to one end of the generator 7 and the other end (cathode side) is connected to the ON / ACC terminal. The rotating shaft of the engine 8 can transmit power to the generator 7 via a clutch mechanism (not shown). For this reason, when the engine 8 is in a rotating state, the generator 7 is operated via a clutch mechanism (not shown), and the electric power from the generator 7 is supplied (charged) to the auxiliary machine 6 and the lead battery 2. Note that the OFF terminal is not connected to any of them. The other end of the generator 7, the cell motor 9 and the auxiliary machine 6, the negative external output terminal of the lead battery 2, and the microcomputer are each connected to the ground.

鉛電池2の外部出力端子は電圧センサ3に接続されており、電圧センサ3の出力側は、マイコン10に内蔵され、電圧センサ3から入力されたアナログ電圧をデジタル電圧に変換するA/Dコンバータに接続されている。このため、マイコン10は、鉛電池2の電圧をデジタル値で取り込むことができる。なお、本実施形態では、A/Dコンバータにサンプリングレートが1msのものを用いた。   The external output terminal of the lead battery 2 is connected to the voltage sensor 3, and the output side of the voltage sensor 3 is built in the microcomputer 10, and is an A / D converter that converts the analog voltage input from the voltage sensor 3 into a digital voltage. It is connected to the. For this reason, the microcomputer 10 can take in the voltage of the lead battery 2 as a digital value. In this embodiment, an A / D converter having a sampling rate of 1 ms is used.

マイコン10は、中央演算処理装置として機能するCPU、電池状態判定装置1の基本制御プログラムや後述する特性マップ等のプログラムデータが格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM等を含んで構成されている。   The microcomputer 10 functions as a central processing unit, a ROM in which program data such as a basic control program of the battery state determination device 1 and a characteristic map described later is stored, a work area of the CPU, and temporarily stores data. It includes a RAM and the like.

ここで、ROMに格納された特性マップについて説明する。   Here, the characteristic map stored in the ROM will be described.

一般に、車両においては、鉛電池から電力を供給し、セルモータを回して、エンジンを始動する。エンジン始動の瞬間には大電流が流れるが、それに伴い、鉛電池の電圧は大きく降下する(図3参照)。本実施形態では、エンジン始動時の鉛電池の最低電圧(Vst)を鉛電池の特性の指標としている。Vstは鉛電池の出力を示すが、別の見方をすると鉛電池の内部抵抗の大きさと強く相関おり、鉛電池のSOHを表す指標として妥当なものである。Vstは鉛電池のSOCによって変化し、SOCが高いとVstは高くなる。また、Vstは鉛電池のSOHによっても変化し、SOHが高いとVstは高くなる。   Generally, in a vehicle, electric power is supplied from a lead battery, a cell motor is rotated, and an engine is started. Although a large current flows at the moment of starting the engine, the voltage of the lead battery greatly drops accordingly (see FIG. 3). In this embodiment, the minimum voltage (Vst) of the lead battery at the time of starting the engine is used as an indicator of the characteristics of the lead battery. Vst indicates the output of the lead battery. From another viewpoint, Vst strongly correlates with the magnitude of the internal resistance of the lead battery, and is appropriate as an index representing the SOH of the lead battery. Vst varies depending on the SOC of the lead battery, and Vst increases as the SOC increases. Vst also changes depending on the SOH of the lead battery. If the SOH is high, Vst increases.

図2に、SOHが100%の鉛電池(新品電池)と各SOHが低下した電池(劣化電池)におけるSOCとVstとの関係を示す。SOCの指標として、無負荷状態での電池電圧である開回路電圧(OCV)を用いた。以下、図2を特性マップと呼び、鉛電池のOCVとVstとの関係を電池特性と呼ぶことにする。この電池特性は特性曲線で表される。   FIG. 2 shows a relationship between SOC and Vst in a lead battery (new battery) having 100% SOH and a battery (deteriorated battery) in which each SOH is lowered. As an SOC index, an open circuit voltage (OCV), which is a battery voltage in a no-load state, was used. Hereinafter, FIG. 2 is referred to as a characteristic map, and the relationship between OCV and Vst of a lead battery is referred to as a battery characteristic. This battery characteristic is represented by a characteristic curve.

図2に示すように、横軸にOCV、縦軸にVstをとったときに、新品電池の電池特性の下側に、劣化電池の電池特性(特性曲線)が位置することが分かる。鉛電池を劣化させて各SOHで電池特性を測定すると、劣化が進行しSOHが低くなるにつれて、より下側に電池特性(特性曲線)は移動して行く。これにより、鉛電池のOCVとVstとをあわせて測定し、特性マップ上のどこに位置するかを見ることで、鉛電池の劣化状態を区分することができる。具体的には、以下に詳述するように、OCV、Vstの両方が高い第1領域、第1領域の左側に位置しOCVの低い第2領域、第1領域の下側に位置しOCVが高くVstの低い第3領域、の各領域を設定する。加えて、第1領域と第3領域の中間的な特性を示す第4領域、また、第2領域と第3領域の中間的な特性を示す第5領域を設定する。   As shown in FIG. 2, when OCV is taken on the horizontal axis and Vst is taken on the vertical axis, the battery characteristics (characteristic curve) of the deteriorated battery are located below the battery characteristics of the new battery. When the battery characteristics are measured with each SOH after the lead battery is deteriorated, the battery characteristics (characteristic curve) move downward as the deterioration progresses and the SOH decreases. Thereby, OCV and Vst of a lead battery are measured together, and the degradation state of a lead battery can be classified by seeing where it is located on a characteristic map. Specifically, as described in detail below, the first region where both OCV and Vst are high, the second region located on the left side of the first region and having a low OCV, and the OCV is located below the first region. Each region of the third region having a high Vst and a low Vst is set. In addition, a fourth region that shows intermediate characteristics between the first region and the third region, and a fifth region that shows intermediate properties between the second region and the third region are set.

第1領域では、OCV、Vstが共に高く、この領域での鉛電池は残存容量が充分にある。このような健全な鉛電池が放電してSOCが低下していった場合、Vstは高めの推移をして、第2領域に入る。第2領域ではSOCのみ低下しており、充電するだけで第1領域に戻るため鉛電池の交換は必要ない。第3領域に属する、劣化してSOHが低下して残存容量が少なくなった鉛電池の多くは、満充電状態でのOCVは新品の鉛電池に対してほとんど変わらない。しかし、同じOCVでもVstは低くなり、このような劣化した電池は少しのSOCの低下でVstが急激に降下し、エンジン始動能力が低下する。電池状態を区分する境界線としては、図2に示した新品電池、劣化電池の電池特性を示す数学的形状を用いて表すことができる。すなわち、第1及び第4領域の境界、第2及び第5領域の境界、第4及び第3領域の境界は、横軸にOCV、縦軸にVstをとったときに、正の傾きを持ち、かつ、対数曲線状の曲線である。このような形状の曲線を得るためには、境界として必要なだけSOHが低下した鉛電池の電池特性を測定してもよいが、電池状態判定を行おうとする車両において必要な負荷を計算してOCVとVstとの関係を算出して設定することも可能である。   In the first region, both OCV and Vst are high, and the lead battery in this region has a sufficient remaining capacity. When such a healthy lead battery is discharged and the SOC decreases, Vst goes higher and enters the second region. In the second area, only the SOC is lowered, and the lead battery is returned to the first area only by charging. Therefore, it is not necessary to replace the lead battery. In many of the lead batteries belonging to the third region, which are deteriorated and the remaining capacity is reduced due to a decrease in SOH, the OCV in a fully charged state is almost the same as that of a new lead battery. However, even if the OCV is the same, Vst is low, and in such a deteriorated battery, Vst drastically drops with a slight decrease in SOC, and the engine starting ability decreases. The boundary line that divides the battery state can be expressed by using a mathematical shape showing the battery characteristics of the new battery and the deteriorated battery shown in FIG. That is, the boundary between the first and fourth regions, the boundary between the second and fifth regions, and the boundary between the fourth and third regions have a positive slope when the horizontal axis is OCV and the vertical axis is Vst. And a logarithmic curve. In order to obtain a curve of such a shape, the battery characteristics of a lead battery with a reduced SOH as much as necessary may be measured, but the load required in the vehicle for which the battery state is to be determined is calculated. It is also possible to calculate and set the relationship between OCV and Vst.

鉛電池によって新品状態での図2に示した電池特性(特性曲線の形状)は一定となる。しかし、エンジン始動時の車両負荷の大きさの違いにより、図2におけるY軸方向に特性曲線がシフトする。同じ鉛電池、同じOCV(充電状態)でもエンジン負荷が大きい場合には、Vstが低下するため、特性曲線はY軸のマイナス方向へ移動することになる。この場合、第1〜第5領域の各領域が全て等しくY軸のマイナス方向へ移動するため、各領域の相互の位置関係は変化しない。このため、一つの鉛電池において新品の電池特性(特性曲線)を得ておき、車両の負荷の差を補正することにより、各種車両に対応することが可能となる。   The battery characteristics (shape of the characteristic curve) shown in FIG. However, the characteristic curve shifts in the Y-axis direction in FIG. 2 due to the difference in the vehicle load when the engine is started. When the engine load is large even with the same lead battery and the same OCV (charged state), Vst decreases, so the characteristic curve moves in the negative direction of the Y axis. In this case, all the areas of the first to fifth areas are equally moved in the negative direction of the Y-axis, so the mutual positional relationship between the areas does not change. For this reason, it is possible to deal with various vehicles by obtaining new battery characteristics (characteristic curves) in one lead battery and correcting the difference in vehicle load.

本実施形態では、図2に示した特性マップを作成するために、鉛電池としてJIS規格55B24サイズのもの、また適用する内燃機関として、排気量2000ccの電子制御燃料噴射装置付きのガソリンエンジン自動車を選んだ。この鉛電池をJIS
D 5301の軽負荷寿命試験により、鉛電池を加速して劣化させ、5時間容量でのSOHがそれぞれ50%、30%となった鉛電池を作成した。次に、SOHが50%、30%となった鉛電池の満充電状態でのOCVを測定し、自動車に取り付けた。続いてエンジン始動をしてエンジン始動時のVstを測定した。サンプリング速度1.0msの一般用デジタルレコーダで鉛電池の端子電圧を測定、記録しながら、エンジンの始動キーを操作し、エンジンを始動した。得られた時間/端子電圧曲線からVstを読み取った。その後、5時間率電流で所定電気量放電し、SOCを低下させた。以下、満充電状態の時と同じようにして、OCV、Vstを測定した。この操作を繰り返し、各鉛電池での電池特性(特性曲線)を得た。
In the present embodiment, in order to create the characteristic map shown in FIG. 2, a JIS standard 55B24 size lead battery is used, and a gasoline engine vehicle with an electronically controlled fuel injection device with a displacement of 2000 cc is used as an internal combustion engine to be applied. I chose. This lead battery is JIS
The lead battery was accelerated and deteriorated by a light load life test of D 5301, and a lead battery having SOH at 50% and 30% at a capacity of 5 hours was produced. Next, the OCV in a fully charged state of the lead battery having SOH of 50% and 30% was measured and attached to the automobile. Subsequently, the engine was started and Vst was measured when the engine was started. While measuring and recording the terminal voltage of the lead battery with a general digital recorder with a sampling rate of 1.0 ms, the engine start key was operated to start the engine. Vst was read from the obtained time / terminal voltage curve. Thereafter, a predetermined amount of electricity was discharged at a 5-hour rate current to lower the SOC. Thereafter, OCV and Vst were measured in the same manner as in the fully charged state. This operation was repeated to obtain battery characteristics (characteristic curves) for each lead battery.

また、本実施形態では、SOHが50%の鉛電池の電池特性を第1及び第2領域と第4及び第5領域との境界線に用い、SOHが30%の鉛電池の電池特性を、第3領域と第4及び第5領域との境界線に用いた。更に、第1領域と第2領域の境界、及び第4領域と第5領域の境界には新品状態でのSOC50%の直線を用いて特性マップを作成した。   In this embodiment, the battery characteristics of the lead battery with 50% SOH are used for the boundary line between the first and second regions and the fourth and fifth regions, and the battery characteristics of the lead battery with 30% SOH are It was used for the boundary line between the third region and the fourth and fifth regions. Furthermore, a characteristic map was created using a straight line of SOC 50% in the new state at the boundary between the first region and the second region and the boundary between the fourth region and the fifth region.

次に、作成した特性マップについて評価を行った。すなわち、新品の鉛電池1を自動車に取り付け、使用を開始した。通常の自家用使用で鉛電池を長期間使用した。使用期間を経て劣化が進行した鉛電池を車載した状態で、上記と同じ手順で電圧測定し、OCV、Vstを求めた。得られたOCV、Vstを特性マップに当てはめて、電池状態を判定した。電池状態を判定した後、5時間率放電試験により鉛電池の残存容量を測定し、SOCとSOHとを計算した。電池状態の判定結果と、SOCとSOHとの対応により、判定の妥当性を評価した。下表1に妥当性の評価結果を示す。特性マップにより、OCV及びVstを測定することで、鉛電池1の劣化状態を正しく判定できることが分かる。   Next, the created characteristic map was evaluated. That is, a new lead battery 1 was attached to an automobile and started to be used. The lead battery was used for a long time in normal private use. The voltage was measured by the same procedure as described above in a state where a lead battery that has deteriorated over a period of use was mounted on the vehicle, and OCV and Vst were obtained. The obtained OCV and Vst were applied to the characteristic map to determine the battery state. After determining the battery state, the remaining capacity of the lead battery was measured by a 5-hour rate discharge test, and SOC and SOH were calculated. The validity of the determination was evaluated based on the determination result of the battery state and the correspondence between SOC and SOH. Table 1 below shows the validity evaluation results. It can be seen from the characteristic map that the deterioration state of the lead battery 1 can be correctly determined by measuring OCV and Vst.

Figure 2007278853
Figure 2007278853

(動作)
次に、フローチャートを参照して、本実施形態の電池状態判定装置1の動作について、マイコン10のCPUを主体として説明する。マイコン10に電源が投入されると、CPUは、鉛電池2の電池状態を判定するための電池状態判定ルーチンを実行する。なお、ROMに格納されたプログラムや上述した特性マップは、マイコン10への電源投入後の図示しない初期設定処理によりRAMに展開される。
(Operation)
Next, with reference to a flowchart, the operation of the battery state determination device 1 of the present embodiment will be described with the CPU of the microcomputer 10 as a main component. When the microcomputer 10 is powered on, the CPU executes a battery state determination routine for determining the battery state of the lead battery 2. Note that the program stored in the ROM and the above-described characteristic map are developed in the RAM by an initial setting process (not shown) after the microcomputer 10 is powered on.

図4に示すように、電池状態判定ルーチンでは、ステップ112において、IGNスイッチ5の中央端子がSTART端子に接続された旨の報知を受けたか否かを判断することにより、エンジンが始動したか否かを判断する。中央端子がSTART端子に接続された旨の報知は、IGNスイッチ5から直接又は車両制御システム11を介して受けてもよい。   As shown in FIG. 4, in the battery state determination routine, in step 112, it is determined whether or not the engine has been started by determining whether or not a notification that the center terminal of the IGN switch 5 is connected to the START terminal has been received. Determine whether. The notification that the center terminal is connected to the START terminal may be received directly from the IGN switch 5 or via the vehicle control system 11.

ステップ112で否定判断のときは、次のステップ114において、エンジン停止後所定時間(例えば、6時間)経過したか否かを判断する。否定判断のときは、ステップ112へ戻り、肯定判断のときは、電圧センサ3及びA/Dコンバータを介して鉛電池2の開回路電圧(OCV)を取り込み、ステップ112へ戻る。エンジン停止後所定時間経過後にOCVを取り込むのは、鉛電池2による充放電分極による電圧測定の不正確さを排除するためである。なお、ステップ116での鉛電池2のOCV測定は所定時間毎に行えばよく、一旦OCVを測定した後は、更に所定時間(例えば、6時間)経過した後に行えばよい(図4ではこのステップを捨象している。)。   If a negative determination is made in step 112, it is determined in the next step 114 whether or not a predetermined time (for example, 6 hours) has elapsed since the engine stopped. When the determination is negative, the process returns to step 112. When the determination is affirmative, the open circuit voltage (OCV) of the lead battery 2 is taken in via the voltage sensor 3 and the A / D converter, and the process returns to step 112. The reason why the OCV is taken in after a lapse of a predetermined time after the engine is stopped is to eliminate inaccuracy of voltage measurement due to charge / discharge polarization by the lead battery 2. In addition, the OCV measurement of the lead battery 2 in step 116 may be performed every predetermined time, and once the OCV is measured, it may be performed after a predetermined time (for example, 6 hours) has passed (this step in FIG. 4). Is abandoned.)

一方、ステップ112で肯定判断のときは、ステップ118において、エンジン始動時の鉛電池2の最低電圧(Vst)を測定する。すなわち、マイコン10に内蔵されたA/Dコンバータのサンプリング速度1msecでエンジン始動時の鉛電池2の電圧データを取り込み(RAMに格納し)、取り込んだ電圧データのうちの最小値を抽出することで、エンジン始動時の鉛電池2の最低電圧Vstを測定する(図3も参照)。   On the other hand, when an affirmative determination is made in step 112, in step 118, the minimum voltage (Vst) of the lead battery 2 at the time of engine start is measured. In other words, the voltage data of the lead battery 2 at the time of engine start-up is taken in (stored in RAM) at the sampling rate of 1 msec of the A / D converter built in the microcomputer 10, and the minimum value of the taken-in voltage data is extracted. Then, the minimum voltage Vst of the lead battery 2 at the time of starting the engine is measured (see also FIG. 3).

次のステップ120では領域判定処理を実行する。すなわち、ステップ116で取り込んだ直近(最新)のOCVと、ステップ118で測定したVstとを、図2に示した特性マップに当てはめ、鉛電池2の劣化状態が特性マップの5つの領域うちいずれに属するかを判断する。次にステップ122において、鉛電池2の劣化状態が特性マップの第3領域に属するか否かを判定する。否定判断のときはステップ112に戻り、肯定判断のときは次のステップ124において、鉛電池2が劣化した旨を車両制御システム11に報知してステップ112に戻る。   In the next step 120, an area determination process is executed. That is, the latest (latest) OCV captured in step 116 and the Vst measured in step 118 are applied to the characteristic map shown in FIG. 2, and the deterioration state of the lead battery 2 is in any of the five areas of the characteristic map. Determine if it belongs. Next, in step 122, it is determined whether or not the deterioration state of the lead battery 2 belongs to the third region of the characteristic map. If a negative determination is made, the process returns to step 112. If an affirmative determination is made, in the next step 124, the vehicle control system 11 is notified that the lead battery 2 has deteriorated, and the process returns to step 112.

鉛電池2が劣化した旨の報知を受けた車両制御システム11は、停車後エンジン再始動(ISS)ができなくなるおそれがあるため、インストールメントパネルに鉛電池2が劣化した旨を表示してドライバに鉛電池2の交換を促す。ドライバはインストールメントパネルを参照することで鉛電池2が劣化したことを知ることができ、サービスステーションで鉛電池2を同一仕様の鉛電池に交換することで、ISSの確保が可能となる。   The vehicle control system 11 that has received the notification that the lead battery 2 has deteriorated may not be able to restart the engine (ISS) after the vehicle stops, so the driver panel displays that the lead battery 2 has deteriorated on the installation panel. Prompts replacement of the lead battery 2. The driver can know that the lead battery 2 has deteriorated by referring to the installation panel, and the ISS can be secured by replacing the lead battery 2 with a lead battery of the same specification at the service station.

(作用・効果等)
次に、本実施形態の電池状態判定装置1の作用・効果等について説明する。
(Action / Effect)
Next, functions and effects of the battery state determination device 1 of the present embodiment will be described.

本実施形態の電池状態判定装置1は、図2に示したように、マイコン10のROMに、5つの領域に分割され、鉛電池2のOCVと鉛電池2のエンジン始動時のVstとの関係を定めた特性マップを記憶している。この特性マップは、上述したように、鉛電池2の各SOHでの実使用状態に基づいて作成されたものである。この特性マップに、取り込んだOCV(ステップ116)と、測定したVst(ステップ118)とを当てはめることにより、エンジン始動により劣化が進行する鉛電池2がどの領域に属するかを精度よく、かつ、リアルタイムで判断することができる(ステップ120、表1参照)。   As shown in FIG. 2, the battery state determination device 1 of the present embodiment is divided into five regions in the ROM of the microcomputer 10, and the relationship between the OCV of the lead battery 2 and the Vst at the time of engine start of the lead battery 2. Is stored in the characteristic map. As described above, this characteristic map is created based on the actual use state of each lead battery 2 in each SOH. By applying the captured OCV (step 116) and the measured Vst (step 118) to this characteristic map, it is possible to accurately and in real time which region the lead battery 2 that deteriorates due to engine start belongs. (Step 120, see Table 1).

なお、本実施形態では、第3領域に属すると判断したときに鉛電池2の交換が必要である旨を車両制御システム11に報知する例を示したが、第3領域又は第5領域に属すると判断したときに、車両制御システム11に鉛電池2が劣化した旨を報知するようにしてもよい。また、本実施形態では、OCV及びVstのそれぞれ1回の測定で5つの領域のうちいずれに属するかを判断する例を示したが、電池状態判定装置1が例えばエンジンルームに収容されるような場合にはノイズ等による電圧測定誤差も生じる可能性があることから、鉛電池2の劣化判定精度をより高めるために、複数回の判断を行って劣化判定を行うようにしてもよい。更に、本実施形態では、特性マップを模式的に説明したが、上述した5つの領域を、数式等を用いて表すことができることは論を待たない。   In the present embodiment, an example in which the vehicle control system 11 is informed that the lead battery 2 needs to be replaced when it is determined that it belongs to the third region has been shown, but it belongs to the third region or the fifth region. When it is determined, the vehicle control system 11 may be notified that the lead battery 2 has deteriorated. In the present embodiment, an example is shown in which one of the five regions is determined by one measurement of each of OCV and Vst. However, the battery state determination device 1 is accommodated in, for example, an engine room. In some cases, a voltage measurement error due to noise or the like may occur. Therefore, in order to further improve the deterioration determination accuracy of the lead battery 2, the deterioration determination may be performed by making a plurality of determinations. Furthermore, in the present embodiment, the characteristic map is schematically described. However, it is not a matter of course that the above-described five regions can be expressed using mathematical formulas or the like.

本発明は鉛電池のSOHと開回路電圧及び最低電圧との関係を定めた特性マップを用いて鉛電池の劣化状態を正確に判定可能な電池状態判定装置を提供するものであるため、電池状態判定装置の製造・販売に寄与するので、産業上の利用可能性を有する。   The present invention provides a battery state determination device that can accurately determine the deterioration state of a lead battery using a characteristic map that defines the relationship between the SOH of the lead battery and the open circuit voltage and the minimum voltage. Since it contributes to the manufacture and sale of judgment devices, it has industrial applicability.

本発明が適用可能な実施形態の電池状態判定装置及び車両のブロック配線図である。1 is a block wiring diagram of a battery state determination device and a vehicle according to an embodiment to which the present invention is applicable. 実施形態の電池状態判定装置のマイコンにROMに格納された特性マップの概念を示す説明図である。It is explanatory drawing which shows the concept of the characteristic map stored in ROM in the microcomputer of the battery state determination apparatus of embodiment. エンジン始動時の鉛電池の最低電圧の説明図である。It is explanatory drawing of the minimum voltage of the lead battery at the time of engine starting. 電池状態判定装置のマイコンのCPUが実行する電池状態判定ルーチンのフローチャートである。It is a flowchart of the battery state determination routine which CPU of the microcomputer of a battery state determination apparatus performs.

符号の説明Explanation of symbols

1 電池状態判定装置
2 鉛電池
3 電圧センサ(開回路電圧測定手段の一部、最低電圧測定手段の一部)
10 マイコン(開回路電圧測定手段の一部、最低電圧測定手段の一部、記憶手段、劣化状態判定手段)
DESCRIPTION OF SYMBOLS 1 Battery state determination apparatus 2 Lead battery 3 Voltage sensor (a part of open circuit voltage measurement means, a part of minimum voltage measurement means)
10 Microcomputer (part of open circuit voltage measurement means, part of minimum voltage measurement means, storage means, deterioration state determination means)

Claims (4)

車両に搭載された鉛電池の劣化状態を判定する電池状態判定装置において、
前記鉛電池の開回路電圧(OCV)を測定する開回路電圧測定手段と、
前記鉛電池のエンジン始動時の最低電圧(Vst)を測定する最低電圧測定手段と、
前記鉛電池のOCVとVstとの関係を定めた特性マップであって前記鉛電池の劣化状態を表す複数の領域に分割された特性マップを予め記憶した記憶手段と、
前記開路電圧測定手段で測定されたOCV及び前記最低電圧測定手段で測定されたVstが前記記憶手段に記憶された特性マップの複数の領域のいずれに属するかを判断することで、前記鉛電池の劣化状態を判定する劣化状態判定手段と、
を備え、前記記憶手段に記憶された特性マップは、OCVを横軸、Vstを縦軸にとったときに、
OCVとVstとが共に高い第1領域、前記第1領域の左側に位置しOCVの低い第2領域、前記第1領域の下側に位置しOCVが高くVstの低い第3領域、前記第1及び第3領域の間の第4領域、及び、前記第2及び第3領域の間の第5領域の5つの領域に分割されており、
前記第1及び第4領域の境界、前記第2及び第5領域の境界、前記第4及び第3領域の境界、並びに、前記第5及び第3領域の境界は、正の傾きを持ち、かつ、対数曲線状の曲線であることを特徴とする、
電池状態判定装置。
In a battery state determination device for determining a deterioration state of a lead battery mounted on a vehicle,
Open circuit voltage measuring means for measuring an open circuit voltage (OCV) of the lead battery;
Minimum voltage measuring means for measuring the minimum voltage (Vst) at the time of engine start of the lead battery;
Storage means for preliminarily storing a characteristic map that is a characteristic map that defines a relationship between OCV and Vst of the lead battery and that is divided into a plurality of regions that indicate a deterioration state of the lead battery;
By determining which of the plurality of regions of the characteristic map stored in the storage means the OCV measured by the open circuit voltage measurement means and the Vst measured by the minimum voltage measurement means belong to the lead battery. A deterioration state determining means for determining a deterioration state;
The characteristic map stored in the storage means has OCV as the horizontal axis and Vst as the vertical axis.
A first region where both OCV and Vst are high, a second region located on the left side of the first region and having a low OCV, a third region located under the first region and having a high OCV and a low Vst, the first region And a fourth region between the third region and a fifth region between the second region and the third region.
A boundary between the first and fourth regions, a boundary between the second and fifth regions, a boundary between the fourth and third regions, and a boundary between the fifth and third regions have a positive slope; and , Characterized by a logarithmic curve,
Battery state determination device.
前記記憶手段に記憶された特性マップの前記第1及び第2領域の境界、並びに、前記第4及び第5領域の境界は、直線であることを特徴とする請求項1に記載の電池状態判定装置。   2. The battery state determination according to claim 1, wherein a boundary between the first and second regions and a boundary between the fourth and fifth regions of the characteristic map stored in the storage unit are straight lines. apparatus. 前記劣化状態判定手段は、前記開路電圧測定手段で測定されたOCV及び前記最低電圧測定手段で測定されたVstが前記特性マップの第4乃至第5の領域に属すると判断したときに前記鉛電池が劣化したと判定し、前記第3領域に属すると判断したときに前記鉛電池の交換が必要であると判定することを特徴とする請求項1に記載の電池状態判定装置。   When the deterioration state determination means determines that the OCV measured by the open circuit voltage measurement means and the Vst measured by the minimum voltage measurement means belong to the fourth to fifth regions of the characteristic map, the lead battery 2. The battery state determination device according to claim 1, wherein it is determined that the lead battery needs to be replaced when it is determined that the lead battery belongs to the third region. 前記開回路電圧測定手段は、エンジン停止後所定時間経過後に、前記鉛電池のOCVを測定することを特徴とする請求項1に記載の電池状態判定装置。   The battery state determination device according to claim 1, wherein the open circuit voltage measurement unit measures an OCV of the lead battery after a predetermined time has elapsed after the engine is stopped.
JP2006105803A 2006-03-10 2006-04-07 Battery status determination device Active JP4626559B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006105803A JP4626559B2 (en) 2006-04-07 2006-04-07 Battery status determination device
EP07738043.4A EP1995123B1 (en) 2006-03-10 2007-03-08 Battery state judging device
PCT/JP2007/054553 WO2007105595A1 (en) 2006-03-10 2007-03-08 Battery state judging device
US12/282,347 US8036839B2 (en) 2006-03-10 2007-03-08 Battery state determining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105803A JP4626559B2 (en) 2006-04-07 2006-04-07 Battery status determination device

Publications (2)

Publication Number Publication Date
JP2007278853A true JP2007278853A (en) 2007-10-25
JP4626559B2 JP4626559B2 (en) 2011-02-09

Family

ID=38680443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105803A Active JP4626559B2 (en) 2006-03-10 2006-04-07 Battery status determination device

Country Status (1)

Country Link
JP (1) JP4626559B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064538A (en) * 2008-09-09 2010-03-25 Shin Kobe Electric Mach Co Ltd Method and device for determining degraded state of lead-acid storage battery
JP2013220011A (en) * 2012-04-11 2013-10-24 Yamaha Motor Co Ltd Method and apparatus for alarming low voltage of vehicle secondary battery, and vehicle including the same
WO2014129025A1 (en) * 2013-02-19 2014-08-28 古河電気工業株式会社 Secondary battery deterioration determination method and secondary battery deterioration determination device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025982A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Method of estimating remaining capacity of battery
JP2004042799A (en) * 2002-07-12 2004-02-12 Shin Kobe Electric Mach Co Ltd Battery residual capacity estimating method
JP2005146939A (en) * 2003-11-13 2005-06-09 Matsushita Electric Ind Co Ltd Engine startability predicting device and starting secondary battery with it
JP2006015896A (en) * 2004-07-02 2006-01-19 Shin Kobe Electric Mach Co Ltd Method for estimating degree of deterioration and device for estimating degree of deterioration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025982A (en) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd Method of estimating remaining capacity of battery
JP2004042799A (en) * 2002-07-12 2004-02-12 Shin Kobe Electric Mach Co Ltd Battery residual capacity estimating method
JP2005146939A (en) * 2003-11-13 2005-06-09 Matsushita Electric Ind Co Ltd Engine startability predicting device and starting secondary battery with it
JP2006015896A (en) * 2004-07-02 2006-01-19 Shin Kobe Electric Mach Co Ltd Method for estimating degree of deterioration and device for estimating degree of deterioration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064538A (en) * 2008-09-09 2010-03-25 Shin Kobe Electric Mach Co Ltd Method and device for determining degraded state of lead-acid storage battery
JP2013220011A (en) * 2012-04-11 2013-10-24 Yamaha Motor Co Ltd Method and apparatus for alarming low voltage of vehicle secondary battery, and vehicle including the same
WO2014129025A1 (en) * 2013-02-19 2014-08-28 古河電気工業株式会社 Secondary battery deterioration determination method and secondary battery deterioration determination device
JPWO2014129025A1 (en) * 2013-02-19 2017-02-02 古河電気工業株式会社 Secondary battery deterioration determination method and secondary battery deterioration determination device
US10386420B2 (en) 2013-02-19 2019-08-20 Furukawa Electric Co., Ltd. Secondary battery degradation determination method and secondary battery degradation determination device

Also Published As

Publication number Publication date
JP4626559B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP5061907B2 (en) Battery state determination method and battery state determination device
WO2007105595A1 (en) Battery state judging device
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP5338807B2 (en) Battery state determination method and automobile
JP4288958B2 (en) Degradation estimation method
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP4670778B2 (en) Battery status notification method
WO2010150665A1 (en) Battery charge amount increase facility information provision device and method
CN102463903A (en) Method and apparatus for monitoring a vehicular propulsion system battery
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
JP5162971B2 (en) Battery state detection system and automobile
JP2017219404A (en) Vehicle and battery state detection system thereof
JP2009241646A (en) Battery state determination system, and automobile having the system
CN107210498A (en) Battery types decision maker and battery types decision method
JP6604478B2 (en) Vehicle and its battery state detection system
JP4626559B2 (en) Battery status determination device
JP4702115B2 (en) Battery status judgment device
JP2008074257A (en) Battery deterioration determination device
JP4548011B2 (en) Deterioration degree judging device
WO2022221598A9 (en) Intelligent lead-acid battery system and method of operating the same
JP2010139423A (en) Diagnostic device for deteriorated state of secondary cell
JP6607353B2 (en) Vehicle and its battery state detection system
JP2005274214A (en) Residual capacity detection device of vehicle battery
JP4626558B2 (en) Battery status determination device
JP2008291660A (en) Vehicle condition determination device and automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4626559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250