JP2004025982A - Method of estimating remaining capacity of battery - Google Patents

Method of estimating remaining capacity of battery Download PDF

Info

Publication number
JP2004025982A
JP2004025982A JP2002183973A JP2002183973A JP2004025982A JP 2004025982 A JP2004025982 A JP 2004025982A JP 2002183973 A JP2002183973 A JP 2002183973A JP 2002183973 A JP2002183973 A JP 2002183973A JP 2004025982 A JP2004025982 A JP 2004025982A
Authority
JP
Japan
Prior art keywords
battery
remaining capacity
calculated
internal resistance
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002183973A
Other languages
Japanese (ja)
Inventor
Tetsuo Ogoshi
大越 哲郎
Keizo Yamada
山田 惠造
Kenichi Maeda
前田 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002183973A priority Critical patent/JP2004025982A/en
Publication of JP2004025982A publication Critical patent/JP2004025982A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of estimating the remaining capacity of a battery, for estimating the remaining capacity of the battery with high accuracy. <P>SOLUTION: Opening circuit voltage OCV of a lead acid battery before starting an engine at k-time (k≥1) is measured and the remaining capacity Q of the lead acid battery is calculated from a relationship between the remaining capacity Q of the lead acid battery and the opening circuit voltage OCV thereof (S202). A remaining capacity Q<SB>i</SB>of the lead acid battery and an internal resistance value r<SB>i</SB>are calculated each time stating the engine (S204). A correlation is found which is established between a pair of (i-k+1) pieces of data (Q<SB>i</SB>, r<SB>i</SB>). The remaining capacity Q of the lead acid battery corresponding to the internal resistance value r<SB>i</SB>for the lead acid battery calculated at i-time from a correlation to which the history of the lead acid battery is reflected (S208). An error in the remaining capacity of the lead acid battery is corrected from the correlation to which the history of the lead acid battery is reflected. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、バッテリ残容量推定方法に係り、特に、アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量を推定するバッテリ残容量推定方法に関する。
【0002】
【従来の技術】
従来、車両に搭載されたバッテリ(鉛電池)は、走行中、常にオルタネータによりフロート充電され、また負荷もランプ類などに限られていたため、深い放電はされず、ほぼ常時満充電状態付近に保持されていた。しかし、近年環境意識の高まりから、車両からの二酸化炭素の排出を低減する必要が生じ、特に大型バス、トラックなどの車両側では信号待ちなどの停止時にエンジンを停止するアイドルストップ機能を有したシステム車が増加している。
【0003】
アイドルストップ機能を有したシステム車では、エンジン停止中のエアコン、カーステレオなどの負荷は、すべてバッテリからの電力で賄われる。このため、従来に比べバッテリの深い放電が増加し、バッテリの残容量が小さくなるケースの増加が予想される。バッテリの出力はバッテリの残容量に依存するため、エンジン停止中にバッテリの残容量が小さくなると、エンジンを始動する充分な出力が得られなくなり、エンジン停止後再始動(ISS)することができなくなるおそれがある。従って、ISS可能な状態を保つために、バッテリの残容量を推定してエンジン始動に必要な出力の有無を監視し、エンジン始動に必要な出力がある場合には、アイドルストップ可能、エンジン始動に必要な出力がない場合には、アイドルストップを止め、バッテリを充電するなどの信号を車両側のコンピュータに送信する必要がある。
【0004】
バッテリの残容量を推定する方法として、電池の初期の充電状態(SOC)に対して、充放電電流の積分値を加えていく方法が知られている。また、例えば、特開平第6−59003号及び特開平第9−96665号公報に開示されているように、電気自動車などに搭載されたバッテリの電流、電圧波形から測定される電流−電圧特性と、予め電池特性を測定することによって作成されたバッテリの残容量及び電流−電圧特性テーブルの関係とを比較することでバッテリの残容量を推定する方法が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記方法では、充放電電流の積分誤差が蓄積されると共に、電池の未使用状態での自己放電による電池の残容量の初期値の変化等もあり、電池の残容量を推定することが困難である。また、電流−電圧特性を用いる方法においても、予め使用する電池に関して、残容量−電流−電圧特性テーブルのマップデータ等の相関関係を作成しておく必要があるため特定の機種に限定されるので、汎用性が乏しく、電池の履歴が反映されないため、正確に電池の残容量を推定することが困難である。
【0006】
本発明は上記事案に鑑み、高精度にバッテリの残容量を推定可能なバッテリ残容量推定方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の態様は、アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量を推定するバッテリ残容量推定方法であって、k回目(k≧1)のエンジン始動時前の前記バッテリの開路電圧を測定して予め定められたバッテリの残容量と開路電圧との関係から前記バッテリの残容量を算出し、前記k回目のエンジン始動時の電流変化及び電圧変化から前記バッテリの内部抵抗を算出し、i(i≧k+1)回目のエンジン始動時には、(i−1)回目からi回目のエンジン始動時の間に前記バッテリに流れる充放電電気量を積算して前記バッテリの残容量を算出し、前記i回目のエンジン始動時の電流変化及び電圧変化から前記バッテリの内部抵抗を算出し、前記算出した(i−k+1)個のバッテリの残容量及び内部抵抗の対に成立する相関関係を求め、該求めた相関関係における前記i回目に算出したバッテリの内部抵抗に対応する前記バッテリの残容量を算出する、ステップを含む。
【0008】
第1の態様では、k回目(k≧1)のエンジン始動時前のバッテリの開路電圧を測定して予め定められたバッテリの残容量と開路電圧との関係からバッテリの残容量が算出され、k回目のエンジン始動時の電流変化及び電圧変化からバッテリの内部抵抗が算出され、i(i≧k+1)回目のエンジン始動時には、(i−1)回目からi回目のエンジン始動時の間にバッテリに流れる充放電電気量を積算してバッテリの残容量が算出され、i回目のエンジン始動時の電流変化及び電圧変化からバッテリの内部抵抗が算出され、算出された(i−k+1)個のバッテリの残容量及び内部抵抗の対に成立する相関関係が求められ、該求めた相関関係におけるi回目に算出されたバッテリの内部抵抗に対応するバッテリの残容量が算出される。本態様によれば、エンジン始動時毎に(i−k+1)個のバッテリの残容量及び内部抵抗の対に成立する相関関係を求め、バッテリの履歴が反映された相関関係からi回目に算出したバッテリの内部抵抗に対応するバッテリの残容量を算出するので、バッテリの残容量の誤差が補正され高精度にバッテリの残容量を算出することができる。
【0009】
第1の態様において、内部抵抗は、エンジン始動前のバッテリの電圧とエンジン始動電流通電開始後所定時間経過時のバッテリの電圧との電圧差を、エンジン始動前のバッテリの電流とエンジン始動電流通電開始後所定時間経過時のバッテリの電流との電流差で除して得ることが好ましい。また、所定時間がエンジン始動電流通電開始時から50msを超えると、バッテリに流れる電流及び電圧の誤差が大きくなるので、所定時間をエンジン始動電流通電開始時から50ms以内とすることが更に好ましい。
【0010】
本発明の第2の態様は、アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量を推定するバッテリ残容量推定方法であって、i回目(i≧1)のエンジン始動時の前記バッテリに流れる電流及び電圧を微小時間間隔で複数回サンプリングし、前記バッテリの電流及び電圧間に成立する回帰線の傾き及び切片を内部抵抗及び開路電圧として算出し予め定められたバッテリの残容量と開路電圧との関係から前記算出した開路電圧に対応するバッテリの残容量を算出し、前記算出したi個のバッテリの残容量及び内部抵抗の対に成立する相関関係を求め、該求めた相関関係における前記i回目に傾きとして算出したバッテリの内部抵抗に対応する前記バッテリの残容量を算出する、ステップを含む。
【0011】
第2の態様では、i回目(i≧1)のエンジン始動時のバッテリに流れる電流及び電圧が微小時間間隔で複数回サンプリングされ、バッテリの電流及び電圧間に成立する回帰線の傾き及び切片が内部抵抗及び開路電圧として算出され予め定められたバッテリの残容量と開路電圧との関係から算出された開路電圧に対応するバッテリの残容量が算出され、算出されたi個のバッテリの残容量及び内部抵抗の対に成立する相関関係が求められ、該求めた相関関係におけるi回目に傾きとして算出されたバッテリの内部抵抗に対応するバッテリの残容量が算出される。本態様によれば、エンジン始動時毎にi個のバッテリの残容量及び内部抵抗の対に成立する相関関係を求め、バッテリの履歴が反映された相関関係からi回目に傾きとして算出したバッテリの内部抵抗に対応するバッテリの残容量を算出するので、バッテリの残容量の誤差が補正され高精度にバッテリの残容量を算出することができる。
【0012】
第1及び第2の態様において、バッテリの温度を測定し予め定められたバッテリの温度と内部抵抗補正値との関係から、算出したバッテリの内部抵抗を所定温度における内部抵抗に補正すれば、バッテリの内部抵抗の温度依存性を排除できるので、より高精度にバッテリの残容量を算出することができる。また、予め定められたバッテリの温度と開路電圧との関係から、測定したバッテリの開路電圧を所定温度における開路電圧に補正すれば、バッテリの開路電圧の温度依存性を排除できるので、一層高精度にバッテリの残容量を算出することができる。また、エンジン始動用スタータの特性から決定されるバッテリの最低電圧値と要求電流値とからエンジン始動を許容するバッテリの最大内部抵抗を算出し、求めた相関関係における最大内部抵抗に対応するバッテリの最小残容量を求め、算出したバッテリの残容量が最小残容量よりも小さいときにエンジン始動が不能と判定するステップを更に含むようにすれば、エンジン始動が不能かを高精度に判定をすることができる。
【0013】
【発明の実施の形態】
(第1実施形態)
以下、図面を参照して、本発明を鉛電池の残容量を推定するバッテリ残容量推定装置に適用した第1の実施の形態について説明する。
【0014】
<構成>
図1に示すように、本実施形態のバッテリ残容量推定装置11は、鉛電池1に流れる電流を測定する電流センサ7、鉛電池1の電圧をデジタル値に変換するA/Dコンバータ6、鉛電池1の温度を測定するサーミスタ等の温度センサ12及び鉛電池1の残容量を演算するマイクロコンピュータ(以下、マイコンという。)8を備えている。
【0015】
鉛電池1は、鉛電池の容器となる角形の電槽を有している。電槽の材質には、成形性、電気的絶縁性、耐腐食性及び耐久性等の点で優れる、例えば、アクリルブタジエンスチレン(ABS)、ポリプロピレン(PP)、ポリエチレン(PE)等の高分子樹脂を選択することができる。電槽の中央部の隔壁にはセンサ挿入孔が形成されている。センサ挿入孔には温度センサ12が挿入されており、温度センサ12は接着剤でセンサ挿入孔内に固定されている。また、電槽は、例えば、外周壁の内部を縦横に仕切る隔壁によって2行9列の合計18個のセル室が画定され一体成形されたモノブロック電槽として構成することができる。電槽内の各セル室には極板群(セル)がそれぞれ1組ずつ収容されており、電槽には合計18組の極板群が収容されている。各極板群は、未化成負極板6枚及び未化成正極板5枚がガラス繊維からなるリテーナ(セパレータ)を介して積層されており、化成(初充電)後の公称電圧(セル電圧)は2.0Vとされている。従って、鉛電池の群電圧は36Vである。電槽の上部は、電槽の上部開口部を密閉するABS、PP、PE等の高分子樹脂製の上蓋に接着(又は溶着)されている。上蓋には、鉛電池を電源として外部へ電力を供給するためのロッド状正極外部出力端子及び負極外部出力端子が対角隅部に立設されている。
【0016】
上述した鉛電池1の正極外部出力端子は、ホール素子等の電流センサ7を介してイグニッションスイッチ(以下、IGNスイッチという。)の中央端子に接続されている。IGNスイッチ9は中央端子とは別にOFF端子、ON/ACC端子及びSTART端子を有しており、中央端子とこれらOFF、ON/ACC及びSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。
【0017】
電流センサ7は、ホール素子に流れる電流に応じて変化するホール電圧により電流を検出することが可能である。エンジン4始動用スタータ3は、図示しないクラッチ機構を介してエンジン4の回転軸に回転駆動力の伝達が可能である。
【0018】
また、ON/ACC端子は、エアコン、ラジオ、ランプ等の補機5及び一方向への電流の流れを許容するダイオードを介してエンジン4の回転により発電する発電機2の一端に接続されている。すなわち、ダイオードのアノードは発電機2の一端に、カソードはON/ACC端子に接続されている。エンジン4の回転軸は、不図示のクラッチ機構を介して発電機2に動力の伝達が可能である。このため、エンジン4が回転状態にあるときは、不図示のクラッチ機構を介して発電機2が作動し発電機2からの電力が補機5又は鉛電池1に供給(充電)される。なお、OFF端子はいずれにも接続されていない。
【0019】
電流センサ7の出力端子は、後述するマイコン8に内蔵されたA/Dコンバータに接続されている。このため、電流センサ7から出力されたホール電圧はA/Dコンバータでデジタル値に変換され、マイコン8は鉛電池1に流れる電流値Iを取り込むことができる。また、鉛電池1の外部出力端子は、A/Dコンバータ6に接続されており、A/Dコンバータ6の出力側はマイコン8に接続されている。このため、マイコン8は、鉛電池1の電圧値をデジタル値で取り込むことができる。更に、温度センサ12の出力端子は、マイコン8に内蔵されたA/Dコンバータに接続されている。このため、マイコン8は、鉛電池1の温度Tをデジタル値で取り込むことができる。なお、マイコン8は、I/Oを介して上位の車両側マイコン10と通信可能である。
【0020】
マイコン8は、中央演算処理装置として機能するCPU、バッテリ残容量推定装置11の基本制御プログラム及び種々の設定値等が格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM等を含んで構成されている。また、発電機2、スタータ3及び補機5の他端、鉛電池1の負極外部出力端子及びマイコンは、それぞれグランドに接続されている。
【0021】
<動作>
次に、フローチャートを参照して、マイコン8のCPUを主体としてバッテリ残容量推定装置11の動作について説明する。なお、マイコン8に電源が投入されると、初期設定状態においてROMに格納された種々の設定値がRAMに移行され、以下の残容量推定ルーチンが実行される。
【0022】
図2に示すように、残容量推定ルーチンでは、まず、ステップ202において、k回目(k≧1)のエンジン始動時の鉛電池1の内部抵抗値r及び残容量Qを取得するための基準データ取得処理サブルーチンが実行される。
【0023】
図3に示すように、基準データ取得処理サブルーチンでは、ステップ302において、電流センサ7に流れる電流値が所定値(例えば、0.05A〜0.1A)か否かを判定することにより、IGNスイッチ9がON位置に位置したか否かを判断し、肯定判断されるまで待機する。肯定判断のときは、ステップ304において、鉛電池1の開回路電圧OCV及び温度Tを取り込む。
【0024】
次のステップ306では、RAMに展開されている鉛電池1の温度T(°C)と開回路電圧補正値(OCV(T)−OCV(T25))(V)とのデータにより、鉛電池1の温度が温度Tのときの開回路電圧OCVを室温25゜Cのときの開回路電圧OCV(T25)に温度補正する。例えば、図8に示すように、鉛電池1の温度Tが10°Cのときの開回路電圧補正値は、0°Cの開回路電圧補正値0.05と25°Cの開回路電圧補正値0とから比例計算により、15×0.05/25=0.03(V)として算出される。温度補正後の開回路電圧OCV(T25)は、ステップ304で取り込んだ開回路電圧OCVに開回路電圧補正値(OCV(T)−OCV(T25))を加えたものである。
【0025】
次いでステップ308では、RAMに展開されている鉛電池1の残容量Qと開回路電圧OCVとの相関関係から(図9参照)、開回路電圧OCVに対応する鉛電池1の残容量Qを演算し、ステップ310において、鉛電池1に流れる電流値及び電圧値を取り込む。なお、鉛電池1からは車両側マイコン10(CPU)を作動させるため、微小電流(<<0.05A)が流れている。
【0026】
次にステップ312において、IGNスイッチ9がSTART位置に位置したか否かを、電流センサ7に流れる電流値が所定値(例えば、0.1A)を超えるか否かを判断することで判定し、否定判定のときはステップ304に戻り、肯定判定のときは、エンジン始動回数をカウントするカウンタを1インクリメントし(k=k+1)(図7も参照)、次のステップ314で、後述する次のエンジン始動時の鉛電池1の残容量Q(i=k+1)を補正するために、車両走行中、発電機(オルタネータ)2により鉛電池1に充電される充電電気量や、アイドルストップ中、鉛電池1が補機5に供給する放電電気量などの充放電電気量の積算を開始する。次いでステップ316において、所定時間(例えば、50ms)が経過するまで待機する。
【0027】
図6に示すように、エンジン始動時の鉛電池1の電流波形は、IGNスイッチ9がSTART位置に位置したエンジン始動電流通電開始時(時刻t)の後、1段目のスタータ3への急激な放電が行われ、約50ms経過時(時刻t)に最初のピークが現われる。その後、減衰する数回のピークを経てエンジン始動が完了する。電流波形は、エンジン4の構造、エンジン4とスタータ3とを繋ぐベルトの摩擦などに影響されるが、概ね図6に示すような波形となる。
【0028】
次のステップ318では、エンジン始動電流通電開始後所定時間経過時の電流値及び電圧値を取り込み、ステップ320で、ステップ310で取り込んだエンジン始動前の鉛電池1の電圧値とステップ318で取り込んだエンジン始動時の電圧値との電圧差ΔVを、ステップ310で取り込んだエンジン始動前の電流値とステップ318で取り込んだエンジン始動時の電流値との電流差ΔIで除した内部抵抗値r(電圧差ΔV/電流差ΔI)の絶対値を演算する。
【0029】
続いてステップ322では、ステップ306での温度補正と同様に、鉛電池1の温度が温度T°Cのときの内部抵抗値rを25゜Cのときの内部抵抗値r(T25)に温度補正する(図10参照)。これにより、k回目のエンジン始動時の電流変化及び電圧変化から鉛電池1の内部抵抗値rが算出される。
【0030】
次にステップ324では、ステップ308で演算した鉛電池1の残容量Qと、ステップ322で演算した内部抵抗値rとをRAMに格納して基準データ取得処理サブルーチンを終了し、図2のステップ204に進む。これにより、鉛電池1の残容量Q及び内部抵抗値rの1組のデータ(Q、r)が得られる。
【0031】
ステップ204では、i回目(i≧k+1)のエンジン始動時の鉛電池1の内部抵抗値r及び残容量Qを取得するためのデータ取得処理サブルーチンが実行される。
【0032】
図4に示すように、データ取得処理サブルーチンでは、ステップ402において、ステップ302と同様にIGNスイッチ9がON位置に位置したか否かを判断して肯定判断されるまで待機する。肯定判断のときは、次のステップ404で、鉛電池1の電流値及び電圧値を取り込む。次にステップ406において、ステップ312と同様にIGNスイッチ9がSTART位置に位置したか否かを判断し、否定判断のときはステップ404に戻り、肯定判断のときは、カウンタを1インクメントし、次のステップ408で、前回のエンジン始動時から積算した充放電電気量(ΔQ)を鉛電池1の残容量Qに加算して残容量Qを演算する(残容量Qi=k+1=残容量Q+ΔQ)(図7参照)。これにより、k(k=i−1)回目からi回目のエンジン始動時の間に鉛電池1に流れた充放電電気量分が補正された鉛電池1の現在の残容量Qが算出される。
【0033】
次にステップ410からステップ418では、図3に示したステップ316からステップ324と同様に、鉛電池1の内部抵抗値rを算出し、ステップ416で演算した内部抵抗値rとステップ408で積算した鉛電池1の残容量QとをRAMに格納してデータ取得処理サブルーチンを終了し、図2のステップ206に進む。これにより、i回目のエンジン始動時の鉛電池1の残容量Q及び内部抵抗値rの1組のデータ(Q、r)が得られる。
【0034】
ステップ206では、ステップ202で得たデータ(Q、r)とステップ204で得たデータ(Q、r)との(i−k+1)個の対から最小二乗法により回帰直線の傾きc及び切片rを演算する(図11参照)。これにより、(i−k+1)個の鉛電池1の残容量Qと内部抵抗値rとの対に成立する相関関係(Q−r相関関係)が得られる。
【0035】
次にステップ208では、i回目に演算した鉛電池1の内部抵抗値rに対応するQ−r相関関係における(回帰直線上の)鉛電池1の残容量Qを演算する。これにより、鉛電池1の履歴が反映されたQ−r相関関係からi回目に算出した鉛電池1の内部抵抗値rに対応する鉛電池1の残容量Qが算出(推定)される。
【0036】
次のステップ210では、エンジン始動を許容する鉛電池1の最大内部抵抗値rmaxを演算する。すなわち、スタータ3などの仕様(特性)から決定されるエンジン始動を許容する最低電圧値Vmin及び要求電流値Ireqが設定されており、これら最低電圧値Vmin及び要求電流値Ireqは、予めRAMに展開されている。鉛電池1の開回路電圧OCV、最低電圧値Vmin、要求電流値Ireq及び最大内部抵抗値rmaxの間には、最低電圧値Vmin=開回路電圧OCV−最大内部抵抗値rmax×要求電流値Ireqの関係がある。ステップ210では、この関係を利用して最大内部抵抗値rmaxを算出する。最大内部抵抗値rmaxは、鉛電池1がエンジン始動を許容する限界値の意味を有しており、鉛電池1の内部抵抗値rが最大内部抵抗値rmaxより大きいとエンジン始動が不能となる。次いでステップ212において、Q−r相関関係から最大内部抵抗値rmaxに対応する鉛電池1の最小残容量Qminを演算する(図11参照)。
【0037】
次にステップ214において、ステップ212で演算した鉛電池1の最小残容量Qminがステップ208で演算した鉛電池1の残容量Qより小さいか否かを判定し、肯定判定のときは、ステップ216で車両側マイコン10へI/Oを介してISS可能通知を出力してステップ204に戻る。これにより、車両側マイコン10は、始動しているエンジン4が停止してもISSが可能なことを知ることができる。一方、否定判断のときは、ステップ218で車両側マイコン10へISS不能通知を出力してステップ204に戻る。これにより、車両側マイコン10は、エンジン4を停止するとISSが不能なことを知ることができる。従って、車両側マイコン10はエンジン4を停止させることなくエンジン4の駆動状態で発電機2を作動させて鉛電池1を充電する。
【0038】
図7に示すように、車両走行中は、エンジン始動(300A〜500Aの大電流パルス放電)、走行、アイドルストップのパターンが繰り返され(ステップ204〜ステップ218)、エンジン始動時毎に1組のデータ(Q、r)がRAMに順次格納される。
【0039】
<作用・効果等>
本実施形態のバッテリ残容量推定装置11では、エンジン始動時毎に(i−k+1)個の鉛電池1の残容量Q及び内部抵抗値rの対に成立するQ−r相関関係を求め(ステップ206)、鉛電池1の履歴が反映されたQ−r相関関係からi回目に算出した鉛電池1の内部抵抗値rに対応する鉛電池1の残容量Qを算出するので(ステップ208)、鉛電池1の残容量Qの誤差が補正され高精度に鉛電池1の残容量Qを算出することができると共に、算出した鉛電池1の残容量Qと最小残容量Qminとを比較してISS判定をするので(ステップ214)、ISS可否判定結果の信頼性を高めることができる(ステップ216、218)。ISS不能判定のときは、エンジン停止前に発電機2から鉛電池1を充電することで、エンジン4を停止しても次のエンジン始動を確保することができる。
【0040】
また、本実施形態のバッテリ残容量推定装置11では、エンジン始動時毎にデータ(Q、r)を取得するため、エンジン始動回数(アイドルストップの回数)が増加するに伴いデータ(Q、r)数が増加し、鉛電池1の内部抵抗値rと残容量Qとのマップの精度が向上していくので、鉛電池1の残容量Qを精度良く算出することができる。また、車両上でマップを順次作成するので、予めマップを作成する必要がなく汎用性に優れる。
【0041】
更に、本実施形態のバッテリ残容量推定装置11では、エンジン始動時の鉛電池1の内部抵抗値rを算出するときに、エンジン始動前とエンジン始動電流通電開始後50ms以内の1段目の電流値及び電圧値から内部抵抗値rを算出したので、測定誤差の大きい電流波形の減衰部分を排除して鉛電池1の充電、放電分極の影響の有無に拘わらず鉛電池1の残容量Qを推定することができる。
【0042】
更にまた、本実施形態のバッテリ残容量推定装置11では、バッテリとして鉛電池1を用いることで、鉛電池1の開回路電圧OCV及び残容量Q(図9参照)、内部抵抗値r及び残容量Q(図11参照)間の高い相関関係が得られ、仮に粗いマップを用いても高精度に鉛電池1の残容量Qの算出及びISS判定をすることができる。
【0043】
更に、本実施形態のバッテリ残容量推定装置11では、鉛電池1の温度Tを測定し、鉛電池1の温度Tと内部抵抗補正値との相関関係から鉛電池1の内部抵抗値rの温度補正をしたので(図10参照)、温度依存性を排除して鉛電池1の残容量Qを算出することができる。
【0044】
また、本実施形態のバッテリ残容量推定装置11では、鉛電池1の温度Tを測定し、鉛電池1の温度Tと開回路電圧OCVとの相関関係から鉛電池1の開回路電圧OCVの温度補正をしたので(図8参照)、温度に依存する鉛電池1の残容量Qを温度依存性を排除して算出することができ、作成されるマップの数を少なくすることができる。
【0045】
なお、本実施形態では、IGNスイッチがON位置に位置したときに、エンジン始動前の開回路電圧OCVを取り込む例を示したが、車両が停止して長時間経過し鉛電池1が平衡状態になっているときに、開回路電圧OCVを取り込むようにしてもよい。このようにすれば、測定誤差の少ない鉛電池1の開回路電圧OCVからより高精度に鉛電池1の残容量Qを算出(推定)することができる。
【0046】
また、本実施形態では、ISS機能を有する車両に搭載されたバッテリとして鉛電池1を例示したが、例えば、鉛電池1とリチウムイオン二次電池とを並列接続したり、鉛電池1とニッケル水素電池を並列接続したハイブリッド電池に適用してもよい。
【0047】
更に、本実施形態では、エンジン始動時毎にデータ取得処理サブルーチンにおいて、データ(Q、r)を取得する例を示したが、エンジン始動回数が所定回数毎(例えば、5回毎)にデータ(Q、r)を取得するようにしてもよいし、データ(Q、r)を1組得る毎に鉛電池1の残容量Qと内部抵抗値rと対の相関関係を求める例を示したが、データ(Q、r)を例えば5組得る毎に相関関係を求めるようにしてもよい。このようにすれば、バッテリ残容量推定装置11の演算量を低減させることができる。更に、本実施形態では、エンジン始動時毎に、鉛電池1の温度Tを測定する例を示したが、温度Tは短い時間では大きく変化しないので、所定時間(例えば、10分)毎に温度Tを測定するようにしてもよい。このようにすれば、バッテリ残容量推定装置11の演算負荷を小さくすることができる。
【0048】
また、本実施形態では、(i−k+1)個のデータ(Q、r)対から最小二乗法により回帰直線を求める例を示したが、高次の回帰曲線を求めるようにしてもよい。
【0049】
また、本実施形態では、ISS可能なときは可能通知を、不能なときは不能通知をそれぞれ車輌側マイコン10に出力する例を示したが、ISS不能なときには警報器に信号を出力して警報を出すようにしてもよい。
【0050】
そして、本実施形態では、k回目(k≧1)及びi回目(i≧k+1)のエンジン始動時に基準データ取得処理サブルーチン及びデータ取得処理サブルーチンで鉛電池1のデータ(Q、r)及びデータ(Q、r)を取得する例を示したが、k回目は1回目(i回目は2回目)に限定されない。このため、本バッテリ残容量推定装置11を後付けするようにしてもよい。
【0051】
(第2実施形態)
次に、本発明をバッテリ残容量推定装置に適用した第2の実施の形態について説明する。本実施形態のバッテリ残容量推定装置は、エンジン始動時の鉛電池1に流れる電流及び電圧間に成立する回帰直線の傾き(内部抵抗)及び切片(開路電圧)から鉛電池1の内部抵抗値r及び残容量Q(i≧1)を得るものである。なお、本実施形態において、第1実施形態と同一の構成要素及びステップには同一の符号を付してその説明を省略し、異なる箇所のみ説明する。
【0052】
本実施形態の残容量推定ルーチンでは、図2に示したステップ202を欠き、ステップ204では図5に示すデータ取得処理サブルーチンが実行される。
【0053】
本実施形態のデータ取得処理サブルーチンでは、ステップ602において、IGNスイッチ9がSTART位置に位置するまで待機し、START位置に位置したときは、次のステップ604において、i回目のエンジン始動開始時(時刻t)から第1の所定時間(例えば、1ms〜10ms)が経過するまで待機し、第1の所定時間経過後、ステップ606において、鉛電池1に流れる電流値I及び電圧値V(j≧1)をRAMに格納する。次にステップ608において、エンジン始動開始から第2の所定時間(例えば、50ms)以内かを判断し、否定判断のときはステップ604に戻りデータのサンプリングを続け、肯定判断のときはステップ610に進む。これにより、エンジン始動開始後、鉛電池1に流れる電流値I及び電圧値Vが微少時間間隔(1ms〜10ms)で複数回サンプリングされ、j組のデータ(I、V)が得られる(j:第2の所定時間/第1の所定時間)。
【0054】
次にステップ610では、j組のデータ(I、V)間に成立する回帰直線の傾き及び切片を内部抵抗値r及び開回路電圧OCVとして演算する。次のステップ612では、第1実施形態のステップ306と同様に、開回路電圧OCVを室温25゜Cにおける開回路電圧OCVに補正し、次いでステップ614では、第1実施形態のステップ308と同様に、鉛電池1の開回路電圧OCVに対応する鉛電池1の残容量Qを演算する。次に、ステップ616では、ステップ614で演算された鉛電池1の残容量Qと、ステップ610で演算された内部抵抗値rとをRAMに格納してデータ取得処理サブルーチンを終了し、図2のステップ206に進む。これにより、鉛電池1の残容量Q及び内部抵抗値rの1組のデータ(Q、r)が得られる。以降のエンジン始動時も同様にデータ取得処理サブルーチンが実行され、データ(Q、r)が得られる。
【0055】
本実施形態のバッテリ残容量推定装置では、i回目と(i+1)回目のエンジン始動時の間に鉛電池1に流れる電流を積算せず、エンジン始動時の鉛電池1に流れる電流及び電圧間に成立する回帰直線の傾き及び切片からQ−r相関関係を求め、Q−r相関関係から鉛電池1の残容量Qを算出するので、電流センサ7による鉛電池1の残容量Qの測定誤差(積算誤差)が蓄積されないので、高精度に鉛電池1の残容量Qを算出することができる。
【0056】
なお、本実施形態では、エンジン始動時に鉛電池1に流れる電流及び電圧を微小時間間隔で複数回サンプリングするときに、第1及び第2の所定時間からサンプリングの回数が定まる例を示したが、予めサンプリングする回数を定めておいてデータを取得するようにしてもよい。
【0057】
【発明の効果】
以上説明したように、本発明によれば、i回目のエンジン始動時毎に(i−k+1)又はi個のバッテリの残容量及び内部抵抗の対に成立する相関関係を求め、バッテリの履歴が反映された相関関係からi回目に算出されたバッテリの内部抵抗に対応するバッテリの残容量を算出するので、バッテリの残容量の誤差が補正され高精度にバッテリの残容量を算出することができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な第1実施形態のバッテリ残容量推定装置を示すブロック図である。
【図2】第1実施形態のバッテリ残容量推定装置の残容量推定ルーチンを示すフローチャートである。
【図3】残容量推定ルーチンのステップ202の詳細を示す基準データ取得処理サブルーチンのフローチャートである。
【図4】残容量推定ルーチンのステップ204の詳細を示すデータ取得処理サブルーチンのフローチャートである。
【図5】第2実施形態の残容量推定ルーチンのステップ204の詳細を示すデータ取得処理サブルーチンの詳細を示すフローチャートである。
【図6】エンジン始動時の鉛電池の電流波形を示すグラフである。
【図7】鉛電池の充放電パターンを模式的に示すグラフである。
【図8】鉛電池の温度と開回路電圧補正値との関係を示すグラフである。
【図9】鉛電池の残容量と開回路電圧との関係を示すグラフである。
【図10】鉛電池の温度と内部抵抗補正値との関係を示すグラフである。
【図11】鉛電池の残容量と内部抵抗値との関係を示すグラフである。
【符号の説明】
1 鉛電池(バッテリ)
4 エンジン
8 マイコン
11 バッテリ残容量推定装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a remaining battery charge estimation method, and more particularly to a remaining battery charge estimation method for estimating the remaining charge of a battery mounted on a vehicle having an idle stop / start function.
[0002]
[Prior art]
Conventionally, batteries mounted on vehicles (lead batteries) are always float charged by an alternator while driving, and the load is limited to lamps, etc., so they are not deeply discharged and are almost always kept near a fully charged state It had been. However, due to the increasing environmental awareness in recent years, it has become necessary to reduce the emission of carbon dioxide from vehicles. In particular, vehicles such as large buses and trucks have an idle stop function that stops the engine when stopping such as waiting for a signal. Cars are increasing.
[0003]
In a system vehicle having an idle stop function, loads such as an air conditioner and a car stereo while the engine is stopped are all covered by electric power from a battery. For this reason, it is expected that deep discharge of the battery will increase as compared with the conventional case, and that the remaining capacity of the battery will decrease in some cases. Since the output of the battery depends on the remaining capacity of the battery, if the remaining capacity of the battery decreases while the engine is stopped, a sufficient output for starting the engine cannot be obtained, and the engine cannot be restarted (ISS). There is a risk. Therefore, in order to maintain the ISS-capable state, the remaining capacity of the battery is estimated to monitor the presence or absence of the output necessary for starting the engine. If there is no necessary output, it is necessary to stop idle stop and send a signal such as charging the battery to the computer on the vehicle side.
[0004]
As a method of estimating the remaining capacity of the battery, a method of adding an integrated value of a charge / discharge current to an initial state of charge (SOC) of the battery is known. Further, for example, as disclosed in JP-A-6-590003 and JP-A-9-96665, current-voltage characteristics measured from current and voltage waveforms of a battery mounted on an electric vehicle or the like are disclosed. There has been proposed a method for estimating the remaining capacity of a battery by comparing the remaining capacity of the battery, which is created by measuring the battery characteristics in advance, and the relationship between the current-voltage characteristics table.
[0005]
[Problems to be solved by the invention]
However, in the above method, the integration error of the charging / discharging current is accumulated, and there is a change in the initial value of the remaining capacity of the battery due to self-discharge in the unused state of the battery. Have difficulty. Also, in the method using the current-voltage characteristic, it is necessary to create a correlation such as map data of a remaining capacity-current-voltage characteristic table for a battery to be used in advance, so that the method is limited to a specific model. Since the versatility is poor and the history of the battery is not reflected, it is difficult to accurately estimate the remaining capacity of the battery.
[0006]
The present invention has been made in view of the above circumstances, and has as its object to provide a battery remaining capacity estimation method capable of accurately estimating a remaining battery capacity.
[0007]
[Means for Solving the Problems]
In order to solve the above problem, a first aspect of the present invention is a battery remaining capacity estimation method for estimating a remaining capacity of a battery mounted on a vehicle having an idle stop / start function. 1) measuring the open circuit voltage of the battery before the start of the engine and calculating the remaining charge of the battery from a predetermined relationship between the remaining battery charge and the open circuit voltage; The internal resistance of the battery is calculated from the change and the voltage change, and at the time of the i-th (i ≧ k + 1) engine start, the charge / discharge electricity amount flowing through the battery during the (i−1) -th to the i-th engine start is integrated. The remaining capacity of the battery is calculated, and the internal resistance of the battery is calculated from the current change and the voltage change at the time of the i-th engine start. The correlation relationship established residual capacity and the internal resistance versus the battery, and calculates the remaining capacity of the battery corresponding to the internal resistance of the battery calculated in the i-th in the correlation relationship determined the comprises.
[0008]
In the first aspect, the open circuit voltage of the battery before the k-th (k ≧ 1) engine start is measured, and the remaining battery capacity is calculated from a predetermined relationship between the remaining battery capacity and the open circuit voltage, The internal resistance of the battery is calculated from the current change and voltage change at the time of the k-th engine start. At the time of the i-th (i ≧ k + 1) engine start, the battery flows between the (i−1) -th and the i-th engine start. The remaining charge of the battery is calculated by integrating the amount of charge and discharge, and the internal resistance of the battery is calculated from the current change and the voltage change at the time of starting the i-th engine, and the calculated (i−k + 1) remaining battery charge is calculated. A correlation that holds for the pair of the capacity and the internal resistance is obtained, and the remaining battery capacity corresponding to the i-th calculated internal resistance of the battery in the obtained correlation is calculated. According to this aspect, each time the engine is started, the correlation established between the pair of the remaining capacity and the internal resistance of the (i-k + 1) batteries is obtained, and the i-th calculation is performed based on the correlation reflecting the history of the battery. Since the remaining battery capacity corresponding to the internal resistance of the battery is calculated, the error in the remaining battery capacity is corrected, and the remaining battery capacity can be calculated with high accuracy.
[0009]
In the first aspect, the internal resistance is obtained by calculating a voltage difference between the battery voltage before the engine start and the battery voltage after a lapse of a predetermined time after the start of the engine start current. It is preferable to obtain by dividing by the current difference from the battery current at the time when a predetermined time has elapsed after the start. Further, if the predetermined time exceeds 50 ms from the start of energization of the engine start current, the error in the current and voltage flowing to the battery becomes large. Therefore, it is more preferable that the predetermined time be within 50 ms from the start of energization of the engine start current.
[0010]
A second aspect of the present invention is a battery remaining capacity estimating method for estimating a remaining capacity of a battery mounted on a vehicle having an idle stop / start function, the method comprising: The current and voltage flowing in the battery are sampled a plurality of times at minute time intervals, and the slope and intercept of the regression line established between the current and voltage of the battery are calculated as the internal resistance and open circuit voltage, and the predetermined remaining capacity of the battery is calculated. The remaining capacity of the battery corresponding to the calculated open-circuit voltage is calculated from the relationship with the open-circuit voltage, a correlation that is established between the pair of the calculated remaining capacity and the internal resistance of the i batteries is obtained, and the obtained correlation is obtained. Calculating the remaining capacity of the battery corresponding to the internal resistance of the battery calculated as the slope at the i-th time in.
[0011]
In the second aspect, the current and voltage flowing through the battery at the time of starting the i-th engine (i ≧ 1) are sampled a plurality of times at minute time intervals, and the slope and intercept of the regression line established between the current and voltage of the battery are determined. The remaining capacity of the battery corresponding to the open-circuit voltage calculated from the relationship between the open-circuit voltage and the predetermined remaining capacity of the battery calculated as the internal resistance and the open-circuit voltage is calculated, and the calculated remaining capacity of the i batteries and A correlation that is established for the pair of internal resistances is obtained, and the remaining battery capacity corresponding to the internal resistance of the battery calculated as the i-th slope in the obtained correlation is calculated. According to this aspect, a correlation is established between the pair of the remaining capacity and the internal resistance of each of the i batteries at each engine start, and the battery calculated as the i-th slope from the correlation reflecting the history of the battery is obtained. Since the remaining battery capacity corresponding to the internal resistance is calculated, the error in the remaining battery capacity is corrected, and the remaining battery capacity can be calculated with high accuracy.
[0012]
In the first and second aspects, when the battery temperature is measured and the calculated internal resistance of the battery is corrected to the internal resistance at a predetermined temperature based on a predetermined relationship between the battery temperature and the internal resistance correction value, the battery , The temperature dependence of the internal resistance can be eliminated, so that the remaining capacity of the battery can be calculated with higher accuracy. Further, if the measured open-circuit voltage of the battery is corrected to the open-circuit voltage at a predetermined temperature from the relationship between the predetermined battery temperature and the open-circuit voltage, the temperature dependency of the open-circuit voltage of the battery can be eliminated, so that higher accuracy can be achieved. The remaining battery capacity can be calculated. Also, the maximum internal resistance of the battery that allows the engine to start is calculated from the minimum voltage value and the required current value of the battery determined from the characteristics of the starter for engine start, and the battery of the battery corresponding to the maximum internal resistance in the obtained correlation is calculated. By determining the minimum remaining capacity and determining that the engine cannot be started when the calculated remaining capacity of the battery is smaller than the minimum remaining capacity, it is possible to determine with high accuracy whether the engine cannot be started. Can be.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, a first embodiment in which the present invention is applied to a remaining battery capacity estimation device that estimates the remaining battery capacity of a lead battery will be described with reference to the drawings.
[0014]
<Structure>
As shown in FIG. 1, a remaining battery capacity estimation device 11 of the present embodiment includes a current sensor 7 for measuring a current flowing through a lead battery 1, an A / D converter 6 for converting the voltage of the lead battery 1 into a digital value, a lead A temperature sensor 12 such as a thermistor for measuring the temperature of the battery 1 and a microcomputer (hereinafter referred to as a microcomputer) 8 for calculating the remaining capacity of the lead battery 1 are provided.
[0015]
The lead battery 1 has a rectangular battery case serving as a container for the lead battery. Examples of the material of the battery case include high polymer resins such as acrylic butadiene styrene (ABS), polypropylene (PP), and polyethylene (PE) which are excellent in moldability, electrical insulation, corrosion resistance, durability, and the like. Can be selected. A sensor insertion hole is formed in a central partition wall of the battery case. The temperature sensor 12 is inserted into the sensor insertion hole, and the temperature sensor 12 is fixed in the sensor insertion hole with an adhesive. In addition, the battery case can be configured as a monoblock battery case, for example, in which a total of 18 cell chambers in 2 rows and 9 columns are defined by partition walls that partition the inside of the outer peripheral wall vertically and horizontally and are integrally formed. One set of electrode plates (cells) is stored in each cell chamber in the battery case, and a total of 18 electrode plate groups are stored in the battery case. In each electrode plate group, six unformed negative electrode plates and five unformed positive electrode plates are laminated via a retainer (separator) made of glass fiber, and the nominal voltage (cell voltage) after formation (first charge) is 2.0V. Therefore, the group voltage of the lead battery is 36V. The upper part of the battery case is adhered (or welded) to an upper lid made of a polymer resin such as ABS, PP, PE or the like which seals the upper opening of the battery case. A rod-shaped positive external output terminal and a negative external output terminal for supplying electric power to the outside using a lead battery as a power source are provided on the upper lid at diagonal corners.
[0016]
The above-described positive electrode external output terminal of the lead battery 1 is connected to a center terminal of an ignition switch (hereinafter, referred to as an IGN switch) via a current sensor 7 such as a Hall element. The IGN switch 9 has an OFF terminal, an ON / ACC terminal, and a START terminal separately from the center terminal. The center terminal and any one of the OFF, ON / ACC, and START terminals can be switched and connected in a rotary manner. is there.
[0017]
The current sensor 7 can detect a current by a Hall voltage that changes according to a current flowing through the Hall element. The starter 3 for starting the engine 4 can transmit a rotational driving force to a rotating shaft of the engine 4 via a clutch mechanism (not shown).
[0018]
The ON / ACC terminal is connected to one end of a generator 2 that generates electric power by rotation of the engine 4 via an auxiliary device 5 such as an air conditioner, a radio, a lamp, or the like and a diode that allows a current to flow in one direction. . That is, the anode of the diode is connected to one end of the generator 2 and the cathode is connected to the ON / ACC terminal. The rotation shaft of the engine 4 can transmit power to the generator 2 via a clutch mechanism (not shown). For this reason, when the engine 4 is in a rotating state, the generator 2 operates via a clutch mechanism (not shown), and electric power from the generator 2 is supplied (charged) to the auxiliary machine 5 or the lead battery 1. The OFF terminal is not connected to any of them.
[0019]
The output terminal of the current sensor 7 is connected to an A / D converter built in the microcomputer 8 described later. For this reason, the Hall voltage output from the current sensor 7 is converted into a digital value by the A / D converter, and the microcomputer 8 can take in the current value I flowing through the lead battery 1. The external output terminal of the lead battery 1 is connected to the A / D converter 6, and the output side of the A / D converter 6 is connected to the microcomputer 8. For this reason, the microcomputer 8 can take in the voltage value of the lead battery 1 as a digital value. Further, the output terminal of the temperature sensor 12 is connected to an A / D converter built in the microcomputer 8. For this reason, the microcomputer 8 can take in the temperature T of the lead battery 1 as a digital value. Note that the microcomputer 8 can communicate with the host vehicle-side microcomputer 10 via the I / O.
[0020]
The microcomputer 8 includes a CPU functioning as a central processing unit, a ROM storing a basic control program of the remaining battery capacity estimating device 11 and various setting values, and a RAM serving as a work area of the CPU and temporarily storing data. And so on. The other end of the generator 2, the starter 3, and the auxiliary device 5, the negative electrode external output terminal of the lead battery 1, and the microcomputer are connected to the ground.
[0021]
<Operation>
Next, with reference to a flowchart, an operation of the remaining battery capacity estimating device 11 mainly by the CPU of the microcomputer 8 will be described. When the microcomputer 8 is turned on, various setting values stored in the ROM are transferred to the RAM in the initial setting state, and the following remaining capacity estimation routine is executed.
[0022]
As shown in FIG. 2, in the remaining capacity estimation routine, first, in step 202, the internal resistance value r of the lead battery 1 at the time of starting the k-th (k ≧ 1) engine is set. k And remaining capacity Q k Is executed.
[0023]
As shown in FIG. 3, in the reference data acquisition processing subroutine, in step 302, it is determined whether the current value flowing through the current sensor 7 is a predetermined value (for example, 0.05 A to 0.1 A), and It is determined whether or not 9 is located at the ON position, and waits until an affirmative determination is made. When the determination is affirmative, in step 304, the open circuit voltage OCV of the lead battery 1 is determined. k And temperature T k Take in.
[0024]
In the next step 306, the temperature T (° C.) of the lead battery 1 and the open circuit voltage correction value (OCV (T) −OCV (T 25 )) According to the data of (V), the temperature of the lead battery 1 is reduced to the temperature T. k Open circuit voltage OCV when k Is the open circuit voltage OCV (T 25 ) To correct the temperature. For example, as shown in FIG. 8, when the temperature T of the lead battery 1 is 10 ° C., the open-circuit voltage correction value of 0 ° C. is 0.05 and the open-circuit voltage correction value is 25 ° C. It is calculated as 15 × 0.05 / 25 = 0.03 (V) by proportional calculation from the value 0. Open circuit voltage OCV (T 25 ) Is the open circuit voltage OCV taken in step 304 k The open circuit voltage correction value (OCV (T k ) -OCV (T 25 )).
[0025]
Next, at step 308, based on the correlation between the remaining capacity Q of the lead battery 1 developed in the RAM and the open circuit voltage OCV (see FIG. 9), the open circuit voltage OCV is obtained. k Capacity Q of lead battery 1 corresponding to k In step 310, the current value and voltage value flowing through the lead battery 1 are fetched. A small current (<< 0.05 A) flows from the lead battery 1 to operate the vehicle microcomputer 10 (CPU).
[0026]
Next, in step 312, it is determined whether or not the IGN switch 9 is located at the START position by determining whether or not the value of the current flowing through the current sensor 7 exceeds a predetermined value (for example, 0.1 A). If the determination is negative, the process returns to step 304; if the determination is affirmative, the counter for counting the number of engine starts is incremented by 1 (k = k + 1) (see also FIG. 7). Remaining capacity Q of lead battery 1 at startup i In order to correct (i = k + 1), the amount of charge electricity charged to the lead battery 1 by the generator (alternator) 2 during running of the vehicle, and the discharge electricity supplied to the auxiliary device 5 by the lead battery 1 during idle stop. Start integration of charge / discharge electricity quantity such as quantity. Next, at step 316, the process waits until a predetermined time (for example, 50 ms) elapses.
[0027]
As shown in FIG. 6, the current waveform of the lead battery 1 at the time of starting the engine is such that when the IGN switch 9 is located at the START position, the current flowing to the engine starting current starts (at time t). s ), Rapid discharge to the first-stage starter 3 is performed, and when about 50 ms elapses (time t p ) Shows the first peak. After that, the engine start is completed through several peaks that attenuate. Although the current waveform is affected by the structure of the engine 4, the friction of the belt connecting the engine 4 and the starter 3, and the like, the current waveform generally has a waveform as shown in FIG.
[0028]
In the next step 318, the current value and the voltage value at the lapse of a predetermined time after the start of the energization of the engine start current are fetched. The internal resistance value r obtained by dividing the voltage difference ΔV from the voltage value at the time of starting the engine by the current difference ΔI between the current value before starting the engine taken in step 310 and the current value taken at step 318 when starting the engine. k The absolute value of (voltage difference ΔV / current difference ΔI) is calculated.
[0029]
Subsequently, at step 322, similarly to the temperature correction at step 306, the temperature of the lead k Internal resistance r at ° C k Is the internal resistance value r (T 25 ) (See FIG. 10). As a result, the internal resistance value r of the lead-acid battery 1 k Is calculated.
[0030]
Next, at step 324, the remaining capacity Q of the lead battery 1 calculated at step 308 k And the internal resistance value r calculated in step 322 k Are stored in the RAM, the reference data acquisition processing subroutine ends, and the routine proceeds to step 204 in FIG. Thereby, the remaining capacity Q of the lead battery 1 k And the internal resistance value r k Set of data (Q k , R k ) Is obtained.
[0031]
In step 204, the internal resistance value r of the lead battery 1 at the time of starting the i-th (i ≧ k + 1) engine i And remaining capacity Q i Is executed.
[0032]
As shown in FIG. 4, in the data acquisition processing subroutine, in step 402, similarly to step 302, it is determined whether or not the IGN switch 9 is at the ON position, and the process waits until an affirmative determination is made. If the determination is affirmative, in the next step 404, the current value and voltage value of the lead battery 1 are fetched. Next, in step 406, it is determined whether or not the IGN switch 9 is at the START position, as in step 312. If the determination is negative, the process returns to step 404. If the determination is affirmative, the counter is incremented by one. In the next step 408, the charge / discharge electricity amount (ΔQ i ) Is the remaining capacity Q of the lead battery 1. k To the remaining capacity Q i Is calculated (the remaining capacity Q i = k + 1 = Remaining capacity Q k + ΔQ i ) (See FIG. 7). As a result, the current remaining capacity Q of the lead battery 1 in which the amount of charge / discharge electricity flowing to the lead battery 1 during the k-th (k = i-1) to i-th engine start is corrected. i Is calculated.
[0033]
Next, in steps 410 to 418, as in steps 316 to 324 shown in FIG. i And the internal resistance value r calculated in step 416 i And the remaining capacity Q of the lead battery 1 integrated in step 408 i Are stored in the RAM, the data acquisition processing subroutine ends, and the routine proceeds to step 206 in FIG. Thereby, the remaining capacity Q of the lead battery 1 at the time of starting the i-th engine i And the internal resistance value r i Set of data (Q i , R i ) Is obtained.
[0034]
In step 206, the data (Q k , R k ) And the data (Q i , R i ) And the intercept r of the regression line from the (i−k + 1) pairs by the least squares method. 0 Is calculated (see FIG. 11). As a result, a correlation (Qr correlation) that is established for the pair of the remaining capacity Q and the internal resistance value r of the (i−k + 1) lead batteries 1 is obtained.
[0035]
Next, at step 208, the internal resistance value r of the lead battery 1 calculated at the i-th time i The remaining capacity Q of the lead battery 1 (on the regression line) in the Qr correlation corresponding to is calculated. Thereby, the internal resistance value r of the lead battery 1 calculated at the i-th time from the Qr correlation reflecting the history of the lead battery 1 i Is calculated (estimated).
[0036]
In the next step 210, the maximum internal resistance value r of the lead battery 1 that allows the engine to start max Is calculated. That is, the minimum voltage value V that allows the engine to start determined from the specifications (characteristics) of the starter 3 and the like. min And required current value I req Are set, and these minimum voltage values V min And required current value I req Are stored in the RAM in advance. Open circuit voltage OCV, minimum voltage value V of lead battery 1 min , Required current value I req And the maximum internal resistance value r max Between the minimum voltage value V min = Open circuit voltage OCV-maximum internal resistance value r max × Requested current value I req There is a relationship. In step 210, the maximum internal resistance value r max Is calculated. Maximum internal resistance r max Has the meaning of a limit value at which the lead battery 1 allows the engine to start, and the internal resistance value r of the lead battery 1 i Is the maximum internal resistance r max If it is larger, the engine cannot be started. Next, at step 212, the maximum internal resistance value r is obtained from the Qr correlation. max Remaining capacity Q of the lead battery 1 corresponding to min Is calculated (see FIG. 11).
[0037]
Next, at step 214, the minimum remaining capacity Q of the lead battery 1 calculated at step 212 min Is determined to be smaller than the remaining capacity Q of the lead battery 1 calculated in step 208. If the determination is affirmative, an ISS enable notification is output to the vehicle-side microcomputer 10 via the I / O in step 216, and Return to 204. Thereby, the vehicle-side microcomputer 10 can know that the ISS is possible even if the started engine 4 stops. On the other hand, if a negative determination is made, an ISS disable notification is output to the vehicle-side microcomputer 10 in step 218, and the process returns to step 204. Thus, the vehicle-side microcomputer 10 can know that the ISS cannot be performed when the engine 4 is stopped. Therefore, the vehicle-side microcomputer 10 operates the generator 2 in the driving state of the engine 4 without stopping the engine 4 to charge the lead battery 1.
[0038]
As shown in FIG. 7, while the vehicle is running, a pattern of starting the engine (pulse discharge of a large current of 300 A to 500 A), running, and idling stop is repeated (steps 204 to 218). Data (Q i , R i ) Are sequentially stored in the RAM.
[0039]
<Actions and effects>
In the battery remaining capacity estimating device 11 of the present embodiment, the remaining capacity Q of the (i−k + 1) lead batteries 1 every time the engine is started. i And the internal resistance value r i Is obtained (step 206), and the internal resistance value r of the lead battery 1 calculated at the i-th time from the Qr correlation reflecting the history of the lead battery 1 is obtained. i Is calculated (step 208), the remaining capacity Q of the lead battery 1 is calculated. i Is corrected, the remaining capacity Q of the lead battery 1 can be calculated with high accuracy, and the calculated remaining capacity Q and the minimum remaining capacity Q of the lead battery 1 can be calculated. min Is determined (step 214), the reliability of the ISS determination result can be improved (steps 216 and 218). When the ISS cannot be determined, the lead battery 1 is charged from the generator 2 before the engine is stopped, so that the next engine start can be ensured even if the engine 4 is stopped.
[0040]
Further, in the battery remaining capacity estimation device 11 of the present embodiment, the data (Q i , R i ), The data (Q) increases as the number of engine starts (the number of idle stops) increases. i , R i ) The number increases, and the internal resistance value r of the lead battery 1 increases. i And remaining capacity Q i Therefore, the remaining capacity Q of the lead battery 1 can be accurately calculated. In addition, since the maps are sequentially created on the vehicle, it is not necessary to create the maps in advance, and the versatility is excellent.
[0041]
Further, in the battery remaining capacity estimating device 11 of the present embodiment, the internal resistance value r of the lead battery 1 at the time of starting the engine. i Is calculated from the first stage current value and voltage value within 50 ms before the engine starts and within 50 ms after the start of the engine starting current. i Is calculated, the remaining capacity Q of the lead battery 1 can be estimated irrespective of the influence of the charge and discharge polarization of the lead battery 1 by eliminating the attenuated portion of the current waveform having a large measurement error.
[0042]
Furthermore, in the battery remaining capacity estimation device 11 of the present embodiment, by using the lead battery 1 as a battery, the open circuit voltage OCV and the remaining capacity Q (see FIG. 9), the internal resistance value r and the remaining capacity of the lead battery 1 are used. A high correlation between Q (see FIG. 11) is obtained, and the remaining capacity Q of the lead battery 1 and the ISS determination can be performed with high accuracy even if a coarse map is used.
[0043]
Further, the remaining battery capacity estimating device 11 of the present embodiment measures the temperature T of the lead battery 1 and obtains the temperature of the internal resistance value r of the lead battery 1 from the correlation between the temperature T of the lead battery 1 and the internal resistance correction value. Since the correction has been made (see FIG. 10), the remaining capacity Q of the lead battery 1 can be calculated without the temperature dependency.
[0044]
Further, the remaining battery capacity estimating device 11 of the present embodiment measures the temperature T of the lead battery 1 and determines the temperature of the open circuit voltage OCV of the lead battery 1 based on the correlation between the temperature T of the lead battery 1 and the open circuit voltage OCV. Since the correction has been made (see FIG. 8), the remaining capacity Q of the lead battery 1 depending on the temperature can be calculated without the temperature dependency, and the number of maps to be created can be reduced.
[0045]
In the present embodiment, an example is described in which the open circuit voltage OCV before the engine is started is taken in when the IGN switch is located at the ON position. , The open circuit voltage OCV may be taken in. In this way, the remaining capacity Q of the lead battery 1 can be calculated (estimated) with higher accuracy from the open circuit voltage OCV of the lead battery 1 having a small measurement error.
[0046]
In this embodiment, the lead battery 1 is exemplified as a battery mounted on a vehicle having the ISS function. However, for example, the lead battery 1 and a lithium ion secondary battery are connected in parallel, You may apply to the hybrid battery which connected the battery in parallel.
[0047]
Further, in the present embodiment, the data (Q i , R i ) Is obtained, the data (Q) is obtained every predetermined number of times (for example, every five times). i , R i ) May be obtained, or data (Q i , R i ), The remaining capacity Q of the lead battery 1 i And the internal resistance value r i Although the example of obtaining the correlation between the pair and the data is shown, the data (Q i , R i ) May be obtained every time, for example, five sets are obtained. By doing so, it is possible to reduce the calculation amount of the remaining battery capacity estimating device 11. Further, in the present embodiment, an example is shown in which the temperature T of the lead battery 1 is measured every time the engine is started. However, since the temperature T does not greatly change in a short time, the temperature T is changed every predetermined time (for example, every 10 minutes). T may be measured. By doing so, the calculation load of the remaining battery capacity estimating device 11 can be reduced.
[0048]
Also, in the present embodiment, (ik + 1) data (Q i , R i Although an example in which the regression line is obtained from the pair by the least square method has been described, a higher-order regression curve may be obtained.
[0049]
Further, in the present embodiment, an example has been described in which the enable notification is output to the vehicle-side microcomputer 10 when the ISS is possible, and the disable notification is output to the vehicle-side microcomputer 10 when the ISS is not possible. May be issued.
[0050]
In the present embodiment, the data (Q) of the lead battery 1 is used in the reference data acquisition processing subroutine and the data acquisition processing subroutine at the k-th (k ≧ 1) and i-th (i ≧ k + 1) engine starts. k , R k ) And data (Q i , R i )), The k-th time is not limited to the first time (i-th time is the second time). For this reason, the battery remaining capacity estimation device 11 may be retrofitted.
[0051]
(2nd Embodiment)
Next, a second embodiment in which the present invention is applied to a remaining battery capacity estimation device will be described. The battery remaining capacity estimating device of the present embodiment calculates the internal resistance value r of the lead battery 1 from the slope (internal resistance) and intercept (open circuit voltage) of the regression line established between the current and the voltage flowing through the lead battery 1 at the time of engine start. i And remaining capacity Q i (I ≧ 1). In this embodiment, the same components and steps as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Only different points will be described.
[0052]
In the remaining capacity estimation routine of the present embodiment, step 202 shown in FIG. 2 is omitted, and in step 204, a data acquisition processing subroutine shown in FIG. 5 is executed.
[0053]
In the data acquisition processing subroutine of the present embodiment, in step 602, the process waits until the IGN switch 9 is at the START position, and when the IGN switch 9 is at the START position, at the next step 604, the start of the i-th engine start (time t s ) Until a first predetermined time (for example, 1 ms to 10 ms) elapses, and after the first predetermined time elapses, in step 606, the current value I flowing through the lead battery 1 j And voltage value V j (J ≧ 1) is stored in the RAM. Next, in step 608, it is determined whether or not it is within a second predetermined time (for example, 50 ms) from the start of engine start. . As a result, the current value I flowing through the lead battery 1 after the start of the engine is started. j And voltage value V j Are sampled multiple times at very short time intervals (1 ms to 10 ms), and j sets of data (I j , V j ) Is obtained (j: second predetermined time / first predetermined time).
[0054]
Next, at step 610, j sets of data (I j , V j ) Is the internal resistance r i And open circuit voltage OCV i Is calculated as In the next step 612, as in step 306 of the first embodiment, the open circuit voltage OCV i Is the open circuit voltage OCV at room temperature 25 ° C. i Then, in step 614, as in step 308 of the first embodiment, the open circuit voltage OCV i Capacity Q of lead battery 1 corresponding to i Is calculated. Next, in step 616, the remaining capacity Q of the lead battery 1 calculated in step 614 is calculated. i And the internal resistance value r calculated in step 610 i Are stored in the RAM, the data acquisition processing subroutine ends, and the routine proceeds to step 206 in FIG. Thereby, the remaining capacity Q of the lead battery 1 i And the internal resistance value r i Set of data (Q i , R i ) Is obtained. When the engine is started thereafter, the data acquisition processing subroutine is similarly executed, and data (Q, r) is obtained.
[0055]
In the device for estimating the remaining battery charge of the present embodiment, the current flowing through the lead battery 1 is not integrated between the i-th and (i + 1) -th engine starts, and the current is established between the current and the voltage flowing through the lead battery 1 at the time of starting the engine. The Qr correlation is obtained from the slope and intercept of the regression line, and the remaining capacity Q of the lead battery 1 is calculated from the Qr correlation. i Is not accumulated, the remaining capacity Q of the lead battery 1 can be calculated with high accuracy.
[0056]
In the present embodiment, when the current and voltage flowing through the lead battery 1 at the time of starting the engine are sampled a plurality of times at minute time intervals, an example in which the number of samplings is determined from the first and second predetermined times has been described. The data may be acquired by setting the number of times of sampling in advance.
[0057]
【The invention's effect】
As described above, according to the present invention, the correlation established between the remaining capacity and the internal resistance of the (i-k + 1) or i batteries is obtained every time the i-th engine is started, and the history of the battery is calculated. Since the remaining battery capacity corresponding to the i-th calculated internal resistance of the battery is calculated from the reflected correlation, an error in the remaining battery capacity is corrected, and the remaining battery capacity can be calculated with high accuracy. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a battery remaining capacity estimation device according to a first embodiment to which the present invention can be applied.
FIG. 2 is a flowchart illustrating a remaining capacity estimation routine of the remaining battery capacity estimation device according to the first embodiment;
FIG. 3 is a flowchart of a reference data acquisition processing subroutine showing details of step 202 of a remaining capacity estimation routine.
FIG. 4 is a flowchart of a data acquisition processing subroutine showing details of step 204 of a remaining capacity estimation routine.
FIG. 5 is a flowchart showing details of a data acquisition processing subroutine showing details of step 204 of a remaining capacity estimation routine of the second embodiment.
FIG. 6 is a graph showing a current waveform of a lead battery when the engine is started.
FIG. 7 is a graph schematically showing a charge / discharge pattern of a lead battery.
FIG. 8 is a graph showing a relationship between a lead battery temperature and an open circuit voltage correction value.
FIG. 9 is a graph showing the relationship between the remaining capacity of a lead battery and the open circuit voltage.
FIG. 10 is a graph showing a relationship between the temperature of a lead battery and an internal resistance correction value.
FIG. 11 is a graph showing the relationship between the remaining capacity and the internal resistance value of a lead battery.
[Explanation of symbols]
1 Lead battery (battery)
4 Engine
8 Microcomputer
11 Battery remaining capacity estimation device

Claims (7)

アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量を推定するバッテリ残容量推定方法であって、
k回目(k≧1)のエンジン始動時前の前記バッテリの開路電圧を測定して予め定められたバッテリの残容量と開路電圧との関係から前記バッテリの残容量を算出し、前記k回目のエンジン始動時の電流変化及び電圧変化から前記バッテリの内部抵抗を算出し、
i(i≧k+1)回目のエンジン始動時には、(i−1)回目からi回目のエンジン始動時の間に前記バッテリに流れる充放電電気量を積算して前記バッテリの残容量を算出し、前記i回目のエンジン始動時の電流変化及び電圧変化から前記バッテリの内部抵抗を算出し、
前記算出した(i−k+1)個のバッテリの残容量及び内部抵抗の対に成立する相関関係を求め、該求めた相関関係における前記i回目に算出したバッテリの内部抵抗に対応する前記バッテリの残容量を算出する、
ステップを含むバッテリ残容量推定方法。
A remaining battery charge estimation method for estimating the remaining charge of a battery mounted on a vehicle having an idle stop / start function,
The open circuit voltage of the battery is measured before the k-th (k ≧ 1) engine start, and the remaining capacity of the battery is calculated from a predetermined relationship between the remaining battery capacity and the open circuit voltage. Calculate the internal resistance of the battery from the current change and voltage change at the time of engine start,
At the time of the i-th (i ≧ k + 1) engine start, the amount of charge / discharge electricity flowing through the battery during the (i−1) -th to the i-th engine start is integrated to calculate the remaining capacity of the battery, and the i-th engine start is performed. Calculating the internal resistance of the battery from the current change and the voltage change at the time of engine start,
A correlation that is established between the pair of the remaining capacity and the internal resistance of the calculated (i−k + 1) batteries is obtained, and the remaining capacity of the battery corresponding to the i-th calculated internal resistance of the battery in the obtained correlation is obtained. Calculate capacity,
A battery remaining capacity estimation method including a step.
前記内部抵抗は、前記エンジン始動前のバッテリの電圧とエンジン始動電流通電開始後所定時間経過時のバッテリの電圧との電圧差を、前記エンジン始動前のバッテリの電流と前記エンジン始動電流通電開始後所定時間経過時のバッテリの電流との電流差で除して得たことを特徴とする請求項1に記載のバッテリ残容量推定方法。The internal resistance is a voltage difference between the battery voltage before the engine start and the battery voltage at a predetermined time after the start of the engine start current application. The remaining battery capacity estimating method according to claim 1, wherein the battery remaining capacity estimating method is obtained by dividing by a current difference from a battery current after a predetermined time has elapsed. 前記所定時間は、前記エンジン始動電流通電開始時から50ms以内であることを特徴とする請求項2に記載のバッテリ残容量推定方法。3. The method according to claim 2, wherein the predetermined time is within 50 ms from the start of energization of the engine starting current. アイドルストップ・スタート機能を有する車両に搭載されたバッテリの残容量を推定するバッテリ残容量推定方法であって、
i回目(i≧1)のエンジン始動時の前記バッテリに流れる電流及び電圧を微小時間間隔で複数回サンプリングし、前記バッテリの電流及び電圧間に成立する回帰線の傾き及び切片を内部抵抗及び開路電圧として算出し予め定められたバッテリの残容量と開路電圧との関係から前記算出した開路電圧に対応するバッテリの残容量を算出し、
前記算出したi個のバッテリの残容量及び内部抵抗の対に成立する相関関係を求め、該求めた相関関係における前記i回目に傾きとして算出したバッテリの内部抵抗に対応する前記バッテリの残容量を算出する、
ステップを含むバッテリ残容量推定方法。
A remaining battery charge estimation method for estimating the remaining charge of a battery mounted on a vehicle having an idle stop / start function,
The current and voltage flowing through the battery at the time of the i-th engine start (i ≧ 1) are sampled a plurality of times at minute time intervals, and the slope and intercept of the regression line established between the current and voltage of the battery are determined as the internal resistance and open circuit. Calculating the remaining capacity of the battery corresponding to the calculated open circuit voltage from the relationship between the open circuit voltage and the predetermined remaining capacity of the battery calculated as a voltage,
A correlation that is established between the pair of the calculated remaining capacity and the internal resistance of the i batteries is obtained, and the remaining capacity of the battery corresponding to the internal resistance of the battery calculated as the i-th slope in the obtained correlation is calculated. calculate,
A battery remaining capacity estimation method including a step.
前記バッテリの温度を測定し、予め定められたバッテリの温度と内部抵抗補正値との関係から前記算出したバッテリの内部抵抗を所定温度における内部抵抗に補正することを特徴とする請求項1乃至請求項4のいずれか1項に記載のバッテリ残容量推定方法。The battery temperature is measured, and the calculated internal resistance of the battery is corrected to an internal resistance at a predetermined temperature based on a relationship between a predetermined battery temperature and an internal resistance correction value. Item 5. The remaining battery capacity estimation method according to any one of Items 4. 予め定められたバッテリの温度と開路電圧との関係から前記測定したバッテリの開路電圧を所定温度における開路電圧に補正することを特徴とする請求項1乃至請求項5のいずれか1項に記載のバッテリ残容量推定方法。The method according to any one of claims 1 to 5, wherein the measured open circuit voltage of the battery is corrected to an open circuit voltage at a predetermined temperature from a relationship between a predetermined battery temperature and an open circuit voltage. Battery remaining capacity estimation method. エンジン始動用スタータの特性から決定されるバッテリの最低電圧値と要求電流値とからエンジン始動を許容するバッテリの最大内部抵抗を算出し、前記求めた相関関係において前記最大内部抵抗に対応するバッテリの最小残容量を求め、
前記算出したバッテリの残容量が前記最小残容量よりも小さいときにエンジン始動が不能と判定する、
ステップを更に含むことを特徴とする請求項1乃至請求項6のいずれか1項に記載のバッテリ残容量推定方法。
The maximum internal resistance of the battery that allows the engine to be started is calculated from the minimum voltage value and the required current value of the battery determined from the characteristics of the starter for engine start, and the maximum internal resistance of the battery corresponding to the maximum internal resistance in the obtained correlation is calculated. Find the minimum remaining capacity,
When the calculated remaining capacity of the battery is smaller than the minimum remaining capacity, it is determined that the engine cannot be started.
The remaining battery capacity estimation method according to claim 1, further comprising a step.
JP2002183973A 2002-06-25 2002-06-25 Method of estimating remaining capacity of battery Abandoned JP2004025982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183973A JP2004025982A (en) 2002-06-25 2002-06-25 Method of estimating remaining capacity of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183973A JP2004025982A (en) 2002-06-25 2002-06-25 Method of estimating remaining capacity of battery

Publications (1)

Publication Number Publication Date
JP2004025982A true JP2004025982A (en) 2004-01-29

Family

ID=31179989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183973A Abandoned JP2004025982A (en) 2002-06-25 2002-06-25 Method of estimating remaining capacity of battery

Country Status (1)

Country Link
JP (1) JP2004025982A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223530A (en) * 2006-02-24 2007-09-06 Denso Corp State quantity operation device for battery
JP2007238001A (en) * 2006-03-10 2007-09-20 Shin Kobe Electric Mach Co Ltd Battery state judging device
WO2007105595A1 (en) * 2006-03-10 2007-09-20 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging device
JP2007278853A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state determining apparatus
JP2007280776A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state evaluation device
JP2008094212A (en) * 2006-10-11 2008-04-24 Shin Kobe Electric Mach Co Ltd Battery state detection system
WO2008152875A1 (en) * 2007-06-13 2008-12-18 Shin-Kobe Electric Machinery Co., Ltd. Battery state detecting system and automobile
JP2009286215A (en) * 2008-05-28 2009-12-10 Nippon Soken Inc State estimation device for on-vehicle battery
CN102435950A (en) * 2010-09-22 2012-05-02 通用汽车环球科技运作有限责任公司 Method and apparatus for estimating battery capacity of a battery
WO2016157731A1 (en) * 2015-03-27 2016-10-06 パナソニックIpマネジメント株式会社 Secondary battery status estimation device and status estimation method
JP2017195698A (en) * 2016-04-20 2017-10-26 スズキ株式会社 Battery management unit and battery management method
WO2020076127A1 (en) * 2018-10-12 2020-04-16 주식회사 엘지화학 Battery management device and method
CN116184216A (en) * 2023-04-28 2023-05-30 广汽埃安新能源汽车股份有限公司 Battery state detection method and device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223530A (en) * 2006-02-24 2007-09-06 Denso Corp State quantity operation device for battery
JP4690223B2 (en) * 2006-02-24 2011-06-01 株式会社デンソー Battery state quantity calculation device
JP2007238001A (en) * 2006-03-10 2007-09-20 Shin Kobe Electric Mach Co Ltd Battery state judging device
WO2007105595A1 (en) * 2006-03-10 2007-09-20 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging device
US8036839B2 (en) 2006-03-10 2011-10-11 Shin-Kobe Electric Machinery Co., Ltd. Battery state determining apparatus
JP4702115B2 (en) * 2006-03-10 2011-06-15 新神戸電機株式会社 Battery status judgment device
JP4626559B2 (en) * 2006-04-07 2011-02-09 新神戸電機株式会社 Battery status determination device
JP2007278853A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state determining apparatus
JP2007280776A (en) * 2006-04-07 2007-10-25 Shin Kobe Electric Mach Co Ltd Battery state evaluation device
JP4626558B2 (en) * 2006-04-07 2011-02-09 新神戸電機株式会社 Battery status determination device
JP2008094212A (en) * 2006-10-11 2008-04-24 Shin Kobe Electric Mach Co Ltd Battery state detection system
WO2008152875A1 (en) * 2007-06-13 2008-12-18 Shin-Kobe Electric Machinery Co., Ltd. Battery state detecting system and automobile
JP2008307973A (en) * 2007-06-13 2008-12-25 Shin Kobe Electric Mach Co Ltd Battery state detection system and automobile
JP4499810B2 (en) * 2008-05-28 2010-07-07 株式会社日本自動車部品総合研究所 In-vehicle battery state estimation device
JP2009286215A (en) * 2008-05-28 2009-12-10 Nippon Soken Inc State estimation device for on-vehicle battery
CN102435950A (en) * 2010-09-22 2012-05-02 通用汽车环球科技运作有限责任公司 Method and apparatus for estimating battery capacity of a battery
CN107533108A (en) * 2015-03-27 2018-01-02 松下知识产权经营株式会社 The condition estimating device and method for estimating state of secondary cell
WO2016157731A1 (en) * 2015-03-27 2016-10-06 パナソニックIpマネジメント株式会社 Secondary battery status estimation device and status estimation method
JPWO2016157731A1 (en) * 2015-03-27 2018-01-25 パナソニックIpマネジメント株式会社 Secondary battery state estimation device and state estimation method
US10481212B2 (en) 2015-03-27 2019-11-19 Panasonic Intellectual Property Management Co., Ltd. Secondary battery status estimation device and status estimation method
CN107533108B (en) * 2015-03-27 2020-03-06 松下知识产权经营株式会社 State estimation device and state estimation method for secondary battery
JP2017195698A (en) * 2016-04-20 2017-10-26 スズキ株式会社 Battery management unit and battery management method
WO2020076127A1 (en) * 2018-10-12 2020-04-16 주식회사 엘지화학 Battery management device and method
KR20200041711A (en) * 2018-10-12 2020-04-22 주식회사 엘지화학 Apparatus and method for battery management
KR102244141B1 (en) 2018-10-12 2021-04-22 주식회사 엘지화학 Apparatus and method for battery management
US11262409B2 (en) 2018-10-12 2022-03-01 Lg Energy Solution, Ltd. Battery management apparatus and method
CN116184216A (en) * 2023-04-28 2023-05-30 广汽埃安新能源汽车股份有限公司 Battery state detection method and device

Similar Documents

Publication Publication Date Title
JP4066732B2 (en) Battery remaining capacity estimation method
US7928736B2 (en) Method of estimating state of charge for battery and battery management system using the same
US7800345B2 (en) Battery management system and method of operating same
US7355411B2 (en) Method and apparatus for estimating state of charge of secondary battery
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
US9187007B2 (en) Online battery capacity estimation
US20020113594A1 (en) Vehicle battery&#39;s open circuit voltage estimating method and a system therefor
JP4288958B2 (en) Degradation estimation method
JP4032854B2 (en) Battery state detection system and automobile equipped with the system
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
US20080100265A1 (en) Battery management system and driving method thereof
US7880442B2 (en) Charging control device for a storage battery
CN101141016A (en) Battery management system and method
WO2008053969A1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
JP2001268708A (en) Hybrid vehicle control device
CN105378497A (en) Method for estimating state of health of a battery in hybrid vehicle
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP2007040991A (en) Battery control system and driving method thereof
JP6603888B2 (en) Battery type determination device and battery type determination method
JP2004025982A (en) Method of estimating remaining capacity of battery
WO2010010662A1 (en) Imbalance determination circuit, power supply device, and imbalance determination method
KR100696665B1 (en) Method for resetting soc of secondary battery module
CN104827990A (en) Vehicle battery system
JP2007053005A (en) Battery status detection system and automobile equipped with this
JP2009232659A (en) Charge-discharge control method and charge-discharge control device of battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060523